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Highlights
Next-generation sequencing technolo-
gies have made achieving a molecular
diagnosis for a rare genetic disorder
more and more feasible and, in turn,
have enabled a more personalised
clinical management of the affected
patients and their families.

Identifying the one or two variants that
are responsible for a certain disease
phenotype from the millions identified
by sequencing can be time-consuming
A molecular diagnosis from the analysis of sequencing data in rare Mendelian
diseases has a huge impact on the management of patients and their families.
Numerous patient phenotype-aware variant prioritisation (VP) tools have been
developed to help automate this process, and shorten the diagnostic odyssey,
but performance statistics on real patient data are limited. Here we identify, assess,
and compare the performance of all up-to-date, freely available, and program-
matically accessible tools using a whole-exome, retinal disease dataset from
134 individuals with a molecular diagnosis. All tools were able to identify
around two-thirds of the genetic diagnoses as the top-ranked candidate, with
LIRICAL performing best overall. Finally, we discuss the challenges to overcome
most cases remaining undiagnosed after current, state-of-the-art practices.
and expensive.

Numerous phenotype-aware variant
prioritisation (VP) software tools now
exist to help semi-automate the molec-
ular diagnosis process for rare dis-
eases.

Althoughmany of the published VP tools
have many limitations, show a lack of
maintenance, and become soon unfit
for usage, several are up-to-date and
demonstrate an impressive capacity in
prioritising molecular diagnoses when
tested on real patient data.

Adopting phenotype-aware VP software
tools in diagnostics settings can effi-
ciently assist the multidisciplinary teams
of clinicians and scientists in reporting
genetic diagnoses for rare disease.
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Molecular diagnosis in rare Mendelian diseases using phenotype-aware VP
software tools
With approximately 80% of rare diseases having a genetic origin, identifying the correct causative
variants in rare Mendelian single-gene disorders creates a greater potential for informed clinical
management through precision medicine or recommendation for drug trials, rather than only
treating evident symptoms. Improvements in sequencing genetic information at scale through
parallelisation (next-generation sequencing) have enabled greatly increased quantities of genomic
data production at lower overall costs, as shown by the recent completion of the 100,000
Genomes Project in the UK [1]. Whole-exome sequencing (WES) is still the most commonly
used method, as the exome (~2% of the human genome) harbours ~85% of currently known
disease-causing sequence variants [2]. The candidate variants from a typical WES experiment
are often derived from 60 000 to 100 000 variants affecting protein-coding regions, of which
nearly all will be benign or unrelated to the disease [3]. However, the filtering and review process
can still involve many tens, if not a few hundreds, of candidate variants and is usually both time-
consuming and expensive if done via manual analysis bymultidisciplinary clinicians and scientists.
Around one-third of children born with rare genetic diseases do not live to see their fifth birthday
[4], so it is vital that their molecular diagnosis is rapid and yet, the traumatic wait time for patients is
often lengthy (e.g., a median of 6 years in the 100,000 Genomes Project) [1]. VP software offers
the possibility of identifying the correct disease-causative variants more efficiently, sometimes
within minutes. These tools usually discard large quantities of likely benign, common variants
through filtering strategies based on publicly available (e.g., gnomAD) and in-house sequencing
databases.

The vast majority of VP tools are still only able to prioritise single-nucleotide variants (SNVs) and
small insertion/deletions (indels) formatted as variant call format (VCF) files. To determine likely
rare disease-causative SNVs/indels, VP tools usually incorporate several existing in silico patho-
genicity prediction tools that can restrict the patients’ VCF files to variants of interest based on a
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range of methods. They include function-prediction methods (e.g., MutationTaster, PolyPhen-2,
SIFT), which are based on the likelihood of eachmissense variant causing pathogenic changes to
protein structure or function; phylogenetic conservation methods (e.g., GERP++, phastCons,
phyloP), which measure the degree of conservation at a given nucleotide site; other more recent
methods, which concern a tailored use of deep neural networks (e.g., MVP, PrimateAI);
and ensemble methods (e.g., CADD, DANN, REVEL), which integrate information from multiple
component methods [5]. Despite the availability of this wide range of in silico pathogenicity
prediction tools, improvements are still needed to discriminate pathogenic from benign variants
with a reported median specificity of 65%; furthermore, with sensitivities ranging from 51% to
96% (median, 88%), relying only on algorithm-predicted variant pathogenicity is known to still
generate a large number of false positive candidates [5].

