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Abstract

The emergence of COVID-19 pandemic is causing tremendous impact on our

daily lives, including the way people interact with buildings. Leveraging the

advances in machine learning and other supporting digital technologies, re-

cent attempts have been sought to establish exciting smart building applica-

tions that facilitates better facility management and higher energy efficiency.

However, relying on the historical data collected prior to the pandemic, the

resulting smart building applications are not necessarily effective under the

current ever-changing situation due to the drifts of data distribution. This

paper investigates the bidirectional interaction between human and build-
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ings that leads to dramatic change of building performance data distributions

post-pandemic, and evaluates the applicability of typical facility management

and energy management applications against these changes. According to

the evaluation, this paper recommends three mitigation measures to rescue

the applications and embedded machine learning algorithms from the data

inconsistency issue in the post-pandemic era. Among these measures, incor-

porating occupancy and behavioural parameters as independent variables in

machine learning algorithms is highlighted. Taking a Bayesian perspective,

the value of data is exploited, historical or recent, pre- and post-pandemic,

under a people-focused view.

Keywords: Post-pandemic, Smart building, Historical data, Machine

learning

1. Introduction

Beginning in late 2019, the COVID-19 pandemic swept across the globe.

As a crisis exerting a massive impact on human health, the suspension of civic

and commercial activities across the world will inevitably cause huge ramifi-

cations afterwards. Despite complete lockdowns being released deliberately

and gradually in many parts of the world, social distancing is still needed in

short-term and medium-term to mitigate the spread of coronavirus, and addi-

tional lockdowns are being imposed periodically. This means the way people

work and live has changed and will keep changing, while for many organi-

sations/sectors some of these changes will be long term or even permanent

(Kramer & Kramer, 2020). First and foremost, flextime is likely to become

much more common, and perhaps even replace the 9-5 working regime alto-

2



gether. These disruptive changes to life and work landscape bring the needs

to reset the way we use our buildings and the opportunities to reshape the

way how we manage our buildings (Megahed & Ghoneim, 2020; Ramsetty &

Adams, 2020), to restore wellbeing, productivity and sustainability during

the post-pandemic period.

With the overwhelming adoption of information and communication tech-

nologies (ICTs) in the built environment, the concept of the smart building

has evolved as a comprehensive solution to offer convenience and comfort to

their inhabitants, whilst enhancing operational efficiency (Qolomany et al.,

2019; Verma et al., 2019). For example, Iqbal et al. (2018) presented a

Zigbee based internet of things (IoT) architecture and proposed a Hadoop

based data processing system for controlling electrical energy consumption

in sustainable smart homes; Dong et al. (2019) reviewed the applications

of smart building sensing systems and analysed the use in terms of energy

saving, thermal comfort, visual comfort, and indoor air quality; Jia et al.

(2019a) summarised the adoption of IoT technologies in smart buildings and

explored their use in facilitating indoor localisation and resource tracking, en-

ergy management and facility management. The UK National Infrastructure

Commission ‘Data for the public good’ (National Infrastructure Commission,

2017) recognised that verifiable, timely and accessible data is essential in un-

locking the value of built environment. However, just like crude oil, data is

valuable, but if unrefined it cannot really be used.

The massive amounts of data collected from buildings must be analysed,

transformed into information, and minted to extract knowledge so that deter-

minable insights can be acquired accordingly (Gunay et al., 2019). Machine
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learning (ML) is generally an appropriate strategy for building data analysis

in the cases where neither prior system knowledge nor human expertise is

enough to solve the problem directly. Through the continuous learning of

significant quantities of quality and comprehensive data, the performance of

the ML algorithms constantly improves under given model structure. Histor-

ical data that keeps snapshots of building states and inhabitants’ behaviours

provides supplemental insights for inferring building system dynamics using

ML algorithms with less analyst intervention.

One size does not fit all. It remains to be seen whether the historical data

collected and the ML solutions developed prior to the COVID pandemic still

works in the post-pandemic situation. Ideally, ML algorithms must gener-

alise from training data to the entire domain of all unseen observations so

that it can make accurate extrapolations in all circumstances (Hoffer et al.,

2017). However, that is not the case in reality. Faced with a post-pandemic

situation that we have never seen before, the effectiveness of developed ML

solutions along with the applicability of adopted historical data must be re-

evaluated and re-verified. This paper attempts to give preliminary answers

and examples to the following emerging questions: Is the historical data col-

lected before the outbreak still useful post-pandemic? How do ML algorithms

deal with the post-pandemic situation under ever-changing social distancing

restrictions? What role do smart building applications play in making best

use of data adaptively during the transition from the pre-pandemic to the

post-pandemic and the future new normal?

