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ABSTRACT Automatic classification of diabetic retinopathy from retinal images has been increasingly
studied using deep neural networks with impressive results. However, there is clinical need for estimating
uncertainty in the classifications, a shortcoming of modern neural networks. Recently, approximate Bayesian
neural networks (BNNs) have been proposed for this task, but previous studies have only considered the
binary referable/non-referable diabetic retinopathy classification applied to benchmark datasets. We present
novel results for 9 BNNs by systematically investigating a clinical dataset and 5-class classification scheme,
together with benchmark datasets and binary classification scheme. Moreover, we derive a connection
between entropy-based uncertainty measure and classifier risk, from which we develop a novel uncertainty
measure. We observe that the previously proposed entropy-based uncertainty measure improves performance
on the clinical dataset for the binary classification scheme, but not to such an extent as on the benchmark
datasets. It improves performance in the clinical 5-class classification scheme for the benchmark datasets,
but not for the clinical dataset. Our novel uncertainty measure generalizes to the clinical dataset and to one
benchmark dataset. Our findings suggest that BNNs can be utilized for uncertainty estimation in classifying
diabetic retinopathy on clinical data, though proper uncertainty measures are needed to optimize the desired
performance measure. In addition, methods developed for benchmark datasets might not generalize to
clinical datasets.

INDEX TERMS Approximate Bayesian neural networks, deep learning, diabetic retinopathy, reject option
classification, uncertainty estimation.

I. INTRODUCTION probability on one of the classes, even when the predicted
Deep neural networks have achieved impressive results in class is incorrect, whereas a well calibrated classifier would
a wide variety of problems, ranging from large scale image place less probability mass on uncertain classes. In the med-
classification [1], to natural language understanding [2], and  jcal domain, the issue of uncertainty estimation is especially
to medical image segmentation [3]. However, the standard  important for having trust to confident model predictions
methods have been found to produce over-confident predic-  in screening automation and referring uncertain cases for
tions, meaning that they are poorly calibrated [4]. In clas-  intervention by medical experts. In this work we refer to
sification tasks, a poorly calibrated network can place high the classifiers that can indicate their uncertainty as robust
classifiers.
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under growing interest [S]-[8]. More recently, the focus of
attention has turned on developing robust deep learning meth-
ods for the classification task, most commonly using the
approximate Bayesian deep learning approach that approx-
imates the Bayesian neural network (BNN) posterior distri-
bution in a computationally scalable manner. The previous
works have considered a variety of aspects from studying
the benefits of uncertainty estimates [9] to algorithmic devel-
opment of robust methods [10], [11]. Although the vari-
ety of different studied algorithms has been diverse [9],
[12], the used datasets have so far been benchmark datasets.
This leaves open the question of whether the algorithms
generalize to real clinical data. In addition, these recent
works have mainly focused on the classification of diabetic
retinopathy using binary classification schemes, i.e. “refer-
able vs. non-referable’” (RDR) or “‘healthy vs. any” diabetic
retinopathy. However, in clinically oriented approaches there
has been a shift towards the 5-class proposed international
diabetic retinopathy classification system (PIRC) [8], [13],
[14]. In order for these approaches to have clinical use, it is
of paramount importance that the algorithms generalize to
clinical datasets and to clinical diabetic retinopathy grading
systems, which is the novel scope we adopt in this study.

The common aspect among the works focusing on robust
methods is the use of uncertainty information to simulate a
referral process, introduced by [9]. Each prediction is asso-
ciated with an uncertainty estimate, and the least certain
predictions are referred to experts, while the more certain
predictions are used for evaluation. This process mimics a
situation in which the automated system asks human interven-
tion for uncertain cases, i.e. refers them to an expert. In prac-
tice, the holdout test set predictions are ordered according
to their uncertainty and several referral levels are defined
corresponding to a percentile of referred examples, i.e. 10%
referral level means that 10% of the most uncertain examples
are left out of the evaluation.

In [9], a Monte Carlo (MC) dropout neural network was
used for two binary classification tasks: classification of
any diabetic retinopathy and RDR. They used the EyePACS
dataset [15] for training and testing and evaluated the out-
of-distribution performance with the Messidor dataset [16]
and observed improved robustness in comparison to a base-
line standard neural network. Reference [12] conducted a
more methodologically extended study for the classification
of RDR. The EyePACS dataset was used for training and
testing, and the out-of-distribution performance was evalu-
ated with the APTOS [17]. The work examined a number
of approximate Bayesian deep learning methods, such as
the MC dropout, Mean Field Variational Inference (MFVI),
deep ensembles, and MC dropout ensemble. They observed
that the approximate Bayesian methods outperformed the
standard neural network in all the experiments where net-
work uncertainty was utilized. Reference [10] proposed the
Radial BNN method and benchmarked it against MFVI,
MC dropout, and deep ensembles using the EyePACS dataset,
as both the training and test sets, for the RDR classification
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task. A single Radial BNN was found to outperform the
MC dropout and MFVI, but not the deep ensemble. Overall,
an ensemble of Radial BNN’s turned out to outperform all
other methods at all referral levels. In [18] the RDR task was
examined using the EyePACS dataset for training and testing,
and the out-of-distribution performance was evaluated with
the APTOS, similar to [12]. They also studied how the robust
deep learning methods generalize when no images of severe
and even severer proliferative diabetic retinopathy cases are
used in the training. The considered approximate deep learn-
ing methods were MFVI, Radial BNN, Function-Space Vari-
ational Inference, MC dropout, and Rank-1 Parameterized
BNN, and ensembles of them. Also the deep ensembles were
used. It was found that the MC dropout ensemble performed
the best for the within-distribution and the MFVI ensemble
for the out-of-distribution experiments.

In this study, our objective is to analyze robust neural
networks, i.e. networks that are inherently well calibrated,
for the task of diabetic retinopathy classification using the
RDR and PIRC classification schemes. For this reason we
leave out the analysis of post-hoc calibration methods, such
as the test-time augmentation introduced in [11] and [19],
neural network softmax temperature scaling, and probability
binning strategies [4]. We also omit methods based on stan-
dard neural networks, such as the DR|GRADUATE [20], that
is trained to predict the PIRC label and an uncertainty score,
using a specific ordinal regression setting.

Many measures of uncertainty have been used in the previ-
ous works. In [9], the standard deviation of the output of the
BNN and the entropy of the posterior predictive distribution
were considered as measures of uncertainty and were found
to perform similarly. In [12], [19], and [18] the entropy was
also selected as the measure of uncertainty. On the other hand,
the mutual information between the parameters of the model
and the output was considered as the measure of uncertainty
in [10].

In the present work, we explore the benefits of uncertainty
estimates for a clinical dataset of a Finnish hospital on both
the binary RDR and the 5-class PIRC classification schemes.
We investigate 9 different approximate Bayesian methods
to extensively analyze recently proposed methods. In addi-
tion, we study the out-of-distribution performance using three
benchmark datasets: the EyePACS [15], the Messidor-2 [16],
[21], and the APTOS [17]. We observe that the entropy uncer-
tainty estimates improve the area under the receiver oper-
ating characteristic curve (AUC) performance in the binary
RDR system, but in the case of the 5-class PIRC system,
the quadratic weighted Cohen’s kappa (QWK) performance
only improves across the benchmark datasets. For the clinical
dataset and PIRC system, we observe less robust classifier
performance using entropy-based uncertainty. To improve the
quality of the uncertainty estimates, we additionally pro-
pose a novel classifier risk based uncertainty measure, which
improves the within-distribution uncertainty performance on
both the Finnish hospital dataset and the EyePACS dataset.
As far as we know, clinical diabetic retinopathy severity
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schemes and clinical workflow datasets have not been studied
before using robust neural networks.

