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Abstract

The emergence of COVID-19 pandemic is causing tremendous impact on our
daily lives, including the way people interact with buildings. Leveraging the
advances in machine learning and other supporting digital technologies, re-
cent attempts have been sought to establish exciting smart building applica-
tions that facilitates better facility management and higher energy efficiency.
However, relying on the historical data collected prior to the pandemic, the
resulting smart building applications are not necessarily effective under the
current ever-changing situation due to the drifts of data distribution. This

paper investigates the bidirectional interaction between human and build-
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ings that leads to dramatic change of building performance data distributions
post-pandemic, and evaluates the applicability of typical facility management
and energy management applications against these changes. According to
the evaluation, this paper recommends three mitigation measures to rescue
the applications and embedded machine learning algorithms from the data
inconsistency issue in the post-pandemic era. Among these measures, incor-
porating occupancy and behavioural parameters as independent variables in
machine learning algorithms is highlighted. Taking a Bayesian perspective,
the value of data is exploited, historical or recent, pre- and post-pandemic,
under a people-focused view.

Keywords: Post-pandemic, Smart building, Historical data, Machine

learning

1. Introduction

Beginning in late 2019, the COVID-19 pandemic swept across the globe.
As a crisis exerting a massive impact on human health, the suspension of civic
and commercial activities across the world will inevitably cause huge ramifi-
cations afterwards. Despite complete lockdowns being released deliberately
and gradually in many parts of the world, social distancing is still needed in
short-term and medium-term to mitigate the spread of coronavirus, and addi-
tional lockdowns are being imposed periodically. This means the way people
work and live has changed and will keep changing, while for many organi-
sations/sectors some of these changes will be long term or even permanent
(Kramer & Kramer, 2020). First and foremost, flextime is likely to become

much more common, and perhaps even replace the 9-5 working regime alto-



gether. These disruptive changes to life and work landscape bring the needs
to reset the way we use our buildings and the opportunities to reshape the
way how we manage our buildings (Megahed & Ghoneim, 2020; Ramsetty &
Adams, 2020), to restore wellbeing, productivity and sustainability during
the post-pandemic period.

With the overwhelming adoption of information and communication tech-
nologies (ICTs) in the built environment, the concept of the smart building
has evolved as a comprehensive solution to offer convenience and comfort to
their inhabitants, whilst enhancing operational efficiency (Qolomany et al.,
2019; Verma et al., 2019). For example, Igbal et al. (2018) presented a
Zigbee based internet of things (IoT) architecture and proposed a Hadoop
based data processing system for controlling electrical energy consumption
in sustainable smart homes; Dong et al. (2019) reviewed the applications
of smart building sensing systems and analysed the use in terms of energy
saving, thermal comfort, visual comfort, and indoor air quality; Jia et al.
(2019a) summarised the adoption of IoT technologies in smart buildings and
explored their use in facilitating indoor localisation and resource tracking, en-
ergy management and facility management. The UK National Infrastructure
Commission ‘Data for the public good’ (National Infrastructure Commission,
2017) recognised that verifiable, timely and accessible data is essential in un-
locking the value of built environment. However, just like crude oil, data is
valuable, but if unrefined it cannot really be used.

The massive amounts of data collected from buildings must be analysed,
transformed into information, and minted to extract knowledge so that deter-

minable insights can be acquired accordingly (Gunay et al., 2019). Machine



learning (ML) is generally an appropriate strategy for building data analysis
in the cases where neither prior system knowledge nor human expertise is
enough to solve the problem directly. Through the continuous learning of
significant quantities of quality and comprehensive data, the performance of
the ML algorithms constantly improves under given model structure. Histor-
ical data that keeps snapshots of building states and inhabitants’ behaviours
provides supplemental insights for inferring building system dynamics using
ML algorithms with less analyst intervention.

One size does not fit all. It remains to be seen whether the historical data
collected and the ML solutions developed prior to the COVID pandemic still
works in the post-pandemic situation. Ideally, ML algorithms must gener-
alise from training data to the entire domain of all unseen observations so
that it can make accurate extrapolations in all circumstances (Hoffer et al.,
2017). However, that is not the case in reality. Faced with a post-pandemic
situation that we have never seen before, the effectiveness of developed ML
solutions along with the applicability of adopted historical data must be re-
evaluated and re-verified. This paper attempts to give preliminary answers
and examples to the following emerging questions: Is the historical data col-
lected before the outbreak still useful post-pandemic? How do ML algorithms
deal with the post-pandemic situation under ever-changing social distancing
restrictions? What role do smart building applications play in making best
use of data adaptively during the transition from the pre-pandemic to the
post-pandemic and the future new normal?

