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Abstract: In geotechnical engineering, very often, the soil behavior varies with time. This is of
particular interest in many cases such as embankments in soft clays, shear band progression in slopes
or where the speed of the application of the load affects the bearing capacity of the material. In
this paper, we study the extension of non-local failures using algorithms such as eigenerosion and
eigensoftening, in order to evaluate the failure of weak layers. In particular, the time dependence of
the progression of shear bands is analyzed through the integration of a Perzyna-type visco-plastic
model with a degradation algorithm within the Optimal Transportation Meshfree (OTM) framework.
The validation of the proposed algorithm is carried out through three different practical cases,
showing very good agreement in all of them.

Keywords: meshfree numerical modeling; finite deformation; degradation; sensitive clays; visco-
plastic behavior

1. Introduction

The failure of geomaterials has been a topic of study since the early work of Coulomb
back in 1877. The work of Drucker and Prager [1] is an example of the theoretical derivation
of these problems. Failures can be classified in two types depending on the state of the
material: diffuse and localized.

Diffuse failures are associated with the instability of loose and saturated materials
(e.g., [2,3]) under monotonic and dynamic loads. In the latter, the increase of the pore
pressure can cause the liquefaction of the material, when its effective stress vanishes as
a result of this increase of pore pressure while the total stress remains constant. This
phenomenon can produce landslides, involving the displacement of large volumes of
material. The numerical modeling of the initiation of diffuse failure has been developed in
finite element based codes to reproduce failures in mine tailing dams [4,5], landslides [6,7]
or the study of the response of loose saturated, granular material under seismic action [8,9].
Recently, these phenomena have been studied with meshfree techniques, allowing to
evaluate the transition from solid to fluidized materials with SPH techniques with one
(e.g., [3,10–14]) and two phases [15,16], Material Point Method, MPM, (e.g., [17–20]) or
Discrete Element Methods, DEM, for the liquefaction on granular materials (e.g., [21,22]).

In contrast, localized failures are associated with the concentration of strains in a nar-
row zone and a limited region, which produces a discontinuity in the deformation as well
as in the strain rate. This failure is related to a weak discontinuity, which is also known as a
weak layer. The progress of the failure of overconsolidated clays that present a softening
behavior has been extensively studied. It consists of the reduction of the shear strength
from the peak to the residual value. Early work by Rice [23] provided the theoretical
basis for understanding the physics and mathematics of the problem. The formation and
propagation of shear bands have been studied through theoretical and lab-scale models
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(e.g., [24,25]). Numerically, the localization of shear deformations associated with softening
behaviors, which is related to negative slopes in the loading–displacement curve, tradition-
ally depends on the mesh discretization (e.g., [26]. The employment of visco-plastic models
has allowed the regularization of the problem (e.g., [27]).

Visco-plastic formulations are common in the literature to evaluate the rate-dependent
failure of geomaterials, shear bands, creep and stress relaxation. In general, such con-
stitutive formulations include empirical models focused on the evaluation of creep and
stress relaxation for soft clays [28,29], rheological models for a wide range of deforma-
tions (e.g., [11,30,31]) and general stress–strain–time constitutive models (e.g., [32,33]).
Elasto-plastic constitutive models incorporating rate dependence are based mainly on the
over-stress theory [34] and on the concept of a non-stationary flow surface (e.g., [35,36]).
The over-stress theory assumes there is no viscous strains occurring inside the static yield
surface (elastic region). However, the inelastic region is rate dependent. This dependency
is defined by an over-stress factor. This theory has been implemented in finite element and
meshfree methods to study different geotechnical problems (e.g., [31,37]).

In this paper, we propose a methodology for evaluating the progression of a shear band
or a weak layer through a phenomenological visco-plastic model, taking the benefits of a
non-local failure approach. The proposed algorithm is based on the same principles of both
eigenerosion and eigensoftening approaches, which have been widely employed through
material point-based frameworks in order to assess the fracture evolution in quasi-brittle
materials ([38,39]) once specific energy (eigenerosion) or stress (eigensoftening) thresholds
are reached when the material point fails. Within the aforementioned algorithms, the failure
can be modeled instantaneously (eigenerosion) or following a material-dependent softening
law (eigensoftening). In order to achieve a diffuse failure through the degradation of the
material, a combination of these algorithms within a Perzyna-type visco-plastic model is
proposed. This methodology is validated together with a particle-based discretization (OTM)
with three practical cases: (a) the progression of a shear band, (b) the effect of the velocity on
the ultimate load of a footing and (c) the failure of a vertical slope with a weak layer.

The Optimal Transportation Meshfree [40–42] is a meshfree method that has been
demonstrated to perform reasonably well in geotechnical problems [43,44]. Its discretiza-
tion is based on an FEM scheme, where the nodes map the displacement field (and its
derivatives) and the material points (originally located at the integration points) carry the
material information such as energy, stress and strain. In contrast to the FEM, the informa-
tion of the material point comes from a neighborhood of nodes, which is defined by the
distance between them and the node, instead of a predefined element. The main advantage
of this is that the neighborhood is changing every step, which avoids the element distortion,
since the new neighborhood will be adapted to the new shape of the domain.