The remainder of the paper is organised as follows. Section 2 overviews

the bidirectional interaction between human and buildings, which causes dra-
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matic change of building performance after the pandemic. Section 3 explores

the applicability of typical smart building applications in the domain of facil-

ity management and energy management, and proposes migration measures

that fix data inconsistency issue between pre- and post-pandemic periods.

Section 4 describes a real-life case, demonstrating the impact of pandemic on

building energy demand forecasting. The possibility of using transfer learn-

ing to speed up the convergence of ML enabled smart building applications

are discussed in Section 5. Finally, Section 6 presents the conclusions.

2. Bidirectional relationships between humans and buildings

“We shape our buildings, thereafter they shape us”. As Sir Winston

Churchill said in his speech to the meeting in the House of Lords in 1943,

the interaction between humans and buildings is intensive. Logically, en-

vironmental, contextual and personal factors first affect human’ behaviours,

then influence our built environment, and vice versa (Hong et al., 2017). Dif-

ferent occupancy patterns, inhabitants’ lifestyle/habits, comfort preferences

and associated actions lead to distinct building system performances even for

buildings of the same type (Papakostas & Sotiropoulos, 1997; Leth-Petersen

& Togeby, 2001; Lindén et al., 2006; Andersen et al., 2009; Maier et al., 2009).

The bidirectional interactive relationships between the occupants’ behaviours

and building performances are the most important linkages between human

and building. To be more precise, occupants’ behaviours include both their

presence and actions (Schweiker et al., 2018), impacting buildings in two

ways: through the direct impact of their presence (heat etc.) and through

their interaction with building systems (actions of turning on or off heating,
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ventilation and air conditioning (HVAC), lighting etc.).

Specifically,based on comprehensive analysis of human behaviours in build-

ings, the driving factors of human’ behaviours in the built environment can

be classified as: environmentally related factors, time related factors, con-

textual factors, physiological factors, psychological factors, social factors and

random factors (Fabi et al., 2012; Inkarojrit, 2012; Stazi et al., 2017).

As can be seen in Table 1, in addition to environmental related factors,

time related factors (e.g., personal habits) play a crucial role on the be-

haviours of inhabitants (Day et al., 2020). For instance, window opening be-

haviours in buildings are strongly related to the daily activities of occupants,

such as sleeping, cooking and studying. Particularly, routine activities would

play a decisive role in taking actions of opening and closing behaviours. In

an office building, window open/close actions are usually affected by arrival

and departure activities (i.e. open on arrival and close before departure)

and daily working schedule (Pan et al., 2018). In a residential building,

window open/close actions would not be time dependent, but rather activ-

ity dependent, such as during specific activities (e.g., cooking) (Pan et al.,

2018). Generally, occupant behaviours in office buildings is more regular and

constrained than in residential buildings (Day et al., 2020).

Subsequently, human behaviours can affect the building systems and their

performances in return, such as energy consumption and facility services,

among many others (Day et al., 2020; Laaroussi et al., 2020). For instance,

to improve indoor comfort or energy efficiency, occupants may keep win-

dows closed when the air conditioner is running or open/close the windows

to adjust room comfort level and maintain indoor air quality. Human ac-
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Behaviour Drivers Details Affected by

COVID-19

Window use Environmental Outdoor temperature N

Indoor temperature N

CO2 concentration N

Time-related Time of the day Y

Light switching Environmental Work plane illuminance N

Illuminance N

Time-related Arrivals and departures time Y

Shading and

blind use

Environmental Illuminance N

Solar radiation N

Glare N

Outdoor and indoor temperature N

Time-related Seasonal dependent N

Time of the day Y

Air

conditioning use

Environmental Outdoor and indoor temperature N

Time-related Weekday and weekend Y

Time of the day Y

Thermostat use Environmental Outdoor and indoor temperature N

Fans and doors Environmental Outdoor and indoor temperature N

Note: ‘N’ stands for ‘No’ and ‘Y’ stands for ‘Yes’.

