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Abstract 

For centuries, neuroscience has proposed models of the neurobiology of language 

processing that are static and localised to few temporal and inferior frontal regions. Although 

existing models have offered some insight into the processes underlying lower-level language 

features, they have largely overlooked how language operates in the real world.  

Here, we aimed at investigating the network organisation of the brain and how it 

supports language processing in a naturalistic setting. We hypothesised that the brain is 

organised in a multiple core-periphery and dynamic modular architecture, with canonical 

language regions forming high-connectivity hubs. Moreover, we predicted that language 

processing would be distributed to much of the rest of the brain, allowing it to perform more 

complex tasks and to share information with other cognitive domains. 

To test these hypotheses, we collected the Naturalistic Neuroimaging Database of 

people watching full length movies during functional magnetic resonance imaging. We 

computed network algorithms to capture the voxel-wise architecture of the brain in individual 

participants and inspected variations in activity distribution over different stimuli and over 

more complex language features. Our results confirmed the hypothesis that the brain is 

organised in a flexible multiple core-periphery architecture with large dynamic communities. 

Here, language processing was distributed to much of the rest of the brain, together forming 

multiple communities. Canonical language regions constituted hubs, explaining why they 

consistently appear in various other neurobiology of language models. Moreover, language 

processing was supported by other regions such as visual cortex and episodic memory regions, 

when processing more complex context-specific language features. Overall, our flexible and 

distributed model of language comprehension and the brain points to additional brain regions 

and pathways that could be exploited for novel and more individualised therapies for patients 

suffering from speech impairments. 
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Impact statement 
 

The work presented in this thesis describes the first alternative model of the 

neurobiology of language and the brain in the real world, using a network-based approach. This 

model is highly flexible and can account for and explain the complexity and variability of 

language processing in a natural setting, as we detail in the subsequent chapters.  

The model we propose here has significant implications for our understanding of the 

neurobiology of language, arguably the most complex and unique human behaviour. We show 

that language processing is much more distributed, dynamic and flexible than any existing 

other model suggests. Regions largely considered as the sole loci of language processing in 

existing models, here take a specific role in coordinating and directing more distributed 

language areas. By considering both the roles and dynamics of canonical language regions and 

distributed regions, our model offers new insights on putative regions and pathways to exploit 

for the development of novel speech therapies, to help facilitate the recovery of patients 

suffering from aphasia (or any other speech disability). 

Moreover, our network model has important implications for the study of any other 

complex brain behaviour. Our model is the most detailed brain connectome to date, in terms of 

spatial and temporal resolution, as well as mathematical description. Indeed, it is based on 

individual participant networks at the resolution of single voxels, over the scale of a full-length 

movie. Furthermore, it is described using six different network measures at the level of 

individual voxels and participants’ networks, making it the most comprehensive network 

model to date. These features make the model ideal for future studies on individual cognitive 

abilities and cognitive strategies, for identifying biomarkers of mental health in individual 

participants, and for developing personalised therapeutics and speech therapies.  

Finally, as part of this work, we made publicly available the Naturalistic Neuroimaging 

Database, which can be a resource for any neuroscientist investigating brain behaviours in 

naturalistic settings. The database is currently one of the largest and most varied open-source 

datasets available, offering limitless possibilities for research into brain behaviour and 

development of new data-driven approaches. 
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Chapter 1: Introduction 
What makes us human? Although there are likely many different answers to this 

question, it is undeniable that one of the defining features of our species is our ability to 

communicate with words. As such, a major goal of neuroscience has long been to understand 

how the brain supports speech production and perception. Although many have investigated 

the neurobiology of language and proposed various models over the centuries, there is still 

debate over how language and the brain work, with many questions still left unanswered. In 

this thesis, we first discuss insights and shortfalls from existing models of the neurobiology of 

language, then propose a novel network-based model of how language processing functions in 

the real world.  

Classical and contemporary language models 

Interest in the neurobiology of language started early in the field of neuroscience, with 

the pioneering work by Broca and Wernicke. Broca observed that patients with lesions near the 

left hemisphere (LH) inferior frontal gyrus (IFG) suffered from speech production 

impairments, drawing the conclusion that the brain region was associated with speech 

production (Tremblay & Dick, 2016). Later, Wernicke identified another form of speech 

impairment whereby patients were unable to comprehend speech due to lesions around the 

superior temporal gyrus (STG), which was later reduced to an area near the LH posterior 

sylvian fissure by more contemporary neurologists (Tremblay & Dick, 2016). This small region 

was deemed the site of language comprehension. The classical model was recapitulated and 

expanded by Geschwind, who showed that the arcuate fasciculus, a set of fibres connecting 

temporal and inferior frontal regions, connected Broca’s and Wernicke’s language areas, thus 

proposing a more network-like model (Geschwind, 1970) (Fig. 1).  
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Figure 1. Representation of the classical model where B = 

Broca’s area, W = Wernicke’s area and A = arcuate fasciculus. 

Broca’s area near the inferior frontal gyrus was considered the 

site of speech production, while Wernicke’s area was considered 

the site of language comprehension, with the arcuate fasciculus 

linking the two in the classical model. Image from (Geschwind, 

1970). 

However, since its conception, the classical model has received criticism from several sources. 

For one, it was found that lesions to Broca’s area, or rather its supposed locus in the brain near 

the IFG, did not simply cause speech production but also language comprehension deficits; 

similarly, lesions in Wernicke’s area (near the posterior STG) were associated with symptoms 

of paraphasia, a deficit of speech production, as well as perception deficits, indicating that the 

behaviours ascribed to each locus in the classical model were inaccurate (Binder, 2015; 

Dronkers et al., 2017; Hagoort, 2016; Hickok & Poeppel, 2007). Secondly, aphasia disabilities 

traditionally associated with lesions to Broca’s and Wernicke’s areas were found to also result 

from lesions in regions outside these two classical areas, indicating that other areas are also 

important to language processing (Mesulam et al., 2015; Poeppel et al., 2012). Thirdly, the 

classical model’s anatomical loci could not be precisely located in any individual human brain, 

due to high intersubject variability and cytoarchitectonic complexity of the loci, raising 

questions about the structural basis of the model that suggests a universal locus for each of 

speech perception and production functions across human brains (Amunts et al., 1999). Finally, 

the model reduced language to overly simplistic ‘production’ and ‘perception’ behaviours from 

lesion observations, but failed to inspect any individual language feature, such as phonemes 

(Poeppel & Hickok, 2004; Tremblay & Dick, 2016). Therefore, although still widely discussed 
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and taught (e.g., in psychology and medical schools), the classical model has been largely 

discredited. 

As neuroimaging technologies, such as functional magnetic resonance imaging (fMRI) 

and electroencephalogram (EEG), emerged, neuroscientists were able to collect more evidence 

on brain activity as a response to particular stimuli. This allowed for more focus on processes 

underlying the neurobiology of language and the brain. The most cited model to date is the 

dual-stream model put forward by Hickok and Poeppel (Hickok & Poeppel, 2007; Poeppel & 

Hickok, 2004). The origin of the model came from an incongruence in the clinical literature, 

whereby it was found that some patients presenting damage in frontal and inferior parietal 

regions were unable to distinguish syllables but could still understand words, and vice versa 

(Hickok & Poeppel, 2007). Later neuroimaging studies identified another paradox: during 

various speech perception tasks, regions around both Broca’s and Wernicke’s areas were 

activated, whilst damage to either of the two areas resulted most often in speech production 

deficits rather than perception deficits (Hickok & Poeppel, 2007).  

The dual-stream aimed to resolve these paradoxes and provide a unifying and 

mechanistic model of language comprehension and production. The model proposes that the 

neurobiology of language is divided into two streams, one ventral and one dorsal, involved in 

speech perception and production respectively (Poeppel & Hickok, 2004). The dorsal stream 

relates articulatory and auditory signals and maps to premotor cortex, posterior IFG, Sylvian 

parietal temporal region (Spt) and insula; the ventral stream maps sound to meaning and 

activates superior and middle temporal gyri (STG, MTG) in a mostly bilateral fashion (Hickok 

& Poeppel, 2007). The model allows some convergence between speech production and 

perception circuits in the superior temporal sulcus (STS) for phonological processing (Hickok 

& Poeppel, 2007). As can be seen in Fig. 2, the dual-stream model involves few more areas 

than the classical model, although still primarily in the LH temporal lobe, and these map around 

what might be postulated as Broca’s (e.g., IFG) and Wernicke’s (e.g., Spt) regions in the 

classical model (Nasios et al., 2019). 
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Figure 2. Schematic representation of the dual stream model, 

where areas in purple represent the ventral stream and in blue the 

dorsal stream. Image from (Hickok & Poeppel, 2007). The 

ventral stream maps sound to meaning (e.g., language 

comprehension), while the dorsal stream maps sound to 

articulatory movements (e.g., speech production). 

From a mechanistic standpoint, the network proposed in the dual stream has only been 

tested by one study, that we are aware of, using diffusion tensor imaging (DTI) and simple 

speech production and perception tasks (e.g., listen to sentences vs pseudo-sentences) (Saur et 

al., 2008). The authors first identified ‘language’ regions by subtraction and maximum peaks, 

then mapped the underlying white matter tracts to these regions. The results indicated that the 

arcuate and uncinate fasciculi underlie the dorsal and ventral pathways respectively (Saur et 

al., 2008). Although this was taken as evidence for the dual-stream model processes, regions, 

and connectivity, the study had methodological shortcomings that might render the findings 

questionable, such as (i) using simple tasks as representatives of the complex behaviour of 

language in the real world; (ii) assuming that task subtraction isolates the specific language 

component; (iii) assuming that there should be functional specificity for language regions; and 

(iv) assuming that structural connectivity matches functional connectivity. Perhaps the biggest 

contribution that the dual-stream model has offered is that it has started a conversation about a 
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network representation of the neurobiology of language, and has begun to consider language 

as a slightly more complex human behaviour (Skipper, 2015a). 

Although it has not been thoroughly tested as a model, most of the current literature on 

the neurobiology of language frames results in terms of dual-stream models, assuming that the 

regions and connections proposed by the model are correct. Indeed, studies on healthy controls 

and aphasic patients have both endorsed the localised and constrained view of the dual-stream: 

for instance, lesion studies investigating language processing deficits in stroke survivors have 

pointed to similar pathways as those proposed by the dual-stream, with deficits that relate to 

the functional role of those pathways (i.e., lesions to ventral pathway result in comprehension 

deficits) (Fridriksson et al., 2016), and task-based neuroimaging studies have repeatedly 

reported those same regions (for an extensive review on this issue see (Price, 2012)). Strikingly, 

across various language meta-analyses the same regions (roughly IFG, STG, and MTG) plus a 

few neighbouring areas appear repeatedly, as shown in Fig. 3.  

 

Figure 3. Overlap of various language meta-analysis terms from 

Neurosynth (Yarkoni et al., 2011). These include the meta-

analysis terms ‘language comprehension’, ‘comprehension’, 

‘sentence comprehension’, ‘speech perception’, ‘language 

network’, ‘language’. Yellow indicates the highest overlap 

among all meta-analysis terms, orange/red represents medium 

overlap, and blue represents unique patterns to a single meta-

analysis term. Here, the IFG, STG, MTG and parts of premotor 

cortex consistently appear as the highest overlapping regions 

across meta-analyses. 
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This has given the impression that unique language processes occur in the same brain 

loci, sharing the same pathways and possibly overlapping each other in discourse 

comprehension. Although the authors of the dual-stream model have criticised the classical 

Broca-Wernicke view for its localisational and simplistic explanation of the neurobiology of 

language, the dual-stream model arguably suffers from similar shortcomings. Here, a variety 

of complex language processes were simplified and grouped into either ‘speech perception’ or 

‘production’, rather than having their respective features inspected in detail in contextually 

meaningful settings. 

Distributed language regions 
Are the proposed classical and dual-stream model regions the only frameworks to 

explore language and the brain? A growing body of literature has begun to inspect more 

specific and complex processes of language comprehension and individual differences. This 

work suggests that the neurobiology of language is more distributed and dynamic than what 

the classical or dual-stream model has presented (Price, 2012; Skipper, 2015a). Here we (non-

exhaustively) review some examples of this work. 

Individual differences 

Studies on individual differences in the anatomy of ‘language’ regions and the 

functional organisation of language processing have raised questions about current models of 

the neurobiology of language processing and the brain. For instance, studies have shown that 

there is a high amount of intersubject variability across ‘language’ regions, and that using an 

averaged ‘language’ map fails to correctly predict individual variations, especially in the case 

of aphasic patients’ symptoms and recovery outcomes (Ojemann, 1979). For instance, studies 

have found that the between-subject variability in the cytoarchitecture of Broadmann areas 

44/45 (i.e., regions mapping to Broca’s area) is significantly higher than the cytoarchitectural 

within-subject variability (Amunts et al., 1999).  

Since individual brains vary anatomically, and not only around ‘language’ regions, it 

follows that their functional activity patterns will vary as well, with implications for language 

processing (Juch et al., 2005).  For instance ‘language’ regions were found to have some of the 

least functional overlap between subjects when compared to other brain regions (e.g., motor 

areas) (Frost & Goebel, 2012). Moreover, individual functional variability studies during 

performance of language tasks have shown that participants’ individual frontal and temporal 



 

14 

activity peaks were heterogeneously and widely distributed, and that only the group averaged 

centre of mass fell within the ‘language’ regions proposed by neurobiology of language models 

(Burton et al., 2001). Further supporting this finding, intersubject variability studies on memory 

retrieval of words have shown that individual participants activate unique and distributed 

activity patterns, which include among others the supplementary motor area and prefrontal 

cortex, which relate to the participant’s ability to ‘visualise’ words (Miller et al., 2012) or to 

individual cognitive strategies during the retrieval process (Heun et al., 2000). These variations 

are not due to noise, but could result from one of three features: (i) they represent a genetic 

feature of the individual, (ii) they relate to a difference in cognitive strategy, or (iii) they are a 

result of changes in contextual information (Seghier & Price, 2018). 