The remainder of the paper is organised as follows. Section 2 overviews

the bidirectional interaction between human and buildings, which causes dra-



matic change of building performance after the pandemic. Section 3 explores
the applicability of typical smart building applications in the domain of facil-
ity management and energy management, and proposes migration measures
that fix data inconsistency issue between pre- and post-pandemic periods.
Section 4 describes a real-life case, demonstrating the impact of pandemic on
building energy demand forecasting. The possibility of using transfer learn-
ing to speed up the convergence of ML enabled smart building applications

are discussed in Section 5. Finally, Section 6 presents the conclusions.

2. Bidirectional relationships between humans and buildings

“We shape our buildings, thereafter they shape us”. As Sir Winston
Churchill said in his speech to the meeting in the House of Lords in 1943,
the interaction between humans and buildings is intensive. Logically, en-
vironmental, contextual and personal factors first affect human’ behaviours,
then influence our built environment, and vice versa (Hong et al., 2017). Dif-
ferent occupancy patterns, inhabitants’ lifestyle/habits, comfort preferences
and associated actions lead to distinct building system performances even for
buildings of the same type (Papakostas & Sotiropoulos, 1997; Leth-Petersen
& Togeby, 2001; Lindén et al., 2006; Andersen et al., 2009; Maier et al., 2009).
The bidirectional interactive relationships between the occupants’ behaviours
and building performances are the most important linkages between human
and building. To be more precise, occupants’ behaviours include both their
presence and actions (Schweiker et al., 2018), impacting buildings in two
ways: through the direct impact of their presence (heat etc.) and through

their interaction with building systems (actions of turning on or off heating,



ventilation and air conditioning (HVAC), lighting etc.).

Specifically,based on comprehensive analysis of human behaviours in build-
ings, the driving factors of human’ behaviours in the built environment can
be classified as: environmentally related factors, time related factors, con-
textual factors, physiological factors, psychological factors, social factors and
random factors (Fabi et al., 2012; Inkarojrit, 2012; Stazi et al., 2017).

As can be seen in Table 1, in addition to environmental related factors,
time related factors (e.g., personal habits) play a crucial role on the be-
haviours of inhabitants (Day et al., 2020). For instance, window opening be-
haviours in buildings are strongly related to the daily activities of occupants,
such as sleeping, cooking and studying. Particularly, routine activities would
play a decisive role in taking actions of opening and closing behaviours. In
an office building, window open/close actions are usually affected by arrival
and departure activities (i.e. open on arrival and close before departure)
and daily working schedule (Pan et al., 2018). In a residential building,
window open/close actions would not be time dependent, but rather activ-
ity dependent, such as during specific activities (e.g., cooking) (Pan et al.,
2018). Generally, occupant behaviours in office buildings is more regular and
constrained than in residential buildings (Day et al., 2020).

Subsequently, human behaviours can affect the building systems and their
performances in return, such as energy consumption and facility services,
among many others (Day et al., 2020; Laaroussi et al., 2020). For instance,
to improve indoor comfort or energy efficiency, occupants may keep win-
dows closed when the air conditioner is running or open/close the windows

to adjust room comfort level and maintain indoor air quality. Human ac-



Behaviour Drivers Details Affected by

COVID-19

Window use Environmental Outdoor temperature N

Indoor temperature N

CO9 concentration N

Time-related Time of the day Y

Light switching  Environmental = Work plane illuminance N

Illuminance N

Time-related Arrivals and departures time Y

Shading and Environmental Illuminance N

blind use

Solar radiation N

Glare N

Outdoor and indoor temperature N

Time-related Seasonal dependent N

Time of the day Y

Air Environmental Outdoor and indoor temperature N
conditioning use

Time-related Weekday and weekend Y

Time of the day Y

Thermostat use  Environmental Outdoor and indoor temperature N

Fans and doors  Environmental Outdoor and indoor temperature N

Note: ‘N’ stands for ‘No’ and ‘Y’ stands for ‘Yes’.