Il. METHODS

A. DATASETS

All our datasets consist of color images of the human
retina and are graded using the following 5-class PIRC
system for the severity scheme of diabetic retinopathy: no
diabetic retinopathy (class 0), mild diabetic retinopathy
(class 1), moderate diabetic retinopathy (class 2), severe
diabetic retinopathy (class 3), and proliferative diabetic
retinopathy (class 4). From the PIRC system, we derive the
binary referable/non-referable diabetic retinopathy (RDR)
classification, which is defined as the union of no dia-
betic retinopathy or mild diabetic retinopathy (< 1) and
referable as retinopathy worse than or equal to moder-
ate diabetic retinopathy (> 2). We chose to include the
binary RDR system for comparison with the previous
works.

We use the following four datasets for our experiments:
the EyePACS [15], KSSHP [22], Messidor-2 [16], [21],
and APTOS [17]. The EyePACS and APTOS datasets
were introduced for two different Kaggle competitions of
diabetic retinopathy detection. The Messidor-2 is a com-
mon benchmark dataset that was introduced for research
in computer-assisted diagnosis of diabetic retinopathy. The
EyePACS, APTOS, and Messidor-2 datasets have been
widely used in literature for training and analyzing robust
neural networks. In order to examine if the results generalize
to clinical hospital datasets, we use the non-public KSSHP
dataset. The KSSHP set was collected from clinical workflow
data from the Central Finland Health Care District. Central
Finland Health Care District approved the research permit
regarding the KSSHP data in January 2021. The research
was conducted as a register based research, and thus did not
need ethical board evaluation according to EU General Data
Protection Regulation (GDPR) and the Finnish law [23], [24].
All the used datasets originate from different countries: The
EyePACS from USA, KSSHP from Finland, APTOS from
India, and Messidor-2 from France, allowing for extensive
analysis for the generalization of the models under distribu-
tion shift by country.

The division of data to training, validation, and test sets
were performed for EyePACS and KSSHP image datasets.
For the EyePACS dataset, the official “Train” set was used
for training, the ‘“Public” set was used for validation, and
the “Private” set was used as the test set. These training,
validation, and test splits have also been used in [18] and
in the Tensorflow Datasets Python package. For the KSSHP
dataset, we used 70%, 10%, and 20% of images for the
training, validation, and test sets, respectively. For the splits,
we used stratified pseudo random sampling to preserve PIRC
class distribution of the original set, but taking into account
that images from the same patient cannot reside in more than
one set. Due to the low amount of images in the APTOS
and Messidor-2 datasets, 3662 and 1744 respectively, they
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were used only as out-of-distribution test sets. Complete
description of the training, validation, and test sets are
described in Table 1 and the test set class distributions in
Table 2. The images were resized into standard size 512 x
512 and, to reduce known variability, preprocessed with steps
described in the Supplementary Section 1.

B. APPROXIMATE BAYESIAN DEEP LEARNING

The approximate Bayesian deep learning models take the
uncertainty in account by computing the following posterior
predictive distribution:

p<y|x,D>=/ PO 1 x.0)p® | DYdo. (1)

0cO

Here x and y denote the image and target, respectively, D
the training data, and @ the model parameters. The predic-
tions are weighted averages using the posterior distribution
p(@ | D) [25], [26]. For the standard neural networks, the
maximum likelihood (ML) or maximum a posteriori (MAP)
estimates are typically used, which completely ignore the
uncertainty in the parameters.

The exact solution for Equation (1) is intractable for
deep neural networks, and Markov Chain Monte Carlo
is prohibitively expensive for real world scenarios. Thus
approximations need to be utilized. We selected the deep
ensemble, MC dropout, MFVI, Generalized Variational
Inference (GVI), and Radial BNN as our approximate
Bayesian methods. The posterior predictive distribution can
be inexpensively approximated with these methods using
an approximate posterior distribution ¢(@) and Monte Carlo
integation with N samples:

1 N
p<y|x,D>~ﬁ;p<y|x,0,~>, 0; ~ q(0). )

C. DEEP ENSEMBLES

The deep ensemble [27] is a collection of multiple ML or
MAP neural network models. The models are trained using
different initializations in order to produce a diverse set of
models. The predictions of the models are averaged to pro-
duce the prediction of the ensemble model, corresponding to
heuristically setting the posterior as uniform distribution over
the set if models in Equation (2).

D. MONTE CARLO DROPOUT - MC DROPOUT

The Monte Carlo dropout method introduced in [28] allows
approximate Bayesian inference during test-time for net-
works that have been trained using the dropout regularization
method. The dropout works by sampling a binary mask r =
[ri, ..., rd]T from a Bernoulli distribution r; ~ Bern(p) and
masks the activations & of a layer by computing the Hadamard
product r © h [29], which is equivalent to masking rows of
the weight matrix and elements of the bias vector [28]. The
posterior predictive distribution is then computed using the
dropout distribution in Equation (2).

76671



IEEE Access

J. Jaskari et al.: Uncertainty-Aware Deep Learning Methods for Robust Diabetic Retinopathy Classification

TABLE 1. Number of images in each subset for each dataset.

Subset EyePACS [15] KSSHP [22] APTOS [17] Messidor-2 [21]
Train 35125 (39.6%) | 39482 (70.0%) | - -

Validation | 10906 (12.3%) | 5652 (10.0%) - -

Test 42669 (48.1%) | 11285 (20.0%) | 3662 (100%) | 1744 (100%)
Total 88700 56419 3662 1744

TABLE 2. Class distribution for PIRC and RDR classification schemes of the test sets.

Class EyePACS [15] | KSSHP [22] APTOS [17] | Messidor-2 [21]
PIRCO | 31403 (73.6%) | 7723 (684%) | 1805 (49.3%) | 1017 (58.3%)
PIRC | | 3042 (7.1%) 2431 (21.5%) | 370(10.1%) | 270 (15.5%)
PIRC?2 | 6281 (14.7%) | 930 (8.2%) 999 (27.3%) | 347 (19.9%)
PIRC 3 | 977 (2.3%) 177 (1.6%) 193 (5.3%) 75 (4.3%)
PIRC4 | 966 (2.3%) 24 (0.2%) 295 (8.1%) 35 (2%)

RDR O | 34445 (80.7%) | 10154 (90.0%) | 2175 (59.4%) | 1279 (73.3%)
RDR1 | 8224 (19.3%) | 1131(10.0%) | 1487 (40.6%) | 465 (26.7%)

E. MEAN FIELD VARIATIONAL INFERENCE - MFVI

The Mean Field variational approximations assume that the
neural network parameters are independent and typically
that the approximate posterior and prior are Gaussians [10],
[12], [30]. The evidence lower-bound (ELBO) can then be
maximized, which provides a lower bound for the posterior
probability, and for the diagonal multivariate Gaussian case,
the equations become simple [30]:

Lerpo(D, 0) = Ey@)[log(p(D | 9))]
—Dgr[q(0) || p(0)],
= Ey)llog(p(D | 0))]

J 5
_ Z]Og A
=t
1
+ 5l —mp)* +of =571 )
2sj

Here the KL[- || -] denotes the Kullback-Leibler (KL) diver-
gence, the prior is A/ (mj, sjz), and the variational posterior
is N(u;, o?) for a parameter ;. The remaining expected
log-likelihood term is computed using Monte Carlo inte-
gration and the reparametrization trick [31]. Similar to the
MC dropout, the posterior predictive distribution is computed
using samples from the fitted approximate posterior distribu-
tion. We used multivariate standard normal distribution as the
prior in all experiments.