Semantics 

Individual differences represent only one source of variability during language 

processing. Another source is individual word meaning. Here, neuroimaging studies have also 

identified regions outside of ‘language’ areas that are important for processing semantic 

embeddings of words, revealing that word semantics map to brain regions based on the 

meaning that each word embodies or evokes. For instance, distinct semantic categories gave 

rise to very different activity patterns, particularly around sensorimotor areas, matching the 

perceptual and action meaning that the word embodied (Mitchell et al., 2008; Pulvermüller, 

2013).  

Supporting this embodied cognition theory, studies have demonstrated that processing 

of semantic embeddings of words involves activation of not only ‘language’ regions as 

‘semantic hubs’, but also of sensorimotor regions when listening to words evoking action (e.g., 

‘kick’), of the olfactory cortex when listening to words related to smell (e.g., ‘garlic’), of the 

visual cortex when listening to words evoking colours (e.g., ‘red’), and of the auditory cortex 

when listening to words evoking sounds (e.g., ‘telephone’) (González et al., 2006; Kiefer et al., 

2008; Martin et al., 1995; Tomasello et al., 2017). Moreover, when relating to time information 

describing past and present events, which are temporally concrete, these processes map onto 

visual and parahippocampal cortices usually associated with concrete object processing; whilst 

when describing future intentions, which are temporally abstract, these activate regions in the 

medial prefrontal cortex, temporo-parietal junction and posterior cingulate usually associated 

with the mentalizing network (Gilead et al., 2013). These distributed regions activate within 
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50-150 milliseconds of the word onset, meaning that they are not likely post-perceptual 

processes (García et al., 2019; MacGregor et al., 2012; Shtyrov et al., 2014).  

Using voxel-wise modelling, Huth et al. showed in higher spatial detail that words 

belonging to the same semantic category activate unique activity patterns mapping to the 

perceptual region they relate to, revealing that the overall semantic map extends to most of the 

rest of the brain (Huth et al., 2016), such as the fusiform, hippocampus, pars orbitalis, 

cerebellum, superior and middle frontal gyri (Ghosh et al., 2010; Price, 2010). 

Formulaic and overlearned speech 

Another complex feature of language processing that current models of the 

neurobiology of language fail to address is that of formulaic expressions. Formulaic 

expressions are multi-word expressions that are overlearned, and these comprise a large portion 

of our everyday speech. They include, among others, idioms, proverbs, expletives, common 

speech formulas such as ‘I don’t know’, and overused words or sentences that may vary from 

individual to individual (Van Lancker Sidtis & Sidtis, 2018). An extensive literature on aphasia 

has revealed that, even when large portions of the LH temporal lobe are damaged, such as in 

global aphasia, patients retain the ability to produce formulaic expressions, such as overlearned 

lists (e.g., Monday, Tuesday, Wednesday, etc.) and swear words (Bridges & Van Lancker 

Sidtis, 2013). Given that ‘language’ regions are extensively damaged and therefore cannot be 

processing formulaic speech in aphasia, three alternative routes have been proposed: (i) RH 

homologous ‘language’ regions, (ii) subcortical regions, or (iii) sensorimotor regions are 

involved in processing formulaic expressions (Sidtis, 2014; Van Lancker Sidtis, 2012).  

There is weak support for the first, with evidence coming from studies on damage to 

RH homologous ‘language’ regions, showing that this results in significantly less use of 

formulaic language (Sidtis, 2014). In support of the second, patients suffering from Parkinson’s 

disease (PD), whose subcortical areas are targeted by the disease, progressively lose the ability 

to produce formulaic expressions (Bridges et al., 2013; Lee & Van Lancker Sidtis, 2020; Van 

Lancker Sidtis et al., 2015). Moreover, patients suffering from Alzheimer’s disease (AD), who 

have intact subcortical structures, produce significantly more formulaic expressions than 

healthy controls (Bridges & Van Lancker Sidtis, 2013; Van Lancker Sidtis et al., 2015). 

In support of the third, in a recent study we tested the hypothesis that overlearned speech 

is processed by a uniquely distributed and less fixed network of brain regions. Here, we showed 
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that overlearned sentences are processed in sensorimotor regions before the typical 

hemodynamic response rises, and that overlearned sentences are predicted faster and more 

accurately than previously unheard sentences (Skipper et al., 2021). Moreover, ‘language’ 

regions were not involved in processing overlearned speech, with the brain’s connectivity 

profile undergoing significant reconfiguration with increased learning (Skipper et al., 2021). 

As overlearned sentences are very common in everyday speech, our results suggest that 

language processing in the real world does not solely involve ‘language’ regions but is widely 

distributed, and that specific features of language should be investigated to probe the full extent 

of the neurobiology of language (Skipper et al., 2021). 

In line with some of the above findings, the limited literature on expletives has provided 

further support for a distributed nature of language processing. Expletives constitute a more 

complex formulaic language feature, as these are not simply formulaic expressions but are also 

significantly driven by context. The same swear word, in fact, can have both a negative or 

positive emotional meaning, depending on the context in which it is uttered (Hansen et al., 

2019). Some fMRI studies have revealed a distributed activity in anterior cingulate cortex, 

insula, and thalamus involved in producing and processing taboo words, with the IFG involved 

in modulating the emotional meaning and social context of swear words (Hansen et al., 2019; 

Sulpizio et al., 2019). MRI studies on patients suffering from Tourette’s syndrome (TS) showed 

that the increased swearing in TS patients is likely a result of reduced IFG activity, basal 

ganglia dysfunction, and activity in the insula, thalamus, and cerebellum, pointing to an 

involvement of subcortical structures in processing swear words (Finkelstein, 2018; Van 

Lancker & Cummings, 1999). These observations suggest that processing of formulaic 

expressions happens away from ‘language’ regions and into sensorimotor and subcortical 

regions, depending on how much they are overlearned and on the context in which they are 

presented (Van Lancker Sidtis & Sidtis, 2018; Sidtis et al., 2018).  

Aphasia 

Current models of the neurobiology of language are largely based on clinical 

observations of language deficits in aphasic patients, but they have nonetheless failed to 

consider what happens in the brain during recovery. Immediately after a stroke, spontaneous 

neuroplasticity starts a rewiring process that aids language recovery (Stemmer, 2015). This 

process happens heterogeneously in individual aphasic patients across large portions of both 

brain hemispheres, and leading to various degrees of recovery, suggesting that (i) recovery is 
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aided by distributed brain regions processing language, and (ii) these vary from person to 

person (Stemmer, 2015; Wilson et al., 2019). Some of the regions involved in these 

neuroplasticity processes are thought to involve subcortical and medial regions, such as 

precuneus and basal ganglia (Schevenels et al., 2020). 

Although there is still large debate and little evidence on the exact brain regions that 

are involved in neuroplasticity after stroke (perhaps due to the heterogeneous nature of the 

recovery process) (Wilson, 2020), there are arguments in favour of a distributed network of 

language processing from studies on lesions to other brain regions that also cause language 

impairments. For instance, thalamic stroke causing lesions to the LH thalamic area also result 

in aphasia, demonstrating that subcortical regions are involved in some form of language 

processing (Fritsch et al., 2020). These regions are thought to help in attentional processes 

underlying the neurobiology of language (Crosson, 2013; Fritsch et al., 2020). Moreover, 

patients with cerebellar damage have also been reported to experience aphasic symptoms, with 

the cerebellum proposed to help in speech articulation, in temporal sequencing of language, or 

in predictive processing during language comprehension (De Smet et al., 2013; Mariën et al., 

2014; Skipper & Lametti, 2021; van Dun & Mariën, 2016).  

Measures of central tendency  

As we have seen, when studies investigate individual variability or more complex 

language features, they identify distributed language processing regions that paint a complex 

picture of the neurobiology of language. However, the question remains as to why ‘language’ 

regions consistently appear in task-based studies and meta-analyses (see Fig. 3). One obvious 

answer is that, as the dual-stream model suggests, these are the only true language processing 

regions, and what the distributed language literature has found are regions that simply share 

information with language processing ones (e.g., attention or mentalizing network). An 

alternative, however, is that ‘language’ regions appear as a result of the combined use of the 

subtractive method and central tendency measures, which pervade most of the neuroimaging 

literature. 

Indeed, most of the existing neuroimaging literature has not considered (i) language as 

a complex behaviour, instead relying on simple stimuli/tasks and averaging methods, (ii) 

individual anatomical and cognitive differences between participants’ brains, instead using the 

aggregate, or (iii) shared processes between language and other cognitive domains, instead 

using simple stimuli/tasks and subtractive methods.  
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For example, using simple stimuli/tasks and averaging over them only identifies shared 

brain regions across all of the conditions. Most likely these include: (i) primary auditory regions 

related to the listening task and (ii) some domain-general or low-level language processing 

region that activate with any language stimulus/task (e.g., STG, IFG, MTG).  

Adding to this, most studies aggregate over participants to identify some shared patterns 

of activity. These stable regions are likely to be (i) primary auditory regions as they all hear the 

same stimuli, (ii) ‘language’ regions that consistently activate with any language task, and (iii) 

perhaps some domain-general cognitive strategy regions that are common to all participants. 

However, individual brains vary both anatomically and functionally (Burton et al., 2001; Frost 

& Goebel, 2012), indicating that aggregate methods (i) remove individual functional variability 

(Seghier & Price, 2018), and (ii) mistakenly assume that different individual brains can be 

accurately mapped onto an aggregate cytoarchitecture (Amunts et al., 1999). 

Finally, using simple stimuli/tasks with subtractive methods would map the activity to 

small regions that are considered to be task-specific, revealing nothing about possible 

interactions with other cognitive domains that are still important to language processing. 

Instead, these complexities are likely to be ignored because the subtractive method presumes 

that the activity from the comparison task (e.g., nonwords) does not overlap with the language 

feature being investigated (e.g., words). However, the two tasks share some acoustic features 

and likely both require the involvement of other cognitive domains (e.g., attention, decision-

making) for processing, as some studies have indeed shown (Mattheiss et al., 2018). 

Nevertheless, these overlapping features are considered to be irrelevant to language processing 

under the assumption that brain functional domains are functionally segregated: this has led to 

the tautology of using language localisers based on task subtraction to study the neurobiology 

of language (Blank & Fedorenko, 2020; Fedorenko et al., 2010; Pritchett et al., 2018). 

These central tendency and subtractive methods have been used in nearly all the 

existing literature on language comprehension, along with simple stimuli and tasks. For 

instance, neuroimaging studies investigating lower-level lexical features, such as phonemes 

and syllables, typically present participants with stimuli such as ‘be’ and ‘po’ sounds and 

instruct them to press a button when they distinguish a difference (Goranskaya et al., 2016). 

These in no way represent the lexical features they are attempting to isolate (Skipper, 2015). 

Other examples of simple task-based methods involve asking participants to listen to single 

words and pseudo- or nonwords and subtracting the BOLD activity between these groups 
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(Braun et al., 2015). Again, this method reduces language processing to a segregated function, 

incorrectly assuming that the activity produced by processing nonwords should be completely 

separate from that of processing words (Mattheiss et al., 2018). Overall, these have led to a 

poor representation of language in all its complexity and richness.  

Hubs 
Central tendency methods have contributed to the reduction of various language 

features’ dynamic and distributed behaviour into a focus on only ‘language’ regions, as these 

represent a consistently shared area, perhaps due to their proximity to the auditory cortex that 

receives acoustic inputs. Although it may be tempting to conclude that ‘language’ regions must 

therefore be the only true language processing areas, a more plausible explanation is that they 

are a convergence zone where connections from other dynamic language processing brain areas 

pass through. It is thus likely that ‘language’ regions constitute high-connectivity hubs that 

control and direct a wider network of distributed and variable brain regions during language 

comprehension. 

Hubs are defined as regions (or nodes) where a significant number of connections (or 

edges) go in and out of (Fornito et al., 2016). Hubs can relate to the structural white matter 

substrate, in which case they represent nodes of high connectivity for neural connections, or to 

the functional organisation, in which they represent nodes of high functional influence for the 

rest of the network (van den Heuvel & Sporns, 2013). Most of the research in this area has 

focused on global brain hubs, identifying these as the cingulate, precuneus, insula, superior 

frontal and superior temporal cortices in both functional and structural networks (De Domenico 

et al., 2016; Hagmann et al., 2008; van den Heuvel & Sporns, 2011). These are considered the 

‘backbone’ of the brain network, directing communication and interaction for all other regions 

(Fornito et al., 2016). These findings seem to indicate that aside from the STG, no other 

‘language’ region acts as a hub, neither in anatomical nor functional networks. However, recent 

neuroimaging studies have proposed a hierarchical organisation of hubs in the functional brain 

network, with the above-mentioned regions sitting at the top of the hierarchy, and other regions 

acting as weaker intermediary hubs, where they exert their influence at a more regional 

functional level (van den Heuvel & Sporns, 2013). These intermediary hubs have been classed 

in two categories: (i) either they help in connecting two functional modalities together so that 

they may share some processing and improve integration (i.e., connector hubs), or (ii) they 

have a fundamental role in directing information flow and processing within their own 
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functional domain, increasing coordination (i.e., provincial hubs) (Fornito et al., 2016; 

Hagmann et al., 2008; Joyce et al., 2010; van den Heuvel & Sporns, 2013). 