Table 1: Driving factors influencing occupants’ behaviours in buildings (Papakostas &

Sotiropoulos, 1997; Leth-Petersen & Togeby, 2001; Lindén et al., 2006; Andersen et al.,

2009; Maier et al., 2009; Stazi et al., 2017)
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Category Building Systems Human Action

Lighting Lighting system Lighting operations

Opening Blind Blind operations

Curtain Curtain operations

Windows/doors Windows/doors operations

Heating & cooling Heating system Fans operations

Air condition operations

Cooling system Heating radiator operations

Daily routine Kitchen Electric related activities (e.g., cooking,

showering, TV)

Toilet

Relaxing related system Non-electric related activities (e.g.,

reading)

Housework Interior cleaning Electric related activities (e.g., washing

machine)

Laundry

Repair Non-electric related activities (e.g.,

painting)

Daily work Work related system Electric related activities (e.g., com-

puter)

Non-electric related activities (e.g.,

writing)

Plant & animal Plant care related system Electric related activities (e.g., water-

ing machine)

Animal care related sys-

tem

Non-electric related activities (e.g., gar-

dening)

Table 2: A brief summary of human actions in buildings (Peng et al., 2012; Caba Heilbron

et al., 2015; Laaroussi et al., 2020)
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tions can be roughly classified as shown in Table 2, exerting impacts on the

corresponding building systems.

Figure 1: Bidirectional relationships of human behaviours and building performances in

normal situations and affected by COVID-19

During the COVID-19 pandemic, most people changed their working pat-

terns and had to work from home for establishing an antivirus-built environ-

ment. Residential buildings acted as both living and working spaces, while

office buildings were left mostly empty or with limited accessibility (Mega-

hed & Ghoneim, 2020). Internal, social, working and living variations can be

identified as the key reasons for changing behavioural patterns observed in

residential and non-residential buildings, especially during the pandemic. In

detail, time related factors (working and living schedules), psychological fac-

tors (depression, anxiety and stress during lockdown), social factors (social

distancing policy) and random factors give rise to the behavioural variations
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and further affect building systems/facilities and their performances (Fig-

ure 1). These changes bring great challenges to ML enabled smart building

applications, which rely on the information and knowledge extracted from

historical data. This paper seeks to address the limitations of these applica-

tions that suffer from the data inconsistency post-pandemic.

3. Machine learning for smart building applications

This section summarises the relevant literature from the perspective of

ML techniques used in facility management (FM) and energy management

(EM) domains (Xu et al., 2019; Kolokotsa et al., 2011), presented in Table

3. As physical assets that are built, installed, or established to serve the

social and economic activities, facilities need to be monitored, operated and

maintained properly for supporting and adding value to the business pro-

cesses of organisations. Besides, accounting for over 40% of the total energy

consumption in the world (Cao et al., 2016), building energy use needs to be

measured, understood, controlled and optimised according to the spatial hi-

erarchy of systems within buildings. Advanced data analytical tools, enabled

by ML and other artificial intelligence (AI) techniques, stimulated a boom in

intelligent initiatives and innovations to the FM and EM services, providing

more efficient, responsive and environmentally friendly built environment to

inhabitants.

Various review papers concerning FM or EM have been published since

the intensive adoption of ML techniques in these domains, tracing back to

Krarti (2003), which presented the applications of neural networks, fuzzy

logic and genetic algorithms on building energy use prediction, envelope heat
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Goal Description

Facility management (Xu et al.,

2019)

Managing facilities in the built environment at both

strategic and day-to-day level to deliver operational

objectives and to maintain a safe, efficient and sus-

tainable environment

Energy management (Kolokotsa

et al., 2011)

Maximising the building energy efficiency, with the

ideal condition to be net-zero buildings (NZBs),

while keep a satisfactory level of service at the same

time

Table 3: Primary functional goals of smart buildings

transfer modeling, central plants control and fault diagnostics for building en-

ergy systems. Chicco (2012) assessed different types of clustering techniques

for carrying out building electrical load pattern grouping, which guides grid

demand response actions or real-time pricing. Yildiz et al. (2017) reviewed

regression models for electricity load forecasting in commercial buildings, rec-

ommending multivariate linear regression for its greater user engagement and

control. Miller et al. (2018) summarised the applications of unsupervised ML

techniques to non-residential buildings for smart meters, portfolio analysis,

operations and controls optimisation, anomaly detection and etc.