Table 1: Driving factors influencing occupants’ behaviours in buildings (Papakostas &
Sotiropoulos, 1997; Leth-Petersen & Togeby, 2001; Lindén et al., 2006; Andersen et al.,
2009; Maier et al., 2009; Stazi et al., 2017)



Category Building Systems Human Action
Lighting Lighting system Lighting operations
Opening Blind Blind operations

Curtain

Windows/doors

Curtain operations

Windows/doors operations

Heating & cooling

Heating system

Cooling system

Fans operations
Air condition operations

Heating radiator operations

Daily routine

Kitchen

Toilet

Relaxing related system

Electric related activities (e.g., cooking,

showering, TV)

Non-electric related activities (e.g.,

reading)
Housework Interior cleaning Electric related activities (e.g., washing
machine)
Laundry
Repair Non-electric related activities (e.g.,
painting)
Daily work Work related system Electric related activities (e.g., com-

puter)
Non-electric related activities (e.g.,

writing)

Plant & animal

Plant care related system

Animal care related sys-

tem

Electric related activities (e.g., water-
ing machine)
Non-electric related activities (e.g., gar-

dening)

Table 2: A brief summary of human actions in buildings (Peng et al., 2012; Caba Heilbron
et al., 2015; Laaroussi et al., 2020)



tions can be roughly classified as shown in Table 2,

corresponding building systems.
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Figure 1: Bidirectional relationships of human behaviours and building performances in

normal situations and affected by COVID-19

During the COVID-19 pandemic, most people changed their working pat-
terns and had to work from home for establishing an antivirus-built environ-
ment. Residential buildings acted as both living and working spaces, while
office buildings were left mostly empty or with limited accessibility (Mega-
hed & Ghoneim, 2020). Internal, social, working and living variations can be
identified as the key reasons for changing behavioural patterns observed in
residential and non-residential buildings, especially during the pandemic. In
detail, time related factors (working and living schedules), psychological fac-
tors (depression, anxiety and stress during lockdown), social factors (social

distancing policy) and random factors give rise to the behavioural variations



and further affect building systems/facilities and their performances (Fig-
ure 1). These changes bring great challenges to ML enabled smart building
applications, which rely on the information and knowledge extracted from
historical data. This paper seeks to address the limitations of these applica-

tions that suffer from the data inconsistency post-pandemic.

3. Machine learning for smart building applications

This section summarises the relevant literature from the perspective of
ML techniques used in facility management (FM) and energy management
(EM) domains (Xu et al., 2019; Kolokotsa et al., 2011), presented in Table
3. As physical assets that are built, installed, or established to serve the
social and economic activities, facilities need to be monitored, operated and
maintained properly for supporting and adding value to the business pro-
cesses of organisations. Besides, accounting for over 40% of the total energy
consumption in the world (Cao et al., 2016), building energy use needs to be
measured, understood, controlled and optimised according to the spatial hi-
erarchy of systems within buildings. Advanced data analytical tools, enabled
by ML and other artificial intelligence (AI) techniques, stimulated a boom in
intelligent initiatives and innovations to the FM and EM services, providing
more efficient, responsive and environmentally friendly built environment to
inhabitants.

Various review papers concerning FM or EM have been published since
the intensive adoption of ML techniques in these domains, tracing back to
Krarti (2003), which presented the applications of neural networks, fuzzy

logic and genetic algorithms on building energy use prediction, envelope heat
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Goal Description

Facility management (Xu et al., Managing facilities in the built environment at both
2019) strategic and day-to-day level to deliver operational
objectives and to maintain a safe, efficient and sus-

tainable environment
Energy management (Kolokotsa Maximising the building energy efficiency, with the
et al., 2011) ideal condition to be net-zero buildings (NZBs),
while keep a satisfactory level of service at the same

time

Table 3: Primary functional goals of smart buildings

transfer modeling, central plants control and fault diagnostics for building en-
ergy systems. Chicco (2012) assessed different types of clustering techniques
for carrying out building electrical load pattern grouping, which guides grid
demand response actions or real-time pricing. Yildiz et al. (2017) reviewed
regression models for electricity load forecasting in commercial buildings, rec-
ommending multivariate linear regression for its greater user engagement and
control. Miller et al. (2018) summarised the applications of unsupervised ML
techniques to non-residential buildings for smart meters, portfolio analysis,
operations and controls optimisation, anomaly detection and etc.