Therefore, with the aim of verifying the good performance of the aforementioned
algorithm, the rest of the paper is organized as follows; in Section 2, the constitutive
model with all its ingredients (rate-dependent plasticity and non-local failure procedure) is
presented; in Section 3, time and spatial discretizations are outlined; in Section 4, several
applications are depicted; and, finally, the derived conclusions are provided in Section 5.

2. Constitutive Model
2.1. Rate Dependent Plasticity

Apart from the mathematical and numerical models that will be described in Section 3,
it is essential to choose an appropriate constitutive model for the degradable soils. The mech-
anisms through which soft clays display a viscous phenomenon and delayed deformation
because of the creep have been extensively studied in the past ([28]). The concept of the
visco-plastic material outlined in this section and employed in the proposed simulations is
based on Perzyna’s theory [34], which is a modification of the classical plasticity, wherein
viscous-like behavior is introduced by a time-rate flow rule thanks to a plastic yield func-
tion adapted to dynamic conditions. In a similar manner to the rate-independent theory,
the strain rate is split into a visco-plastic strain rate and an elastic one:
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ε̇ = ε̇e + ε̇vp (1)

The rate of the Cauchy’s stress tensor, σ̇, is linked to the elastic strain rate through
the constitutive tensor De, which, in our case, is variable or stress-dependent due to the
hyperelasticity and large strain theory.

σ̇ = De(ε̇− ε̇vp) (2)

In the model proposed by Perzyna [34], and later modified by Souza-Neto et al. [45],
the rate of the visco-plastic strain can be defined similarly than in the rate-independent
plasticity approach:

ε̇vp = 〈λ̇〉 ∂g
∂σ

(3)

where 〈λ̇〉 is the function of the viscous flow, which denotes the current magnitude of
visco-plastic strain rate; g represents the visco-plastic potential function and ∂g

∂σ represents
the current direction of the visco-plastic strain rate. The viscous flow function is defined by:

〈λ̇〉 =
{

γ
[(

q
σy

)α
− 1
]

, φ > 0
0 , φ ≤ 0

, (4)

where <> denotes Macauley brackets, γ is the fluidity parameter, also thought as the
reciprocal of the viscosity, and α is a material constant. In this work, associative flow is
invoked by φ = g. φ is the plasticity function that plays the role of the loading surface; a
von Mises φ = g function, with a degradation curve for the undrained shear strength, has
been adopted for the plastic criteria. Function φ is defined as:

φ = q− σy, (5)

where q is the deviatoric stress invariant and σy is defined by the degradation law, which
will be detailed later. Regarding algorithmic aspects, in displacement-based numerical
methods, stress updates take place at the Gauss points (or material points if material-based
methodologies are adopted) for a known nodal displacement. Initial conditions, which are
the ones from the last converged state, depart from time tn:[

εn, ε
vp
n , σn, κn

]
, (6)

in which the variables are total strain, visco-plastic strain, stress and a scalar internal
variable, respectively. The latter characterizes the size of the yield surface as well as any other
plastic aspect. The final goal is to calculate the corresponding values at time n + 1 through:

tn+1 = tn + ∆t :
[
εn+1, ε

vp
n+1, σn+1, κn+1

]
. (7)

Indeed, this process has been carried out in an incremental way, being calculated:

∆ε = εe + ∆εvp (8)

∆σ = De(∆ε− ∆εvp) (9)

Thus, the main objective of the stress updates is to estimate the visco-platic strain
increment, ∆εvp. The numerical implementation of this calculation follows the textbooks of
Owen and Hinton, 1986 [46] and De Souza Neto et al., 2008 [45]). It has to be pointed out
that the visco-plastic approach has a regularizing effect when softening behavior is to be
modeled (Wang et al. [26]) since the initial-value problem remains well-posed, avoiding
instability due to the suffered softening of strain and strain-rate.
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2.2. Eigenerosion and Eigensoftening Algorithms

Within the context of the OTM formulation, fracture can be modeled simply by eroding
material points according to an energy-release or stress criteria, depending on whether the
eigenerosion [47–50] or the eigensoftening [38,39,51] algorithm are adopted, respectively.
In both methodologies, if the material points failed, in order to approximate the presence
of cracks, the material points can be extracted from the computation of stresses. However,
the way to reach the zero stiffness state is different for each model: meanwhile, in the
eigenerosion, the failure is instantaneous, in the eigensoftening, the material follows a
softening curve, which depends on the material. It needs to be noticed that when a material
point satisfies the failure condition, its contribution to the material stiffness matrix, as well
as to the internal forces, is set to zero. However, it is necessary to maintain its contribution
to the mass matrix in order to fulfill the mass conservation law. We only can discard it if an
eroded material point is finally unconnected to any other node.