With the aim of automating the manual prioritisation of candidate variants made by clinicians
and scientists where the relevance of a certain gene variant to a patient’s phenotype is taken
into account, virtually all recent VP software tools have now enabled the incorporation of
standardised patients’ phenotypic terms, drawing from the more than 15 000 terms of
the Human Phenotype Ontology (HPO) [6]. This has ultimately been a significant addition; for
example, Exomiser (among the first VP tools of its kind) [7,8] demonstrated an increased top
prioritisation of the correct diagnosed causative variants from 20–77% (using only variant-
based filtering) to 96–97% (with the addition of patients’ HPO terms) using simulated sequencing
data and across different mode of inheritances (MOIs) as well as from 3% to 74% using real patient
data and inferred MOIs [9].

The VP software tools to date have been tested on (different) simulated and/or very small
real patient sequencing datasets, with limited software performance comparison. Strikingly,
each specific published tool virtually always claims to outperform the relatively limited number of
other tools tested from the literature. Here, we set out to perform a thorough literature review
with the aim of identifying up-to-date phenotype-aware VP software tools. Building on a previous
benchmarking of VP tool Exomiser [9], we then conducted a relatively unbiased software
performance comparison of the selected VP tools using a dataset of 134 whole-exomes
from individuals affected by a range of rare inherited retinal diseases (IRDs) and known molecular
diagnosis.

Up-to-date phenotype-aware VP software tools
A detailed literature search was carried out to determine a list of phenotype-aware VP software
tools to use for real patient data benchmarking that would meet the following criteria: (i) directly
accepting sequencing data formatted as VCF files; (ii) accepting HPO terms to describe patients’
phenotypes; (iii) being relatively up-to-date (last updated or published since 2018); (iv) freely
available for academic use; and (v) with local, programmatic access (and therefore safer for use
with patient data as opposed to web-based access and allowing processing of data at scale).

Literature searches using a combination of keywords (i.e., ‘exome’, ‘genome’, ‘variant
prioritisation’, and alternative spelling ‘variant prioritization’, and ‘human phenotype ontology’)
were conducted in PubMed and returned about 400 peer-reviewed journal articles (11 March
2022) (Figure 1). Articles were screened to identify those publications that involved a VP software
tool for rare Mendelian disease. This initially gave a list of 37 candidate VP software tools
[3,8,10–44] to prune according to the aforementioned criteria. Remarkably, only seven VP software
tools passed all five criteria and were selected as final candidates for testing and comparison.
Table 1 shows the details of the 37 tools retrieved from the literature search and the corresponding
selection process.
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Figure 1. Flow chart of the literature search and filtering criteria used to select the final phenotype-aware
variant prioritisation (VP) software tool candidates for benchmarking on real patient data. Searches of
combinations of keywords (red box) were conducted in PubMed. Phenotype-aware VP software tool candidates found in
the resulting papers (37) were then narrowed down to seven final candidates based on five criteria: accepting variant call
format (VCF) files; accepting Human Phenotype Ontology (HPO) terms; last updated or published since 2018; freely
available; with local, programmatic access. Finally, four VP tools were successfully downloaded, installed, and run on real
patient data for testing and comparison.
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Most of the tools (33) can directly accept sequencing data as a VCF file, which is the standard file
format for storing genetic variation data. A total of 28 tools are ‘phenotype-aware’ as opposed to
simply using the genetic variant data for prioritisation; they all allow an integrative analysis of the
patients’ phenotypes using the HPO, which has become the de facto standard for deep pheno-
typing in the field of rare disease [6]. The most discriminating criterion (failed by 23 tools) is our
requirement for the VP tool to provide both local and programmatic access. Local installation is
usually essential to conform to patient data privacy and security rules. Also, despite some
attractive features web-based tools may seem to provide, processing of data at scale via
programmatic access is usually vital to guarantee efficient analysis pipelines. It has to also be
noted that 11 tools were never updated since their publication date or 2017 (one in 2013, two
in 2014, three in 2015, one in 2016, and four in 2017), with corresponding website link broken
for one of them (Table 1). This is largely a reflection of the challenges of maintaining academic
software when resources do not exist for such an activity. Finally, Table 2 shows a summary of
the different data sources that are leveraged within each of the seven remaining VP tool candi-
dates to document the type and amount of information each tool relies on, as well as to provide
insights into the need to update and/or maintain them.