F. GENERALIZED VARIATIONAL INFERENCE - GVI

In [32], a novel optimization-centric view to posterior
inference is proposed. The problem of finding posterior
distributions is viewed in terms of the so-called “Rule-of-
Three’’, which separates the loss, divergence, and the space of
feasible solutions as different aspects of the optimization pro-
cedure. Different configurations result in different posterior
inference methods, for example the standard Bayesian pos-
terior inference and variational inference. This view allows
for principled use of divergences, which are robust to the
mis-specification of the prior. Since the diagonal standard

76672

normal is typically chosen for computational convenience
(rather than to incorporate any prior knowledge about good
values of the neural network weights) [32], this approach
is promising. We select the robust divergence as Rényi’s
a-Divergence (DSp[ - || - 1), with @ = 0.5. As the loss
function, we use the negative log-likelihood, and as the space
of feasible solutions the mean field normal posteriors and
priors, where the prior was selected as the diagonal standard
normal. The total minimization objective is then:

Lovr = —Eq[log(p(D | 6))]
+Digla(®) || p(6), @)

1
DzR[Q(o) [l p(0)] = mlog/q(a)ap(e)(lf‘l)do'
(%)

G. RADIAL BAYESIAN NEURAL NETWORKS - RADIAL BNN
The multivariate normal distribution has the so-called ““soap
bubble’ pathology in high dimensions, meaning that most of
the probability mass is concentrated on thin shell far from
the mean, resulting in samples with a high norm. In [10], the
high norm is proposed to be the problem in training deep
neural networks using the MFVI approach with Gaussian
posteriors. To address this issue, they propose a novel ““Radial
BNN” posterior distribution. The proposed distribution is
constructed such that the samples have the same expected
norm as univariate standard normal distribution, regardless
of the dimension. The sampling process is defined as follows
for a single weight vector:

w=p+oQ€e-r, 6)

e= < @)
Il€ll2

€ ~ N(,D), ®)

r~ N, 1). ©)

The resulting random variable w avoids the soap bubble
pathology, however, it has no closed form probability den-
sity function or KL-divergence. The authors observe that a
stochastic estimate of the KL-divergence can be computed
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similar to [26], allowing for optimizing the ELBO up to a con-
stant. Multivariate standard normal distribution was selected
as the prior, similar to MFVL.

H. NEURAL NETWORK ARCHITECTURE AND
IMPLEMENTATION

For all our experiments, we used a VGG16 type network as
the base architecture, similar to most of the previous stud-
ies [9], [10], [12]. The VGG16 architecture was chosen to be
identical to the one used by [10], as their study demonstrated
high performance for approximate Bayesian neural networks
on the RDR task. This network consists of five “blocks” with
the first two blocks containing two convolutional layers each,
and all the later blocks have three convolutional layers in each
block. All the convolutional layers have a kernel size of 3 x 3,
and each of them is followed by a Leaky ReLLU activation with
a negative slope of @ = 0.2. A max pooling operation with
kernel size and stride of 2 x 2 is applied as the last operation
of each block, with the exception of the final block. The
output of the final block is globally average pooled and max
pooled over the spatial dimensions, and their output vector
representations are concatenated. The final fully-connected
layer has one neuron with a sigmoid activation for the binary
RDR classification task, and five neurons with a softmax
activation for the 5-class PIRC task. The MAP and MC
dropout networks had 64 channels for the first convolution
and the channel count was doubled after each block. The
MEFVI, GVI, and Radial networks had 46 channels that were
doubled after each block to keep the total number of trainable
parameters between models comparable, similarly to [10].
All the models had approximately 15 million parameters. The
ensemble models consisted of three individual models that
were trained with different random seeds. The architecture is
visually illustrated in Table 3.

Our baseline approach is a standard neural network trained
with dropout and L2 weight regularization. The L2 weight
regularization is equivalent to the MAP estimation if a fully
factorized normal prior is used on the network parameters.
The MAP network, MC dropout, deep ensemble, and MC
dropout ensemble models were trained using the negative
log-likelihood of a Bernoulli distribution for RDR and the
negative log-likelihood of a categorical distribution for PIRC.
In addition, these models were regularized using the L2
weight regularization. The MFVI, Radial, MFVI ensemble,
and Radial ensemble models were trained to maximize the
ELBO in Equation (3), and the GVI and GVI ensemble
model to minimize the loss in Equation (4). The log p(D | 6)
in Equations (3) and (4) was also the log-likelihood of a
Bernoulli distribution for RDR and the log-likelihood of
a categorical distribution for PIRC. We did not employ
over-sampling of the minority classes or weighting of the
log-likelihood term, as previous studies suggest that the stan-
dard negative log-likelihood loss can reach equal or bet-
ter performance, e.g. when comparing the results by [10]
and [12]. Mini-batch sizes, optimizer settings, and the used
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TABLE 3. Architecture of the VGG network. k denotes the kernel size and
s the stride used for the convolutional layer. C = 64 for MAP, MC dropout,
deep ensemble, and MC dropout ensemble, and C = 46 for MFVI, GVI,
Radial, MFVI ensemble, GVI ensemble, and radial ensemble.

Block Layers Output Size
Input - 512 x 512 x 3
Convolution, k = 3, s = 2
Leaky ReLU 256 x 256 x C
1 Convolution, k = 3,s =1
Leaky ReLU 256 x 256 x C
Max Pool 128 x 128 x C'
Convolution, k = 3,s =1
Leaky ReLU 128 x 128 x 2C
2 Convolution, k = 3,s =1
Leaky ReLU 128 x 128 x 2C
Max Pool 64 x 64 x 2C
Convolution, k = 3,s =1
Leaky ReLU 64 x 64 x 4C
Convolution, k = 3,s =1
3 Leaky ReLU 64 % 64 x 4C
Convolution, k = 3,s =1
Leaky ReLU 64 x 64 x 4C
Max Pool 32 x 32 x 4C
Convolution, k = 3,s = 1
Leaky ReLU 32 x 32 x 8C
Convolution, k = 3,s =1
4 Leaky ReLU 32 x 32 x 8C
Convolution, k =3,s =1
Leaky ReLU 32 x 32 x 8C
Max Pool 16 x 16 x 8C
Convolution, k = 3,s =1
Leaky ReLU 16 x 16 x 8C
Convolution, k = 3,s =1
Leaky ReLU 16 x 16 x 8C'
5 Convolution, k = 3,s =1
Leaky ReLU 16 x 16 x 8C
Global Avg. Pool
Coneat (Global Max Pool) 16¢
Fully-connected .
Classifier Sigmoid if RDR ; ilffllflglé
Softmax if PIRC

data augmentation scheme are detailed in the Supplementary
Section 1.