In the following, we compute the energy-release rate attendant to the failure of the
material point p, which is the starting point of the aforementioned methodologies:

Gp,k+1 =
Cε

mp,k+1
∑

xq,k+1∈Bε(xp,k+1)

mqWk(Fq,k+1),

mp,k+1 = ∑
xq,k+1∈Bε(xp,k+1)

mq, (10)

where Wk(Fq,k+1) is the free-energy density per unit mass at the material point xq,k+1, and
Bε(xp,k+1) is the ε-neighborhood of the material point, which is calculated as the volume of
ε size centered at the aforementioned xp,k+1. mp,k+1 is the mass of this neighborhood and
C is a normalizing constant, which ranges from 1 to 2, in order to extend the influence from
the first line of neighbors to the second [47,48]. Everything is evaluated at the time step
k + 1. A scheme of the ε-neighborhood and how it is configured is plotted in Figure 1.

2Є

Crack

P

Figure 1. Scheme of a set of fractured material points as a fractured layer (black dots) and the
ε-neighborhood of the points neighbors of the material point at the crack tip (gray dots).

The material point is failed when the value of Gp,k+1 (Equation (10)) exceeds the
critical energy release rate, GF. This parameter estimates the specific energy required to
create a fracture surface per unit of area. In the proposed algorithm, every time step the
eroded (failed) material-point set was updated, taking into account this criterion. Schmidt
et al. [47] have demonstrated that this approximation converges to Griffith fracture for
linear elasticity when an infinitely fine discretization is presumed. Certainly, schemes that
estimate the energy-release rate based on the energy of a single material point may suffer
from an overestimation of the toughness of the material as well as mesh-dependency if
non-local approaches are adopted.

On the other hand, the implementation of the eigensoftening algorithm consists of
adopting a strength criterion for crack initiation and a law which is capable of reproducing a
proper reduction of strength of the material under study before the formation of a stress-free
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crack, which is known as softening. This second process tends to accumulate less energy
until the crack appears. When the tensile strength, ft, is achieved, a crack is conformed
with zero opening displacement. Because of its cohesive behavior, once the opening
displacement, w, reaches a critical vale, wc, a stress-free crack is attained. The energy below
the softening curve represents the fracture energy per unit of area in static conditions, GF,
which is sketched in Figure 2 [38].

wc

ft

GF

f

w
Figure 2. Scheme of a cohesive law, where ft is the tensile strength, wc is the critical opening
displacement and the shade area, calculated through ft and wc, is GF.

For the eigensoftening calculation, Equation (10) can be rewritten in terms of the
principal stresses at time tk+1, since this model employs the first principal stress as a
failure criterion. Therefore, the increment of the averaged density of the strain energy in a
ε-neighborhood of the material point xp,k+1 may be calculated as

δWε
p =

∂Gp

Cε
=

1
mp

∑
xq∈Bε(xp)

mqσq,1δεq, (11)

in which σq,1 is the maximum tensile stress (principal stress 1) at a material point xq,k+1
from the neighborhood. Considering, for a material point xq,k+1, an effective strain εq
such that the variation of the local strain energy can be calculated as δWq = σq,1δεq, let us
assume the effective strain increment can be approximated, for each material point, by its
counterpart in the neighborhood, in which Equation (11) is simplified as:

δWε
p =

δεp

mp
∑

xq,k+1∈Bε(xp,k+1)

mqσq,1. (12)

Thus, the equivalent critical stress at the material point xp,k+1 is defined as follows

σε
p =

1
mp

∑
xq,k+1∈Bε(xp,k+1)

mqσq,1 (13)

When σε
p,k+1 surpasses the tensile strength, ft, the softening behavior is activated

through the damage variable χ, which ranges between zero (an intact material) and one
(completely failed material points). Of course, χ depends on the current and critical opening
measures, w and wc, respectively. The latter is a material parameter, but the first one has to be
measured in terms of the achieved strain and a length of affection called bandwidth, hε, which
is equivalent to the crack band model of Bažant [52]. It must be pointed out that, according
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to Bažant [53], the reference value for hε ranges between two and four times the maximum
size of the aggregates for concrete. Thus, this is a material parameter more than a numerical
artifact. The relationship between strain and crack opening depends on the effective fracture
strain, εε

f , which is defined as the difference between the strain at crack initiation, ε1(xp,0),
and the current strain, ε1(xp,k+1) for a material point p; and the bandwidth is:

εε
f = ε1(xp,k+1)− ε1(xp,0) =

w
hε

(14)

2.3. Eigendegradation Model

Following the work of Einav and Randolph [54], and the later implementations by
Zhang et al. [54] (similar also to some other implementations [55,56]), the behavior of sensitive
clays can be modeled by strain-softening curves in order to reduce the strength of the material
by a degradation related to the accumulation of strain. Einav and Randolph assumed that
the current shear strength depends on the accumulated absolute shear strain, ξ, which is
assumed as a state variable in order to calculate the isotropic strength reduction, δ(ξ), as:

δ(ξ) = su/sui = δrem + (1− δrem)e−3ξ/ξ95 , (15)

where
ξ =

∫
t
|γ̇max|dt (16)

and |γ̇max| represents the cumulative absolute shear strain. su and sui are considered
the softened strength and initial strength, respectively. In the above equations, δrem is the
fully remolded strength ratio, and ξ95 is the cumulative shear strain required to cause 95%
reduction from the peak to fully remolded material. An appropriate value of ξ95 must be
obtained from laboratory test data as well as from cyclic penetration and extraction tests with
T-bar or ball. Furthermore, δrem is assumed to be the inverse of the sensitivity of the soil.