In this hierarchical organisation of hubs in the brain, ‘language’ regions were found to 

act as provincial hubs across participants, in various language and non-language (e.g., motor 

learning) tasks (Bassett et al., 2013; den Ouden et al., 2012; Li et al., 2020). Studies on the 

functional connectivity of language processing are few, perhaps because most of the literature 

to date has assumed that the ‘language’ regions represent the full extent of the neurobiology of 

language. The limited existing studies focusing on whole-brain functional connectivity and 

individual network variability have identified a much more distributed and hierarchical 

‘language network’, within which ‘language’ regions constitute the top of the regional 

hierarchy as hubs (Akiki & Abdallah, 2019; Hertrich et al., 2020). Because of their prominent 

appearance and role in causing aphasia, some of the lesion literature has also now begun to 

propose that ‘language’ regions are hubs, indicating that they have a central function in a wider 

neurobiology of language network (Mesulam et al., 2015; Migliaccio et al., 2016). Indeed, 

during the early stages of recovery, the brain attempts to rewire around ‘language’ areas at first 

and extends to other brain regions in later stages (Schevenels et al., 2020; Stemmer, 2015; 

Wilson et al., 2019). Overall, this evidence tentatively points to ‘language’ regions as being 

part of a hierarchy of hubs with the STG as a global brain hub, and IFG, MTG, etc. as 

intermediary hubs, with putative other regions around these yet to be properly defined. 

Network organisation of the brain 
From this follows that ‘language’ regions result from averaging and subtracting 

methods likely because (i) they are a commonly activated feature of all language stimuli/tasks, 

and (ii) some of the ‘language’ regions are global hubs (e.g., STG), with the others likely 

connecting and distributing around these to form intermediary structures. It seems clear, then, 

that if we want to understand the role of ‘language’ regions as putative hubs, as well as other 

regions’ contributions to language processing, a better approach to investigating the 

neurobiology of language may be through the use of graph theory. I will first provide a brief 

overview of the main network theory measures.  

Graph theory 

Graph theory aims at describing how elements (e.g., people, brain regions, proteins, 

etc.) are connected through mathematical models (Rombach et al., 2014). There are three layers 
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at which a network can be described: global, mesoscale, and local (Rombach et al., 2014). 

Intuitively, global network measures provide a general overview of the network’s properties as 

a whole: for instance, global efficiency measures the network’s ease in communicating across 

all points (Preti et al., 2017). The mesoscale organisation represents the division into 

components of the network: for instance, the network may be partitioned into functionally 

segregated components, namely communities (Newman, 2006). Finally, the local level 

describes how each node behaves within the network: for instance, one could measure how 

many connections pass through any given node, namely node centrality (Borgatti & Everett, 

2006).  

Although the global measures may provide some insights on differences between 

networks, such as comparing healthy control and patient networks, most of the existing 

biological research focuses on the mesoscale and local measures, as they provide more detailed 

representations of a network. Two main algorithms are used to assess the mesoscale 

organisation, namely community partitioning and core-periphery (Rombach et al., 2014). 

Community partitioning is an ongoing issue in network theory, given the difficulty in 

partitioning a network into correct functional communities without any prior knowledge; 

depending on the algorithm and parameters chosen to partition a network, the resulting 

community organisation may vary (Fortunato & Barthélemy, 2007). Among the many 

community partition algorithms, the most widely used and accepted is the Newman-Girvan 

modularity maximisation algorithm, which separates communities if their intra-connectivity is 

significantly higher than if they were to be joined to another community (Newman, 2006).  

Core-periphery algorithms, instead, separate the network into two components, 

whereby cores must have high intra- and inter-connectivity, while the periphery should be 

dynamic and loosely connected to the rest of the network (Borgatti & Everett, 2000). Despite 

its seemingly simple definition, core-periphery algorithms are scarce, or they inaccurately 

estimate cores using proxy measures such as node centrality (Borgatti & Everett, 2006; da Silva 

et al., 2008).  

Among centrality measures, the most widely used are: (i) degree, which measures 

overall connections of a node; (ii) eigenvector, which measures influence of a node with respect 

to its neighbours; (iii) betweenness, which measures how important a node is for bridging 

groups of other nodes; and (iv) closeness, which measures how easy to reach a given node is 
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(Barucca et al., 2015; Telesford et al., 2011). How have these measures been used in 

neuroimaging? 

Network neuroscience 

Most of the neuroimaging literature focusing on the functional connectivity of the brain 

is based on group-averaged resting-state networks (RSNs), which are collected in the absence 

of a task (or rather, the participant is left lying in the scanner) (Sporns, 2013). Research on 

RSNs has found that the brain network contains highly stable global hubs, as previously 

described (De Domenico et al., 2016; Hagmann et al., 2008; van den Heuvel & Sporns, 2011). 

These hub regions have important roles for a network’s integration and communication (van 

den Heuvel & Sporns, 2013). At the mesoscale level, five to eight functional communities were 

identified in RSNs grossly mapping to regions such as central regions, parieto-frontal regions, 

medial-occipital areas, fronto-temporal and lateral-occipital cortices, matching partitions of the 

anatomical network (Chen et al., 2008; Meunier et al., 2010). These functional communities 

were shown to be relatively immutable over time (Hutchison et al., 2013). The overwhelming 

consensus from the resting-state network studies seems to be that (i) brain regions have 

specialised into highly segregated functional modules (i.e., having high modularity), (ii) stable 

hub regions promote integration between these communities, and (iii) the brain network is 

highly static.  

Is the brain segregated, integrated, or both? And is the brain static? Recent task-based 

studies on functional connectivity have shown that as we move from rest to more complex 

tasks, the architecture of the network changes dramatically to become less segregated and more 

integrated (Shine et al., 2015; Yue et al., 2017). Moreover, these studies demonstrated that the 

brain architecture is much more flexible than previous RSN studies reported; here, modularity 

is not a static feature, but is highly related to functional integration (Park & Friston, 2013). This 

means that although certain regions are more likely to perform a given function, they are not 

necessarily bound to it; their role depends on how to best minimise energy requirements and 

increase efficiency for the entire network (Bassett & Bullmore, 2006). These dynamics are 

tightly controlled and are important for the proper functioning of the brain. They aid during 

learning and neurodevelopment by undergoing significant rearrangements (Bassett et al., 2011; 

Gu et al., 2019), but when disrupted may lead to onset of disease (Alexander-Bloch et al., 2012; 

de Haan et al., 2012).  
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Control of these dynamics is made possible through a hierarchy of hub regions that act 

as connectors between two or more communities and are highly flexible (Sporns, 2013). One 

study on overlapping community organisation found that connector hubs allow communities 

to temporarily share functions, doing so by increasing integration at the overlap between two 

or more modules (de Reus et al., 2014).  

Although still developing, the task-based fMRI literature is already offering a new 

perspective on the brain network, indicating that it is more flexible and that it balances both 

integration and segregation, fluctuating between these two features depending on specific tasks 

or changes in demand (Cole et al., 2013; Friston & Price, 2011; Shine et al., 2015; van den 

Heuvel & Sporns, 2013). These findings are further supported by recent research on individual 

brain networks, which have identified significant restructuring of the connectivity and 

communities of the brain during changes in cognitive states, during individual decision or 

cognitive strategies, during neurodevelopment, and during learning (Barnes et al., 2014; 

Feilong et al., 2018; Gu et al., 2019; Kong et al., 2019; Salehi et al., 2018, 2019; Seghier & 

Price, 2018; Vindras et al., 2012).  

Network models of language 

What can these findings about the brain network tell us about language processing? 

Since the brain is highly dynamic, separated into communities that can evolve over time with 

tasks and cognitive demands, and these are connected and controlled by a hierarchy of hubs, 

then it is likely that the neurobiology of language is (i) not static, (ii) not limited to ‘language’ 

regions, and (iii) composed of a mixture of both hubs and dynamic regions. However, existing 

models of the neurobiology of language do not account for this dynamic and complex 

behaviour, rather perpetuating static and localised views of language processing because of the 

use of central tendency measures.  

The only alternative model to the dual-stream that investigates language processing in 

some detail through functional connectivity has proposed the existence of a ‘language network’ 

that is organised in a core-periphery organisation that maps to the same ‘language’ regions as 

the dual-stream model (Fedorenko & Thompson-Schill, 2014). Here, Fedorenko and colleagues 

proposed that LH ‘language’ regions acted as the core of the ‘language network’, with the RH 

‘language’ regions being a periphery (Chai et al., 2016; Fedorenko & Thompson-Schill, 2014). 

The idea of a ‘language network’ is gaining support in the literature and has been mentioned 
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in ~10,000 studies, based on a Google search. Although this work has clearly begun the 

conversation on possible alternative models of the neurobiology of language using a network 

framework, it is based on few assumptions: (i) it defines the boundaries of the ‘language 

network’ using simple artificial task-based language localisers assuming that these are enough 

to reflect the complexity of natural language processing, and (ii) it uses subtractive techniques 

that assume functional specificity. This means that currently we still lack a model of the 

neurobiology of language that can explain the complexity and variability of language 

processing in the real world. Here, we review three candidate models. 

One possible network organisation supporting language is modularity. Modularity, 

through its functional segregation properties, would help explain why ‘language’ regions (e.g., 

STG, MTG, and IFG) have a clear propensity for language processing functions and appear in 

all neuroimaging studies. Since modular organisations can still evolve over time, modularity 

can also identify other regions involved in language processing as a function of task, by 

mapping regions that join into language modules over time. However, because modularity 

seeks to find some independence among communities, it falls short on addressing potential 

shared processes (i.e., overlaps) between communities (Gu et al., 2019). These complex 

relationships between communities could be important for predicting cognitive demand and 

context-related changes.  

Another alternative is a core-periphery architecture. Core-periphery architectures have 

significant evolutionary advantages: (i) a highly connected core allows integration of 

information across the network, (ii) through its redundancy in connections it increases 

robustness to perturbation; meanwhile (iii) dynamically changing peripheries allow increased 

variability (Faber et al., 2019; Fornito et al., 2016; Stefaniak et al., 2020). These properties of 

core-periphery networks could help explain how the brain supports individual differences and 

neuroplasticity. Moreover, it was shown that, due to their high wiring, large lesions to core 

nodes result in much more deleterious effects than damage to peripheral nodes (Fornito et al., 

2016; Zhao et al., 2011). If ‘language’ regions are part of the core, this would explain why 

damage to these regions causes severe language impairments. Although core-periphery 

addresses more dynamic and distributed behaviours, it cannot explain why brain regions 

preferentially assume certain functions.  

A final organisation may involve modularity and core-periphery simultaneously. 

Indeed, in various scale-free networks, it was shown that multiple mesoscale organisations tend 
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to co-exist (Rombach et al., 2014). This may be also true of the brain. Here, a joined modularity 

and core-periphery organisation would help address the following: (i) individual variability, 

(ii) neuroplasticity after injury, (iii) distributed language regions, and (iv) the role of ‘language’ 

regions. Only one neuroimaging study, to the best of our knowledge, has inspected these two 

architectures simultaneously. Here, it was demonstrated that a joined mesoscale organisation 

helps predict neurodevelopment and individual differences much better than a given single 

measure (Gu et al., 2019). 

Overarching hypotheses 

In the present thesis we therefore hypothesise that the brain is organised in a core-

periphery and modular architecture that supports language processing in the real world. We 

propose that language processing is highly dynamic and distributed across the brain, with 

‘language’ regions appearing in the aggregate because they act as cores or hubs.  

For each result chapter, the overarching hypotheses are as follows: 

1. Result chapter 1: The brain creates unique and distributed sensorimotor representations 

of individual characters in movies. These unique representations are reactivated during 

resolution of pronominal references.  

2. Result chapter 2: Individual sensorimotor embeddings of words form distributed 

activity patterns encompassing most of the brain. This variability has been obscured by 

central tendency measures, which only identify ‘language’ regions as these are stable 

hubs. 

3.  Result chapter 3: The brain is both a core-periphery and modular network where 

‘language’ regions are intermediary cores connecting to a wide and dynamic periphery, 

together sharing language processing functions. 

Thesis organisation 

The present thesis is organised in three subsequent chapters, of which one will describe 

three original research studies testing our hypotheses. Below are brief overviews of each 

chapter’s contents: 

● Chapter 2: Here we will introduce a new open-source dataset, namely the Naturalistic 

Neuroimaging Database (NNDb), that was collected to help address language as a 

complex behaviour, which is currently missing in existing neurobiology of language 
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models. We will describe the data collection and preprocessing methods involved in 

creating the NNDb, which is now one of the largest and most varied open-source 

naturalistic fMRI datasets available. 

● Chapter 3.1: Here we aimed at investigating the distribution of the neurobiology of 

language during a specific language feature, namely pronoun resolution. We show that 

the brain builds unique perceptual representations of a character through sensorimotor 

(mainly auditory and visual cortices) regions. We further demonstrate that these activity 

fingerprints are later reactivated during retrieval and resolution of pronoun references 

to the specific character. 

● Chapter 3.2: Here we further investigate the extent of distribution of the neurobiology 

of language during processing of sensorimotor embeddings of words. We show that 

language processing recruits most of the rest of the brain, forming unique activity 

patterns for each sensorimotor embedding. We further show that aggregate methods 

result in ‘language’ regions, because these act as connectivity hubs. We finally 

demonstrate that ‘language’ regions connect directly to the distributed sensorimotor 

embedding regions.  

● Chapter 3.3: Here we investigate a network architecture that best supports language 

processing in the real world. We propose a novel joined mesoscale architecture of the 

brain, with a simultaneous multi-core-periphery and modularity organisation, whereby 

known language regions form intermediary cores and link to a wide and dynamic 

periphery, together forming one or more communities in individual subjects at different 

times. We then reproduce findings from the RSN literature using group-averaged 

networks, and show that these are devoid of any individual variability and do not 

represent any single participant’s network. 

