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Abstract. Machine learning models that aim to predict dementia onset usually 

follow the classification methodology ignoring the time until an event happens. 

This study presents an alternative, using survival analysis within the context of 

machine learning techniques. Two survival method extensions based on machine 

learning algorithms of Random Forest and Elastic Net are applied to train, 

optimise, and validate predictive models based on the English Longitudinal Study 

of Ageing – ELSA cohort. The two survival machine learning models are 

compared with the conventional statistical Cox proportional hazard model, 

proving their superior predictive capability and stability on the ELSA data, as 

demonstrated by computationally intensive procedures such as nested cross-

validation and Monte Carlo validation. This study is the first to apply survival 

machine learning to the ELSA data, and demonstrates in this case the superiority 

of AI based predictive modelling approaches over the widely employed Cox 

statistical approach in survival analysis. Implications, methodological 

considerations, and future research directions are discussed. 

Keywords: Predicting risk of dementia, Survival machine learning, Survival 

random forests, Survival elastic net, Cox proportional hazard, Nested cross-

validation, Monte Carlo validation 
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1 Introduction 

Dementia, of which approximately two-thirds constitute Alzheimer's Disease (AD) 

cases [1], is associated with a progressive decline of brain functioning, leading to a 

significant loss of autonomy, reduced quality of life and a shortened life expectancy 

[2]. Accumulated evidence indicates that individuals who have dementia have an excess 

mortality [3] and a shorter life expectancy [4] than individuals without this disease [5]. 

In England, dementia is now reported as being the leading cause of death for women, 

having overtaken cancer and cardiovascular disease [6].  

The development of prognostic prediction models, built on combined effects of 

thoroughly validated predictors, using Machine Learning tools, can be used to forecast 

the probability of dementia developing within an individual. It is hoped that the 

availability of such prediction models will facilitate more rapid identification of 

individuals who are at a higher risk of dementia before the full illness onset [10]. This, 

in turn, would reduce time to treatment initiation, subsequently minimising the social 

and functional disability and thereby improving the quality of life for many people 

affected by these disorders. Identifying individuals at risk of developing dementia 

would allow the recruiting of patients at high risk for future clinical trials, thereby 

catalysing the assessment of new treatment or prevention programmes. Furthermore, 

identifying modifiable risk factors would allow the development of new prevention 

programmes. For example, there are already some indications that being physically 

active, staying mentally and socially active, and controlling high blood pressure can 

potentially deter onset of dementia in the general population [7].  

2 Literature review 

To date, several papers have been published which seek to predict, in a binomial or 

multinomial classification setting, the probability that any one individual may develop 

dementia, using neuropsychological test scores, cerebrospinal fluid biomarkers, genetic 

information, neuroimaging, and demographics data within a fixed period of time. For a 

recent review, see [8]. These include several studies using the longitudinal Alzheimer's 

Disease Neuroimaging Initiative (ADNI) study. For example [9] compared several 

Machine Learning techniques to explore variables found in the ADNI dataset and their 

suitability as indicator of dementia onset. Although a good performance was 

demonstrated across all examined algorithms, the best model was Gradient Boosting 

Machine, with an internally validated area under the curve (AUC) of 0.87. On the other 

hand, [11] achieved a discriminative accuracy of 0.91 when using ADNI data and 

support vector machines (SVM) to predict dementia onset. [10] proposed an efficient 

prediction modelling approach to the risk of dementia based mainly on the Gradient 

Boosting Machines method, using a large dataset from CPRD (Clinical Practice 

Research Datalink) repository with data from primary care practices across UK [27], 

and achieving an AUC performance of 0.83.  

Although the ADNI and similar longitudinal studies have as their strength a rich and 

varied data, the overreliance of the predictive community on these data sources has led 

to disappointing results when attempting to validate these models on external datasets. 

The problem is further compounded by the handling of the temporal aspect of the 
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longitudinal studies. Studies that have stuck to the classification-based methodology 

have dealt with the temporal aspect by including time (defined as discrete time intervals 

since the start of the study) as a predictor in the model, rather than the outcome of 

interest [9]. However, by not attempting to predict these temporal aspects, we lose the 

opportunity to gain clinically relevant information on the expected time to a dementia 

diagnosis. A common problem of longitudinal studies is drop-out over time where only 

partial information on a person’s survival time is available (Censoring). Furthermore, 

the standard classification approach is susceptible to instability and inaccuracy when 

dealing with imbalanced data. Because most subjects do not go on to develop the 

disease (in this case, dementia), imbalance in the classification outcome must be 

addressed, usually with under-sampling, over-sampling, or bootstrapping. Such 

approaches add further complications to a model and the interpretability of its 

predictions. 