Instead of enumerating all ML techniques used in smart building appli-

cations, supervised, unsupervised, semi-supervised learning or reinforcement

learning included, this paper focuses on clarifying the training needed for

typical ML solutions and evaluating the applicability of ML enabled smart

building applications trained with the historical data prior to the pandemic

in the post-pandemic situation.
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3.1. Facility management applications

Within the whole lifecycle of a building, the operation and maintenance

(O&M) phase takes up the longest period, thirty to fifty years if not longer.

Therefore, FM is regarded as one of the most important goals of smart build-

ings, significantly affecting operation, maintenance and repair cost, indoor

comfort, and in the grander scheme global climate (Xu et al., 2019; Alfalah

& Zayed, 2020). Generally, FM requires timely anomaly detection, control

optimisation and predictive maintenance to ensure the facilities run under

optimal conditions. Table 4 provides an overview of the representative pub-

lications in this category.
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Anomaly detection: Anomaly detection for smart buildings focuses on

revealing anomalous situations occurring within buildings, their subsystems

and components, indicating the equipment faults or improper operations.

The choice of the ML techniques used to be flexible, relying on the available

data. However, the applicability of these ML enabled applications post-

pandemic is compromised due to the drifts of data distribution, except for

three situations. First, if a data preprocessing procedure removes the in-

fluence of changing operational conditions from raw data, and the ML tech-

niques are used to extract occupancy-insensitive features, the solution should

be applicable under the post-pandemic situation (Li & Wen, 2014). Second,

if occupancy or relevant quantities (e.g., carbon dioxide concentration) are

explicitly taken as independent variable in the ML algorithm, these solutions

are likely to be compatible for post-pandemic scenarios (Capozzoli et al.,

2015). Last, changepoint detection or non-routine event detection (Touzani

et al., 2019; Lu et al., 2020) still works, because an obvious change in the

statistical properties of data before and after the lockdown can be detected

and the post-pandemic baseline can be modelled accordingly.

Control optimisation: Control optimisation aims at regulating the op-

erational performance of building systems to efficient and sustainable status.

Model predictive control (MPC) formulates the building dynamics into a

mathematical model and selects an optimised control strategy accordingly

(Maddalena et al., 2020). To realise a simple implementation, synthesised

rule-based controllers extract decision rules from advanced control MPC

schemes (May-Ostendorp et al., 2013; Domahidi et al., 2014). Relying on the

modelled building dynamics prior to the pandemic, these controllers are inap-
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plicable during the post-pandemic period considering the shifted occupancy

behaviour (Gholamzadehmir et al., 2020). On the other hand, reinforcement

learning (RL) is a promising candidate under the pandemic situation, because

essentially, a RL based controller continuously adapts over time according to

its interaction with buildings.And the initial learning phase is maintained

moderate with existing pre-pandemic knowledge.

Predictive maintenance: Predictive maintenance designs to forecast

the trend of facility performance degradation and deduce the optimal mainte-

nance policy that minimises the overall cost (operational, maintenance, repair

and etc.). Data driven or empirical based degradation modeling, which is the

core of the predictive maintenance, predicts the remaining useful life using

historical operational data or work-order data (Cauchi et al., 2017b; Yang

et al., 2018). Apparently, degradation behaviour, sometimes involving in-

terdependencies between associated facilities, is unpredictable under unseen

working conditions. Therefore, it is necessary to accumulate post-pandemic

data before predictive maintenance applications can be conducted again.

3.2. Energy management applications

Inefficient energy management, especially in aging buildings, will heighten

the negative impacts to the environment and inevitably accelerate global

warming and climate change at the macro level. In response to this chal-

lenge, ML techniques have been widely used to support building energy

management and improve building energy efficiency (Molina-Solana et al.,

2017), focusing on the topics including energy demand forecasting (Amasyali

& El-Gohary, 2018), energy demand disaggregation (Armel et al., 2013), and

energy demand response (Antonopoulos et al., 2020). Table 5 provides an
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overview of the representative publications in this category.
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Energy demand forecasting: Measuring, modeling and forecasting

the energy demand of buildings is crucial to realise smart buildings. Instead

of relying on thermodynamic principles, most of ML-based energy demand

forecasting learns from historical data (time-series prediction) with partial

knowledge of on-site physical information (regression prediction). Solutions

like Yu et al. (2010), which explicitly consider the generalisation for occu-

pancy scheduling, are likely to be applicable post-pandemic. However, be-

sides occupancy scheduling, occupant behaviour, like plugging, positively im-

pacted the energy demand (Kim et al., 2020). It remains to be seen whether

and to what extent changing occupant behaviour before and after the pan-

demic would lead to notable deviations between the predicted and the actual

consumption levels.