Instead of enumerating all ML techniques used in smart building appli-
cations, supervised, unsupervised, semi-supervised learning or reinforcement
learning included, this paper focuses on clarifying the training needed for
typical ML solutions and evaluating the applicability of ML enabled smart
building applications trained with the historical data prior to the pandemic

in the post-pandemic situation.
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3.1. Facility management applications

Within the whole lifecycle of a building, the operation and maintenance
(O&M) phase takes up the longest period, thirty to fifty years if not longer.
Therefore, FM is regarded as one of the most important goals of smart build-
ings, significantly affecting operation, maintenance and repair cost, indoor
comfort, and in the grander scheme global climate (Xu et al., 2019; Alfalah
& Zayed, 2020). Generally, FM requires timely anomaly detection, control
optimisation and predictive maintenance to ensure the facilities run under
optimal conditions. Table 4 provides an overview of the representative pub-

lications in this category.
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Anomaly detection: Anomaly detection for smart buildings focuses on
revealing anomalous situations occurring within buildings, their subsystems
and components, indicating the equipment faults or improper operations.
The choice of the ML techniques used to be flexible, relying on the available
data. However, the applicability of these ML enabled applications post-
pandemic is compromised due to the drifts of data distribution, except for
three situations. First, if a data preprocessing procedure removes the in-
fluence of changing operational conditions from raw data, and the ML tech-
niques are used to extract occupancy-insensitive features, the solution should
be applicable under the post-pandemic situation (Li & Wen, 2014). Second,
if occupancy or relevant quantities (e.g., carbon dioxide concentration) are
explicitly taken as independent variable in the ML algorithm, these solutions
are likely to be compatible for post-pandemic scenarios (Capozzoli et al.,
2015). Last, changepoint detection or non-routine event detection (Touzani
et al., 2019; Lu et al., 2020) still works, because an obvious change in the
statistical properties of data before and after the lockdown can be detected
and the post-pandemic baseline can be modelled accordingly.

Control optimisation: Control optimisation aims at regulating the op-
erational performance of building systems to efficient and sustainable status.
Model predictive control (MPC) formulates the building dynamics into a
mathematical model and selects an optimised control strategy accordingly
(Maddalena et al., 2020). To realise a simple implementation, synthesised
rule-based controllers extract decision rules from advanced control MPC
schemes (May-Ostendorp et al., 2013; Domahidi et al., 2014). Relying on the

modelled building dynamics prior to the pandemic, these controllers are inap-
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plicable during the post-pandemic period considering the shifted occupancy
behaviour (Gholamzadehmir et al., 2020). On the other hand, reinforcement
learning (RL) is a promising candidate under the pandemic situation, because
essentially, a RL based controller continuously adapts over time according to
its interaction with buildings.And the initial learning phase is maintained
moderate with existing pre-pandemic knowledge.

Predictive maintenance: Predictive maintenance designs to forecast
the trend of facility performance degradation and deduce the optimal mainte-
nance policy that minimises the overall cost (operational, maintenance, repair
and etc.). Data driven or empirical based degradation modeling, which is the
core of the predictive maintenance, predicts the remaining useful life using
historical operational data or work-order data (Cauchi et al., 2017b; Yang
et al., 2018). Apparently, degradation behaviour, sometimes involving in-
terdependencies between associated facilities, is unpredictable under unseen
working conditions. Therefore, it is necessary to accumulate post-pandemic

data before predictive maintenance applications can be conducted again.

3.2. Energy management applications

Inefficient energy management, especially in aging buildings, will heighten
the negative impacts to the environment and inevitably accelerate global
warming and climate change at the macro level. In response to this chal-
lenge, ML techniques have been widely used to support building energy
management and improve building energy efficiency (Molina-Solana et al.,
2017), focusing on the topics including energy demand forecasting (Amasyali
& El-Gohary, 2018), energy demand disaggregation (Armel et al., 2013), and

energy demand response (Antonopoulos et al., 2020). Table 5 provides an
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overview of the representative publications in this category.
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Energy demand forecasting: Measuring, modeling and forecasting
the energy demand of buildings is crucial to realise smart buildings. Instead
of relying on thermodynamic principles, most of ML-based energy demand
forecasting learns from historical data (time-series prediction) with partial
knowledge of on-site physical information (regression prediction). Solutions
like Yu et al. (2010), which explicitly consider the generalisation for occu-
pancy scheduling, are likely to be applicable post-pandemic. However, be-
sides occupancy scheduling, occupant behaviour, like plugging, positively im-
pacted the energy demand (Kim et al., 2020). It remains to be seen whether
and to what extent changing occupant behaviour before and after the pan-
demic would lead to notable deviations between the predicted and the actual
consumption levels.