A possible solution is one that has in general been less explored so far within the 

realm of machine learning. This solution is the use of survival methodology as a tool 

for accounting for and predicting the temporal dynamics of receiving a diagnosis of 

dementia. In other words, one would seek to utilise the well-established survival 

techniques found in Cox Proportional Hazards or similar and build upon these 

frequentist approaches using modified Machine Learning tools [1]. Such an approach 

would preserve the potential information contained within a temporal outcome, and 

associated dichotomy of dementia versus no dementia whilst also strengthening the 

predictive power of the existing frequentist approach by overlaying modified machine 

learning techniques. Furthermore, it can provide an opportunity to introduce high 

dimensional data of the type likely to be found when predicting using clinical data. The 

standard Cox model struggles when confronted with such data, and thus it would be of 

significant benefit to clinical research if the two approaches could be combined. Finally, 

survival methods can provide a way to account for censored data whereby subjects are 

dropping out during the study or are surviving beyond study length. Thus, it can create 

models which are more robust than standard classification models. 

Despite the scarcity of survival modelling papers in relation to dementia prediction, 

recent examples have shown promise in attempting to outperform the classic Cox 

proportional hazard model, using survival machine learning and survival deep learning 

on clinical datasets [12-14]. A pertinent study within the current field of interest is [15] 

whose authors sought to look at survival machine learning performance when applied 

to datasets designed for dementia investigation. They found that all machine learning 

models outperformed the standard Cox Proportional Hazard model. This study, along 

with those mentioned above, provides support for survival machine learning as a 

predictive tool for clinical temporal problems. 

3 Methodology 

This paper builds upon [16] which looked at the English Longitudinal Study of 

Aging (ELSA) and used an accelerated failure time (AFT) survival modelling approach 

to predicting the time to a subject's likely diagnosis with all-cause dementia. This work 

found strong evidence that certain features related to socioeconomic markers and 

genetics play a key role in predicting time to dementia diagnosis. 
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3.1 Problem definition  

In this work we propose an approach to predicting the time to a dementia diagnosis, 

based on survival machine learning techniques such as Survival Random Forests and 

Survival Elastic Net, and on a conventional statistical method such as Cox Proportional 

Hazard model. In order to obtain insight into the predictions, we created and assessed 

variable importance rankings derived from our best model in this study, which could 

ideally provide actionable advice for prevention. 

 

3.2 Data description 

Data was drawn from the English Longitudinal Study of Ageing (ELSA) study, 

which is a nationally representative sample of the English population aged ≥50 years 

[17]. The ELSA study started in 2002 (wave 1), with participants recruited from an 

annual cross-sectional survey of households who were then followed up every two 

years until 2016. Comparisons of ELSA with the national census showed that the 

baseline sample was representative of the non-institutionalised general population aged 

50 and above in the United Kingdom. Ethical approval for each of the ELSA waves (1-

8) was granted by the National Research Ethics Service (London Multicenter Research 

Ethics Committee). All participants gave informed consent. In total, the dataset 

contained 7556 participants, 45% of which were male.   

3.3 Ascertainment of dementia cases 

To ascertain dementia cases, we used methods with validated utility in population-

based cohorts [18-20]. Dementia diagnosis was ascertained at each wave using self-

report participant's physician diagnosis of dementia or AD. For those ELSA 

participants who were unable to respond to the main interview themselves, the 

Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) was 

administered with a score above the threshold of 3.386 indicating the presence of 

dementia [21-22]; the selected threshold demonstrated both excellent specificity (0.84) 

and sensitivity (0.82) for detection of all-cause (undifferentiated) dementia [23]. 

Overall, 83.5% of dementia cases were identified from reports of physician-diagnosed 

dementia or AD and 16.5% were identified based on the IQCODE score. 

3.4 Predictors   

N = 197 predictor variables related to participants' general health, comorbid health 

conditions, mental health, cognitive domains, life satisfaction, mobility, physical 

activity, social-economic status, and social relationships were considered for the model 

development. The gene APOEe4, a predictor with a well-established link to 

Alzheimer's risk, was also included as a predictor. For further details see [17]. 