I. UNCERTAINITY ESTIMATION
Many uncertainity estimates have been used in previous
works. The entropy of the posterior predictive distribution
has been a typical choice, and has been observed to work
well for the binary RDR classification. However, for the
5-class PIRC classification, we observe that the entropy does
not systematically improve the referral process QWK on the
clinical dataset. We seek to identify alternative measures of
uncertainty, which would give more informed rejection rules.
We measure the performance of our 5-class PIRC classi-
fiers using the quadratic weighted Cohen’s kappa [33]:

Z?il Zjﬂil(i —j)zci,j

kow(C) = 1— —, (10)
Z?il Zgl(l —)?Ei
1 M M
Ejj = ZVZC,»,“ZCI,J. (11)
a=1 b=1

The C is the confusion matrix where element C;; is the
number of cases where the predicted label is i and the true
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label is j, and E is the expected agreement matrix. For a
perfect classifier the confusion matrix is diagonal and thus
the numerator term is zero, which results in a QWK value
of 1. The QWK weights the misclassifications with squared
distance of the numerical class labels, as well as with the
expected agreement.

The referral of uncertain examples is essentially a case of
reject option classification [34]. In reject option classifica-
tion, the risk of a classification decision is the measure of
uncertainty, and when the risk exceeds a certain threshold,
the prediction is discarded [35]. When the classifier risk
is the minimum risk over the decisions, and the error is
defined using the 0/1 loss, a classic result is that the pre-
diction is rejected if max;p(y = i | x) < t for some
threshold 7 [34], [36].

Instead of the minimum risk estimator, we choose to use
an average risk, similar to the expected risk of classifier
in [37]. The average risk view reveals an interesting con-
nection between the classifier risk analysis and the entropy
referral process, and thus helps in the analysis of constructing
alternative uncertainty measures. The expected risk of a clas-
sifier that estimates the likelihood of discrete labels y given x
is defined as [37]

7= [ 32wt 120 ptw . (12)
x5

The L(-,-) is the loss function associated with a certain
prediction and label combination. The risk associated with
using the classifier for a certain input x can be derived by
leaving the marginalization over x out, which is the expected
(over y) conditional (on x) risk:

Rex) =Y LG | x),)pG | x). (13)
y

For a given classifier, the risk is now completely defined by
the choice of the loss function. Indeed, the expected condi-
tional risk can be used for any performance measure we want
to optimize by choosing a loss function that corresponds to
the performance measure.

The negative log-likelihood of a target label ¢ given a
categorical distribution p(y | x) with M classes is:

M
Lyir(p(y 1 %), 0) = =Y [e = jllog(p(y =j | X)),
j=1

= —log(p(y = c | x)). (14)

When we plug this to the expected conditional risk, we obtain
the entropy of the posterior predictive distribution:

M
R@) =Y Lawr(p(y | x), dpy =i | x),

i=1
M

=Y —logply=i|xNpy=ilx). (15
i=1

Thus the negative log-likelihood induces a risk measure that
is the entropy of the posterior predictive distribution.
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In order to apply the methodology to the QWK, we need a
loss function that directly reflects it. For a single prediction,
the numerator and denominator terms in Equation (10) will
be the same and thus the kgwg will always be zero. Thus
we need the confusion matrix to be a non single entry matrix.
For this purpose, we utilize an initial estimate of the confusion
matrix C, computed on the validation set of the corresponding
training set the model was trained on, and define the con-
fusion matrix as a sum of the initial confusion matrix and
a single entry matrix S;; with 1 on index j, i. The entry j, i
denotes a combination of a prediction-target pair where the
predicted label is j and the target label is i. We propose the
loss to then be the negative expected QWK:

M
Lowk(p(y |0),) ==Y py=j | X)cow(C + ). (16)
j=1

The final QWK-Risk uncertainty estimate is then:

M
Rowk(®) = — Y py=1i|x)
i=1

M
x Y ply=j | Xkow(C+Spp). (17)
j=1

The QWK-Risk can be interpreted as the expected negative
QWK value for an input example x, similar to entropy being
the expected negative log-likelihood.

The utility of the uncertainty information is evaluated in a
similar manner as in previous works. We compute the uncer-
tainty as the entropy or as the QWK-Risk of the posterior
predictive distribution, that is computed using 100 Monte
Carlo samples for MC dropout, MFVI, GVI, and Radial
BNN, and with three ensemble members for the ensemble
experiments. The uncertainty is then used to reject some
proportion of the most uncertain cases, which is called the
referral level. The performance is evaluated for the binary
RDR task using the area under the receiver operating char-
acteristic curve (AUC), and for the 5-class PIRC task we use
the quadratic weighted Cohen’s kappa (QWK), similar to [13]
and [14]. Both the AUC and QWK are evaluated at 0% (no
referral), 30%, and 50% referral levels, and are presented in
a scale with maximum of 100 to improve readability.

IIl. RESULTS

A. RDR CLASSIFICATION

Visual illustration of results for performance after referral
for the models trained on RDR classification is presented in
Fig. 1A. Detailed RDR results are presented in Table 4. On the
full test set, i.e. 0% referral level, our EyePACS data trained
models had better results on all of the benchmark sets in com-
parison to previous works, thus setting a higher standard as
our baseline performance. Indeed, our worst models are better
than the best models in previous works: on EyePACS [9]
had 92.7 AUC, [12] 82.5 AUC, [10] 94.5 AUC, and [18]
92.5 AUC, in comparison to our, MFVI and Radial, with
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FIGURE 1. Performance after referral using (a) posterior predictive entropy to refer on the RDR task, (b) posterior predictive entropy to refer on the PIRC
task, and (c) QWK-Risk to refer on the PIRC task. Each column shows which dataset was used for training and each row which test dataset was used for

the results. The y-axis values are scaled to have a theoretical maximum of 100 and the limits chosen for better readability. The y-axis limits are shared in
the PIRC task between entropy and QWK-Risk referral plots for each test set, in order to enable direct visual comparison of the methods.

94.8 AUC. In addition, on APTOS dataset [12] had 77.2 AUC
and [18] 94.6 AUC, whereas our worst models, MC dropout
and GVI, had 95.2 AUC. The best Messidor result in [9]
was 95.5 AUC, whereas our worst model, deterministic MAP
network, had 95.9 AUC, however, our results are not directly
comparable since they use the Messidor set, which is a subset
of the more recent Messidor-2 set.

Also, all of the KSSHP data trained models had a high
AUC on 0% referral level for the KSSHP test set. Indeed,
every model outperforms the corresponding model trained
and tested on the EyePACS dataset. However, the generaliza-
tion of the KSSHP trained models to Messidor-2 and APTOS
sets was worse in every comparison than the generalization
of the EyePACS trained models.

The uncertainty enabled referral process results for the
EyePACS data trained models are similar to [9], as we
observe the referral process to systematically increase the
AUC on the EyePACS test set and on the Messidor-2 set,
and as a novel result, we observe that the referral process
also increases the clinical KSSHP dataset AUC. We observe
different behaviour on the APTOS dataset than in [12] but
similar to some models in [18], as the AUC of all models
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systematically decreases when utilizing the uncertainty. Sur-
prisingly, we observe strong uncertainty estimates for the
deterministic MAP network, unlike in [9] and [12], that
observed generally worse uncertainty estimates for the point
estimate approach. This difference is likely due to the strong
regularization we used in training our MAP network.