Energy demand disaggregation: As far back as Hart (1992), energy

demand disaggregation was proposed to provide fine-grained energy feedback

by individual end-uses, which can potentially reduce domestic electricity con-

sumption up to 4.5% compared to aggregated feedback (Kelly & Knottenbelt,

2016). Disaggregating total building energy consumption usually relies on the

periodic pattern of specific end-uses (Ji et al., 2015) or their correlations with

external conditions (Niu et al., 2018; Zhou et al., 2019). Unless occupants

and their behaviour are explicitly considered in the end-use models, the ML

solutions are not likely to be applicable under the post-pandemic situation.

For appliance-level energy disaggregation, because the frequency and dura-

tion of use would be different from before, another round of appliance surveys

is needed to gather updated appliance usage information.

Energy demand response: In order to reduce the investment in en-
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ergy generation under peak demand, demand-side response aims to minimise

consumption at times of high demand. With the penetration of Renewable

Energy Systems (RESs), adapting energy demand further assists in reducing

grid frequency instability. Essentially, the demand response actuates balanc-

ing strategies that coordinate the requirements and needs between the energy

retailer and the customers. In the post-pandemic period, the price scheme

from the retailer and the consumers’ demand will not be the same as they

used to be. Considering the increased complexity caused by multiple par-

ticipants’ behavioural sophistication (Panait & Luke, 2005), the intelligent

agents needs to be completely retrained after understanding the emerging

post-pandemic situation.

4. Smart building applications and their applicability post-pandemic

In this paper, the potential of using ML in smart buildings is summarised

in four forms: component status recognition, system behaviour modeling and

control optimisation as well as intra-system/inter-system coordination. Con-

sidering the scale of typical buildings, the computational resources that could

be allocated to each building/system/component are usually constrained. As

shown in Figure 2, the hierarchical design of smart building applications

makes data refinement and information processing stepwise and affordable

computationally.

Rather than layering according to the spatial granularity, the hierarchy

for smart building applications is defined based on the analytical granular-

ity. For instance, if the total building energy consumption is analysed for

anomaly detection, it means that the entire building is regarded as one com-

25



Figure 2: Typical forms of smart building applications

ponent. The overview of ML used in FM and EM applications gives us

some clues in terms of their applicability in the post-pandemic situation.

For applications at a lower level, one option is to eliminate the human pres-

ence/behaviour related components from raw data and only focus on the

analysis of occupant-insensitive components (Li & Wen, 2014). However, the

decomposition is rather empirical and leads to the loss of large amounts of

information, which makes it unsuitable for complicated system modeling and

analysis. For applications at a higher level, adaptive ML algorithms deserve a

place. Basically, these algorithms treat historical data as a “starting point”.

Non-routine event (NRE) detection (Touzani et al., 2019) or changepoint de-

tection (CPD) (Lu et al., 2020) are typical solutions in this category, which

tracks the evolution of inspected time-series over time to achieve continuous

learning. In terms of control optimisation, reinforcement learning is an-

other example, which continuously interacts with the changing environment

to gradually maximise the potential reward from a suboptimal start point
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(Jia et al., 2019b; Wang & Hong, 2020). However, these options do not pro-

vide universal answers to the applicability in the post-pandemic period. In-

stead, explicitly incorporating occupancy and other behavioural parameters

(associated with actions listed in Table 2) as independent variables in ML so-

lutions could be a promising approach. A wide variety of modern sensors like

thermal sensors and camera have been developed to detect occupancy accord-

ingly (Roselyn et al., 2019). Taking energy demand forecasting applications

as example, to make it work in practice, this approach should be in line with

a probabilistic vision of a building energy model, since the uncertain nature

associated with occupant behaviour and/or estimations of occupant density

are embedded in the model. Rather than deterministic/fixed values for these

variables, it is convenient to use probability distributions capturing their vari-

ability, and their consequent impact in the building energy model (Stewart

et al., 2016). The fundamental basis for these considerations lies in Bayesian

statistics which have already shown its capacity to quantify uncertainties in

both building energy models and occupant density or other behavioural pa-

rameters (Tian et al., 2016). In particular, Bayesian networks have shown

suitability for dealing with uncertainty in a plethora of cases. A key feature

of the Bayesian network is the graphical representation of the mathematical

model over the corresponding random variables (O’Neill & O’Neill, 2016).