3.5 Data pre-processing 

The process of model development, evaluation and validation was carried out 

according to methodological guidelines outlined by [24]; results were reported 
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according to the Transparent Reporting of a multivariable prediction model for 

Individual Prognosis Or Diagnosis (TRIPOD) guidelines [25]. Boolean variables were 

created, indicating the location of missing data for each predictor. All synonyms for 

missing values were standardised, and duplicate variables were removed. Variables 

with missingness at 51% or greater of the total rows for that predictor were removed. 

The cut-off of 51% allowed to include the APOEe4 (a predictor with a well-established 

link to Alzheimer's risk), which had 50.8% missingness. The remaining predictors had 

a mean percentage missingness of 1.27%, with a range of 0-50.8%. Missing values were 

imputed using K-nearest neighbour with K = 5. The data was centered and scaled as 

part of this process. 

We used two versions of the dataset on which we developed our models. The first 

data version excluded variable scfru which was based on a questionnaire regarding diet 

and particularly on evaluating a score based on fruit consumption, and the second 

version included this variable. Variable scrfu was among the variables that showed 

predictive capability, but also did its NA indicator which in certain cases as dementia 

may be related to the limited capacity of certain patients to respond to the questionnaire. 

For this reason, on one hand, we wanted to see the impact of including or excluding 

scfru in/from our predictive models, and on another hand we compared our models 

mainly using the performances on the dataset without scfru. 

3.6 Model development 

A simple Cox Proportional Hazard Model (hereafter denoted simply by Cox) was 

constructed, which served as the baseline for comparison with two survival machine 

learning models: 

1. Cox Penalised Regression using Elastic Net (hereafter denoted simply by ElasticNet) 

[15], which is similar to the base Cox Proportional Hazard Model but with Elastic 

Net regularisation, allows the model to shrink the coefficients of less important 

variables, and even to make them equal to 0, depending on the shrinkage strength 

and the proportion of the Lasso component in this model. This helps improving 

prediction accuracy and model interpretability. The main hyperparameters of the 

model that were tuned were alpha, which controls the proportion between the L1 

(Lasso) and L2 (Ridge) regularisations, and lambda, which controls the strength of 

the shrinkage. In our tuning grid, the values for alpha varied between 0 

(corresponding to Ridge regularisation) and 1 (corresponding to Lasso 

regularisation), with a step of 0.05, while the values for lambda varied between 0.05 

and 0.3, with a step of 0.05.   

2. Survival Random Forest (hereafter denoted simply by RF) [15], is based on the 

Random Forests algorithm which produces a model formed of an ensemble of trees, 

each of which learnt on a bootstrap copy of the training set and in the node of which 

a random sample of predictors of fixed size mtry, compete to be selected, with their 

best split point in order to maximise the survival difference between subsequent 

nodes [11]. RF has been chosen in this study for its flexibility to capture non-linear 

patterns in data. Apart from the hyperparameter mtry explained above, we used also 

a hyperparameter called min.node.size implementing a pre-pruning criteria for the 
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trees in the RF model to have a minimum number of instances in the terminal nodes. 

In the tuning grid, the values of mtry varied between 10 and the half of the number 

of columns in the dataset, with a step of 3, while the values for min.node.size in the 

grid were 1, 10, and 20.  RF comprised 500 trees which is the default value. The 

number of trees promotes model convergence (large is better), and in general is not 

a hyperparameter to tune. 

 

Model tuning was performed using 5-fold cross-validation on the training data 

set, as part of a nested cross-validation procedure explained below. 

3.7 Model optimisation and evaluation with nested cross-validation and 

Monte Carlo validation 

A Nested Cross-Validation (NCV) procedure was implemented to tune and evaluate 

our models with precise estimates of the models’ performance. NCV consisted of an 

outer 3-fold CV, and an inner 5-fold CV.  

In order to reliably assess the models’ stability, we conducted a Monte Carlo 

validation procedure (MC), consisting of 90 experiments per model. In each 

experiment, the dataset was randomly split in 2 thirds for the training data on which the 

models were tuned with a 5-fold CV, and 1 third for the testing set on which the models 

were evaluated.  

To ensure representativeness of training and test samples in both procedures, NCV 

and MC, the data splitting was stratified based on the dementia cases variable. 