Four VP software tools successfully downloaded, installed, and run using real
patient data
Attempts were made to download and install all seven of the selected VP software tools. Further
illustrating the problems with long-termmaintenance of academic software, this was not possible
for three of them due to inaccessible databases, failing dockers, or lack of information in ReadMe
files. In particular, for DeepPVP [16], we were unable to follow their installation process as no
Trends in Genetics, December 2022, Vol. 38, No. 12 1273
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Table 1. Selection of phenotype-aware variant prioritisation (VP) software tools based on five suitability criteriaa

aA grey cell indicates that the corresponding feature is not present.
bFollowing the completion of a literature review, seven viable VP software tool candidates that met all five suitability criteria (i.e., directly accepting VCF files; accepting HPO
terms; last updated or published since 2018; freely available; with local, programmatic access) were selected for testing and comparison.

VP so�ware tool
Directly accep�ng 

VCF files

Accep�ng 

HPO terms

Last updated or 

published since 2018

Freely 

available

Local, 

programma�c access
Refs

Exomiserb √ √ √ √ √ [8]

LIRICALb √ √ √ √ √ [35]

VARPPb √ √ √ √ √ [11]

Xrareb √ √ √ √ √ [30]

Phenoxomeb √ √ √ √ √ [42]

DeepPVPb √ √ √ √ √ [16]

PhenIXb √ √ √ √ √ [44]

VINYL √ √ √ √ [18]

eDiva √ √ √ √ [15]

VarSight √ √ √ √ [20]

AMELIE √ √ √ √ No local installa�on [14]

GeneTerpret √ √ √ √ Web-based only [32]

PhenoPro √ √ √ √ Web-based only [31]

Muta�onDis�ller √ √ √ √ Web-based only [22]

GenIO √ √ √ √ Web-based only [28]

PhenoVar √ √ √ √ Web-based only [40]

GEM √ √ √ Commercial Web-based only [3]

EVIDENCE √ √ √ Commercial Web-based only [36]

VarElect √ √ √ Commercial Web-based only [39]

Phevor (now Phevor2) √ √ √ Web-based only [38]

Moon √ √ √ Commercial Code available on request [34]

wAnnovar √ √ √ Web-based only [43]

OVA √ √ √ Web-based only [12]

BierApp √ √ √ Web-based only [10]

OMIM Explorer √ √ √ Broken web link [25]

QueryOR √ √ √ Web-based only [13]

eXtasy √ √ √ √ [37]

Phen-Gen √ √ √ √ [26]

PVP √ √ √ √ [17]

VCF.Filter √ √ App-based only [33]

wKGGSeq √ √ Web-based only [29]

VAAST √ Commercial Web-based only [27]

VPOT √ √ √ √ [24]

Ensembl Variant Effect Predictor √ √ √ No local installa�on [23]

Clin.iobio √ √ √ √ Web-based only [41]

VarFish √ √ √ √ Web-based only [21]

VarAFT √ √ √ √ App-based only [19]
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Table 2. Data sources used within each of the seven selected phenotype-aware variant prioritisation (VP) software tools from the literature reviewa

aZFIN, IMPC, andMGD are used only by Exomiser. SPIDEX, Pfam, Treefam, GIANT, REACTOME, LRT, InterPro, GWAS, Blast, GO, GERP, dbscSNV, and phyloP are used
only by Xrare. ARIC, GTEx, and MetaSVM are used only by VARPP. GWAVA is used only by DeepPVP.
bThe tools that were successfully downloaded, installed, and tested in the software performance comparison within this study.
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phenomenet-vp docker container exists in Docker Hub and the dockerfile recipe provided in their
GitHub repository does not build in the research computing environment containing our
clinical data; Phenoxome’s [42] docker pull was successful but there were no further instructions
for progression with its installation; VARPP [11] download of the required dbNSFP database
(version v3.4a) was no longer possible. The four remaining VP software tools were finally included
in this software performance evaluation and comparison using real patient data as they were each
successfully downloaded and installed as reported next, including a brief description of the
corresponding VP rationale and algorithms.