Energy demand disaggregation: As far back as Hart (1992), energy
demand disaggregation was proposed to provide fine-grained energy feedback
by individual end-uses, which can potentially reduce domestic electricity con-
sumption up to 4.5% compared to aggregated feedback (Kelly & Knottenbelt,
2016). Disaggregating total building energy consumption usually relies on the
periodic pattern of specific end-uses (Ji et al., 2015) or their correlations with
external conditions (Niu et al., 2018; Zhou et al., 2019). Unless occupants
and their behaviour are explicitly considered in the end-use models, the ML
solutions are not likely to be applicable under the post-pandemic situation.
For appliance-level energy disaggregation, because the frequency and dura-
tion of use would be different from before, another round of appliance surveys
is needed to gather updated appliance usage information.

Energy demand response: In order to reduce the investment in en-
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ergy generation under peak demand, demand-side response aims to minimise
consumption at times of high demand. With the penetration of Renewable
Energy Systems (RESs), adapting energy demand further assists in reducing
grid frequency instability. Essentially, the demand response actuates balanc-
ing strategies that coordinate the requirements and needs between the energy
retailer and the customers. In the post-pandemic period, the price scheme
from the retailer and the consumers’ demand will not be the same as they
used to be. Considering the increased complexity caused by multiple par-
ticipants’ behavioural sophistication (Panait & Luke, 2005), the intelligent
agents needs to be completely retrained after understanding the emerging

post-pandemic situation.

4. Smart building applications and their applicability post-pandemic

In this paper, the potential of using ML in smart buildings is summarised
in four forms: component status recognition, system behaviour modeling and
control optimisation as well as intra-system/inter-system coordination. Con-
sidering the scale of typical buildings, the computational resources that could
be allocated to each building/system /component are usually constrained. As
shown in Figure 2, the hierarchical design of smart building applications
makes data refinement and information processing stepwise and affordable
computationally.

Rather than layering according to the spatial granularity, the hierarchy
for smart building applications is defined based on the analytical granular-
ity. For instance, if the total building energy consumption is analysed for

anomaly detection, it means that the entire building is regarded as one com-
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Figure 2: Typical forms of smart building applications

ponent. The overview of ML used in FM and EM applications gives us
some clues in terms of their applicability in the post-pandemic situation.
For applications at a lower level, one option is to eliminate the human pres-
ence/behaviour related components from raw data and only focus on the
analysis of occupant-insensitive components (Li & Wen, 2014). However, the
decomposition is rather empirical and leads to the loss of large amounts of
information, which makes it unsuitable for complicated system modeling and
analysis. For applications at a higher level, adaptive ML algorithms deserve a
place. Basically, these algorithms treat historical data as a “starting point”.
Non-routine event (NRE) detection (Touzani et al., 2019) or changepoint de-
tection (CPD) (Lu et al., 2020) are typical solutions in this category, which
tracks the evolution of inspected time-series over time to achieve continuous
learning. In terms of control optimisation, reinforcement learning is an-
other example, which continuously interacts with the changing environment

to gradually maximise the potential reward from a suboptimal start point
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(Jia et al., 2019b; Wang & Hong, 2020). However, these options do not pro-
vide universal answers to the applicability in the post-pandemic period. In-
stead, explicitly incorporating occupancy and other behavioural parameters
(associated with actions listed in Table 2) as independent variables in ML so-
lutions could be a promising approach. A wide variety of modern sensors like
thermal sensors and camera have been developed to detect occupancy accord-
ingly (Roselyn et al., 2019). Taking energy demand forecasting applications
as example, to make it work in practice, this approach should be in line with
a probabilistic vision of a building energy model, since the uncertain nature
associated with occupant behaviour and/or estimations of occupant density
are embedded in the model. Rather than deterministic/fixed values for these
variables, it is convenient to use probability distributions capturing their vari-
ability, and their consequent impact in the building energy model (Stewart
et al., 2016). The fundamental basis for these considerations lies in Bayesian
statistics which have already shown its capacity to quantify uncertainties in
both building energy models and occupant density or other behavioural pa-
rameters (Tian et al., 2016). In particular, Bayesian networks have shown
suitability for dealing with uncertainty in a plethora of cases. A key feature
of the Bayesian network is the graphical representation of the mathematical
model over the corresponding random variables (O’Neill & O’Neill, 2016).
For instance, in Barthelmes et al. (2017), a Bayesian network is used to cap-
ture underlying complicated relationships between various influencing factors
and window opening/closing behaviour of occupants in residential buildings.
This leads to a better understanding of the correlation structure between