3.8 Performance metric 

We used the concordance index, called also Harrell’s C-index [26] and simply 

denoted cindex here, to assess and compare the prediction performance of the different 

models. C-index is a generalisation of the ROC AUC metric, and intuitively gives the 

probability that a predicted risk for dementia is higher for patients with a shorter time 

to event. More precisely: 

 

cindex= C/ (C+D)  

 

where C represents the number of concordant pairs of patients, and D represents the 

number of discordant pairs of patients [26]; cindex is a number between 0 and 1, where 

0.5 signifies a random prediction, and 1 indicates that larger times to event concord 

perfectly with smaller predicted risks. 

3.9 Software and hardware 

The data analysis was conducted using the R language. The stratified data splitting, 

the KNN imputation and data normalisation via centring and scaling were performed 

using the Caret R package. The Cox, ElasticNet, and RF survival models were all 

trained and tuned and evaluated under the umbrella of the MLR3 R package. The 

hardware consisted of 3 servers running Linux, with Intel 10 cores, AMD Ryzen 16 
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cores and AMD Ryzen 12 cores, and with 128GB, 128GB and 64GB of RAM, 

respectively, which were used in our analyses including the computationally intensive 

tasks for tuning the models, and NCV and MC validation procedures for assessing the 

models’ performances and their stability.  

4 Results 

4.1 Internal validation using nested cross-validation 

The nested cross-validation cindex performance for train, inner cross-validation, and 

test or outer cross-validation, for each type of model are detailed below. 

Table 1. Nested cross-validation results, based on the data without and with scfru variable 

Survival 

Model 

Outer-CV  

(test) cindex 

Train cindex Inner-CV 

cindex 

Cox  

+scfru 

0.776 

0.791 

0.814 

0.828 

 NA (not tuned) 

ElasticNet 

+ scfru 

0.843 

0.861 

0.855 

0.873 

0.840 

0.861 

RF 

+scfru 

0.851 

0.867 

0.972 

0.955 

0.848 

0.864 

 

The best performing model in terms of the nested cross-validation was Survival 

Random Forest, followed by Survival Elastic Net, followed by Cox PH model. Hence 

both machine learning models, RF and ElasticNet, outperformed the conventional 

statistical model Cox on the test set. 

 

4.2 Monte Carlo validation  

 

The results for the Monte Carlo validation are outlined in Table 2 and Figure 1 below. 

Table 2: Monte Carlo validation results (90 experiments) for Cox, Survival Elastic Net and 

Survival Random Forest based on the data without and with scfru variable. 

Survival 

Model 

Test cindex 

mean(SD) 

Train cindex 

mean(SD) 

CV cindex 

mean(SD) 

Cox  

+scfru 

0.761(0.03) 

0.778(0.034) 

0.793(0.032) 

0.807(0.036) 

 NA (not tuned) 

ElasticNet 

+ scfru 

0.842(0.011) 

0.862(0.01) 

0.856(0.004) 

0.873(0.004) 

0.841(0.005) 

0.861(0.005) 

RF 

+scfru 

0.849(0.009) 

0.866(0.009) 

0.966(0.01) 

0.962(0.009) 

0.850(0.005) 

0.866(0.005) 
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Fig. 1. Boxplots for the Monte Carlo derived cindex performances for Cox, Survival Elastic Net 

and Survival Random Forest. On top: results on dataset without scfru variable, and on bottom: 

results with scfru variable. 

The results in the Monte Carlo validation reveal the following aspects: (a) the machine 

learning survival models based on Random Forests and Elastic Net demonstrate clearly 

better mean cindex on the test sets than the conventional statistical model Cox; (b) the 

results are close to and confirm the estimated performances obtained in the nested 

cross-validation in Table 1; (c) the standard deviations (provided in brackets in Table 

2) for cindex performances on the test sets for Survival Random Forest and Survival 

Elastic Net are small, and about 3 times smaller than the standard deviations for Cox, 

which means that the machine learning models are very stable, and by far more stable 

than the conventional statistical model. This interpretation is confirmed also visually 

by the boxplots in Fig. 1.  
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4.3 Feature importance 

The variable importance computed by Survival Random Forest is provided below. 

Age was by far the most important variable for the model when predicting time to 

dementia diagnosis. The other variables in top 20 as importance regard processing 

speed, self-reported number of hours sleep subjects got in a night, sleep measures 

(heslpa, heslpd, heslpb, heslpe, heslpf, and headlco), APOEe4, the aggregate measure 

of memory, and executive functioning. The model also highlighted the role of wealth, 

social isolation (dhnch, scscc, loneliness_w2, ffamily_w2, and r1retemp) in predicting 

time to dementia diagnosis. 