● Chapter 4: Here we discuss in more depth how our model of the neurobiology of 

language processing supports language in the real world, taking into account individual 

variability and language as a complex behaviour. 
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Chapter 2: Methods 

Abstract 
Neuroimaging has advanced our understanding of the neurobiology of language using 

simple and artificial stimuli that do not account for the complexity and richness of the real 

world. To address these methodological limitations, we collected and made publicly available 

the ‘Naturalistic Neuroimaging Database’ (NNDb) to allow for a more complete 

understanding of the neurobiology of language and the brain, as well as other cognitive 

domains, under more ecological settings. Eighty-six participants underwent behavioural testing 

and watched one of 10 critically acclaimed full-length movies during functional magnetic 

resonance imaging. The timeseries were preprocessed using standard neuroimaging techniques 

and the resulting data is shown to be of high quality. The NNDb can be used to answer questions 

previously unaddressed with standard neuroimaging approaches, progressing our knowledge 

of how language and the brain operate in the real world.  

Introduction 
For centuries neuroscientists have attempted to investigate how the brain supports 

language processing, arguably the most complex human behaviour. Progress towards 

understanding the neurobiology of language and the brain has been made using task-based 

functional magnetic resonance imaging (fMRI), and more recently using resting-state networks 

coupled with task-based meta-analyses. Here, research has identified a set of regions mostly 

mapping to inferior frontal and temporal lobe cortices, that are considered the loci for speech 

perception and production in the brain (Hickok & Poeppel, 2007). While these studies have led 

to a number of important discoveries and have started the conversation on mechanisms 

underlying language processing, we review evidence indicating that more naturalistic stimuli 

and tasks are required to understand the complexities and contextual dependencies of language 

in the real world. 

Task-fMRI 

For task-fMRI, general behavioural processes are decomposed into discrete component 

processes that can theoretically be associated with specific activity patterns from linguistic 

features. To ensure experimental control and because of reliance on the subtractive method 

(Friston et al., 1996), these putative components are studied with stimuli that often do not 
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resemble things participants might naturally encounter and language tasks they might actually 

perform in the real-world (a topic long debated) (Brunswik, 1943, 1955; Neisser, 1976). For 

example, language comprehension has been broken down into component processes like 

phonology and semantics. These individual subprocesses are largely localised in the brain using 

isolated auditory-only ‘speech’ sounds (like ‘ba’) in the case of phonology and single written 

words in the case of semantics (Skipper, 2015b). Participants usually make a meta-linguistic 

judgement about these stimuli, with a corresponding button response (e.g., a two-alternative 

forced choice indicating whether a sound is ‘ba’ or ‘pa’).  

The result of relying on these ‘laboratory style’ stimuli and tasks is that our 

neurobiological understanding of language derived from task-fMRI may not be representative 

of how the brain processes linguistic information in the real world. This is perhaps one reason 

why fMRI test-retest reliability is so low, with an average intraclass correlation (ICC) of 0.1-

0.5 across various studies and fMRI setups (Bennett & Miller, 2010; Gorgolewski et al., 2013, 

Elliot et al., 2020). Indeed, more ecologically valid stimuli like movies have higher reliability 

than resting- or task-fMRI, with studies showing significantly higher intersubject correlations 

and lower head motion in movie paradigms (ICC > 0.7) (Vanderwal et al., 2015; Wang et al., 

2017). This is not only because they decrease head movement and improve participant 

compliance (Greene et al., 2018; Madan, 2018; Vanderwal et al., 2015). Rather, naturalistic 

stimuli have higher test-retest reliability mostly because they are more representative of 

operations the brain normally performs and provide more constraints on processing (Burton et 

al., 2001; Chen & Small, 2007; Miller et al., 2002, 2009; Vanderwal et al., 2017; Wang et al., 

2017). 

Resting-fMRI 

There has arguably been a significant increase in our understanding of the network 

organization of the human brain, and how this may support complex functions such as language 

processing, because of the public availability of large resting-fMRI datasets, analysed with 

dynamic functional connectivity measures coupled with task-based meta-analyses (Bullmore 

& Sporns, 2009; Preti et al., 2017). These include the INDI ‘1000 Functional Connectomes 

Project’ (Biswal et al., 2010), ‘Human Connectome Project’ (HCP) (Van Essen et al., 2013) 

and UK Biobank (Miller et al., 2016). Collectively, these datasets have more than 6,500 

participants laying in a scanner ‘resting’. Resulting resting-state networks are said to represent 

the ‘intrinsic’ network architecture of the brain, i.e., networks that are present even in the 
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absence of explicit tasks. These networks are often claimed to be modular, meaning they 

support segregated functions (Gonzalez-Castillo & Bandettini, 2018).  

As participants are left lying in the scanner, they are likely switching between staying 

awake, mentalizing, trying not to think and engaging in inner speech (Gonzalez-Castillo & 

Bandettini, 2018; Hurlburt et al., 2015). Thus, resting-fMRI cannot be truly considered at ‘rest’. 

Though some of these behaviours are ‘natural’ (e.g., mind-wandering), unlike task-fMRI, there 

is no verifiable way to label resulting regional or network activity patterns (Sonkusare et al., 

2019; Vanderwal et al., 2019). At best, reverse inference through meta-analyses is used to 

obtain gross labels, such as ‘auditory’ and ‘attention’ networks (Skipper & Hasson, 2017; 

Smith et al., 2009; Tahedl & Schwarzbach, 2020). Despite claims that these ‘intrinsic’ networks 

constrain the connectivity of task-fMRI networks, it is increasingly suggested that this is not 

necessarily so (Gonzalez-Castillo & Bandettini, 2018). The brain becomes less modular with 

task (Di et al., 2013), particularly with increased task demands (Braun et al., 2015; Kitzbichler 

et al., 2011; Vatansever et al., 2015). Indeed, up to 76% of the connections between task- and 

resting-fMRI differ (Kaufmann et al., 2017). Furthermore, more ecological stimuli result in 

new sets of networks that are less modular and only partly constrained by resting networks 

(Kim et al., 2018; Simony et al., 2016). For instance, during a natural vision fMRI study, 

functional networks behaved significantly more dynamically, through splitting and merging 

the networks observed during resting state (e.g., the dorsal attention resting state network split 

into two clusters during natural vision), forming new functional groupings that varied with the 

changing cognitive demands (Kim et al., 2018). 

Naturalistic-fMRI 

Based on considerations like these, there is a growing consensus that taking a more 

ecological approach to neuroscience might increase our understanding of language and the 

brain, as well as other brain behaviours (Eickhoff et al., 2020; Hasson et al., 2010; Hasson & 

Honey, 2012; Krakauer et al., 2017; Maguire, 2012; Matusz et al., 2019; Olshausen & Field, 

2006; Skipper, 2015b; Spiers & Maguire, 2007; Vanderwal et al., 2021; Varoquaux & 

Poldrack, 2018). This includes conducting more neuroimaging studies with ‘naturalistic’ 

stimuli. Similar to prior definitions (Bottenhorn et al., 2019; Sonkusare et al., 2019), 

‘naturalistic’ might be defined on a continuum from short, static, simple, decontextualised, 

repeating, unisensory stimuli with low ecological validity (as described above) to long, 

dynamically changing, complex, contextualised, continuous, typically multisensory stimuli 
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with high ecological validity. We identified at least 16 (DuPre et al., 2019) (with more being 

added (di Oleggio Castello et al., 2020)) publicly available fMRI datasets using ‘naturalistic’ 

stimuli more on the latter end of this continuum. However, there are no datasets with a large 

number of participants, long naturalistic stimuli and stimulus variability. Although most studies 

collect data from ~20 participants, it was shown that small sample sizes have low statistical 

power, meaning inflated rates of false negatives (Lohmann et al., 2017). Moreover, fMRI 

studies on effect sizes of samples ranging from 20-80 subjects replicating typical group-level 

analyses (e.g., general linear models), showed that a minimum of 40 subjects are necessary for 

detecting high effect sizes and a minimum of 80 participants are required for detecting medium 

effect sizes and producing replicable task-fMRI results (Geuter et al., 2018; Turner et al., 2018). 

Naturalistic-fMRI datasets with larger participant numbers tend to use short (~10 minute) audio 

or audiovisual clips. However, studies on functional connectivity during naturalistic viewing 

indicate that for single subject studies a minimum of 25 min scan time are preferred, with 

continued significant improvement in test-retest reliability over scans up to 4 hr long (Anderson 

et al., 2011). Moreover, longer scanning sessions, from 1.5 hr to multiple daily sessions, 

showed significantly higher intraclass correlation values in resting state data as well (Gordon 

et al., 2017; Laumann et al., 2015; Xu et al., 2016).  

Longer duration fMRI datasets using more naturalistic stimuli have a small number of 

participants and one stimulus (though see (Nastase et al., 2019)). These include 11 people 

watching ‘Raiders of the Lost Ark’ (Haxby et al., 2011) and 20 listening to an audio description 

of ‘Forrest Gump’ during fMRI (Hanke et al., 2014, 2016). These datasets have currently 

mostly been used to develop and test novel analytical models for neuroimaging data, such as 

hyperalignment for individual subject functional network analyses (Haxby et al., 2011). 

However, with only one movie, generalisability is limited. More movies would not only 

increase generalisability to specific behaviours, but they would also increase the variety of 

stimuli and contexts to better inspect individual variability of language features. These could 

then be used to label finer grained patterns of activity, e.g., making machine learning/decoding 

approaches more feasible (Combrisson & Jerbi, 2015; Khosla et al., 2019; Varoquaux, 2018).  

Indeed, there is no a priori reason participants need to watch the same movie (or listen 

to the same audio). Existing long datasets might use one stimulus because intersubject 

correlation is a commonly used method for analysing fMRI data from more naturalistic stimuli 

that are difficult to model (Hasson et al., 2004). Though this is a powerful ‘model-free’ 

approach (for an overview, see (Nummenmaa et al., 2018)), it requires participants to watch 
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the same movie. However, ‘model-free’ (more data-driven) methods like independent 

component analysis (Bartels & Zeki, 2004), regional homogeneity (Zang et al., 2004), hidden 

Markov model (Baldassano et al., 2017) and dynamic mode decomposition (Casorso et al., 

2019) and more model-based analysis involving convolution/deconvolution, can be also done 

at the individual participant level with different movies. This would increase generalisability 

and the possibility of more detailed analyses through more varied stimulus annotations.  

NNDb 

To fill these gaps in publicly available data, we collected and made publicly available 

a 'Naturalistic Neuroimaging Database' (NNDb) from 86 people who each completed a battery 

of behavioural tests and watched a full-length movie during movie naturalistic-fMRI. We 

sought to reach a balance that promotes generalisability, allows a large variety of linguistic 

features and events to be investigated and supports studies on individual variability as well as 

intersubject correlations. To achieve this, our participants watched 10 different movies from 

10 different genres they had not previously seen. This is because studies have shown that 

repeated movie viewings might change the functional network architecture of the brain (Andric 

et al., 2016). We validated that the data was of high quality, and that this increased further with  

preprocessing, by calculating voxel-wise temporal signal-to-noise ratio (tSNR) and inter-

subject correlation (ISC) across and within movies. tSNR on fully preprocessed data ranged 

between 13.37-98.03 (M = 63.82, SD = 20.79). Moreover, similar to prior work, the maximum 

ISC was r = 0.28; when the entire dataset was split in half, the results were largely spatially 

indistinguishable from each other (r = 0.96) (for specific details and figures, see original 

publication (Aliko et al., 2020)). Fig. 4 provides an overview of the study and preprocessing 

steps. 
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Figure 4. Schematic overview of the naturalistic neuroimaging 
database procedures, preprocessing and data validation. 
Procedures (green) occurred over two sessions separated by 
about three weeks on average. Session one consisted primarily of 
a battery of behavioural tests to quantify individual differences. 
In session two, functional magnetic resonance imaging (MRI) 
was acquired while participants watched one of 10 full length 
movies followed by anatomical MRI. 

Data discovery is nearly unlimited with the NNDb as there are a vast number of 

annotations that can be made from the movies and approaches to analysis, thus supporting 

studies investigating various brain behaviours in the real world. This includes more than 

replicating prior findings with more ecologically valid stimuli. That is, there are a number of 

broad open questions that the NNDb can be used to address for the first time, like the systematic 

study of how context is used by the brain (Skipper, 2015b). Given the lack of robust 

neuroimaging biomarkers for mental illness (Boeke et al., 2019; Kapur et al., 2012), the NNDb 

might also help increase the pace of clinically relevant discovery, e.g., by uncovering labelled 

network patterns that predict individual differences (Eickhoff et al., 2020).  
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Methods 

Participants 

The initial goal for the NNDb was to collect fMRI data of 84 participants watching 10 

full-length movies from 10 different genres. Specifically, we set out to collect data on 18 

subjects for 2 of the movies, and on 6 subjects for the remaining 8 movies (2x18 + 6x8 = 84 

subjects), based on sample size considerations reviewed above (Anderson et al., 2011; Geuter 

et al., 2018; Gordon et al., 2017; Laumann et al., 2015; Lohmann et al., 2017; Turner et al., 

2018; Xu et al., 2016) and to have stimulus variability. Overall, the rationale was to have power 

for across movies analyses (thus 84 participants), but at the same time have two larger datasets 

to test hypotheses on a more typical sample of participants. 

To reach 84 individuals, we recruited 120 possible participants using the pool 

management software (http://www.sona‐systems.com/). The following inclusion criteria were 

applied: no permanent metal implants, right-handedness, native English speaker, no 

claustrophobia, no history of psychiatric or neurological disorders, not taking medication, 

without hearing impairment and unimpaired or corrected vision. Furthermore, we ensured that 

each participant had not seen at least two of the 10 movies. From this initial screening, out of 

the 120 recruits, 91 met the inclusion criteria. Two of the 91 recruits were excluded from the 

main NNDb dataset as they were determined to be left-handed after all, but were later added in 

the event that other researchers had less stringent inclusion criteria for their studies; two 

participants were excluded because they requested to stop the scan, and one had low data 

quality due to excessive motion.  