The calculation of the cumulative shear strain can be achieved by the eigendeformation
technique, departing from Equation (11), and considering that, for the calculation of the
eigendegradation, that the stress remains constant in a neighborhood ε. Thus, Equation (11)
can be simplified as

δWε
p =

δτp

mp
∑

xq,k+1∈Bε(xp,k+1)

mqγq, (17)

where δτp refers to the increment of tangential stress of the neighborhood and γε
p is the

current local shear strain, which is obtained as:

γε
p =

1
mp

∑
xq,k+1∈Bε(xp,k+1)

mqγq (18)

Similarly, in the neighborhood ε, the non-local cumulative strain of a material point p
is calculated only when plasticity is activated, as follows:

ξε
p =

∫ tk+1

tp0

∣∣∣γ̇ε
p

∣∣∣dt (19)

where tk+1 refers to the current step, and tp0 refers to the step when plasticity begins.
Considering only shear failure, yield shear stress τ is equivalent to the softened

strength, su, and the residual yield shear stress, τ95, can be reached by τ95 = τrem = sui δrem.
Thus, in every state of degradation, the current yield shear stress, referring to the epsilon
neighborhood, τε, reads:

τε = τ95 + (τi − τ95)e
−3ξε

p/ξ95 (20)
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It is remarkable that in the laboratory, the parameter ξ95 is not obtained. Instead,
the displacement δ95 is achieved. In Figure 3A, the degradation of the strength in terms of
the displacement is plotted.

di d d95

ti

t

t95

d=ge

t

gi g g95

ti

t

t95

g

t

1

G

A)

B)

Figure 3. Degradation curve in terms of the displacement (A) and the shear strain (B).

It can be seen how this law can be translated to the shear strain measurement
(Figure 3B) by multiplying by ε, which, in this problem, is considered as the sliding length.
Depending on the size of the soft layer, this parameter ε is obtained as the minimum length
between the neighbor radius, [38], and the size of the soft layer (see Figure 4) as follows:

2ε = min(hs, 2Cεh) (21)

2hCЄ

Phs

Figure 4. Scheme of the measurements of the soft layer (black dots) and the ε-neighborhood around
material point P.

2.4. Visco-Plastic Eigendegradation Algorithm

Following, the pseudo-algorithm for the eigendegradation model within a visco-plastic
yield surface will be presented. It is worth mentioning that prior to the algorithm steps, we
need to calculate the equivalent shear total strain of every material point as the norm of the
deviatoric total strain tensor. Since large strain is considered, the strain tensor is obtained
through the logarithm of the left Cauchy–Green strain tensor, b:

ε =
1
2

log b =
1
2

log FFT . (22)

The aforementioned procedure can be followed in Algorithm 1.
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Algorithm 1 Visco-Plastic Eigendegradation algorithm.
1. Calculation of the small strain tensor

εe trial
k+1 = 1/2 log be trial

k+1

2. Elastic predictor: volumetric and deviatoric stress measurements

Volumetric: ptrial
k+1 = K

(
εe

vol
)trial

k+1

Deviatoric: strial
k+1 = 2G

(
εe

dev
)trial

k+1
being: σtrial

k+1 = J−1τtrial
k+1

and: qtrial
k+1 =

√
3
2‖strial

k+1‖

3. Eigendegradation calculation:

if t < tp0 then σy = τi
else

• mp = ∑xq,k+1∈Bε(xp,k+1)
mq

• γε
p = 1

mp
∑xq,k+1∈Bε(xp,k+1)

mqγq

• ξε
p = ∑k+1

k(tp0)

∣∣∣∆γε(xp,k)
∣∣∣

• σy = τ95 + (τi − τ95)e
−3ξε

p/ξ95

• Hardening modulus: H =
∂σy
∂εp ' ∂σy

∂ξε
p
= − 3(τi−τ95)

ξ95
e−3ξε

p/ξ95

end if

4. Yield condition: ∆λ = 0

if φ = qtrial
k+1 − σy ≤ 0 Elastic region: σk+1 = σtrial

k+1

else Visco-plastic flow:
• 4.1 Derivative of the yield surface:

d =
∂φ

∂∆λ
= −

(
3G + α

qtrial
k+1 − 3G∆λ

∆λ + γ∆t

)[
γ∆t

∆λ + γ∆t

]α

− H

• 4.2 Increment of plastic strain: ∆λ = ∆λ− φ
d

• 4.3 Yield function: φ =
(

qtrial
k+1 − 3G∆λ

)[
γ∆t

∆λ+γ∆t

]α

• 4.4 If φ < tolerance go to 4.5, else go to 4.1
• 4.5 Update

ε
p
k+1 = ε

p
k + ∆γ

∆ε
p
k+1 =

∆γ

‖strial
k+1‖

strial
k+1

σk+1 =
(

ptrial
k+1

)
I +

(
1− 3G∆γ

qtrial
k+1

)
strial

k+1

end if

5. Update elastic left Cauchy–Green Tensor

εe
k+1 = εe trial

k+1 − ∆ε
p
k+1

be
k+1 = exp(2εe

k+1)
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3. Time and Spatial Discretization

Following, the rest of the computational tools that were employed in the present
research are highlighted. First, the spatial discretization is shown, while the time discretiza-
tion is mentioned in the final subsection.