For instance, in Barthelmes et al. (2017), a Bayesian network is used to cap-

ture underlying complicated relationships between various influencing factors

and window opening/closing behaviour of occupants in residential buildings.

This leads to a better understanding of the correlation structure between

the involved variables. Amayri et al. (2019) use Bayesian networks to es-
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timate the number of occupants through its relationship to a number of

variables collected by a series of sensors. Similarly, this paper remarks on

the outstanding correlation between occupancy and energy consumption. As

a consequence, building energy analysis, within a post-pandemic framework,

should highlight the changed level of occupancy caused by the enforced social-

distancing policies. And the pre-pandemic trained energy models need to be

verified in new scenarios of occupant density and behaviour. Once again,

a Bayesian perspective will be able to address this paradigm. Specifically,

Bayesian structural time series, introduced in the works of Brodersen et al.

(2015) and Scott & Varian (2014) among others, are capable to estimate the

causal effect of any intervention in a time series regression. The intervention

process can be understood as a change to a procedure or policy, exogenous

to the modelled time series but having an impact on its outcome, in this

case, occupant density and occupant behaviour. The causal effect of such

an intervention is estimated by a comparison between the predicted outcome

under the hypothesis of no-intervention in a post-intervention period and the

actual observed time series in such a period.

5. Case study

Building energy consumption, one of the most important aspects in defin-

ing the usage of buildings, is selected in the case study to illustrate the impact

of the pandemic on building electricity usage and potential energy demand

forecasting applications. It has been verified in Santin et al. (2009), Cvetković

et al. (2020) and Chen et al. (2020) that occupant behaviours inside a build-

ing, their presence included, significantly affect the total energy use (e.g.,
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around 4.2% of the variation in energy use for space heating), and in specific

scenario analysed, the consumption of natural gas can increase by 21.26%,

electricity by 58.39% compared with pre-pandemic in the residential sector.

In this paper, the electricity consumption data from a university building

in West Cambridge site of University of Cambridge is used to examine the

pre- and post-pandemic data inconsistency issue for potential energy demand

forecasting applications. The Alan Reece building, shown in Figure 3, is a

three-story building standing over a 40,000 square foot comprehensive area.

It includes spaces with diverse uses, such as teaching, office, research, labora-

tory, canteen and etc. The electricity consumption (kWh per half an hour)

and local ambient temperature of the Alan Reece building from 13th October

2018 to 11th October 2020 is used, partially shown in Figure 4. However, no

specific occupancy data is available to be incorporated.

During the period, the building went through a few distinct operational

stages. Before 20th March (first vertical line), the building was under normal

operation. Approximately 180 staff and PhD students regularly worked in

the building, with roughly 60% occupation rate daily on weekdays consider-

ing their holidays due to research/teaching/working patterns. Meanwhile, a

variable number of undergraduate and postgraduate students used the build-

ing as well. In response to the intensive transmission of the coronavirus, the

University moved into its “red” phase on 18th March, and the Alan Reece

building was shut down from 5pm on 20th March. Within the first phase of

the lockdown, until 22nd June (second vertical line), an extremely limited

number of COVID-related research activities were allowed on sporadic days,

with the presence of around 5 to 6 people typically. Later on, the building
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Figure 3: Layout of the Alan Reece Building

gradually restored its functionalities by admitting more people in the next

two stages (until early-August and 5th October, third and forth vertical

lines), with less than 10 and 20 people admitted on working days respec-

tively. While with the Michaelmas term starting from 5th October, groups

of students were also allowed back into the building, leading to around 50

people at any one time during the weekdays.

The electricity consumed in the Alan Reece building can be break down

into several end-uses, i.e., air conditioning, space heating/cooling, water heat-

ing, lighting, refrigeration, appliance and other plug loads. Three indepen-
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Figure 4: Hourly building electricity consumption (kWh ·hh−1) and ambient temperature

dent air handling units (AHUs) are installed to regulate indoor air quality,

while variable refrigerant flow (VRF) heat pump system is installed to pro-

vide simultaneous heating and cooling to different areas within the building.

The appliances include personal equipment (e.g., laptop, mobile phone), ex-

perimental equipment (e.g., 3D printer, lathe) and large equipment (e.g.,

elevator). Besides temperature and other ambient parameters, the level of

occupancy has a decisive influence on most of these end-uses. During the

pandemic, for AHUs and VRF system, the decrement in occupancy reduces

the HVAC load accordingly, and for water heating, lighting, refrigeration and

appliances, their usage frequency and duration drop significantly as well. Sta-

tistically speaking, compared to the same periods (April to September) in

2019, the electricity consumption of the reference building saw a decrease of
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36.7% in average.