This resulted in a final dataset of 86 participants (42 females, range of age 18–58 years, 

M = 26.81, SD = 10.09 years). These were pseudo-randomly assigned to a movie they had not 

previously seen, (usually) from a genre they reported to be less familiar with in a pre-scan 

questionnaire. Table 1 provides a summary of participant demographics by movie. At the 

conclusion of the study, participants were paid £7.5 per hour for behavioural testing and £10 

per hour for scanning to compensate for their time (receiving ~£40 in total). The study was 

approved by the ethics committee of University College London (Project ID FMRI/2013/002) 

and participants provided written informed consent to take part in the study and share their 

anonymised data.  
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Table 1. Description of participants in the NNDb. N is the sample 
size for each of the 10 movies. In total, 86 participants were 
included in the final dataset. Age is expressed as the average in 
each movie. Gender is expressed as percent (%) female. Ethnic 
diversity is expressed as percent Black, Asian and Minority 
Ethnic (BAME). Most participants were monolingual English 
native speakers. Educational attainment of both the participant 
and the participant’s mother is expressed as percent with a 
Bachelor’s degree or higher. 

Procedure 

The 86 participants attended two sessions on separate days. During session one, 

participants completed the cognitive and emotional batteries and a hearing test from the sensory 

battery of the National Institute of Health (NIH) Toolbox (Gershon et al., 2013). These 

represent standardised tools and tests for assessing individual neurological and behavioural 

functions, such as working memory and language (Gershon et al., 2013). Some tests, such as 

motor and other sensory tests, were excluded from the Toolbox as they required more complex 

setups and physical implementations (e.g., walking). Moreover, we collected demographic 

data, such as age, ethnicity, educational attainment etc. (see Table 1). Participants completed 

the NIH tests in a sound shielded testing room using headphones and an iPad. At the end of the 

NIH tests, participants completed a questionnaire on movie habits that was used to determine 

which of the 10 movies they would watch in the scanning session.  
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After 2-4 weeks (M = 20.36 days; SD = 23.20), participants were invited for the second 

session, consisting of (i) functional and (ii) anatomical MRI scans and (iii) a final questionnaire 

related to aspects of the movie they watched. Except for one case, this was the order in which 

the session was conducted. Prior to entering the scanning suite, participants reporting corrected 

vision were provided with MRI-safe glasses, matching their eye prescription to the nearest 0.5 

value. Once in the scanning suite, participants chose a comfortable earbud size to be fitted on 

the noise-attenuating headphones. Next, participants were placed in the head-coil with pillows 

under the head, covering the ears and under the knees for both comfort and to reduce movement 

during the scans. Participants were then asked to select a comfortable and clear audio-stimulus 

volume. Participants were given a bulb in their right hand and instructed to squeeze if 

something was wrong, or they needed a break during the movie. They were instructed to stay 

as still as they could throughout scanning as movement would render the scans unusable. 

fMRI movie scans were acquired with one to three breaks on average, depending on the 

length of the movie: longer movies had more breaks. During breaks, participants were told that 

they could relax but not move. To ensure that this was the case, and that participants were 

awake and comfortable we monitored participants via a camera over their left eye. If they 

appeared drowsy or seemed to move too much during the movie, we gave them a warning over 

the intercom by producing a beep or speaking to them. In rare cases we stopped the scan to 

speak with the participant. After the movie, an anatomical scan was collected, and once out of 

the scanner participants filled out a questionnaire. Finally, participants were paid and sent 

home.  

Movie Stimuli 

The movies were selected from 10 different genres, in order to have varied stimuli in 

the final dataset. Criteria for selection included: having an average critical acclaim score of 

>70% on publicly available metrics of success (e.g., IMDb, Rotten Tomatoes) and having 

received nominations for cinematic awards (e.g., Academy Award). Table 2 provides an 

overview of the 10 movies participants watched during fMRI. 
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Table 2. Description of the movies used in the naturalistic 
neuroimaging database. Ten full length movies were chosen 
from 10 genres. These were required to have been successful, 
defined as an average Internet Movie Database (IMDb, 
https://www.imdb.com/), Metacritic (Meta, 
https://www.metacritic.com/) and Rotten Tomatoes (RT, 
https://www.rottentomatoes.com/) score greater than 70%. 
IMDb scores were converted to percentages for this calculation. 
Movie lengths are given in seconds (s), also equivalent to the 
number of whole brain volumes collected when participants 
watched these movies during functional magnetic resonance 
imaging.  

All movies were purchased and stored as ‘.iso’ files. Relevant sections of the DVD (i.e., 

excluding menus and extra features) were directly concatenated to an ‘mpg’ container using 

the command: 

ffmpeg -i concat:VTS_01_1.VOB\| ... VTS_01_8.VOB -c copy -f dvd 

movie_name.mpg  

 

Where ‘-c’ copies the codec and ‘-f’ specifies the DVD format. The DVD video size 

and quality are as follows:  

● Video (codec): MPEG-PS  

● Audio (codec, sampling rate, bits per sample, channels): AC-3, 48.0 kHz, 16, 6  

● Resolution (pixels): 720 x 576 (except Citizenfour which was 720 x 480) 
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● Aspect Ratio: 16:09 (except The Usual Suspects and Pulp Fiction which were 2.40:1 

4:3, respectively) 

● Frame rate (fps): 25 (except Citizenfour which was 23.976) 

The audiovisual files were screened using full-screen mode through a mirror reversing 

LCD projector to a rear-projection screen measuring 22.5 cm x 42 cm with a field of view angle 

of 19.0°. The screen was placed at the back of the MRI bore and was reflected through a mirror 

above the participants’ eyes. High quality audio was presented in stereo via a Yamaha amplifier 

through Sensimetrics S14 scanner noise-attenuating insert earphones 

(https://www.sens.com/products/model-s14/).  

Movie Pausing 
Movies were played with as few breaks as possible to allow for a natural viewing 

experience, avoid misalignments between one scan and the other due to participants moving, 

and reduce discontinuity in the hemodynamic response. Additionally, continuous viewing 

reduces chances of either hardware or human error in matching the movie on the computer to 

the stimulus presented to the participant, and therefore allows to match movie features to brain 

responses. Since the scanning sequence we used required breaks at least every 1 hr (see 

‘Acquisition’ below), we played each movie in ~45 min segments, identifying points in the 

plot where no important action nor dialogue was happening. In rare cases, the participants 

signalled to stop themselves, in which case we would later still stop at the predetermined breaks 

to maintain all datasets as similar as possible. To maintain continuity and allow for these 

stopping times, we created a script using an Arduino device to allow us to stop the scanner and 

pause the movie at any time and resume where the movie left off when the scanner was 

restarted.  

Specifically, a Linux BASH script opened movies using ‘MPlayer’ 

(http://www.mplayerhq.hu/). The script then went into a state of waiting for a TTL (transistor-

transistor logic) pulse from the scanner, which would indicate that scanning had begun. Pulses 

were received through a USB port connected to an Arduino Nano programmed to read and pass 

TTL pulses from the scanner to the script. When the scan sent the first TTL pulse, eight seconds 

were allowed to elapse before the movie began to play, to let the scanner reach a state of 

equilibrium. When the scanner was paused, the movie pausing BASH script stopped the movie 

within 100 ms: this was because the script monitors for TTL pulses every 50 ms, but if an initial 

pulse was not registered, the script required that the next pulse also did not arrive thus reaching 
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100 ms delay. When the scan was restarted, eight seconds were again allowed to pass before 

the movie was played.  

Moreover, the scanner software dropped the last brain volume whenever a movie was 

paused, leading to up to one second (= 1 TR) to be lost from the fMRI timeseries. To solve this 

problem, two versions of the script were created as follows: 

1. The movie picked up from where it left off affecting N = 29 or 33.72% of participants.  

2. The movie was rewound by the amount of time lost when the volume was dropped. To 

calculate this, the script used three output files that it generated when running: a 

MPlayer output file, current time file and final output file.  

Every 50 ms when the TTL pulse was received, the script would send a command to 

MPlayer to get the time position in the movie, which was provided as a value up to one decimal 

and stored in the MPlayer output file. The script would then read the last line of the MPlayer 

output file and write a new line in the current time file. Here, every line consisted of (i) a 

timestamp formed by the elapsed milliseconds from the end of the previous second in Linux 

epoch format, and (ii) the newly acquired time position in the movie. 

If paused, the movie was then rewound by the amount in (i) by passing a command to 

Mplayer through ‘slave’ mode. When the scanner was restarted, the movie began within 100 

ms of the first TTL pulse (again, because it had to receive at least two pulses). Due to a coding 

error, version (2) of the script occasionally fast forwarded when it should have been rewound 

in N = 13 or 15.12% of participants. Because fast forwarding could not be greater than one 

second and the error affected only 47.44% of the runs for those 13 participants, data timing 

quality was not compromised more than in version (1) on average. After fixing this error, the 

movies rewound correctly whenever the scanner was stopped for the remaining participants for 

the remainder of the study (N = 44 or 51.16% of participants).  

This was achieved by using values stored in the final output file, that comprised start, 

pause and calculated rewind times in linux epoch format. For details on how the rewind times 

were calculated, please refer to the original publication at (Aliko et al., 2020). 

Movie Annotations 
Spoken words from the movie dialogues were annotated for onset/offset in the movies 

using fully automated approaches. These were used for analyses in the subsequent chapters. To 
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achieve this, we extracted the audio track in ‘.wav’ format and the subtitle track as a ‘.txt’ file 

from each movie’s ‘.iso’ file. The .wav audio file was transcribed from speech to text using 

‘Amazon Transcribe’, a machine learning tool from Amazon Web Services (AWS; 

https://aws.amazon.com/transcribe/). The resulting transcripts contained onset and offset 

timings for individual words, although the algorithm did not transcribe all words or transcribed 

some incorrectly. In order to obtain a final transcript containing all the correct words with 

corresponding onset/offset times, we compared the AWS transcripts to the subtitle files, which 

contained the correct words but lacked individual words’ timings. Instead, subtitle files had 

onset and offset of sentences.  

Therefore, to fix errors from the AWS algorithm, a script was written that first uses 

dynamic time warping (DTW (Giorgino & Others, 2009)) to align word onsets from the speech-

to-text transcript to corresponding subtitle words in each individual subtitle page, starting 0.5 

seconds before and ending 0.5 seconds after the page to account for possible subtitle 

inaccuracies. To improve matches between subtitles and transcripts, punctuation was removed, 

and words were stemmed. Subtitle words that matched or that were similar to the transcriptions 

during the DTW procedure inherited the timing of the transcriptions and were returned to their 

original unstemmed form. Non-identical words were assigned the word’s transcription timing 

that had maximum Jaro similarity (given Jaro similarity > .60) with that subtitle word. Here, 

Jaro similarity measures the distance between strings of letters, and the higher its value the 

more similar two strings are (Cayhono, 2019). Finally, if multiple words in the subtitles aligned 

with a single transcript word (e.g., ‘is’, ’a’, ‘story’ in the subtitles and 'story' in the 

transcription), we gave the timing of the transcribed word to the matched subtitle or most 

similar word if the Jaro similarity was > .60.  

The remaining unlabelled subtitle words were estimated in one of three ways:  

1. ‘Continuous’ words used the onset and offset times from adjacent words directly, 

making them the most accurate, e.g., in ‘Tom, drive [Jane] home please’ the missing 

word Jane would take as onset the offset of drive, and as offset the onset of home. 

2. ‘Partial’ estimation meant that more than one word between matched/similar words was 

missing. In such cases the length of each word was approximated by counting the 

number of letters in each missing word and dividing the intermediary time 

proportionally. For e.g., in ‘Tom, [drive] [Jane] home please’ the missing words drive 
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and Jane have 5 and 4 letters respectively; the time between offset of Tom and onset of 

home would be assigned 55% to drive and 44.44% to Jane. 

3. ‘Full’ estimation occurred when there were no matching/similar words transcribed, and 

the onsets of missing words were estimated from the onset and offset of the subtitles. 

As for partial estimation, word onsets were estimated proportionally using word length. 

However, due to occasional pauses in dialogues, this might result in unreasonably long 

word durations. For e.g., in ‘Tom, drive Jane home please… 10 sec pause… [Be] 

[careful]’ the words be and careful would be assigned ~2 sec and ~8 sec length each. 

In such cases, we truncated estimated words < 10 letters and more than 2.5 standard 

deviations from the mean word length in conversational speech (i.e.,, > 1000 ms) to the 

mean (i.e.,, 600 ms, based on (Tucker et al., 2019)). As it is common for words more 

than 10 letters to be longer than 1 second when spoken, estimated word lengths for 

words with >10 letters and < 2 sec were kept. Estimations > 2 sec were truncated to 

1000 ms.  

Finally, words were reorganised based on their onset times, and overlaps in time 

removed by matching the order of words in the subtitles and re-assigning onset times based on 

adjacent words to the wrongly labelled word.  

Acquisition 

Functional and anatomical images were acquired on a 1.5T Siemens MAGNETOM 

Avanto with a 32-channel head coil (Siemens Healthcare, Erlangen, Germany). We used 

multiband EPI (Feinberg et al., 2010; Feinberg & Setsompop, 2013) (TR = 1 s, TE = 54.8 ms, 

flip angle of 75°, 40 interleaved slices, resolution = 3.2 mm isotropic), with 4x multiband factor 

and no in-plane acceleration; to reduce cross-slice aliasing (Todd et al., 2016), the ‘leak block’ 

option was enabled (Cauley et al., 2014). Slices were manually obliqued to include as much of 

the brain as possible, although few aspects of the cerebellum were occasionally lost (see 

‘Cerebellar Coverage’ section later). Since the EPI sequence had a software limitation of 1 hr 

of consecutive scanning, scans were stopped at around each 1 hr mark. Depending on the length 

of the movie (see Table 2), between 5,470 and 8,882 volumes were collected per participant. 

A 10 min high-resolution T1-weighted MPRAGE anatomical MRI scan followed the functional 

scans (TR = 2.73 s, TE = 3.57 ms, 176 sagittal slices, resolution = 1.0 mm)3.  