3.1. Spatial Discretization

The dynamic problem of a dry soil (mono-phase material) is studied in this research,
in which the time is an important issue in the following analyses. The formulation of the
dynamic problem can be defined by the governing equation of the balance of the linear
momentum:

div σ − ρa + ρg = 0. (23)

The weak form derivation, following the Galerkin procedure, needs to multiply (23)
by the virtual displacement (a test function) δu, and the integration over the domain.
After applying Green’s theorem, Equation (23) reads as follows:

−
∫

Ω
σ : gradδu dΩ +

∫
Γt

δu · t dγ−
∫

Ω
δu · ρa dΩ +

∫
Ω

δu · ρg dΩ = 0 (24)

where Ω is the volume of the body, and the boundary where tractions are applied is
depicted by Γ. The internal forces of the body are represented by the first term of the
equation; meanwhile, the external forces are represented by the second and fourth terms.
The third one refers to the inertial terms. The next step is the interpolation through the
Optimal Transportation Meshfree. As we mentioned, this numerical method is based on
a calculation framework of nodes and material points. The shape functions are based on
the work of Arroyo and Ortiz [57], where the Local Max-Ent shape function (LME) of the
material point (x) with respect to the neighborhood (xa) is defined as follows:

Na(x) =
exp

[
−βLME |x− xa|2 + λ∗ · (x− xa)

]
Z(x, λ∗(x))

, (25)

in which Z(x, λ) is computed along a neighborhood Nb as:

Z(x, λ) =
Nb

∑
a=1

exp
[
−βLME |x− xa|2 + λ · (x− xa)

]
. (26)

The derivatives of this shape function can be obtained from the Hessian matrix J
as follows:

∇N∗a = −N∗a (J∗)−1 (x− xa), (27)

The value of parameter βLME is associated to the shape of the neighborhood as well as
the discretization size (or nodal spacing), h. Both parameters are related through parameter
γLME , which controls the locality of the shape functions, as it is observed following:

β =
γLME

h2 . (28)

It bears pointing out that λ∗(x) is obtained through the minimization of the function
g(λ) = log Z(x, λ) to guarantee the maximum entropy.

By employing the outlined shape functions and applying Galerkin procedure to the
weak form, u can be interpolated by employing:

u ≈ uh = Nu · ũ (29)
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where �h represents the OTM approximation of the field � and �̃ represents the nodal
values. Nu = [N1 I, N2 I, ..., Nm I] is the shape function, in which m is the number of
neighbor nodes. The shape functions are defined in the updated configuration, N = N(x).
Moreover, the following property helps to calculate time variations: �̇h = N · ˙̃�.

3.2. Time Discretization

In this work, an implicit scheme has been proposed, since several applications cover a
wide range of loading rates from slow scenarios to quick phenomena. For the first ones,
an explicit scheme would provide long computation time. Thus, the Newmark Implicit
Scheme has been employed, with the parameters γ = 0.6 and β = 0.325 that are known to be
suitable for dynamic problems [58]. To construct this scheme, Equation (24) is reformulated
as a system of equations, which reads as

Rk+1 + M ük+1 = Pk+1, (30)

where R and M denote the internal forces vector and mass matrix, respectively. P holds
for the external forces vector, which is composed by both gravity acceleration and external
nodal forces as we have seen previously. Equation (30) can be re-written with the Newmark
scheme as:

Gk+1 = M[α1∆uk+1 − α2u̇k − α3ük] + Rk+1 − Pk+1 = 0, (31)

where the α-parameters are calculated according to Wriggers [59] and are listed in Table 1.
These coefficients can be easily extended to any other time integration schemes.

Table 1. The α-parameters of the Newmark scheme.

α1 = 1
β∆t2 α2 = 1

β∆t α3 = 1
2β − 1

When the above non-linear equations are solved through a Newton–Raphson method,
the resulting iterative scheme, taking into account the matrices that are involved in our
problem, can be written as:[

α1M + Ki
k+1

]
∆ui+1

k+1 = [K∗]
i
k+1∆ui+1

k+1 = −G(ui
k+1), (32)

where ui+1
k+1 = ui

k+1 + ∆ui+1
k+1.

where K is the derivative of the internal forces of each iteration i, which is also known as
the tangential stiffness matrix:

K(ui
k+1) = Ki

k+1 =
∂R
∂u

∣∣∣∣
ui

k+1

. (33)

The iteration procedure finishes when the norm of the residuum Gi
k+1 is below a

given tolerance.