the involved variables. Amayri et al. (2019) use Bayesian networks to es-
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timate the number of occupants through its relationship to a number of
variables collected by a series of sensors. Similarly, this paper remarks on
the outstanding correlation between occupancy and energy consumption. As
a consequence, building energy analysis, within a post-pandemic framework,
should highlight the changed level of occupancy caused by the enforced social-
distancing policies. And the pre-pandemic trained energy models need to be
verified in new scenarios of occupant density and behaviour. Once again,
a Bayesian perspective will be able to address this paradigm. Specifically,
Bayesian structural time series, introduced in the works of Brodersen et al.
(2015) and Scott & Varian (2014) among others, are capable to estimate the
causal effect of any intervention in a time series regression. The intervention
process can be understood as a change to a procedure or policy, exogenous
to the modelled time series but having an impact on its outcome, in this
case, occupant density and occupant behaviour. The causal effect of such
an intervention is estimated by a comparison between the predicted outcome
under the hypothesis of no-intervention in a post-intervention period and the

actual observed time series in such a period.

5. Case study

Building energy consumption, one of the most important aspects in defin-
ing the usage of buildings, is selected in the case study to illustrate the impact
of the pandemic on building electricity usage and potential energy demand
forecasting applications. It has been verified in Santin et al. (2009), Cvetkovi¢
et al. (2020) and Chen et al. (2020) that occupant behaviours inside a build-

ing, their presence included, significantly affect the total energy use (e.g.,
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around 4.2% of the variation in energy use for space heating), and in specific
scenario analysed, the consumption of natural gas can increase by 21.26%,
electricity by 58.39% compared with pre-pandemic in the residential sector.

In this paper, the electricity consumption data from a university building
in West Cambridge site of University of Cambridge is used to examine the
pre- and post-pandemic data inconsistency issue for potential energy demand
forecasting applications. The Alan Reece building, shown in Figure 3, is a
three-story building standing over a 40,000 square foot comprehensive area.
It includes spaces with diverse uses, such as teaching, office, research, labora-
tory, canteen and etc. The electricity consumption (kW h per half an hour)
and local ambient temperature of the Alan Reece building from 13th October
2018 to 11th October 2020 is used, partially shown in Figure 4. However, no
specific occupancy data is available to be incorporated.

During the period, the building went through a few distinct operational
stages. Before 20th March (first vertical line), the building was under normal
operation. Approximately 180 staff and PhD students regularly worked in
the building, with roughly 60% occupation rate daily on weekdays consider-
ing their holidays due to research/teaching/working patterns. Meanwhile, a
variable number of undergraduate and postgraduate students used the build-
ing as well. In response to the intensive transmission of the coronavirus, the
University moved into its “red” phase on 18th March, and the Alan Reece
building was shut down from 5pm on 20th March. Within the first phase of
the lockdown, until 22nd June (second vertical line), an extremely limited
number of COVID-related research activities were allowed on sporadic days,

with the presence of around 5 to 6 people typically. Later on, the building
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Figure 3: Layout of the Alan Reece Building

gradually restored its functionalities by admitting more people in the next
two stages (until early-August and 5th October, third and forth vertical
lines), with less than 10 and 20 people admitted on working days respec-
tively. While with the Michaelmas term starting from 5th October, groups
of students were also allowed back into the building, leading to around 50
people at any one time during the weekdays.

The electricity consumed in the Alan Reece building can be break down
into several end-uses, i.e., air conditioning, space heating/cooling, water heat-

ing, lighting, refrigeration, appliance and other plug loads. Three indepen-
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Figure 4: Hourly building electricity consumption (kW h-hh~1) and ambient temperature

dent air handling units (AHUs) are installed to regulate indoor air quality,
while variable refrigerant flow (VRF) heat pump system is installed to pro-
vide simultaneous heating and cooling to different areas within the building.
The appliances include personal equipment (e.g., laptop, mobile phone), ex-
perimental equipment (e.g., 3D printer, lathe) and large equipment (e.g.,
elevator). Besides temperature and other ambient parameters, the level of
occupancy has a decisive influence on most of these end-uses. During the
pandemic, for AHUs and VRF system, the decrement in occupancy reduces
the HVAC load accordingly, and for water heating, lighting, refrigeration and
appliances, their usage frequency and duration drop significantly as well. Sta-
tistically speaking, compared to the same periods (April to September) in

2019, the electricity consumption of the reference building saw a decrease of
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36.7% in average.