 

41 

Preprocessing 

MRI data files were converted from IMA to NIfTI format and preprocessed using 

mainly the AFNI software (Cox, 1996). In the original version we manually programmed each 

preprocessing step, but in subsequent analyses we used the afni_proc.py standardised approach 

(Cox, 1996). Below we detail the general step-by-step preprocessing steps from the 

afni_proc.py script, for anatomical and functional scans separately (see Fig. 4 for overview). 

Anatomical 
The anatomical MRI scan was corrected for image intensity non-uniformity with 

AFNI’s 3dUniformize command and deskulled using ROBEX (Iglesias et al., 2011) in all cases, 

except for one participant where 3dSkullStrip performed better. The resulting anatomical image 

was nonlinearly aligned (using auto_warp.py) to the MNI N27 template brain, an average of 

27 anatomical scans from a single participant (‘Colin’) (Holmes et al., 1998). The anatomical 

scan was inflated and registered with Freesurfer software using recon-all and default 

parameters (version 6.0, http://www.freesurfer.net) (Destrieux et al., 2010; Fischl, 2012). 

Resulting automated anatomical parcellations were used to calculate the extent of cerebellar 

coverage and to create white matter and ventricle (i.e., cerebral spinal fluid containing) regions 

of interest that could be used as noise regressors (Destrieux et al., 2010). These regions were 

resampled into functional dimensions and eroded to assure they did not impinge on grey matter 

voxels. Finally, anatomical images were ‘defaced’ for anonymity 

(https://github.com/poldracklab/pydeface). 

Functional 

The fMRI timeseries were corrected for slice-timing differences (3dTshift) and 

despiked (3dDespike). Next, volume registration was done by aligning each timepoint to the 

mean functional image of the centre timeseries (3dvolreg). For 23 (or 26.74%) of participants, 

localiser scans were redone because, for e.g., the participant moved during a break and the top 

slice of the brain was lost. For these participants, we resampled all functional grids to have the 

same ‘xyz’ extent (3dresample) and manually nudged runs to be closer together (to aid in 

volume registration). For all participants, we then aligned the functional data to the anatomical 

images (align_epi_anat.py). Occasionally, the volume registration and/or this step failed as 

determined by manual inspection of all data. In those instances, we either performed the same 

procedure as for the re-localised participants (N = 5 or 5.81%) or reran the align_epi_anat.py 

script, allowing for greater maximal movement (N = 6 or 6.98%). Finally, the volume-
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registered and anatomically aligned functional data were (nonlinearly) aligned to the MNI 

template brain (3dNwarpApply).  

We then spatially smoothed all timeseries to achieve a level of 6mm full-width half 

maximum, regardless of the smoothness it had on input (3dBlurToFWHM (Friedman et al., 

2006)). These were then normalised. In the older version of the preprocessing, we normalised 

to have a sum of squares of 1 per run, however this meant that short runs had very large 

normalised timeseries amplitudes. To fix these issues we performed a different normalisation 

as suggested by the AFNI team (see https://openneuro.org/datasets/ds002837). Finally, all 

regressors were detrended (3dTproject) in one step. The first included a set of commonly used 

regressors (Caballero-Gaudes & Reynolds, 2017): 1) Legendre polynomials whose degree 

varied with run lengths (following a formula of [number of timepoints * TR]/150); 2) Six 

demeaned motion regressors from the volume registration; 3) A demeaned white matter activity 

regressor from the averaged timeseries in white matter regions; and 4) A demeaned 

cerebrospinal fluid regressor from the averaged timeseries activity in ventricular regions. The 

second, involved ICA artefacts that were manually selected (see next section ‘ICA artefact 

removal’).  

Timing Correction 

To match to the stimuli, timing correction was done to account for delays caused by the 

movie pausing script to assure that fMRI timeseries and movies are well aligned. Specifically, 

this script introduced a known 100 ms delay that was cumulative for each break in the movie. 

Furthermore, depending on the versions of the script, there was also a possible additional 

(cumulative) delay from not rewinding (v1) or occasionally fast-forwarding (v2.1). These 

delays were calculated as previously described. Furthermore, the script output files allowed us 

to quantify potentially variable soft and hardware delays and account for these as well. In 

particular, every voxel of the detrended timeseries was shifted back in time using interpolation 

to account for all delays, in the same manner as in slice timing correction but over all voxels 

uniformly (3dTshift).  

Specifically, in v1 of the script, if the movie stopped at, e.g., 1000.850 and the last full 

TR was lost, it means that 850 ms of the movie was watched but is missing from the timeseries. 

To account for the missing information, we added a TR to the timeseries being collected before 

the scanner was stopped and interpolated the next run backwards in time the amount not 

covered by this TR. The added TR was created by retrieving the last timepoint of the run in 
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which the movie was stopped and the first timepoint of the run after the movie was stopped 

and averaging these. Thus, for the 850 ms of movie watched but dropped, there were 150 ms 

too much time added to the movie by adding a TR (because our TR = 1 second). Thus, we 

shifted the next run back this amount so that the timeseries is theoretically continuous again 

(though this is never really possible). As the details of these calculations are complex and not 

fundamental to the scope of this thesis, we limit our explanation to the above. For a more 

comprehensive and detailed explanation of these calculations, please refer to the original 

publication (Aliko et al., 2020).  

ICA Artefact Removal 
Spatial independent component analysis (ICA) is a powerful tool for detecting and 

removing artefacts that substantially improves signal-to-noise ratio in movie naturalistic-fMRI 

data (Liu et al., 2019). Using the first preprocessing version, we concatenated the timeseries 

after detrending for motion and white matter/cerebrospinal fluid regressors and after timing 

correction. Here, as in the HCP, we did spatial ICA on this timeseries with 250 dimensions 

using melodic (version 3.14) from FSL (Smith et al., 2013). Next, we manually labelled and 

removed artefacts from timeseries, following an existing guide (Griffanti et al., 2017). Myself 

and two other trained authors went through all 250 components and associated timecourses, 

labelling the components as ‘good’, ‘maybe’, or ‘artefact’. As described in Griffanti et al. 

(Griffanti et al., 2017), there are a typical set of ‘artefact’ components with identifiable 

topologies that can be categorised as ‘motion’, ‘veins’, ‘arteries’, ‘cerebrospinal fluid 

pulsation’, ‘fluctuations in subependymal and transmedullary veins’ (i.e.,, ‘white matter’), 

‘susceptibility artefacts’, ‘multi-band acceleration’ and ‘MRI-related’ artefacts. Our strategy 

was to preserve signal by not removing components classified as ‘maybe’. On a subset of 50 

datasets (58.14% of the data), another author classified all components to check for 

consistency. We then discussed discrepancies and modified labels as warranted. It was 

expected that, similar to prior studies, about 70-90% of the 250 components would be classified 

as artefacts (Griffanti et al., 2017). Once done, the identified ICA artefact component 

timecourses were included as additional regressors in the single detrending step in the second 

preprocessing version, and the timeseries were concatenated (3dTproject).  

Limitations 

First, with respect to data acquisition, the study was conducted at 1.5 T. Had it been 

conducted at 3 T, signal-to-noise ratios (SNR) would theoretically double. However, in practice 
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SNR is only about 25% better and susceptibility artefacts are worse at 3 T (Wardlaw et al., 

2012). That said, we are soon starting to collect a new version of the database using a 3 T scan.  

With regard to stimuli, it should be acknowledged that neither the fMRI setting nor 

movies themselves are necessarily ‘natural’ or completely realistic (Carroll, 1985; Carroll & 

Seeley, 2013). In addition to the somewhat artificial environment of the magnet, there is 

continual rhythmic noise. Although we did not use noise cancelling headphones, the use of 

noise attenuating ones and the addition of pillows to cover participant’s ears should mitigate 

this limitation.  

There are a few other general issues with using movie stimuli. First, movies are long. 

Though this does not seem to adversely affect motion, it could be problematic for some (e.g., 

clinical) populations in future work. Second, for clinical ‘biomarker’ purposes (Boeke et al., 

2019; Kapur et al., 2012), long movies might be too expensive even if patients could sit still 

for 1.5 hours or more. However, there is no a priori reason that models cannot be trained on 

(e.g., network-based representations of) NNDb data but tested on shorter excerpts of movies.  

Finally, there is a limitation with regard to the participants themselves. 10 participants 

asked for (unplanned) breaks, and these might thus have a different pattern of activity before 

breaks. However, if it is assumed that this lasts for 20 seconds, it means that only 0.06% of the 

data were affected. This is unlikely to have a big impact on the results. Indeed, we censored 

timepoints during that time in five participants and it made no discernible difference to data 

quality (see (Aliko et al., 2020)).  
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Chapter 3: Results 

3.1 The brain reactivates sensorimotor representations of unique characters 
during pronoun resolution 

Abstract 

One of the most complex tasks in language comprehension is reference resolution. How 

does the brain link words such as "she" to a specific person? While one crucial component of 

reference resolution involves 1) keeping track of ongoing linguistic information in a dialogue, 

another is that 2) the brain infers the correct referent from probing ongoing situation models, 

imagistic representations of the events indirectly conveyed by language. Existing linguistic 

research suggests this is the case, yet there is no direct neurobiological evidence for situation 

models during language comprehension. Here, we developed a 3D branched deep neural 

network trained on functional magnetic resonance imaging data collected during movie 

watching to distinguish between two main characters, achieving a final accuracy of ~93%. The 

model regions most strongly supporting these predictions included mostly visual and auditory 

cortices, with subtle differences between characters. The model distinguished which characters 

are referred to by pronouns using the same sensorimotor regions, as well as the hippocampus 

and precuneus (involved in episodic memory retrieval) and the medial prefrontal cortex 

(involved in memory and mentalizing). Overall, our findings indicate that imagistic situation 

models are reactivated to resolve references during language comprehension. This regular use 

of situation models in natural language comprehension further suggests that the processes 

associated with language comprehension are complex and distributed. 

Introduction 

Real-world processing involves complex and contextually-rich information that the 

brain must be able to distinguish, process and retrieve for learning and comprehension over 

short times. Existing models of the neurobiology of language do not take this contextual 

complexity of language into account, mostly discussing only general aspects of ‘speech 

perception’ and ‘speech production’. As such these models are limited to a small set of brain 

regions but growing evidence suggests that, when more specific elements of language are 

considered, the neurobiology of language extends to many more brain regions (González et al., 

2006; Huth et al., 2016; Price, 2010; Skipper et al., 2021; Xu et al., 2005). As language is a 
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complex behaviour, we should thus focus on inspecting language features that encompass 

various aspects of this contextual richness. One circumscribed linguistic characteristic that fits 

this profile and is well established linguistically, is pronouns.   

Pronouns without context provide little information (except for gender, number, case), 

and are underspecified, but when encountering pronouns in a discourse or narrative the human 

brain is capable of quickly inferring to whom/what the pronoun refers (Greene et al., 1992). 

Indeed, anyone can easily identify the referents of the two pronouns in the sentence ‘John went 

to pick up Jane at school. He drove her home’: through the gender information conveyed by 

the pronouns, we understand that ‘he’ refers to John and ‘her’ to Jane. However, in the sentence 

‘John picked up James to take him home. He had been at a party’, where two male characters 

are present, we can still easily understand that ‘him’ refers to James, as likely does the ‘he’ 

pronoun, based on the context of the previous sentence. How does the brain know who the 

pronoun is referring to? 

Linguistic models have proposed that pronouns initially trigger a search back in 

memory, this search is restricted by the gender/number/case of the pronoun (e.g., ‘she’ can only 

refer to a female character, and ‘it’ can only refer to objects), and the interpretation of the 

context points to a referent (Wittenberg et al., 2021). This interpretation is possibly supported 

via a process that builds contextual meaning incrementally with each added word in a sentence 

(Altmann & Steedman, 1988). Indeed, humans do not remember every single word in a 

discourse, but rather recall the gist or concept of a conversation (Campos & Alonso-Quecuty, 

2006). Therefore, it is likely that the brain builds a general contextual representation of a 

sentence to help the interpretation of a reference later on (Wittenberg et al., 2021).  

These representations are so-called situation models, which capture the embodied 

sensorimotor, emotional, and imagistic concepts of an event, character, location and action 

(Baldassano et al., 2018; Yarkoni et al., 2008; Zwaan & Radvansky, 1998). Numerous 

linguistic and fMRI studies have provided evidence for a role of situation models in processing 

of pronouns and have proposed that the process behind building situation models involves 

activating sensorimotor, language and emotional representations (Altmann & Ekves, 2019; 

Bergen et al., 2007; Zwaan et al., 1995; Zwaan & Radvansky, 1998; Zwaan, 2016; Zwaan et 

al., 2002). For instance, some such studies have shown that only when processing sentences 

relating to motion in a real space the visual field or motor regions are activated, but not during 

lexical priming (Bergen et al., 2007; Schuil et al., 2013). The generalised nature of situation 
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models allows them to track event-based representations in sentences by linking antecedent 

concepts to the newly encountered ones (Altmann & Kamide, 2009). Since pronouns on their 

own carry little information about the referent, their resolution requires that the brain link the 

general representations of the current and preceding context (McMillan et al., 2012), a process 

that can be supported by an imagistic model such as situation models.  

Neuroimaging studies on narrative comprehension have attempted to identify where 

situation models are retrieved in the brain. Most of the literature has pointed to an important 

role of the medial prefrontal cortex (mPFC) in activating situation models during retrieval. In 

particular, in an fMRI study, the changes in activity in this region were a good predictor for 

classifying specific event schemas (e.g., watching an airport or a restaurant scene), but only if 

the temporal sequence of an event was intact (Baldassano et al., 2018). This fundamental role 

of the mPFC in maintaining situation models active in memory seems reasonable, given that 

this region is part of the mentalizing and Default Mode networks, which are involved in 

decision-making processes and construction of imagery (Baetens et al., 2014; Euston et al., 

2012; Isoda & Noritake, 2013; Xu et al., 2005). However, the mPFC, was also found to be 

involved in narrative comprehension in general (Fletcher et al., 1995; Hasson et al., 2007), 

during processing of coherent consecutive sentences (Ferstl & von Cramon, 2002) and 

understanding of themes in a story (Xu et al., 2005). Since there has been no direct study 

inspecting a role of the mPFC in activating situation models, it may well be that this region 

simply processes coherent and consecutive naturalistic events, rather than specifically activate 

situation models in memory.  