4. Applications

The previously described methodology has been applied to three examples in this
paper. The first two of them are devoted to show the performance of the two main principal
properties of the proposed constitutive model: the degradation (Shear test, Section 4.1) and
the viscous behavior (Strip footing load, Section 4.2). The last example shows the suitability
of the model when the triggering and propagation of a slope due to cyclic loading is sought.
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4.1. Shear Test

In the first example, the behavior of a weak layer under a shear test is analyzed.
In Figure 5, an embankment of 10 m of depth is presented. A weak layer in the bottom
of the domain of 0.5 m appears. The proposed shear test is similar to the one proposed
by Zhang et al. [54]. Although different constitutive laws are employed (local and non-
local), it is expected to obtain comparable results since both laws are based on similar
degradation processes.

The original embankment’s length is 700 m. Since the softened zone only extends
90 m and considering infinite conditions at both sides of this softened zone, only this 90 m
is modeled in order to save computational effort. Unlike the original example, gravity
conditions are neglected, considering the failure of the embankment at the final of the
residual strength. Thus, the parameters needed in this example are shown in Table 2. It
is important to point out that in this research, the proposed non-local degradation model
has been employed with a neighborhood parameter, Cε, of 1.5. This is an important
difference with respect to the model proposed for the original example, which evaluates
the degradation locally in an Arbitrary Eulerian–Lagrangian (ALE) configuration.

Table 2. Parameters for the shear degradation analysis.

Softened/modeled length L = l0 90 m
Overall height, H 10 m
Height of sliding material, h 7.2 m
Shear band thickness, s 0.5 m
Submerged density of the soil, ρ 600 kg/m3

Poisson’s ratio, ν 0.495
Young’s modulus, E 1.98 MPa
Peak shear strength, τp = τi 10 kPa
Residual (95%) shear strength, τ95 = τr 1.25 kPa
Plastic shear strain to 95% reduction in strength, γp 0.6
Neighborhood parameter, Cε 1.5

ux

10 m

90 m

Γ1

Γ2

h=7.2 m

s=0.5 m

Figure 5. Geometry and loading conditions of the shear degradation problem.

In addition, the geometry and boundary conditions can be seen in Figure 5. Regarding
the latest, two boundary conditions have been considered. In the first one, Γ1 in Figure 5,
both vertical and horizontal displacements are constrained. In Γ2, a horizontal displacement
of 10 m is imposed gradually from 0 to 1000 s.

The stress behavior is analyzed in Figure 6. In order to assess the performance of
the proposed algorithm, similar to the figure proposed by Zhang et al. [54], in Figure 6, a
dimensionless measurement of the shear stress is plotted. It is calculated as a relative incre-
ment from the residual shear strength τ95 and divided by the maximum increment, which
is measured from the initial (or peak) strength to the residual one, τp − τ95. On the other
hand, in the abscissa, the dimensionless distance from the beginning of the degradation is
plotted. Thus, the degradation starts from 0 until reaching the τ95 at distance 1.
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Figure 6. Comparison of the results of the dimensionless stress along the dimensionless distance
between the proposed algorithm and the solution provided by Zhang et al. [54].

Results obtained in this research and the ones obtained by Zhang et al. [54] are not
coincident, since they are different approaches; however, the overall trend, mainly after the
beginning of the degradation, is similar to the reference research. This application allows
us to assess the performance of a degraded layer of soft clay, which has been proved to
perform similar to other validated studies.

4.2. Strip Footing Load

Following, the behavior of the soil under different loading rates of a strip footing is
analyzed. Similarly, the viscous properties of the soil are varied in order to extend the
analysis to the behavior of the soil. This classic problem has been extensively used to verify
the solutions provided by numerical models under visco-plastic conditions. The two main
features to assess are the mechanism of failure and the behavior of the reaction forces at
different visco-plastic scenarios. These results have been previously presented in the work
of Pastor and coworkers [37,60], where an incremental velocity downwards at the base
of the strip footing is applied as the loading condition. In the proposed application, it is
applied as a negative displacement according to the following equation:

uy = u f

(
t/t f

)2
,

where u f = 0.04 m. and t f = 4 s. The geometry and soil parameters can be seen in Figure 7.
Parameters of the eigendegradation algorithm are also depicted. Opposite to the previous
application, in this case, there is no weak layer: the whole domain acts as a visco-plastic
degradable soil.

The first calculation is made by activating the degradation part. This degradation
acts as a softening of the material following the proposed exponential expression. It is
known how the softening of the material boosts the formation of shear bands. In Figure 8,
the mechanism of failure is depicted. In [60], there is a study of the influence of the
discretization size and the parameters of the meshfree model. Optimal options achieved in
the aforementioned study have been activated here.
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uy

b = 1 m

3 m
ρ  = 2000 kg/m3

E = 25 E6 N/m2

ν  = 0.4
τi = σy = 15 E3 N/m2

7 m

Γ1

Cε  = 1.5
μ = 1/γ = [2.0, 20.0, 200.0] s
α  = 1.0
τ95 = 1 E3 N/m2

Figure 7. Geometry, material parameters and loading conditions of the strip footing problem.
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0.04

εp

Figure 8. Equivalent plastic deformation of the footing problem using von Mises law with softening
through degradation at the final of the simulation.