The corresponding code for all analyses is available as a repository at https://github.com/
whri-phenogenomics/VPSoftware_review.

Exomiser
Exomiser [7–9,45] is a freely available Java software tool that automates filtering and prioritisation
of variants contained in VCF files from sequencing of rare disease patients (and, if available, their
family members). A range of user-defined variant filtering criteria can be applied based on
JANNOVAR [46] functional annotation, minor allele frequency, and expected inheritance pattern,
amongst others. Each filtered variant is then prioritised according to a variant score based on its
rarity and in silico algorithm-predicted pathogenicity, which is in turn combined with a corre-
sponding gene-specific phenotype score. The latter is obtained via the PhenoDigm algorithm
[37] and is calculated based on the semantic similarity between the user-provided HPO-
encoded patient’s phenotype and the phenotypic annotations of genes in known human
diseases, orthologs in mouse and zebrafish model organisms, and phenotypes of protein–
protein associated neighbours [7].

The download and installation of Exomiser version 13.0.0 (released on 23 September 2021)
were straightforward, following a comprehensive ReadMe file accessed via Exomiser’s GitHub
pagei. We used a Bash script to create a single-sample-analysis-settings.yml file
starting from the preset-exome-analysis.yml example file provided and containing the
Exomiser analysis settings per each patient from the IRD dataset. Exomiser was then run using
Trends in Genetics, December 2022, Vol. 38, No. 12 1275
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the following command line per each single-sample analysis for the IRD patient WES dataset
(Java version 17.0.0; Exomiser variant and phenotype databases version 2109; default
Ensembl transcript annotation):

java -Xms2g -Xmx4g -jar exomiser-cli-13.0.0.jar –analysis single-

sample-analysis-settings.yml

A few representative sections of the HTML output file from the analysis of one single sample are
reported in Figure S1 in the supplemental information online. Tab-separated (tsv) output files
containing a variety of relevant information for the filtered and prioritised variants (including func-
tional annotation, allele frequency in publicly available databases, the gene-specific phenotype
score, the variant score, and the Exomiser combined score) were also obtained and processed
for software performance evaluation and statistical comparison, as described later and in the
supplemental information online.

PhenIX
PhenIX (i.e., phenotypic interpretation of exomes) [44] is a computational method that eval-
uates and ranks variants based on their rarity and predicted pathogenicity, as well as the se-
mantic similarity of the HPO terms used to describe the patients' phenotypes to those of
thousands of human Mendelian diseases as reported in OMIM and Orphanet (last updated
in 2019).

PhenIX is available within Exomiser. Therefore, it did not require any additional download and
installation, can be run in the same way as Exomiser, and produces similar output files.

It exploits the same variant filtering framework of Exomiser, while its semantic similarity
algorithm is enabled by replacing Exomiser option ‘hiPhivePrioritiser: {}’ with
‘phenixPrioritiser: {}’.

LIRICAL
LIRICAL (i.e., likelihood ratio interpretation of clinical abnormalities) [35] exploits the likelihood
ratio (LR) statistical framework. Not only does it ultimately rank the candidate variants but it also
provides an estimate of the post-test probability of candidate diagnoses and calculates the extent
to which (LR) each provided HPO-encoded abnormality (and, if VCF files are available, genotype
too) is consistent with the diagnosis.

LIRICAL version 1.3.4 (released on 26 September 2021) was downloaded by git cloning the cor-
responding GitHub repositoryii and installed following the clear instructions from the correspond-
ing ‘readthedocs’ pagesiii. LIRICAL makes use of the Exomiser variant and phenotype databases
(we enabled database version 2109). The preferred input format for LIRICAL is Phenopacketsiv,
an open standard, also adopted within the Global Alliance for Genomics and Healthv, for sharing
detailed phenotypic descriptions linked with disease, patient, and genetic information.