Aside from the mPFC, the only other regions considered important for retrieving 

situation models during linguistic processing include the middle temporal gyrus (MTG), 

inferior frontal gyrus (IFG), and angular gyrus (AG), all part of the ‘language’ regions in 

existing neurobiology of language models (Hammer et al., 2007; Hickok & Poeppel, 2007; Li 

et al., 2018). These ‘language’ regions also consistently appear in various meta-analyses and 

task-based studies, suggesting a domain-general role in language processing - as we detailed 

in Chapter 1 - rather than a specific role in reactivating situation models to support pronoun 

resolution. 

Since ‘language’ regions and the mPFC both have domain-general roles (Euston et al., 

2012; Hagoort & Indefrey, 2014), it seems reasonable to think that these regions may activate 

with any linguistic retrieval task, and that there should be other brain regions involved during 
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referent-specific pronoun resolution. Although there is behavioural and linguistic evidence for 

the involvement of situation models in resolving context-specific pronoun referents, no 

neuroimaging study to date, to the best of our knowledge, has found concrete evidence for this 

process.  

However, research on content retrieval has offered some insights into how a stimulus 

in one modality (e.g., memory of a person) may activate the conceptual representation of that 

stimulus in the associated modality (e.g., activation of face fusiform area). Some such studies 

have initially shown that the activity patterns of various visual representations of objects, places 

and faces are distributed across different regions in the visual cortex, depending on their 

category, with other studies reconstructing specific human faces from this unique brain activity 

fingerprints in visual regions, during free recall (Haxby et al., 2001; Norman et al., 2006; 

VanRullen & Reddy, 2019). These findings indicate two things: (i) that the brain activates 

distinct perceptual patterns to process different faces, and that (ii) these patterns are reliably 

reactivated during recall. Although studies on content retrieval have provided evidence for the 

distinct formation of representations and their retrieval pathways during processing of visual 

information, there is still lack of evidence linking linguistic retrieval (e.g., pronouns) to 

imagistic simulations of situation models in the brain.  

Here, we investigated the neurobiological mechanisms behind pronoun resolution. We 

hypothesise that antecedent visual representations of a character activate sensorimotor regions 

to build unique situation models, and that these regions are later reactivated during pronominal 

referencing in the absence of a character’s visual representation, thus linking the antecedent to 

the referent. Moreover, we predict that individual character references will elicit mostly 

overlapping activity patterns, with few distinct voxel distributions that allow the brain to 

distinguish between character-specific situation models in memory. These context-dependent 

differences are predicted to be in and around sensorimotor regions rather than in mentalizing 

regions (e.g., mPFC), as previous research may suggest. 

To test these hypotheses, we used fMRI scans of 20 participants watching the full-

length movie ‘500 Days of Summer’ from the Naturalistic Neuroimaging Database (NNDb). 

We labelled faces and pronominal references of the two main characters (Summer and Tom, a 

woman and a man respectively) in the movie and used the 3D brain volumes in the relevant 

visual and pronoun reference timepoints as input to a branched 3D deep neural network model. 

The model was implemented to first distinguish the two character references in the visual and 
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pronoun domain separately, and to then find shared activations of the visual and pronoun 

representations of each character. Finally, we performed guided backpropagation to identify 

the clusters of voxels that the model used to learn to distinguish each character reference. 

Methods 

Neuroimaging data 

We used fMRI data from 20 subjects (10 females, range of age 19-53 years, M = 27.7 

years, SD = 10.1 years) from our Naturalistic Neuroimaging Dataset (NNDb) (Aliko et al., 

2020). All participants watched the movie ‘500 Days of Summer’, selected because it has the 

largest sample size for a single movie. The data was preprocessed as detailed in Chapter 2 and 

the original publication (Aliko et al., 2020). 

Face detection in movies 

To detect character faces, we first selected the five main characters by filtering the five 

highest grossing actors in the movie from ‘The Movie Database’ website (themoviedb.org). 

We created a folder for each actor and manually downloaded images from Google Images, 

ensuring that the face of each actor was the main focus of the photo and that multiple angles of 

their face were included (e.g., left, right, up, down). This is important for training face detection 

models, since in movies characters may be facing cameras at different angles. Moreover, where 

possible, we downloaded images of actors from the specific movie, because the movie makeup 

and costumes may significantly change the appearance of an actor. On average, M=27.8 and 

SD=11.0 images were used for training the model for each actor. 

We used an existing face detection algorithm implemented in python from the package 

face-recognition that allows detection of specific actors 

(github.com/ageitgey/face_recognition). The algorithm works by first encoding (i.e., lowering 

the dimension) images of faces to 128 dimensions. These are saved to a “.pickle” file and 

accessed when running the detection algorithm on the movie. Since detecting faces in full-

length movies can be computationally intensive and thus slow, we used a multi-threaded batch 

approach for the encoding step and a multi-process approach for the detection step at each 

movie frame. To divide the movie frame-by-frame we used the python package openCV 

(github.com/opencv/opencv). Frame counts were then transformed to seconds and results saved 

to a “.json” dictionary file of this format: 
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{Frame in sec: [character 1, (character 2...)]} 

The face recognition algorithm has some error associated with its predictions, which 

cannot be calculated unless all character faces are manually labelled frame-by-frame and 

compared to predictions. To reduce this error without the need for manual labelling, we only 

considered a character to be on screen if that character was predicted in over 50% of predicted 

frames in a TR (=1 sec). For instance, if within a TR there were 6/10 frames with predicted 

faces of Tom, then Tom’s face would be considered detected within that TR. Secondary 

characters were ignored here, even if they may have been present with one of the two main 

characters on screen. We, however, ensured not to select any times where Tom and Summer 

were together on screen. 

Pronominal reference annotation  

Movie audio signals were annotated using the Amazon AWS speech-to-text translator 

(aws.amazon.com/transcribe/) (see Chapter 2 for details). From the word transcripts we 

selected the word timings for ‘500 Days of Summer’ and filtered out all possible pronominal 

references to female and male referents (i.e., ‘he/she’, ‘his/hers’, ‘him/her’). We matched the 

pronoun onset to the subtitle start time containing the pronoun and used the integer of the 

subtitle onset as the TR (=1 sec) of interest. This is because subtitles constituted short sentences 

spanning ~1-2 TRs. Finally, we manually labelled to which character the pronouns referred to 

and filtered pronominal instances referring to the two main leads in the movie (i.e., Tom and 

Summer). This was done because although ‘she’ and ‘he’ pronouns were used to also refer to 

secondary characters, these instances were not sufficient for training a neural network. 

Moreover, if a subtitle contained more than one pronoun, and these referred to different 

characters, these instances were removed from the training data. At the end, the data contained 

only cases where either Summer or Tom alone were being referenced through pronouns. 

Since we aimed at investigating overlaps between pronoun and visual representation of 

a character, we deemed it important to maintain some temporal correlation between the selected 

samples. For this, we matched pronoun and visual samples of Tom vs Summer if the visual 

instance of a character happened within 2 min of the upcoming pronoun reference for the same 

character and no less than 30 sec beforehand: these two time limits were arbitrarily selected. 

Nevertheless, these were chosen because it seems likely that the situation model retrieved 

during the upcoming pronoun reference will be most similarly represented by a close (but not 
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overlapping) antecedent representation of a character. Therefore, we considered the visual 

reference of a character to be instances when a situation model was built (or updated) through 

perceptual information. Finally, we ensured that instances of Tom and Summer were at least 5 

sec apart from each other in either past or future time direction to a given sample: this was to 

reduce potential overlaps between the two main characters either in the visual or pronoun 

domain, specifically in scenes where they acted together, and the camera may have been 

switching between the two characters. All other pronoun samples were dropped, and 

unmatched visual samples were also removed. Although here we chose to focus on Tom vs 

Summer, other characters were also occasionally on screen or speaking in a scene along with 

one of the two main characters. 

Data preprocessing and feature selection  

In order to account for properties of the hemodynamic response function (HRF), we 

slid the onset of visual and pronouns representations by 3 sec, after which the HRF begins to 

peak on average (5-7sec from onset stimulus) (Yeşilyurt et al., 2008). For this reason, we 

selected from the 4D dataset the 3D brain volumes from 3 to 7 sec and averaged these to 

produce a less noisy signal centred around the theoretical peak of the HRF.  

We identified imbalances between the samples of Tom and Summer, with Summer 

having more samples than the Tom dataset. In order to fix the imbalance, we applied random 

oversampling with replacement on the Tom dataset using the python package imblearn 

(https://github.com/scikit-learn-contrib/imbalanced-learn). This resulted in 21 samples per 

character for each participant (i.e., total of 420 samples for each character), with the final 

sample comprising 840 total samples of 3D (64x76x64 voxels) brain volumes for each of the 

visual and pronoun datasets (i.e., 1,680 brain volumes for the entire model).  

For each participant we removed the voxels outside the brain and in white 

matter/ventricles and then computed a group mask to ensure all brain images had the same 

number of input features, which is a requirement for the input to a convolutional neural network 

(Conv) layer (Hashemi, 2019). Then we centred the samples to approximately have mean = 0 

and standard deviation = 1, using the formula: 

(X - μx)/σx 
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This is a typical preprocessing step for Conv layers that helps the model learn and 

converge faster (Huang et al., 2020). Finally, we randomly shuffled the 3D volumes and labels, 

to avoid overfitting. Labels for Tom and Summer were then converted to one-hot encoding (i.e., 

vectorised categorical labels) for input into the deep neural network. 

Model selection and training 

The model for the 3D deep neural network (DNN) matched the existing architecture 

and hyperparameters proposed by (Vu et al., 2020), which was used to classify 4 simple tasks 

(e.g., motor vs language) in an fMRI experiment. Here, we built upon it by creating two 

branches, one for visual data and one for pronoun data, that were then merged for output. This 

was done to (i) have most layers separate to later inspect where in the brain visual vs pronoun 

referents map onto; and (ii) merge the final layers to identify any shared voxels of visual and 

pronoun referents.  

As per the specifications detailed by Vu and colleagues, each branch consisted of 3 

convolutional layers (Conv 1-3). The Conv layers were built with the following 

hyperparameters: Conv1 had kernel size 7x7x7 and 8 filters, with a stride of 1; Conv2 had 

kernel size 5x5x5 with 16 filters and stride of 1; Conv3 had kernel size 3x3x3 with 32 filters 

and stride of 1 (Vu et al., 2020). The first two Conv layers were followed by an average pooling 

layer with stride 2 to reduce feature dimensions. Then we applied a flattening layer to vectorise 

convolved features to 1D, and finally added a fully connected layer with 128 nodes. We then 

added a further dropout layer with 50% retention probability to reduce overfitting. The two 

branches of visual and pronoun were then concatenated with a further 50% retention probability 

dropout layer, and finally output into a fully connected layer with 2 nodes (i.e., classes) for 

prediction. Each Conv layer and the branches’ fully connected layers had ‘ReLu’ activation 

functions, whilst the output fully connected layer had a ‘sigmoid’ activation function (Vu et 

al., 2020). Ridge regression (L2) regularisation was applied to the output layer activity to 

discourage overfitting. 

The loss function for the model was binary cross-entropy, since we only had 2 classes. 

We applied a stochastic gradient descent (SGD) optimizer with initial learning rate (Lr0) of 10-

3, which was step-decayed using the formula: 

 Lr = Lro * ratedecay (current_step / decay_steps) 
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Where Lr is the new learning rate for a given step, rate of decay was 0.96 and decay 

steps were set to 100,000. Given that we had a small sample set that may be prone to overfitting 

in complex models, we tested 3 model complexities: 

1. Three Conv layers as in  (Vu et al., 2020) 

2. Two Conv layers (removed Conv1) 

3. One Conv layer (removed Conv1 and Conv2) and added 50% dropout after Conv3 layer 

Fig. 5 shows a diagram of the final selected architecture and hyperparameters used. 

 

Figure 5. Diagram of the final 3D DNN branched model. 

Separate 3D volume inputs are fed into a visual and pronoun 

branch. The first layers of each branch consist of a 3x3x3 

convolutional layer with 32 filters (stride 1), with a 50% dropout, 

which are flattened and input into a 128 node fully connected 

layer. A 50% probability dropout reduces overfitting before 

merging the visual and pronoun branches. A final 50% dropout 

and fully connected layer (2 nodes) provide the output 

predictions. 
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The model was compared to other 2 deep neural networks for performance, using 

accuracy and loss as metrics. We compared the model to a 2D ResNet50-based transfer learning 

model and a 3D DNN with increasing kernel size: the first allows us to test whether using brain 

volumes instead of slices is better to identify relationships between voxel clusters, the second 

is useful for comparison of hyperparameters (see Supplementary Materials S1-3 for detailed 

model information).  

Moreover, the reason why simpler models (e.g., support vector machine) could not be 

tested was because of the two branching inputs, which can only be accommodated by DNN 

models. The architectures and hyperparameters for the other 2 models that were tested can be 

found in Supplementary Materials S1-S3. The data was split into 80% training and 20% testing. 

The performance of the 3 models were tested using 10-fold cross validation over 10 epochs on 

the training data and for each fold the accuracy and loss were also computed on the hold-out 

test data. The 3D bi-DNN was then trained on the entire dataset (i.e., 1,680 pairs of samples) 

over 100 epochs with early stopping to reduce computational load. 