In order to verify the performance of the full model, different viscous parameters have
been employed in the calculation of the failure load of the strip footing. Establishing the
sensitivity parameter α as 1.0, the viscous parameter has been varied with different values
(see Figure 7). The obtained results have been depicted in Figure 9 for different values of µ.
The smaller the value of the µ parameter (i.e., large values of γ), the higher the final loading
is obtained from the footing loading, as expected from the viscous model. In addition,
in the dashed line, the reference value obtained by Navas et al. [60] is depicted. This line
can be considered as the value of a pseudo-static load is applied without any rigidization
due to the viscous behavior. This value is very close to the one obtained with µ = 200 s.

Similarly, depending on the loading rate, the material can stiffen and provide a bigger
response of the reaction forces. Thus, for µ = 200 s, three different loading rates have been
tested. The obtained results have been depicted in Figure 10 for different values of t f , in
which this parameter is the final time of application of the imposed displacement (uy =

u f

(
t/t f

)2
). The quicker the application of the displacement, the higher the final loading

is obtained from the footing loading, as expected from the viscous model. In addition,
the dashed line depicts the reference pseudo-static value obtained by Navas et al. [60] also
in this figure, which is close to the slowest case.
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Figure 9. Obtained reaction with different µ values for the problem of the strip footing using visco-
plastic von Mises law. The dashed line represents the pseudo-static behavior.
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Figure 10. Obtained reaction with different loading rates for the problem of the strip footing using
visco-plastic von Mises law, in which t f is the final time of the application of the load. The dashed
line represents the pseudo-static behavior.

4.3. Vertical Cut

This final application allows understanding the potentiality of the proposed method-
ology. A weak layer is supposed in a soil with a vertical cut on the left side (Figure 11).
This weak layer is located, forming a 45◦ angle. This layer, the thickness of which is 1 m,
will be considered as plastic. Von Mises yield surface is employed, and its degradation
is modeled through both eigendegradation and traditional softening in order to assess the
performance of the former one compared with the latter. Out of the weak layer, the soil is
considered elastic since its failure is far from the failure of the weak layer. Parameters of
both models are presented in the right part of Figure 11. In the traditional softening model,
no eigendegradation parameters are needed. Instead, a negative hardening of 200 kPa is
employed. This parameter is not employed in the eigendegradation simulation.

The soil can be considered infinite on the right and on the bottom of the model; thus,
any movement in these directions is prevented. The 12 first meters are modeled for the
sake of simplicity.
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q=q(t)

9 1 2

9

1

2

Elastic
Density of the soil,    ρ = 2000 kg/m3

Poisson’s ratio,    ν = 0.24
Young’s modulus,    E = 25.0 MPa

Visco-Plastic
Initial shear strength,  σy  = τi = 25 kPa
Hardening     H = -200 kPa
(only traditional softening)
Viscosity,     μ = 1/γ = 20 s.
Viscous parameter,   α = 1.2

Eigendegradation
Initial shear strength,  τi = 25 kPa
Residual shear strength(95%), τ95= 0.1 kPa
Plastic shear strain 95%,   γp = 0.4
Neighborhood parameter,  C

e
 = 1.5

Figure 11. Left: Geometry of the vertical cut analyzed through eigendegradation and softening models
and the location of the weak layer and the loaded zone (units in meters). Right: Parameters of the
employed models.

The top left part is loaded by a surface load as shown in Figure 11. This load is
composed by two different waves as sketched in Figure 12.

q=q(t)

σy=σy(t)

t

Elastic Elastic
Degradation

Plastic

Pl
as
tic

Figure 12. Scheme of the load and the yield strength along the time.

Both waves follow the expression:

qα(t) = Aα · [1− cos(ωαt)]

where α varies for each of both loads. The bigger load is the one that provokes the
triggering of the plastic mechanism. It can be considered as an abnormal scenario that may
lead to catastrophic consequences in the short or in the long time. Their parameters are
A1 = 11 kPa and ω1 = 0.1π rad/s. This load is applied only in the first 20 s of simulation.
The secondary load is of a lower magnitude. It could be considered as a usual load that the
soil suffers permanently; it is not capable of provoking the breakage of the slope by itself.
The amplitude of this load is half of the first one, A2 = 5.5 kPa, and the frequency is much
higher, ω2 = 3π rad/s. This load is maintained through the 80 s of the simulation.
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Following, in Figure 13, the evolution of both shear strength and the equivalent plastic
strain are depicted along the time for both eigendegradation and softening models. Both
OTM and FEM are carried out. The latter is made through the commercial software Abaqus.
On the left, the shear strength is plotted. The first part of the figure is loaded with the first
load: the material reaches the yield stress close to 10 s and starts to decrease the strength
until 15 s. Both materials, until this point, behave similarly. Observing the right figure, we
can see how both models obtain plastic strain until 15 s as well. Obviously, the amount of
shear strain is different, since one law is logarithmic (eigendegradation) and the other one
is linear. After this point, the eigendegradation model accumulates shear strain (elastic in
this case) that makes the shear strength decrease. This elastic shear strain comes from the
second law (the one with small amplitude). We know that it is elastic strain since, in the
right figure, no accumulated plastic strain is obtained from 15 s to 50 s. From this point
on, the equivalent plastic strain increases drastically. It is translated in an increment of the
descent of the yield stress. However, since this accumulated strain provoked by the second
load is elastic, no variation of the shear strength with the traditional softening model is
observed. This pattern in obtained through both OTM and FEM simulations.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

t [s]t [s]

εσy[kPa]

Eigendegradation Standard softening (OTM)

p

Standard softening (FEM)

Figure 13. Evolution of the shear strength and the equivalent plastic strain along the time for both
eigendegradation and softening models.