The causal impact model developed by Google (Brodersen et al., 2015) is
used to reveal the intervention of behavioural change caused by COVID-19
pandemic and the consequent lockdown, which directly affect the building
occupancy and the energy use. The model is based on Bayesian structural
time series, a regression state-space model that predicts the daily energy
consumption response in case of no lockdown (no intervention) taking place.
The resulting model is called counterfactual and its predictions are compared
to the observed time series after the intervention (post-pandemic period) to
infer its effect. The counterfactual model is, therefore, of pivotal importance
for the success of the causal impact model and its computation is typically
based on the combination of: the historical time series model prior to the
lockdown, the relationship to such a time series with any exogenous, predic-
tive variables no being impacted by the lockdown (e.g., ambient tempera-
ture), and any available prior information about the possible results of the
lockdown facing a similar contextual change (e.g., building occupancy level).

Figure 5 contains 3 panels. The top panel shows the daily energy con-
sumption and a counterfactual prediction for the post-lockdown period. The
second and third panel show the difference between the observed energy
consumption and the counterfactual predictions. The difference is shown
cumulatively over time in the case of the bottom panel.

A consequence of the analysis shown in Figure 5 is the effect of the lock-
down, and the corresponding drop in the building occupancy level. The
predictive model trained prior to the pandemic, relying on historical energy

consumption, calendar variable and ambient temperature cannot keep its ac-
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Figure 5: Causal effect of lockdown on the daily energy consumption (KWh - hh™1) at
the IfM building. Top panel: time series of energy pre- and post-pandemic (observed vs.
predicted). Middle panel: pointwise causal effect (difference counterfactual predictions and

observed). Bottom panel: cumulative effect of the lockdown on the energy consumption.

curacy and it is largely biased for the post-pandemic period, when the occu-
pancy level is significantly lower. During the post-pandemic period, the daily
energy consumption has an average value of approximately 34 kWh - hh™!.
By contrast, in the absence of a lockdown, we would have expected an average

consumption of 51 kWh-hh~t. The 95% credible interval of this counterfac-
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tual prediction is [49.03, 52.76]. Therefore, a rough estimation of the causal
effect the lockdown has on the energy consumption is -17 kW h - hh~! with a
corresponding 95% credible interval estimation of [-19.05, -15.32].
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Figure 6: Results of DEU profiles clustering

To better describe the building energy consumption characteristics, 24-
dimensional daily energy usage (DEU) profiles are segmented from the time
series building electricity consumption data (Li et al., 2018). Clustering

analysis is adopted to identify typical daily energy usage (TDEU) profiles and
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highlight the drifting of the weekday DEU profiles with time. A Gaussian
mixture model (GMM) based cluster analysis is used to cluster DEU profiles
(Li et al., 2018) and the median of all DEU profiles in the same cluster is
considered as TDEU profile of this cluster. Figure 6 (a) illustrates the DEU
clustering results, in which the red curves represents the 6 TDEU profiles
identified while the grey curves are all corresponding DEU profiles belonging
to that cluster. Figure 6 (b) shows the distribution of the TDEU profiles in a
calendar view. Notable DEU drifting can be observed during the transition
between different stages, particularly at the end of March and the end of
June. Although the amount of electricity consumed after August is still
much lower than the pre-pandemic level, the cluster of DEU almost gets
back in the swing, suggesting that various types of activities reoccurred in
the building with restricted intensity. It is fair to say that the historical data
before 20th March can be used if the activities, which are the consequences
of occupant behaviours, are properly recorded.

The evidences above validate the hypothesis that the occupancy level and
other behavioural factors are informative in energy demand forecasting, and
more broadly, enable the applicability of smart building applications to be

restored their applicability within frequently-changing scenarios.