We used a Python script to create a Phenopacket single-sample-phenopacket.json per
each patient from the IRD patient WES dataset. LIRICAL was then run using the following com-
mand line per each single-sample analysis:

java -jar LIRICAL.jar phenopacket -p single-sample-phenopacket.json

-e path/to/Exomiser-data-directory -x prefixOfOutputFile –tsv –output-directory

path/to/output-directory
1276 Trends in Genetics, December 2022, Vol. 38, No. 12
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A few representative sections of the HTML output file from the analysis of one single sample are
reported in Figure S1 in the supplemental information online. Tab-separated (tsv) output files
containing relevant information for the candidate prioritised diagnoses, together with the corre-
sponding filtered variants (including rank, post-test probability, and LR), were also obtained
and processed for software performance evaluation and statistical comparison, as described
later and in the supplemental information online.

Xrare
Xrare [30] concerns a newly developed phenotypic similarity measure called emission-reception
information content (ERIC), which is claimed to be somehow robust to imprecise and noisy clinical
phenotypes and to be a machine learning approach (i.e., a gradient boosting decision tree
algorithm implemented in XGBoost [47]) that can jointly model phenotypic features and multiple
genetic features, including American College of Medical Genetics and Genomics/Association
for Molecular Pathology (ACMG/AMP) guideline-based features for VP.

Xrare was downloaded and installed converting the Docker image xrare-pub-2015.docker.tar.gzvi

into a Singularity container (xrare-2015.simg) due to preferences of the Queen Mary University
(QMUL) Apocrita high-performance computing (HPC) facility.

Per each single-sample analysis in the IRD patient WES dataset, we first ran the Xrare module via
singularity run xrare-2015.simg and then an R script with core code consisting of the
command xrare() with arguments vcffile and hpoid (i.e., a single-sample gzipped VCF
file and a corresponding string of HPO terms, e.g., as ‘HP:0001156, HP:0001363,
HP:0010055’), respectively.

If xrare(), not being a robust function, did not halt execution due to ‘system run_annotation is
failed’ errors, tsv output files containing a variety of relevant information for the filtered and
prioritised variants (including functional annotation, allele frequency in publicly available databases,
many pathogenicity prediction variant scores, the ACMG/AMP-based classification, and the Xrare
score) were produced and processed for software performance evaluation and statistical
comparison, as described later and in the supplemental information online.

Real patient WES dataset with known molecular diagnosis and HPO-encoded
clinical diagnosis
We assessed the performance of the four successfully downloaded and installed VP software
tools using the same real patient WES dataset that was previously described and used in a
benchmarking of Exomiser [9]. Briefly, the dataset consists of 134 individuals who had been
clinically diagnosed with IRD by a consultant ophthalmologist at Moorfields Eye Hospital and
the University College London Institute of Ophthalmology (London, UK) and had also received
a molecular diagnosis (i.e., ‘solved’) based on SNVs and/or indels from the analysis of their
respective WES data (Tables S1 and S2 in the supplemental information online). All patients
had been sequenced as singletons. For this review and software performance comparison
analysis, we used a more recent version of single-sample VCF files than the ones used previously
[9], which were obtained as described in the supplemental information online. As to the pheno-
typic information, each of the 19 clinical diagnoses observed in the real patient WES dataset
had been assigned a parsimonious, fixed list of most representative HPO terms (from one single
term to six terms) by three ophthalmologists with expertise in IRD diagnosis (Table S1 in the sup-
plemental information online). Encoding the patient’s clinical diagnoses into HPO terms can over-
come the need for single patient-specific HPO terms and has already proven to be effective [9];
however, many tools now exist that facilitate an efficient collection of patients’ HPO-encoded
Trends in Genetics, December 2022, Vol. 38, No. 12 1277
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clinical phenotypes and/or can automate the extraction of human disease phenotypes from
free text clinical notes as well as electronic health records [48–52]; also, large-scale sequencing
projects now require the availability of patients’ phenotypes encoded as HPO terms as study re-
quirements [1]. Evaluations based on patient-specific HPO terms would additionally be affected
by how specific and extensive these terms were (annotation sufficiency) and how thorough the
reference disease annotations are in terms of covering both common and rarely observed
signs and symptoms.