  

Fig. 2. Variable importance for Survival Random Forest (RF) model: on left for dataset without 

scfru, and on right for data with the scfru variable. 

5 Discussion 

To our knowledge, this paper is the first attempt to develop, evaluate and validate a 

prediction model for estimating an individual risk of dementia onset in the ELSA 

dataset using survival machine learning. Our results showed that the machine learning 

models herein were able to outperform the classic Cox model, with the best performing 

machine learning technique being the Survival Random Forest followed closely by 

Survival Elastic Net, as per test results in the nested cross-validation included in Table 

1, and test results in the Monte Carlo validation included in Table 2, and Figure 1. 

Monte Carlo clearly demonstrates the high stability of the survival machine learning 

models as illustrated by the same Table 2 and Figure 1. The Survival Random Forest 

model achieved a mean cindex for the test dataset of 0.849 and a standard deviation of 

0.009 in 90 Monte Carlo iterations. Survival Elastic Net achieved a mean cindex for the 
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test dataset of 0.842 and a standard deviation of 0.011. Both machine learning models 

outperformed and were more stable than the Cox model which achieved a mean cindex 

of 0.761 and a standard deviation of 0.03 (about 3 times larger than the machine 

learning models) in the Monte Carlo validation. This study indicates strong evidence of 

machine learning’s utility in the field of survival prediction. As mentioned previously, 

the addition of machine learning paradigms to the classic frequentist survival 

approaches allows for more variables to be explored than would be possible in a 

standard Cox proportional hazard model. Moreover, as this study demonstrates, the best 

survival model based on Random Forests not only improved the predictive accuracy 

and stability but also provided a useful mechanism to infer the variables’ importance, 

which concords with clinical interpretations of the role of the variables in dementia 

onset.  

In this study, we used two versions of the dataset on which we developed our models. 

The first data version excluded variable scfru which was based on a questionnaire 

regarding diet and particularly on evaluating a score based on fruit consumption, and 

the second version included this variable. The comparisons between the models on the 

results without or with the scfru variable, lead to the same conclusions in terms of the 

ranking we established for these methods. Moreover, there is a slight performance 

increase for all the models on the dataset with the scfru variable, which is the reason 

why we included these results here. This variable made it in top 20 most important 

variables, but also did its NA indicator, which in certain cases as dementia, may be 

related to the limited capacity of certain patients to respond to the questionnaire. For 

this reason, we compared the three models we developed mainly using the 

performances on the dataset without scfru.  

Although this paper presents examples of good predictive survival machine learning 

modelling, there are some limitations to this work. Firstly, the data contained predictors 

with a high percentage of missing values. Although every effort was taken to account 

for missingness and preserve the pattern of missingness before imputation was 

performed, a complete dataset may provide results that differ from this work especially 

if missingness is related to the outcome (not missing at random). Even though dementia 

and AD were ascertained using a combined algorithm based on a physician made 

diagnosis and a higher score on the informant reports (IQCODE), it is still reliant on a 

self-reported diagnosis reported by either the participants themselves or their carers and 

render more severe cases. Thus, we cannot exclude a possibility that some participants 

within the “dementia-free” group may have been the preclinical stages of dementia and 

who, if followed for long enough, might eventually develop dementia. Further, the 

ELSA dataset is a centre-based data collection study and, although extensive and varied 

data collection was carried out to try and account for confounding variables, it is 

possible that other predictors, unmeasured by the data collection procedure, could have 

an impact on model performance. It is therefore imperative that future work validate 

these models on different datasets such that the results can be well substantiated. 

Finally, the ELSA data uses English subjects, who were chosen because they were 

deemed representative of the United Kingdom at large. Therefore, these results cannot 

be generalised to populations in other countries. Once again, work must be done to 

ensure that these results are substantiated by data from subjects in differing datasets. 
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6 Conclusion 

This paper represents a first attempt at applying survival machine learning 

techniques to the ELSA dataset. The intention of this work was to build and validate 

models which demonstrated good predictive ability on this dataset, specifically in 

relation to the time to dementia onset. Future work should seek to validate the findings 

here on other datasets that share similar predictors and outcomes. If the results are 

substantiated, this could prove to be a new and fruitful approach to clinical prediction 

modelling of dementia. Another future work will investigate the applicability of an 

adapted version of the survival machine learning approach we developed here, to the 

prediction of dementia risk using routine primary care records such as CPRD [27], by 

extending the machine learning based framework we introduced in [10].  
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