It turns out that the models trained with the KSSHP data
had different utility from the uncertainty referral than those
trained using the EyePACS set. Specifically, on the KSSHP
test set, from the 0% to 30% referral level, the MFVI and
Radial ensemble models exhibit slightly decreased perfor-
mance. In contrast, the GVI model performance stayed con-
stant across this range, but decreased from 30% to 50%.
In addition, the uncertainty estimates do not generalize to
the EyePACS test set to such an extent as they did using the
EyePACS set trained models on the KSSHP set. We see that
on the EyePACS set, the uncertainty estimates given by the
MAP network, deep ensemble, and the Radial ensemble can-
not be used to improve the performance by referral, and the
MFVI and GVI models do not improve upon the 30% referral
rate. However, all the models perform well to the Messidor-2
dataset on all referral levels with the GVI ensemble even
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attaining 100.0 AUC for the 50% referral level. In the case
of APTOS dataset we observe similar performance as with
the EyePACS trained model, as the performance decreases
along the referral rate, with the exception of baseline network
improving from 0% to 30%.

In terms of overall performance, we observe that best
results for the EyePACS, KSSHP, and the Messidor-2 datasets
were obtained by referring data. For EyePACS and KSSHP
the best results were for within-distribution trained models.
The best performance on the EyePACS was obtained with
MC dropout model that reaches 98.4 AUC with 50% referral
level and on the KSSHP with MC dropout ensemble that
reached 98.9 AUC with 50% referral level. The best out-of-
distribution performance on the Messidor-2 set was obtained
with the KSSHP trained GVI ensemble with 50% referral
level that reached 100.0 AUC. For the APTOS set the referral
did not improve performance, as the EyePACS trained MFVI
ensemble with 0% referral level reached the highest AUC
of 96.1.

B. PIRC CLASSIFICATION

As no previous works have utilized robust neural networks
for the 5-class clinical PIRC scheme, we cannot directly
compare the absolute performance. However, standard deep
learning methods have been utilized, with similar data to
our benchmark datasets. In [13], a deterministic Inception-v4
model was trained using over 1.6 million images from
EyePACS affiliated clinics, 3 eye hospitals in India, one
of them the same as the origin of the APTOS dataset,
and the Messidor-2 dataset. The test set consisted of
EyePACS originating images, on which the model achieved
QWK of 84.0, which we consider the high performance
baseline.

Visual illustration of PIRC results are presented in Fig. 1B,
full results in 5. When no images are referred, the best
performance is achieved with different ensembles: the deep
ensemble achieves 81.3 QWK on the EyePACS dataset and
81.1 QWK on the KSSHP dataset. Similarly, the MFVI
ensemble achieves 83.9 QWK on the Messidor-2 dataset,
and the MC dropout ensemble achieves 87.9 QWK on the
APTOS dataset. EyePACS trained models had better out-of-
distribution performance than the KSSHP trained models.

While using entropy as the measure of uncertainty, the only
EyePACS trained models that improved within distribution
performance for all the referral levels were GVI, Radial, and
GVI ensemble. These models also surpassed the 84.0 QWK
when referring > 30% of images. Also, deep ensemble
achieved 86.8 QWK and Radial ensemble 84.6 QWK for the
30% referral level. All the models, except the MC dropout,
consistently improve on the Messidor-2 dataset and reach
over 84.0 QWK when referring > 30% of images. On the
APTOS dataset, all models consistently improve for all refer-
ral levels and they surpass the 84.0 QWK when referring >
30% of images. However, we can see that on the KSSHP
dataset, the models degrade consistently, apart from GVI
and deep ensemble for 0% to 30% referral level, and no
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model reaches competitive performance on the KSSHP for
any referral level.

When using the KSSHP data for training, we get sig-
nificantly worse results compared to the EyePACS trained
models, as no model consistently improves on the within
distribution set, and overall, no model reaches the 84.0 QWK.
Indeed, only the MFVI improves from 0% to 30% refer-
ral level. In terms of EyePACS generalization, all models
improve from 0% to 30%, and Radial, MFVI ensemble,
and Radial ensemble improve also from 30% to 50% refer-
ral level. However, no model reaches over 80.0 QWK.
All models consistently improve for the Messidor-2 dataset
and GVI, Radial, MC dropout ensemble, and Radial ensemble
reach over 84.0 QWK for the 50% referral level. However,
the MFVI has generally poor performance, as the QWK
only increases from 45.7 to 54.5. On the APTOS dataset,
MC dropout, GVI, Radial, and all ensemble models improve
from 0% to 30% referral level. On the 30% to 50% refer-
ral level, GVI and all ensembles except the GVI ensemble
improve. Even though some models improve in the referral
process, no model reaches over 80.0 QWK, the deep ensem-
ble being closest with 79.9 QWK on the 50% referral level.

The overall best performance for the EyePACS set is
obtained using EyePACS trained Radial when referring 50%
of images, QWK of 87.9, and for the KSSHP set using
KSSHP trained MFVI and referring 30% of images, QWK
of 81.6. For the out-of-distribution sets, the best Messidor-2
results are obtained using EyePACS trained Radial when
referring 50% of images, QWK of 94.3, and for the APTOS
set using EyePACS trained MFVI ensemble when referring
50% of images, QWK of 97.3. Since the uncertainty estima-
tion is motivated from the point of view of clinical interest,
it is extremely concerning that the methods appear to not
work in a similar manner when trained on a clinical dataset
in comparison to the benchmark datasets, especially on the
clinical set itself.

C. QWK-RISK AS AN ALTERNATIVE

UNCERTAINTY MEASURE

Our proposed QWK-Risk uncertainty measure results are
presented in Fig. 1C and Table 6. We can see that
the QWK-Risk uncertainty based method systematically
improves both the within distribution test results and cross
out-of-distribution results for the two train sets. Within distri-
bution for the EyePACS set, all models reach over 84.0 QWK
when referring > 30% of images. No EyePACS trained
model reaches the 84.0 QWK on the KSSHP set. However,
QWK-Risk enables deep ensemble to reach > 80.0 QWK
for all referral levels. In addition, deterministic MAP net-
work, MC dropout ensemble, and MFVI ensemble reach >
80.0 QWK for 50% referral level. On the Messidor-2 set, the
performance of some models decreases and some improve in
comparison to the entropy based uncertainty, most notably the
GVI no longer reaches over 84.0 QWK but all other models
reach over 84.0 QWK for referral levels > 30%. Systematic
decrease in the performance is seen for the APTOS dataset,
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TABLE 4. RDR results. Mean and standard deviation computed for 100 bootstrap resamples of the test data. Relative improvement to previous referral
level is denoted with a green up-pointing triangle, orange equals sign, or red down-pointing triangle for increasing, equal, or worse performance,

respectively.