Software performance evaluation and statistical comparison using the IRD patient WES dataset
Each selected VP software tool was run on each of the 134 whole-exomes from the IRD dataset
using default commands as described in the available documentation. Also, to perform a fairly
unbiased software performance comparison, the corresponding output was processed in a
way that would mimic IRD diagnostics and produce a relatively homogeneous set of criteria
across tools. Finally, we noted the rank at which each VP tool outputted the known diagnosed
disease variant(s) per each IRD patient and ran a set of statistical tests to assess pairwise agree-
ment. More details are provided in the supplemental information online.

LIRICAL, Exomiser, and Xrare performed similarly at assigning the correct causative variants
first rank for about two-thirds of the patients (100, 99, 98, respectively, out of 134) (Table 3,
Figures 2 and 3A, and Figure S2 in the supplemental information online), while PhenIX
performed the worst with 93 patients. The known diagnosed variants were ranked top 5 in
about 93% of the dataset by LIRICAL and PhenIX and about 90% by Exomiser, while Xrare
remained at 88% for both top 5 and top 10 ranking categories. LIRICAL showed the best
performance also at assigning the correct causative variants top 10 ranks for over 96% of
the dataset, closely followed by PhenIX and Exomiser. We also calculated precision estimates
from statistical confusion matrices for the correctly diagnosed variants matched in the first
rank, up to the fifth rank, and up to the tenth rank by each of the tested VP software tools
(Figure 3B). For example, should a clinical geneticist review the top five candidates, with preci-
sion estimates equal to about 0.2 for all four VP tools, one in five reported variants would be the
correct ones. These results are similar to those reported in previous studies on other clinical
cohorts where diagnoses were detected as the top ranking candidate in 60% of cases for
LIRICAL [35], 77% for Exomiser [1], ~40% and ~80% for Xrare [30], whilst PhenIX reported a
Table 3. Descriptive statistics of the disease-causing variant ranking in the inherited retinal disease (IRD) patient whole-exome sequencing (WES)
dataset for the four successfully run phenotype-aware variant prioritisation (VP) software tools and pairwise agreement with LIRICAL (reference)a

VP
software
tool

Patients with
disease-causing
variants filtered
out/not
prioritised

Mean rank
(SD)

Median
rank

Min
rank

Max
rank

Top rank,
% (n = 134)

Agreement with
LIRICALb(%)

Disagreement
with LIRICALb(%)

Cohen's kappa
(Agreement)

Stuart-Maxwell
test

LIRICAL 4
1.7
(2.0)

1 1 18 74.6 Reference

Exomiser 6 3.1
(11.7)

1 1 123 73.9 68.7 Better: 14.9
Worse: 16.4

0.25
(fair agreement)

0.4189

Xrare 16 1.4
(0.8)

1 1 5.5 73.1 61.9 Better: 17.9
Worse: 20.1

0.10
(slight agreement)

0.0016

PhenIX 6 1.8
(2.5)

1 1 23 69.4 67.2 Better: 14.2
Worse: 18.7

0.25
(fair agreement)

0.3894

aThe mean/median/min/max ranks in the table refer to the effective n, that is, 134 minus the number of patients with disease-causing variants filtered out. ‘Top rank, %’