The causal impact model developed by Google (Brodersen et al., 2015) is

used to reveal the intervention of behavioural change caused by COVID-19

pandemic and the consequent lockdown, which directly affect the building

occupancy and the energy use. The model is based on Bayesian structural

time series, a regression state-space model that predicts the daily energy

consumption response in case of no lockdown (no intervention) taking place.

The resulting model is called counterfactual and its predictions are compared

to the observed time series after the intervention (post-pandemic period) to

infer its effect. The counterfactual model is, therefore, of pivotal importance

for the success of the causal impact model and its computation is typically

based on the combination of: the historical time series model prior to the

lockdown, the relationship to such a time series with any exogenous, predic-

tive variables no being impacted by the lockdown (e.g., ambient tempera-

ture), and any available prior information about the possible results of the

lockdown facing a similar contextual change (e.g., building occupancy level).

Figure 5 contains 3 panels. The top panel shows the daily energy con-

sumption and a counterfactual prediction for the post-lockdown period. The

second and third panel show the difference between the observed energy

consumption and the counterfactual predictions. The difference is shown

cumulatively over time in the case of the bottom panel.

A consequence of the analysis shown in Figure 5 is the effect of the lock-

down, and the corresponding drop in the building occupancy level. The

predictive model trained prior to the pandemic, relying on historical energy

consumption, calendar variable and ambient temperature cannot keep its ac-
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Figure 5: Causal effect of lockdown on the daily energy consumption (kWh · hh−1) at

the IfM building. Top panel: time series of energy pre- and post-pandemic (observed vs.

predicted). Middle panel: pointwise causal effect (difference counterfactual predictions and

observed). Bottom panel: cumulative effect of the lockdown on the energy consumption.

curacy and it is largely biased for the post-pandemic period, when the occu-

pancy level is significantly lower. During the post-pandemic period, the daily

energy consumption has an average value of approximately 34 kWh · hh−1.

By contrast, in the absence of a lockdown, we would have expected an average

consumption of 51 kWh ·hh−1. The 95% credible interval of this counterfac-
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tual prediction is [49.03, 52.76]. Therefore, a rough estimation of the causal

effect the lockdown has on the energy consumption is -17 kWh · hh−1 with a

corresponding 95% credible interval estimation of [-19.05, -15.32].

(a) TDUE profiles

(b) Distribution of the TDEU profiles

Figure 6: Results of DEU profiles clustering

To better describe the building energy consumption characteristics, 24-

dimensional daily energy usage (DEU) profiles are segmented from the time

series building electricity consumption data (Li et al., 2018). Clustering

analysis is adopted to identify typical daily energy usage (TDEU) profiles and
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highlight the drifting of the weekday DEU profiles with time. A Gaussian

mixture model (GMM) based cluster analysis is used to cluster DEU profiles

(Li et al., 2018) and the median of all DEU profiles in the same cluster is

considered as TDEU profile of this cluster. Figure 6 (a) illustrates the DEU

clustering results, in which the red curves represents the 6 TDEU profiles

identified while the grey curves are all corresponding DEU profiles belonging

to that cluster. Figure 6 (b) shows the distribution of the TDEU profiles in a

calendar view. Notable DEU drifting can be observed during the transition

between different stages, particularly at the end of March and the end of

June. Although the amount of electricity consumed after August is still

much lower than the pre-pandemic level, the cluster of DEU almost gets

back in the swing, suggesting that various types of activities reoccurred in

the building with restricted intensity. It is fair to say that the historical data

before 20th March can be used if the activities, which are the consequences

of occupant behaviours, are properly recorded.

The evidences above validate the hypothesis that the occupancy level and

other behavioural factors are informative in energy demand forecasting, and

more broadly, enable the applicability of smart building applications to be

restored their applicability within frequently-changing scenarios.