Test Dataset Method EyePACS trained KSSHP trained
AUC Ref. 50% | AUC Ref.30% | AUC Ref. 0% AUC Ref. 50% | AUC Ref.30% | AUC Ref. 0%
MAP A974+£02 A9.2+02 95.0+0.1 V86.5+05 V3875+04 88.3 £ 0.2
MC dropout A984 +0.1 A973+0.2 95.7 £ 0.1 A904+04 A895+03 88.2+0.2
EyePACS MFVI A97.6+02 A963+02 94.8 £0.1 87.7+£0.5 Ag877+03 86.2+0.2
GVI A982+0.1 A972+0.1 949 £ 0.1 87.7+£0.5 Ag877+04 87.0 £0.2
Radial A978+02 A96.7+02 94.8 £ 0.1 ARYS5+04 AB89+03 88.0 £0.2
MAP A964+0.7 A955+0.7 939 4+0.5 A938.0+0.8 A97.0+07 96.9 + 0.3
MC dropout A973+06 A 96.7 £ 0.5 94.4 £+ 0.4 A98.6+05 A98.1+£0.5 96.9 + 0.3
KSSHP MFVI A 9.8 £0.6 A95.6+06 934405 A9%.9+038 V96.5+0.7 96.6 + 0.3
GVI A974+04 A9594+05 924405 A9744+07 96.5 + 0.7 96.5 £ 0.3
Radial A972+05 A958+0.5 92.7£0.5 A975+06 A 9.9 +0.6 964 £0.3
MAP A99.1+03 A98.1+04 959+ 04 A989+04 A9 7105 94.54+0.5
MC dropout A99.7 +0.1 A99.1+0.2 96.9 + 0.4 A99.2+03 A979+04 94.8 £ 0.6
Messidor-2 MFVI A994+03 A98.8+03 96.7 £ 0.4 A979+04 A9%.5+05 924 4+ 0.6
GVI A99.0+03 A982+04 96.0 £+ 0.5 A9%.1+04 A982+04 953405
Radial A99.6+02 A986+04 96.4 £+ 0.5 A99.5+03 A98.7 £0.3 95.8 + 0.4
MAP V3888 L+ 1.0 ¥ 93.6 0.5 95.54+0.3 V89.7+08 A91.0+0.6 90.6 £0.5
MC dropout V386.2+13 V927406 952+ 04 ARD7+1.0 V¥79.9+09 85.6 £ 0.7
APTOS MFVI V3852+13 V927406 95.6 £ 0.3 V71.0+£1.2 V752+1.0 78.0 £ 0.8
GVI V323+1.6 V91.6 £06 9524+04 ¥ 89.8 + 0.8 ¥90.6 +£0.6 91.5+0.5
Radial V845+15 V9294 0.6 95.9 + 0.3 V¥ 89.6+0.8 V924 + 0.6 93.5 + 0.4
Deep ensemble A979+02 A97.1+0.2 95.8 £ 0.1 V¥ 86.5+0.6 V¥ 88.6+0.3 89.1 £0.2
MC dropout ensemble | A97.7 +0.2 A9.7+02 95.7 £0.1 A912+04 A89.7+03 89.1 £0.2
EyePACS MFVI ensemble A98.1+0.2 A969+02 95.4 £0.1 A922+03 A90.6 +0.3 88.2 +£0.2
GVI ensemble A9794+02 A968+02 95.5+ 0.1 A904+04 AB98+03 88.3 £0.2
Radial ensemble A97.8+0.2 A96.6+02 95.3+ 0.1 ¥ 386.9+05 V3872+04 88.6 0.2
Deep ensemble A 98.0 £ 0.5 A97.0+04 94.4 + 0.4 A9.1+£1.0 A97.5+07 97.4 + 0.2
MC dropout ensemble | A 95.1 0.9 A943+0.8 93.2£0.5 A989 + 0.5 A985+05 97.34+0.2
KSSHP MFVI ensemble A97.1+06 A956+06 93.1£0.5 A98.1+0.6 A975+05 96.8 £0.3
GVI ensemble A97.7+0.6 A9%6.4+06 93.8 £04 V¥ 96.8+0.9 A97.1+07 96.9 £0.3
Radial ensemble A972+0.6 A9.0+06 934404 A9.6+0.8 V96.1 +0.7 96.7 £0.3
Deep ensemble A99.6£0.1 A98.8+03 96.8 + 0.4 A993+04 A981+04 949 + 0.6
MC dropout ensemble | A 99.4 + 0.2 A9874+03 96.3 £ 0.4 A98.6+0.06 A973£0.6 943 £ 0.6
Messidor-2 MFVI ensemble A999 +0.1 A99.5+0.2 974+ 0.3 A999 +0.1 A99.6+0.2 96.8 +£ 0.4
GVI ensemble A 999 + 0.1 A993+0.2 972403 A 100.0 £+ 0.0 A995+02 97.0 + 0.3
Radial ensemble A 999 + 0.1 A993+02 97.1+£04 A995+03 A99.0+03 96.8 £0.4
Deep ensemble V889 L 1.1 V93.1+05 953+ 04 V89.1+0.38 V91.0+06 922 4+0.5
MC dropout ensemble | ¥ 90.6 + 0.9 ¥93.6+0.5 95.6 £0.3 ¥90.3+0.8 V929 + 0.5 935+ 04
APTOS MFVI ensemble V38.9+1.2 V9354 0.6 96.1 + 0.3 V841+12 ¥90.0+0.7 93.4+04
GVI ensemble ¥89.3+09 V93.8+0.5 955403 V86.5+ 1.0 V¥90.5+0.7 9274+04
Radial ensemble V383834 1.1 V93.8+0.5 959403 V91.1+0.8 V929 + 0.6 9334+ 04

and now only MC dropout ensemble and GVI ensemble reach
over 84.0 QWK when referring 30% of images.

From the clinical perspective, an important finding is that
using the QWK-Risk, all our models reach > 84.0 QWK for
referral levels > 30% when trained and tested on the KSSHP
set. Indeed, the GVI ensemble even reaches 89.9 QWK for
the within KSSHP distribution test when 50% of examples
are referred. The generalization of the uncertainty estimates
to the EyePACS set also increases and now the deep ensem-
ble, MC dropout ensemble, and MFVI ensemble reach
> 80.0 QWK, however, no model can reach the 84.0 QWK.
The QWK-Risk decreases the performance for the Messidor-
2 and APTOS datasets in comparison to entropy.

Using the QWK-Risk as the uncertainty measure, the best
performance for the EyePACS set is obtained using EyePACS
trained MC dropout ensemble and Radial ensemble when
referring 50% of images, QWK of 92.6, for the KSSHP set
using KSSHP trained GVI ensemble and referring 50% of
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images, QWK of 89.9, for the Messidor-2 using EyePACS
trained MC dropout ensemble and MFVI ensemble when
referring 50% of images, QWK of 94.3, and for the APTOS
set using EyePACS trained MC dropout ensemble when refer-
ring 0% of images, QWK of 87.9.

IV. DISCUSSION
We have replicated the usefulness of entropy as an uncer-

tainty estimate in RDR classification task for most robust
neural networks when training with the EyePACS bench-
mark dataset, and demonstrated to a somewhat lesser extend
the same finding for the KSSHP clinical hospital dataset.
We also observe that the quality of the uncertainty estimates
on out-of-distribution tests decreases when the models are
trained with the KSSHP set. In addition, we show that
entropy is less suitable as a measure of uncertainty in the
clinical 5-class PIRC classification task for the EyePACS and
KSSHP datasets. We have proposed and demonstrated that
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TABLE 5. PIRC results using posterior predictive entropy as the uncertainty measure. Mean and standard deviation computed for 100 bootstrap
resamples of the test data. Relative improvement to previous referral level is denoted with a green up-pointing triangle, orange equals sign, or red
down-pointing triangle for increasing, equal, or worse performance, respectively.