describes the percentage of disease-causing variants ranked as first out of the 134 exomes tested.
bLIRICAL was chosen as the reference, being the best performing VP software tool at ranking the disease-causing variants overall.
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Figure 2. Bar plot of the percentage categorical distribution of the disease-causing variant ranking in the
inherited retinal disease (IRD) patient whole-exome sequencing (WES) dataset for the four successfully
tested phenotype-aware variant prioritisation (VP) software tools. The ranking results were categorised into five
mutually exclusive bins: ‘Top’ (including top ties), ‘(2–5)’, ‘(6–10)’, ‘>10’, and ‘Filtered out/Not prioritised’ (FO/NP) (the latter
being any disease-causing variant(s) failed to be kept in during the filtering/prioritisation step).
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mean rank of 2.1 [44]. A further evaluation of several tools on two clinical datasets showed
performances of 41–51%, 15–26%, 16–43%, and 38–51% of diagnoses identified as the
top-ranked candidate for LIRICAL, Exomiser, PhenIX, and Xrare, respectively [53], but the set-
tings for Exomiser and PhenIX differed markedly from those used here in terms of pathogenicity
prediction algorithms as well as frequency and non-PASS variant filtering [58].

All VP software tools showed the samemedian rank equal to 1, with Exomiser presenting with the
highest maximum rank (123), while Xrare demonstrated the smallest one (5.5). Importantly, the
latter is based on Xrare having missed (‘Filtered out/Not prioritised) 16 correct diagnoses out of
134. That is the highest number overall, with Exomiser and PhenIX having missed six each and
LIRICAL the lowest number of four. In particular, the latter four genetic diagnoses were missed
by all VP tools due to the corresponding variants being flagged as low quality in the VCF file
(three) or not called at all due to low coverage (one). Additionally, Exomiser and PhenIX chose to
prioritise different variants for the correct gene other than the correct ones for two samples each,
and Xrare either only partially outputted/did not output at all 11 diagnoses (seven homozygous,
four compound-heterozygous) or missed one diagnosis due a genotype mismatch in the VCF
file (the latter was rescued by Exomiser and PhenIX as a ClinVarvii, ‘whitelisted’ variant).

Finally, taking LIRICAL as the reference VP tool given that it showed the best performance
estimates overall (Table 3, Figures 2 and 3, and Figure S2 in the supplemental information online),
we used statistical tests which are tailored to assess agreement between two raters to gain
Trends in Genetics, December 2022, Vol. 38, No. 12 1279
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Figure 3. Scatter plots of diagnostic measurements for the software performance of the four successfully
tested phenotype-aware variant prioritisation (VP) software tools. (A) Recall (true positive rate) and (B) precision
were calculated from confusion matrices for the correctly diagnosed variants matched in the first rank, up to the fifth rank,
and up to the tenth rank by each of the tested VP software tools. Recall (true positive rate) = true positives (TP)/actual
positives; precision = TP/predicted positives. For Xrare, the recall estimate for the ‘up to the fifth rank’ analysis is equal to
the recall estimate for the ‘up to the tenth rank’ analysis (i.e., 0.88).
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Outstanding questions
How can we tackle the overwhelming
numbers of rare disease patients that
undergo next-generation sequencing
investigations and remain undiagnosed
even after state-of-the-art data analysis?

How efficiently will the newly emerging
functional variant assays be deployed
at scale in clinical settings to clarify
the precise link between disease-
associated variants, gene function,
and the full spectrum of phenotypes?

How can we strike a balance between
the pressing need for sharing clinical
genomic data and complying with
patient data security on a global scale?

How efficiently will new algorithms be
developed that can reliably prioritise
noncoding and structural variants
to make them available for further
validation and molecular diagnosis
at scale?
insights into whether any VP tool performed significantly better (Table 3). The agreement with
LIRICAL’s performance (i.e., same disease-causing variant ranked same by the two VP tools)
did not exceed 70% for any of the other three tested VP tools (i.e., 69%, 67%, and 62% for
Exomiser, PhenIX, and Xrare, respectively); corresponding ‘fair’, ‘fair’, and ‘slight’ agreements
were observed when calculating the Cohen’s kappa values (interpreted according to Landis and
Koch’s guidelines, i.e., kappa < 0.00 as ‘poor’ agreement, 0.00–0.20 as ‘slight’, 0.21–0.40 as
‘fair’, 0.41–0.60 as ‘moderate’, 0.61–0.80 as ‘substantial’, and 0.81–1 as ‘almost perfect’ agree-
ment [54]) (Table 3). However, these estimates represent a statistically significant difference only
when comparing LIRICAL’s performance with the overall worse performance of Xrare (Stuart-
Maxwell test, P = 1.6 × 10–3). Interestingly, despite LIRICAL performing best overall, we still
observed a relevant number of molecular diagnoses that were better ranked by the second tool
(i.e., 20, 19, 24 for Exomiser, PhenIX, and Xrare, respectively) (Table 3).