Another observation that arises from Figure 13 is the capability of the model to be
sensitive to both loading and unloading conditions of the load, i.e., any variation of the
strain, positive or negative, makes the material degrade and lose shear strength. It is seen
in the slope of the yield stress curve from 15 to 50 s, which remains constant along the
whole loading cycle and is equal in the loading or unloading branch.

Finally, in Figure 14, the distribution of the equivalent plastic strain in the deformed
model at four different times is depicted. The chosen moments were: (i) the peak of the first
load (around 15 s), (ii) the beginning of the secondary plastification of the material (50 s),
(iii) moments before the failure of the slope (75 s) and (iv) moments after the triggering of
the slope. Compared to the one obtained with the standard softening model, Figure 15, it
can be seen how, after 20 s, the latter remains unalterable.
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Figure 14. Distribution of the equivalent plastic strain in the deformed model obtained with the
eigendegradation model at 4 different times.
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Figure 15. Distribution of the equivalent plastic strain in the deformed model obtained with the
standard softening model (FEM) at 3 different times.

5. Conclusions

A new visco-plastic degradation model has been proposed in order to simulate the
behavior of layers of soft clays. The main aim of this model is to eliminate the mesh
dependence shown by other methodologies available in the literature. Taking benefits of
the concept of eigendeformation, this model can reproduce both non-local and localized
(shear bands) failures. The non-local performance of the proposed algorithm has been
considered following concepts of non-local meshfree models capable of reproducing both
brittle (eigenerosion) and quasi-brittle (eigensoftening) behaviors. Thus, the proposed
algorithm takes the name of eigendegradation.

Two main properties define the proposed constitutive model: softening due to degra-
dation and visco-plastic behavior. Thus, two different examples are provided in order to
validate both properties.
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The first example reproduces a shear test of a soil with a thin soft layer. This test shows
the performance of the degradation behavior from the beginning of the reduction of the
shear strength to the final of this reduction, obtaining a residual strength. This result has
been compared to other similar work of degradation of clays, obtaining very close curves,
which let us think the behavior of the proposed algorithm when modeling this material
is correct.

The second example studies the behavior of a soil loaded by a strip footing. In this
case, the visco-plastic concept is the one to be assessed. Since the von Mises yield surface is
employed, the traditional Prandtl mechanism is obtained. Moreover, a hardening behavior
is observed either when the viscosity becomes higher or when the load is applied quicker.
This example allows us to validate the viscous behavior, as well as to verify that the
degradation acts as a softening of the material that helps to define clearer the shear bands
formed in the plastic mechanism.

Finally, a vertical cut of soil is modeled. This soil contains a 45◦ soft layer. A compound
load is applied, the first part being the one that causes the beginning of the degradation
of the material and the last part being the one that causes the whole degradation of the
shear strength and the final failure of the slope. In comparison with a traditional softening
law, the proposed one is capable of producing degradation with elastic accumulated strain,
with the accumulation under both loading or unloading conditions. This behavior is seen
in many failures of this type of soft layer, where a load is much lower than the critical
one, but it is held in time, causing the fatigue of the material and the final failure of the
soil structure.

The present algorithm has performed successfully with the proposed applications.
The algorithm is robust, and its conjunction with any particle-based numerical technique
(OTM in this research) presents an interesting feasibility. The proposed methodology is
able to reproduce previous results with degradation models (example 1) and visco-plastic
materials (example 2). Moreover, as it is observed in example 3, once the mechanism is
activated, the model is capable of capturing the degradation of the material even in small
elastic cycles, which allows reproducing the triggering of a landslide from a very low
loading range.

Further research can be made in order to be able to reproduce a wide range of problems.
First of all, this model should be calibrated against experimental tests such as the shear
test. Moreover, only the von Mises yield surface has been validated in this manuscript.
Although it is able to reproduce the undrained conditions of the soil, more sophisticated
yield surfaces, such as the Cam–Clay one, would improve the type of problems to be
modeled. The soil should also be modeled as a bi-phase material, including the water in
the formulation of the problem. Finally, some other spatial discretization, such as FEM or
MPM, could be employed to assess the performance of this algorithm.

Author Contributions: Conceptualization, S.L.-Q. and D.M.; software and validation, P.N.; resources,
Á.Y.; supervision, M.M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministerio de Ciencia e Innovación, under Grant Number,
PID2019-105630GB-I00; and the European Research Council-H2020 MSCA-RISE, Grant Agreement
No 101007851 (DISCO2-STORE), being both greatly appreciated.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Contact to pedro.navas@upm.es.

Acknowledgments: The administrative and technical support of both University College London
and Universidad Politécnica de Madrid is greatly appreciated.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2022, 12, 8175 19 of 21

Abbreviations
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FEM Finite Element Method
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