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Abstract

The final year of a biochemistry degree is usually a time to experience research.

However, laboratory-based research projects were not possible during COVID-

19. Instead, we used open datasets to provide computational research projects in

metagenomics to biochemistry undergraduates (80 students with limited com-

puting experience). We aimed to give the students a chance to explore any data-

set, rather than use a small number of artificial datasets (�60 published datasets

were used). To achieve this, we utilized Google Colaboratory (Colab), a virtual

computing environment. Colab was used as a framework to retrieve raw

sequencing data (analyzed with QIIME2) and generate visualizations. Setting up

the environment requires no prior experience; all students have the same drive

structure and notebooks can be shared (for synchronous sessions). We also used

the platform to combine multiple datasets, perform a meta-analysis, and allowed

the students to analyze large datasets with 1000s of subjects and factors. Projects

that required increased computational resources were integrated with Google

Cloud Compute. In future, all research projects can include some aspects of rea-

nalyzing public data, providing students with data science experience. Colab is

also an excellent environment in which to develop data skills in multiple lan-

guages (e.g., Perl, Python, Julia).
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The research project is an essential component of a life
science degree,1 providing an experience of the entire
research process, acquiring new skills, and testing a
hypothesis.2 The students also gain subject matter to pre-
sent and discuss at interviews for jobs and postgraduate
studies. COVID-19 heavily disrupted life science research,
closing laboratories and causing global shortages of key

laboratory materials.3 Undergraduate students who had
previously performed an integrated experimental/
computational research project4 were now unable to per-
form the experimental component.

To overcome this challenge, we conducted compu-
tational research projects remotely with a cohort of
80 students by reanalyzing publicly available 16S rRNA
amplicon microbiome data obtained from published
studies. 16S rRNA amplicon sequencing datasets are of
manageable size and excellent analysis pipelines exist,
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including QIIME2 (Quantitative Insights Into Micro-
bial Ecology)5–7 (Supplemental files 1–3, and on
https://github.com/). The students were encouraged to
search for microbiome data in an area of interest to
them (e.g., microbiome and cancer) and microbiome
data from over 60 studies covering a wide range of
topics were identified.

To retrieve the data, we utilized Google Colaboratory
(Colab)—a virtual computing environment that can be
used with multiple programming languages and is linked
to Google Drive (all available in supplemental files 1–3,
and on https://github.com/ see data availability). This
data science platform gave each student a readily
accessed virtual machine that needed very little configu-
ration. Having all students use the same drive structure
was useful for live teaching sessions. We accessed public
databases using Colab and saved the files to shared Goo-
gle Drive folders (Supplemental file 1). Our workflow is
described in Figure 1 with examples for the Colab
QIIME2 pipeline given in Supplemental files 1–3.

The computational pipelines were virtually complete
when shared, to ensure that students with less familiarity
with computational biology were not disadvantaged. As
students were required to understand the experimental
design and sequencing method (e.g., 16S rRNA primers),
assess sequence data quality, perform statistical decision
making, and produce a final presentation, many essential

components of experimental student research projects
were maintained, including problem-solving and critical
thinking skills.13 We used Colab for both data analysis
exercises and tutorials (see Supplemental file 3), closely
aligned with published QIIME2 tutorials.14 To visualize
the output file, a standardized R markdown (see Figure 2)
was provided. Rstudio Cloud was used to give students
with limited computing resources access to the files.

The use of the Colab platform as a framework for stu-
dents to reanalyze public data made it possible to complete
research projects remotely and gave students the chance
to write their research paper as if the data were their own.
Using this approach, they explored the scientific method
and relationships between data and knowledge.13 More-
over, some of the students combined multiple datasets,
performed meta-analyses, and used datasets with 1000s
samples.25 We did not seek to check the validity of the
published data and the students were encouraged to make
their own decisions from the analysis. Using this frame-
work, all students were able to complete a research project
using published data, a useful data science skill that
should be incorporated in future projects.
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FIGURE 1 A computational framework to reanalyze public data using Google Colab. (a) Each student was given a Colab notebook with

access to the microbiome study of their choice. Browser toolkits were installed to Colab, including Sequence read archive (SRA),8 European

Nucleotide Archive (ENA),9 QIITA,10 DNA databank of Japan (DDBJ)11 and European Genome-Phenome Archive (EGA).12 (b) Google

buckets were used for the larger studies (10GB+). The SRA database can transfer data directly to the bucket and then to Google Cloud

compute or Colab. (c) FASTQ files were stored to Google Drive; both students and instructors had access to the files. Files from the SRA

were converted to FASTQ files, using fastq-dump. (d) Analysis with QIIME2 was completed in Colab, any parts that required more extensive

computational resource could be transferred back to Google Cloud compute. Finally, QIIME2 outputs were visualized with R and R Studio

and a standardized R markdown document was generated for each of the projects.
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FIGURE 2 Examples of reanalyzed data.15–18 (a) alpha diversity,19 (b) Beta-diversity,20 (c) phylogenetic tree plot,21 (d) taxa barplots,22

(e) Feature analysis with EdgeR23,24
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SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.
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