Test Dataset Method EyePACS trained KSSHP trained

) QWK Ref. 50% | QWK Ref. 30% | QWK Ref. 0% || QWK Ref. 50% | QWK Ref.30% | QWK Ref. 0%

MAP V3813£1.0 A820+06 79.7+ 0.4 V574£1.0 A633+07 62.7+0.4

MC dropout V795+1.2 A80.0+07 79.9 £ 0.4 V67.6+0.8 A693+05 62.5+04

EyePACS MFVI V79.0+ 1.1 A305+0.7 784+ 04 Y67.7+£0.7 A693+05 60.2 4+ 0.5

GVI AB69+0.6 AB62+04 79.0+0.3 V688409 A709£0.6 64.1+0.5

Radial A87.9+0.5 A87.0+04 80.2 + 0.3 A73.8+08 A728+0.5 62.0 + 0.4

MAP V47.6+3.1 V588 +2.0 67.5+09 V709+1.6 V76.0+ 1.0 81.0 + 0.6

MC dropout V326+48 V472427 67.7+ 0.8 V721+14 V753+1.1 80.3 £ 0.6

KSSHP MFVI V405 +3.2 V453 +24 63.8+0.9 V814 +1.1 A81.6 0.8 79.9 + 0.6

GVI V61.1+18 A65.6+12 62.8+0.8 V748 £ 1.7 V76.1 £ 1.1 80.0 £ 0.6

Radial V499429 V59.6+2.1 654+ 09 V716+1.6 V785413 79.9 + 0.6

MAP AJ917+13 A90.0+1.0 80.7 £ 1.2 AB32+12 A776+13 66.7 + 1.4

MC dropout V3885+1.8 AR5+ 12 81.8+14 AR25+13 A772+£13 643+ 1.4

Messidor-2 MFVI A9.7+13 Ag893+12 753+ 1.6 A545+23 A518+1.7 457+ 1.7

GVI A918+ 1.1 Ag72+ 1.1 733+ 1.4 AB58+12 AB02+ 1.1 68.1 +1.4

Radial A943+09 A3R8+ 1.1 76.8+ 1.3 A 86.6+0.8 A819+1.0 69.8 +1.3

MAP A948+06 A90.5+06 83.1£0.6 V536+14 V563 E£1.0 56.8 £0.9

MC dropout A959 105 A912405 83.0£ 0.6 V491+£13 A515+1.0 50.4 4+ 0.9

APTOS MFVI A9%5+07 AB98 £ 0.6 80.4 £ 0.6 V337413 V388+1.2 413+ 1.0

GVI A9%46+05 A914+04 84.6 £0.5 A734+ 1.1 A 696+ 1.0 59.0 £ 1.0

Radial A9274+04 A90.1+05 85.2+ 0.5 V771+1.0 A7774+08 73.0 + 0.7

Deep ensemble V86.4 + 0.6 A868+04 81.3+04 V66.4+0.9 A703+06 64.5 + 0.4

MC dropout ensemble | ¥ 80.1 + 1.1 A30.9+0.7 792+ 04 Vo64.6 £1.0 A7134+05 64.3+04

EyePACS MFVI ensemble A779+ 1.6 V715+1.0 80.6 £0.3 A734+£0.6 A729+04 62.5+04

GVI ensemble A846+08 A843+06 80.7 £ 0.4 ¥ 70.1 £0.8 A737+05 63.1 £ 0.4

Radial ensemble ¥83.9+0.9 AB46+05 80.7 + 0.3 A742 1 0.6 A7334+05 61.6 £0.4

Deep ensemble V62.3+2.0 A731+11 69.6 + 0.8 V784+13 V788 +1.0 81.1+0.5

MC dropout ensemble | ¥43.7 +£3.9 V¥ 56.0+2.0 68.44+0.9 V713+138 V75.0+1.0 80.6 0.6

KSSHP MFVI ensemble V244 +£53 V394+29 66.1 +£0.9 V747+£15 Y717+ 1.1 80.5 + 0.6

GVI ensemble V400+34 V550+1.9 66.8 0.9 V66.6 +£2.0 V764 +1.1 809+ 0.5

Radial ensemble V334+35 V562422 66.2 + 1.0 V732+1.6 V778 +1.1 80.2 £ 0.6

Deep ensemble A938+1.0 A91.1£09 814+ 1.2 AR32+12 A776+£12 637+ 15

MC dropout ensemble | A93.5+ 1.1 A921+08 803+ 13 A881+11 A804+13 68.0 £ 1.5

Messidor-2 MFVI ensemble A932+13 A913+1.0 839+ 1.2 AR32+14 A732+16 599+ 1.5

GVI ensemble AR6+12 AB99+1.0 800+ 14 AB26+15 A7234+15 584+ 1.4

Radial ensemble A937+10 A91.0+1.0 822+ 1.3 A844+12 A772+12 63.1 £ 1.5

Deep ensemble A9%8+05 A922+05 854 +0.5 A799+08 A77.6+08 71.0 £ 0.7

MC dropout ensemble | A 97.0 + 0.4 A937+04 87.9+ 0.4 A608£13 A586+ 1.1 53.0+ 1.0

APTOS MFVI ensemble A973+04 A93.1+04 84.3 £ 0.6 A702+1.0 A699+08 60.7 £ 0.9

GVI ensemble A9.7+04 A935+04 873 £0.5 V703 +1.1 A718+09 59.2 +£0.8

Radial ensemble A9%8+04 A922+04 87.1+04 A6BI+ 12 A6B6E1.0 60.6 + 0.9

an uncertainty measure based on the classifier risk using the
quadratic weighted Cohen’s kappa provides a useful mea-
sure for the within-distribution uncertainty quantification that
improves uncertainty based retained performance in com-
parison to entropy. However, the QWK-Risk decreases the
out-of-distribution quality of the uncertainty estimates for the
Messidor-2 and APTOS datasets.

From the clinical perspective, the classifiers should be able
to indicate uncertainty, such that the cases for which the
classifier is confident can be automatically classified, while
the difficult cases can be manually verified, and possibly
corrected, by medical experts. Since most of the benchmark
datasets only permit research use, for real world use-cases
the classifiers should be able to be trained using ‘“‘in-house”
hospital datasets. When training the classifier on a hospital
dataset, we expect that it can be utilized for future cases
within the same hospital. In our studies we did not observe
competitive performance for the KSSHP set on the clin-
ical PIRC system, when entropy was utilized to quantify
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uncertainty. This highlights the concern that methods devel-
oped using benchmark datasets might not generalize to the
clinical setting. However, the proposed QWK-Risk uncer-
tainty measure enabled the models to surpass the state-of-
the-art when 30% of the most uncertain cases were referred,
which demonstrates that the robust neural networks with a
more appropriate uncertainty function may be utilized for
clinical datasets and clinical use-cases.

The degradation and variability in out-of-distribution
performance may partly be caused by different grading
conventions and grading variability may prevent correct
evaluation. There are several mechanisms causing variable
grading. Firstly, the frequency of photographic screening may
affect the distribution of retinopathy severity with advanced
grades of retinopathy being rarer when screening is more
frequent. The patients are referred and treated before the
advanced stages and followed by clinical visits instead of
fundus photography. Secondly, there are no grading schemes
available for the classification of treatment outcomes after the
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TABLE 6. PIRC results using QWK-Risk as the uncertainty measure. Mean and standard deviation computed for 100 bootstrap resamples of the test data.
Relative improvement to previous referral level is denoted with a green up-pointing triangle, orange equals sign, or red down-pointing triangle for

increasing, equal, or worse performance, respectively.