6. Discussion

As stated in Schooling et al. (2020), the fundamental purpose of the
wider built environment and the infrastructure embedded is to provide a
platform for human flourishing, to better serve people and society. The

people-focused view is shared among buildings as well. However, more than
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simply providing comfortable and efficient living environment to people, the
authors believe that a people-focused view also means to monitor, analyse,
comprehend and sometimes influence the interactive behaviour of people with
buildings, which is in accordance with the conclusion drawn in Alfalah &
Zayed (2020) and Laaroussi et al. (2020). Learning from this crisis brought
by the global pandemic, the development of smart building applications must
be based on ML techniques that are robust to societal variations, and stand
on a social-technical basis. Particularly, under this crisis, social-distancing
and lockdown practices are introduced in a localised and adaptive manner
(Rahman et al., 2020), and occupancy density is to be regulated to avoid
long time exposure and prevent COVID transmission (Sun & Zhai, 2020).
Accordingly, these social parameters need to be monitored and taken into
consideration during the deployment of smart building applications (Ahmed
et al., 2021).

Data is the soul of the digitalisation and intelligentisation of the buildings.
However, we have to recognise that data comes with costs. Data generation,
transmission, processing and even storage are quite expensive, particularly
for the data involved with occupants’ presence/behaviour. The interruption
caused by the COVID-19 pandemic is likely to cause enormous loss regarding
the applicability of historical data as the training basis, if the occupancy
data was not properly collected. So how should we deal with existing ML
algorithms, that come without the proper reference to occupants’ status?

Learning from the past, let us take a glance at the existing measures
taken to cope with the limited data availability problem. If historical data of

buildings is limited but there are similar buildings with significant quantities
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of historical data, in such cases, transfer learning, transferring knowledge and
experience learned from similar buildings to empower the ML with reasoning
ability and fast convergence, is an important approach to tackle the problems.
For instance, Mocanu et al. (2016) focus on cross-building transfer learning,
combining reinforcement learning with deep belief network, and using data
from other buildings to predict energy consumption for buildings with limited
historical data; Ribeiro et al. (2018) propose a cross-building transfer learn-
ing method named Hephaestus, which is based on time series multi-feature
regression with seasonal and trend adjustment for cross-building energy fore-
casting.

Great changes have taken place in people’s behavioural habits, and data
from buildings post-pandemic phase may drift to a distinguishing distribu-
tion, which invalidates much of the historical data without the reference to
occupancy status. In the cases where the data collected during the novel
post-pandemic situation is insufficient to train a ML model, an effective ap-
proach is to transfer useful data to the target building from other source
buildings with similar purpose and functions (Liu et al., 2017). Specifically,
for filtering appropriate knowledge to be transferred to the target building,
we can adjust the transferability weight for each data sample from source
buildings according to their similarity to the data samples from the target
building. Through the fusion of weighted multi-source building data, the
size of the available training samples for the target building increases, thus
potentially improving the convergence speed and model accuracy of the ML

enabled smart building applications.
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7. Conclusion

The coronavirus pandemic has brought astonishing upheavals to the world,
and of course to buildings with diverse uses as well. With the pervasive dig-
ital transformation of buildings, a diverse selection of smart building appli-
cations have been developed to sophisticatedly extract and infer knowledge
from data and support corresponding decision-making processes, especially
in the domains of facility management and energy management. These ap-
proaches have suffered from the changed interactive pattern between humans
and buildings during the pandemic, including but not limited to the vari-
ations of occupancy and occupants’ behaviour. As a result, current smart
building applications, which heavily rely on a certain volume of pre-pandemic
data to feed into machine learning algorithms, might fail. To reveal the im-
pact of pandemic on smart building applications, the interactive relationships
between human and buildings are described, and an evaluation of the applica-
bility is presented for typical ML enabled smart building applications trained
with historical data, most of which has been collected prior to the pandemic.
Six categories of applications were reviewed in this paper, including anomaly
detection, control optimisation, predictive maintenance, energy demand fore-
casting, energy demand disaggregation and energy demand response.

This paper suggests three measures to mitigate the data inconsistency
issue for practical smart building applications in the post-pandemic era. For
relatively simple analysis, eliminating the effect of occupants’ behaviour by
decomposing occupancy-insensitive features is effective, with the cost of los-
ing partial information. Alternatively, adaptive ML algorithms, using which

the evolution of building systems is tracked over time, are immune from the
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after-effect of the pandemic. However, to provide a universal answer, it is
recommended to incorporate occupancy and other behavioural parameters
as independent variables in the conventional ML algorithm. To this end,
Bayesian ML models, including Bayesian networks, deserve a place due to
their natural capability to deal with the uncertainty within occupancy re-
lated variables. Through incorporating these variables, smart building appli-
cations can take full advantage of data, both pre- and post-pandemic, under

a people-focused view.
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