Concluding remarks
Despite numerous publications in the past decade showing the promise of phenotype-aware, VP
tools for Mendelian diseases, very few are actually available for up-to-date analysis and integra-
tion into local diagnostic pipelines. Notably, although most tools are freely available, they are
often developed as web-/app-based access only, without the possibility of being installed locally
(Table 1). Both those features present major disadvantages. If the lack of programmatic access
for a certain tool should be seen as impractical, especially in large-scale analyses, for example,
making a user upload many data files manually on a website, the impossibility of installing a tool
locally severely limits the usability of the tool itself due to strict privacy and security requirements
of most, if not all, real patient datasets, including the IRD patient WES dataset tested in this
1280 Trends in Genetics, December 2022, Vol. 38, No. 12
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review. Guaranteeing local tool installation, either with programmatic or web-/app-based access,
should be considered essential when developing VP software. However, all four tools
benchmarked on real patient data in this review showed an impressive capacity to prioritise
diagnoses and lighten the load of clinical geneticists (Table 3 and Figure 2). Each is likely to
offer its own advantages and disadvantages (e.g., LIRICAL offers an interpretable graphical
overview of the evidence based on LRs; Figure S1 in the supplemental information online),
but it is likely that the use of several different approaches will minimise the chance of
overlooking a diagnosis.

Each of the assessed tools uses similar approaches to variant filtering and prioritisation, with most
of the algorithmic differences being in how phenotypic data were used in this process. The variant
data sources do vary considerably between each tool though (Table 2); this could account for
performance differences and it is hard to separate it out from any differences due to the pheno-
type prioritisation algorithm. However, Exomiser and PhenIX used exactly the same framework
and data for variant annotation, filtering, and prioritisation, so the reduced performance of PhenIX
is due to its human-only, semantic phenotypic similarity approach relative to Exomiser’s multi-
species algorithm. PhenIX’s underlying reference data have not been updated since 2019, so
this could also explain much of the observed difference. LIRICAL and Exomiser share much of
the same data and variant annotation and filtering approaches, so the improved performance
observed for LIRICAL could well be due to its LR statistical approach. Here, Xrare’s use of
emission-reception information content and XGBoost machine learning approach showed a
similar performance to the other tools but may well show improved performance on other real
clinical datasets where imprecise and noisy phenotype annotations have been collected.

Several questions remain to be addressed (see Outstanding questions). The key challenge for the
future is how to tackle the overwhelming numbers of cases that remain undiagnosed even after
state-of-the-art data analysis. For example, 75% of cases were undiagnosed in the 100,000
Genomes Project after whole-genome sequencing and a combination of gene-panel, Exomiser,
and research analysis [1]. About half of the nearly one million variants reported in ClinVar as
associated with severe genetic diseases are indeed of uncertain significance (VUS) or present
conflicting annotations. This exposes how the newly emerging functional variant assays, ideally
to deploy at scale, are likely to attract substantial efforts in rare disease diagnostics to assess
the exact impact of associated variants on gene function [55]. Part of the uncertainty around
disease-associated variants is also likely to be resolved by the ever-increasing availability of
sequencing data as well as global data sharing initiatives that connect databases of genomic
and phenotypic data (e.g., Matchmaker Exchange) [56,57]. Yet, this inevitably poses additional
challenges, as patient data privacy and security remain paramount. Despite the current
challenges, many new disease–gene associations are being published every month and VP
tools, provided they are reasonably up-to-date, offer a convenient way to help reinterpret
unsolved cases by automated reanalysis and identification of new candidates. Finally, a large
proportion of unsolved rare disease cases are likely to involve noncoding and structural variation
that is being overlooked by the current sequencing and analysis approaches. Although some
progress has been made in VP tools offering analysis of these types of variation, algorithm
improvements are going to be needed before validation and diagnosis of these become feasible
at scale.
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