6. Discussion

As stated in Schooling et al. (2020), the fundamental purpose of the

wider built environment and the infrastructure embedded is to provide a

platform for human flourishing, to better serve people and society. The

people-focused view is shared among buildings as well. However, more than
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simply providing comfortable and efficient living environment to people, the

authors believe that a people-focused view also means to monitor, analyse,

comprehend and sometimes influence the interactive behaviour of people with

buildings, which is in accordance with the conclusion drawn in Alfalah &

Zayed (2020) and Laaroussi et al. (2020). Learning from this crisis brought

by the global pandemic, the development of smart building applications must

be based on ML techniques that are robust to societal variations, and stand

on a social-technical basis. Particularly, under this crisis, social-distancing

and lockdown practices are introduced in a localised and adaptive manner

(Rahman et al., 2020), and occupancy density is to be regulated to avoid

long time exposure and prevent COVID transmission (Sun & Zhai, 2020).

Accordingly, these social parameters need to be monitored and taken into

consideration during the deployment of smart building applications (Ahmed

et al., 2021).

Data is the soul of the digitalisation and intelligentisation of the buildings.

However, we have to recognise that data comes with costs. Data generation,

transmission, processing and even storage are quite expensive, particularly

for the data involved with occupants’ presence/behaviour. The interruption

caused by the COVID-19 pandemic is likely to cause enormous loss regarding

the applicability of historical data as the training basis, if the occupancy

data was not properly collected. So how should we deal with existing ML

algorithms, that come without the proper reference to occupants’ status?

Learning from the past, let us take a glance at the existing measures

taken to cope with the limited data availability problem. If historical data of

buildings is limited but there are similar buildings with significant quantities
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of historical data, in such cases, transfer learning, transferring knowledge and

experience learned from similar buildings to empower the ML with reasoning

ability and fast convergence, is an important approach to tackle the problems.

For instance, Mocanu et al. (2016) focus on cross-building transfer learning,

combining reinforcement learning with deep belief network, and using data

from other buildings to predict energy consumption for buildings with limited

historical data; Ribeiro et al. (2018) propose a cross-building transfer learn-

ing method named Hephaestus, which is based on time series multi-feature

regression with seasonal and trend adjustment for cross-building energy fore-

casting.

Great changes have taken place in people’s behavioural habits, and data

from buildings post-pandemic phase may drift to a distinguishing distribu-

tion, which invalidates much of the historical data without the reference to

occupancy status. In the cases where the data collected during the novel

post-pandemic situation is insufficient to train a ML model, an effective ap-

proach is to transfer useful data to the target building from other source

buildings with similar purpose and functions (Liu et al., 2017). Specifically,

for filtering appropriate knowledge to be transferred to the target building,

we can adjust the transferability weight for each data sample from source

buildings according to their similarity to the data samples from the target

building. Through the fusion of weighted multi-source building data, the

size of the available training samples for the target building increases, thus

potentially improving the convergence speed and model accuracy of the ML

enabled smart building applications.
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7. Conclusion

The coronavirus pandemic has brought astonishing upheavals to the world,

and of course to buildings with diverse uses as well. With the pervasive dig-

ital transformation of buildings, a diverse selection of smart building appli-

cations have been developed to sophisticatedly extract and infer knowledge

from data and support corresponding decision-making processes, especially

in the domains of facility management and energy management. These ap-

proaches have suffered from the changed interactive pattern between humans

and buildings during the pandemic, including but not limited to the vari-

ations of occupancy and occupants’ behaviour. As a result, current smart

building applications, which heavily rely on a certain volume of pre-pandemic

data to feed into machine learning algorithms, might fail. To reveal the im-

pact of pandemic on smart building applications, the interactive relationships

between human and buildings are described, and an evaluation of the applica-

bility is presented for typical ML enabled smart building applications trained

with historical data, most of which has been collected prior to the pandemic.

Six categories of applications were reviewed in this paper, including anomaly

detection, control optimisation, predictive maintenance, energy demand fore-

casting, energy demand disaggregation and energy demand response.

This paper suggests three measures to mitigate the data inconsistency

issue for practical smart building applications in the post-pandemic era. For

relatively simple analysis, eliminating the effect of occupants’ behaviour by

decomposing occupancy-insensitive features is effective, with the cost of los-

ing partial information. Alternatively, adaptive ML algorithms, using which

the evolution of building systems is tracked over time, are immune from the
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after-effect of the pandemic. However, to provide a universal answer, it is

recommended to incorporate occupancy and other behavioural parameters

as independent variables in the conventional ML algorithm. To this end,

Bayesian ML models, including Bayesian networks, deserve a place due to

their natural capability to deal with the uncertainty within occupancy re-

lated variables. Through incorporating these variables, smart building appli-

cations can take full advantage of data, both pre- and post-pandemic, under

a people-focused view.
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