Test Dataset Method EyePACS trained KSSHP trained

) ) QWK Ref. 50% | QWK Ref.30% | QWK Ref. 0% || QWK Ref. 50% | QWK Ref.30% | QWK Ref. 0%

MAP A921+0.2 A903+02 79.7+ 0.4 A718+04 A737+04 62.7+0.4

MC dropout A920£02 A 90.6 £0.2 799 £0.4 A785+03 A751+03 62.5+£04

EyePACS MFVI A91.0+02 ABY5+02 78.4+0.4 A715+£04 A699+04 60.2 £0.5

GVI A894+02 A882+03 79.0 £ 0.3 A799+04 A76.6+ 04 64.1 + 0.5

Radial A913+02 A899+02 80.2 + 0.3 A782+04 A746+04 62.0+0.4

MAP A814+09 A78.6+09 67.5+0.9 A894+05 A879+05 81.0 + 0.6

MC dropout A796+1.0 A775+09 67.7+ 0.8 ABR6E0S5 AR7.1£05 80.3 £ 0.6

KSSHP MFVI A761£1.0 A745+09 63.8£0.9 A873+05 A859+05 79.9 £ 0.6

GVI A758+0.8 A736+08 62.8 £0.8 A879+04 AB65+04 80.0 £ 0.6

Radial A787+09 A766+038 654 +0.9 A878+0.5 A 865105 79.9 + 0.6

MAP A919+038 AB99+08 80.7 £ 1.2 A748 £ 14 A734+£13 66.7 £ 1.4

MC dropout A 94.0 + 0.6 A91.7 +0.7 81.8 + 1.4 Ve63.1+21 A679+15 643+ 14

Messidor-2 MFVI AB63 L 1.6 Ag48+t 14 753+ 1.6 Vi83+13 V354+18 457+ 1.7

GVI AB830E1S5 A817£13 733+ 1.4 V705+1.8 A734+13 68.1 £ 1.4

Radial A90.0+1.0 A874+10 76.8 £ 1.3 V735+ 14 A746+1.1 69.8 + 1.3

MAP V66.5+24 V828 +0.7 83.1£0.6 Vi197+£13 V473+£15 56.8£0.9

MC dropout Vs514+47 V¥ 79.0+0.9 83.0£0.6 Vi66+1.1 V416+13 504 £0.9

APTOS MFVI V50.8+4.1 V779+08 80.4 £ 0.6 AI87+12 Vi72+1.1 413+ 1.0

GVI V451 +44 V3804 +0.8 84.6 £0.5 V20+54 V579+14 59.0 £ 1.0

Radial V525+5.0 V81.3+0.8 85.2 £ 0.5 V358 £5.9 ¥69.5+1.1 73.0 + 0.7

Deep ensemble A922+02 A909£0.2 813+ 04 A80.5+03 A774+04 64.5 £ 0.4

MC dropout ensemble | A 92.6 £ 0.2 A90.7+02 792 +£0.4 A813+03 A774+£03 643 £0.4

EyePACS MFVI ensemble A925+02 A90.8+02 80.6 £ 0.3 A 80.0+0.3 A759+03 62.5+04

GVI ensemble A923+02 A99+02 80.7 £ 0.4 A793+03 A757+04 63.1 £ 0.4

Radial ensemble A92.6 0.2 A91.0 £0.2 80.7 £ 0.3 A787+03 A747+04 61.6 £0.4

Deep ensemble A81.6£038 A80.2+038 69.6 + 0.8 A895+04 A88.1+04 81.1+0.5

MC dropout ensemble | A81.1 £0.9 A789+09 68.4+0.9 A894+04 A879+05 80.6 £ 0.6

KSSHP MFVI ensemble AB0.0+09 A779+09 66.1 £0.9 AB9.7£04 AB7 704 80.5 £ 0.6

GVI ensemble A793+09 A767+09 66.8 +0.9 A899+04 A884+04 809 £ 0.5

Radial ensemble A794+10 A77.1+£09 66.2 + 1.0 AR9.1£05 AR74+05 80.2 £ 0.6

Deep ensemble A920+£08 A90.0£09 814 £1.2 V65.0+ 1.8 A67.1+14 63.7£15

MC dropout ensemble | A 94.3 + 0.7 A914+08 803+ 1.3 V729 +19 A73.6+14 68.0 +£ 1.5

Messidor-2 MFVI ensemble A943+038 A921+038 839 +1.2 V573+22 A618£+1.7 599+£15

GVI ensemble A924+09 A903+08 800+t 14 V509 +25 V581+19 584+ 1.4

Radial ensemble A939+038 A91.7+08 822+13 V619+23 A654+16 63.1 £ 1.5

Deep ensemble V623+3.0 V3832+0.6 854+£0.5 V337+64 V69.6+1.1 71.0 £ 0.7

MC dropout ensemble | ¥ 66.4 £+ 3.3 V 85.6 + 0.6 87.9 + 0.4 YV195+1.1 V461 +£12 53.0+1.0

APTOS MFVI ensemble V62.6+3.1 V382.1+07 843 £ 0.6 ¥ 39.6 £4.6 A612+1.1 60.7 £ 0.9

GVI ensemble V669 + 2.8 V84.7+0.6 873 +£0.5 V452 +4.1 V580+£1.0 592 +£0.8

Radial ensemble V569 +44 V833+0.7 87.1£04 V2934438 V5414+12 60.6 £0.9

treatment. As a result, severe retinopathy may be arbitrarily
classified into many different grades. The third reason for
variable grading is poor quality of the retinal images. The
grading of poor quality photographs may reflect some pre-
conceived notions of patient status, based on such factors as
age and type of diabetes, availability of treatments and also
previous treatments.

Our future work includes a more fine-grained analysis
of the out-of-distribution performance of robust neural net-
works. We will be evaluating a larger dataset of diabetic
retinopathy images from the Helsinki region in Finland.
In addition to the country distribution shift, our aim is to
examine the within country hospital region distribution shift
using this data, in addition to the KSSHP dataset. Addi-
tionally, our future work includes utilization of some of the
computationally more intensive solutions for robust deep
learning. Moreover, we will be examining the impact of
joint training from the different regions on performance and
robustness. Lastly, we aim to examine multi modal inputs
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with the fusion of multi-view retinal images with the task of
even finer grain diabetic retinopathy grading.

V. CONCLUSION

Uncertainty estimates, given by approximate Bayesian deep
neural networks, can be used to refer uncertain diabetic
retinopathy classifications, with high performance on the cer-
tain classifications, using the binary referable/non-referable
as well as clinical 5-class proposed international diabetic
retinopathy classification scheme. For the 5-class scheme,
uncertainty can be estimated using expected conditional
risk based QWK-Risk uncertainty measure, to improve the
performance on clinical data. Properly regularized standard
neural networks exhibit also well calibrated performance.
The results suggest that methods developed for benchmark
datasets tend to generalize better to them than to the clini-
cal dataset. Uncertainty estimates could improve safety and
trustworthiness of the deep learning systems, as most uncer-
tain classifications can be manually corrected, if needed,
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while expecting high performance on the more certain
classifications.
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