Saliency map visualisation 

In order to visualise which voxels of the 3D images the model was learning from, we 

computed saliency maps using vanilla guided backpropagation. Given an image I belonging to 

class c (either Summer or Tom here) the class score Sc(I) can be approximated to a linear 

function using Taylor’s expansion rule, such that: 

𝑆!(𝐼) = 𝑤"𝐼 + 𝑏 

Where w is the weight of a voxel and b the bias term. Solving the derivative for w, we 

get the following:  

𝑤	 = 	
𝛿𝑆!
𝛿𝐼 ⎢𝐼0 

The collection of w for each voxel represents the saliency map of an image (Simonyan 

et al., 2013). 

We selected the 3D volumes for Summer and Tom separately, ran each through vanilla 

guided backpropagation and averaged the resulting maps for each image to obtain an overall 

map of each character representation. Due to the branched nature of our model, each character’s 

guided backpropagation resulted in 2 saliency maps for each character: one for pronoun and 
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one for visual, which shared the higher layers (i.e., concatenation and output layer). We 

performed paired t-tests of Summer vs Tom (visual+pronoun) and visual vs pronoun 

(Summer+Tom). However, because we could not easily trace back the index of the samples 

after the shuffling of the data, we could not separate the samples by participant (i.e., separate 

into 20 clusters), resulting in high degrees of freedom in the t-test. We then thresholded each 

of the 4 resulting saliency maps to the 95th percentile to ensure that the strongest weights were 

maintained, thus maintaining the voxels that the model used the most to learn from. 5 voxel 

clusters in each of the 4 maps were then compared to Neurosynth meta-analysis maps (Yarkoni 

et al., 2011), in order to identify the highest correlated functional term associated with the 

cluster of interest.  

General linear model analysis 

Although the DNN model offers the possibility to detect voxels active during visual vs 

pronoun instances of a character (and any putative reactivations) even with small sample sizes, 

it is known to potentially suffer from low interpretability (Sheu, 2020). As such, we applied a 

general linear model (GLM) using a canonical HRF on the same time points from the DNN 

model (i.e., start time shifted 3 sec to account for HRF rise), using the AFNI program 

3dDeconvolve (Cox, 1996), in order to further test our hypotheses through more typical 

analyses. The GLM would output a beta map for each of the following: (i) Tom visual instances, 

(ii) Tom pronoun instances, (iii) Summer visual instances, (iv) Summer pronoun instances. The 

resulting beta maps for each subject were input into a linear mixed-effects model (3dLmE), 

with subject as a random effect, and age and gender as additional fixed effects. Finally, the 

group-level maps were corrected for multiple comparisons using a cluster-size approach. First, 

we estimated the smoothness and autocorrelation function of neighbouring voxels using the 

3dFWHMx command (Cox, 1996). Then we ran 3dClustSim over 6 uncorrected individual 

voxel p-values (.05, .02, .01, .005, .002, .001) and an alpha threshold of .01. Using the 

significant cluster sizes whereby faces or edges need to touch, and voxels are contiguous if 

they are either positive or negative at each p-threshold, we merged the thresholded maps at 

each p-threshold to obtain significant voxels (𝝰=0.01).  
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Results 

Model selection and performance 

We tested three different DNNs for classifying Tom and Summer using visual/pronominal 

information. Here, the (i) transfer-learning ResNet50-based model achieved an average 

validation accuracy of labelling Tom vs Summer both visually and through pronouns of 47.9% 

(SD = 10.7%), with M=0.72 (SD=0.05) loss over 10 folds. On the hold-out test data (20% of 

dataset), the model reached an average accuracy of 50.5% (SD=2.3%) and M=0.72 (SD=0.04) 

loss. The (ii) 3D increasing kernel size DNN reached an average validation accuracy of 

labelling Tom vs Summer both visually and through pronouns of 70.5% (SD = 5.3%), with 

M=0.64 (SD=0.01) loss over 10 folds. On the hold-out test data, the model reached an average 

accuracy of 70.1% (SD=3.4%) and M=0.64 (SD=0.01) loss.  

Finally, we tested the (iii) 3D decreasing kernel size DNN at various complexities: 

1. Three Conv layers: reached an average validation accuracy of labelling Tom vs Summer 

both visually and through pronouns of 47.3% (SD = 10.9%) and an average validation 

loss of 0.69 (SD = 0.003). This last model also achieved an average testing accuracy 

across folds of 56.8% (SD = 6.4%) and an average loss of 0.69 (SD = 0.0008). 

2. Two Conv layers: reached an average validation accuracy of labelling Tom vs Summer 

both visually and through pronouns of 71.7% (SD = 11.9%) and an average validation 

loss of 0.66 (SD = 0.01). This last model also achieved an average testing accuracy 

across folds of 75.7% (SD = 6.1%) and an average loss of 0.66 (SD = 0.004). 

3. One Conv layer: reached an average validation accuracy of labelling Tom vs Summer 

both visually and through pronouns of 91.4% (SD = 2.0%) and an average validation 

loss of 0.34 (SD = 0.04). This last model also achieved an average testing accuracy 

across folds of 92.6% (SD = 1.1%) and an average loss of 0.34 (SD = 0.02), indicating 

that it was stable across folds and appropriate for the task (i.e., not overfitting), unlike 

the former models. We named this model ‘3D bi-DNN’. The training, validation and 

testing accuracy per fold for the (i), (ii) and (iii) final models are summarised in Fig. 6.  
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Figure 6. Plots of the accuracy (left column) and loss (right 
column) over 10 folds during cross validation. Over 10 folds: top 
row represents the RSN pretrained model (47.9% accuracy, 0.72 
loss); middle row is the 3D DNN with increasing kernel size 
(70.5% accuracy, 0.64 loss); bottom row is the final 1-Conv layer 
3D bi-DNN model (92.6% accuracy, 0.34 loss). The last model 
outperforms the others in terms of both increased accuracy and 
reduced error. 
 

After selecting the 3D bi-DNN with a single Conv layer as the best model, we trained 

it over 100 epochs on the entire dataset with early stopping to reduce the computational load.  
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Saliency maps and GLM maps 

We wanted to then visualise which voxels the model had used to distinguish between 

Tom and Summer referents, in order to infer possible visual and pronominal overlaps. Saliency 

maps resulted in 420 maps for each of the (two) character’s faces and 420 for each character’s 

pronoun referent. A paired t-test of (i) Summer vs Tom and (ii) visual vs pronoun over 840 

samples each resulted in all within-brain voxels being significant (p < 10-5), due to the high 

degrees of freedom. The results of the averaged maps thresholded at the 95th percentile are 

shown in Fig. 7. The most prominent regions the model focused on in the visual branch were 

parts of the primary visual, secondary visual, STG, superior temporal sulcus (STS), 

parahippocampus and occipitotemporal cortex (OCT) (Fig. 7A). For the pronoun branch, the 

regions the model learned from were primary visual, secondary visual, dmPFC, precuneus and 

hippocampus (Fig. 7B). The two characters overlapped over 38% in the visual and 57% in the 

pronoun maps respectively and differed primarily in voxels around sensorimotor regions in 

both. Moreover, within each character’s maps, the visual and pronoun branches overlapped for 

8% (for both Tom and Summer), with the overlapping regions being the visual cortex and 

parahippocampal areas (Fig. 7C). Here the visual references mapped to STG and OCT, while 

pronoun references mapped to mPFC and precuneus more. From the visual and pronoun maps 

of each character, we selected the 6 largest clusters in each and ran correlations against 

functional meta-analysis terms from the database Neurosynth (Yarkoni et al., 2011). Table 3 

shows the top 5 functional meta-analysis terms for each of the 6 voxel clusters of choice.  

Interestingly, the GLM results did not exactly match the distribution patterns of the 

saliency maps (Fig. 8). During the visual instances, the GLM revealed significant activation in 

the occipital lobe, with overlap between the two characters in the parieto-occipital junction, but 

surprisingly no activation in face fusiform area (FFA) (Fig. 8A). During pronominal instances, 

the GLM revealed a prominent STG, STS and MTG distribution with large overlap between 

the two characters, as well as some character-specific distribution in visual areas (e.g., FFA) 

and overlapping activity in parts of the visual association area (Fig. 8B bottom right). 
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Figure 7. Saliency maps from vanilla guided backpropagation. 

For all figures, threshold = 95th percentile. A) Overlap of average 

visual maps for Tom vs Summer, where Red = overlap of two 

characters; Blue = Tom only; Yellow = Summer only. Cluster 

size = 20. The two characters had high overlap in visual (e.g., 

FFA in bottom view) and sensorimotor regions during visual 

references, with small differences in activity around these 

regions. B) Overlap of average pronoun maps for Tom vs 

Summer, where Red = overlap of two characters; Blue = Tom 

only; Yellow = Summer only. Cluster size =20. The two 

characters overlapped in visual cortices and mPFC. Medial 

image: medial view showing mPFC (circled in pink) and its 

coordinates. Here, most voxels overlap between Summer and 
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Tom pronouns (i.e., red coloured). C) Overlap of average 

Summer and Tom maps for visual and pronoun references, where 

Yellow = overlap of two references; Green = visual only; Purple 

= pronoun only. Cluster size = 40. Pronoun and visual references 

overlapped in visual cortex and parahippocampal area, with 

slightly different patterns of activity. 

 

 

 

 

 

Figure 8. GLM of visual and pronominal references. A) Overlap 

of corrected group-level visual beta maps for Tom vs Summer, 

where Red = overlap of two characters; Blue = Tom only; Yellow 

= Summer only. Cluster size =20. The two characters had little 

overlap in the GLM with Tom showing more distributed patterns. 

The only overlapping region was at the parieto-occipital 

boundary. B) Overlap of corrected group-level pronoun beta 

maps for Tom vs Summer, where Red = overlap of two 

characters; Blue = Tom only; Yellow = Summer only. Cluster 

size =20. Here, the distribution was mostly in the left hemisphere, 

particularly STG/STS, which had the highest level of overlap 

between the two characters. Some visual association areas 

(bottom right image), however, also showed overlap between 

Tom and Summer. Both Tom and Summer showed some activity 

in FFA, although not overlapping. 
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Table 3. Table of top 5 Neurosynth functional terms which 

correlated to the coordinates of centres of six clusters in each 

character’s visual and pronoun reference. The visual references 

mapped mainly to sensorimotor regions involved in visual, motor 

and language processing, but also included some elements of 

imagery/abstraction. These patterns of activity were reactivated 

during pronoun references. The latter also activated episodic 

memory and mentalizing regions.  
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Discussion 
Here, we aimed at testing the hypothesis that pronoun resolution reactivates unique 

sensorimotor character representations through context-dependent situation models, which 

were built in those same sensorimotor regions during perceptual (i.e., visual) processing of a 

character. 

To test this, we implemented a 3D branched deep neural network that takes as input the 

3D brain volumes of matched visual and pronoun references of a character in a movie. Our 

model achieved ~93% accuracy of distinguishing two main characters in a given movie using 

both visual and pronoun references. Saliency maps thresholded at the 95th percentile for the 

visual branch of the 3D bi-DNN model, revealed that the model learned to distinguish between 

perceptual references of Tom and Summer through the bilateral involvement of primary and 

secondary visual regions, STG, STS, parahippocampal area and some primary motor cortex 

(Fig. 7A). This distribution is in line with our hypothesis that situation models are built via 

sensorimotor simulations.  

Saliency maps thresholded at the 95th percentile for the pronoun branch of the 3D bi-

DNN model, showed that the model used voxels in primary visual cortices, FFA, hippocampus 

and parahippocampal area, precuneus and mPFC to distinguish between Tom and Summer 

during pronoun resolution (Fig. 7B). Our findings suggest that pronoun resolution may require 

a search in memory for the appropriate situation model to reactivate representations of a 

character, which was built and retrieved through sensorimotor regions. 

Results from the GLM analysis indicate a different distribution of activity for visual 

and pronoun instances compared to the 3D bi-DNN model (Fig. 8). Nonetheless, the pronoun 

maps also showed activation and overlap between the two characters in visual association areas, 

as well as separate activity patterns in the FFA, indicating involvement of visual areas for 

pronoun resolution (Fig. 8B). Surprisingly, the visual map did not have any activity in the FFA 

(Fig. 8A). Rather, the activity for Tom was much more distributed than that of Summer, in areas 

such as posterior parietal, IFG and secondary visual areas, with the two characters only 

overlapping around the parieto-occipital junction. 

Model of pronoun resolution 

Prior studies have proposed that narrative-based situation models may be built through 

sensorimotor regions (Zwaan, 2016), that are activated in the mPFC (Yarkoni et al., 2008) and 
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in ‘language’ regions during pronoun resolution (Hammer et al., 2007; Li et al., 2018). 

However, aside from general aspects of the retrieval process, no concrete neuroimaging 

evidence was found on how pronouns may activate these simulations, nor for the actual 

existence of these unique simulations in the brain.  

Our findings from the 3D bi-DNN model show for the first time that situation models 

may be simulated through representations in sensorimotor and mentalizing regions when the 

brain encounters a character perceptually. Based on our findings and the models already 

proposed by the linguistic literature (Altmann & Kamide, 2009; Wittenberg et al., 2021), we 

speculate the following model of pronoun resolution based on previous visual information:  

1. When a pronoun is uttered, ‘language’ regions engage with episodic memory regions 

to activate a search in memory for the referent 

2. This search involves activating the appropriate situation model in which that referent is 

represented 

3. Once the appropriate situation model is active this will point to a specific character (i.e., 

referent) 

4. This representation reactivates character-specific activity in sensorimotor regions, 

where the visual-based representation was originally built 

Here we dissect some of these proposed processes. 

Pronouns and episodic memory 
Studies on pronoun resolution have identified a set of regions that activate when either 

(i) the referent is more ambiguous as it can refer to either of two characters; or (ii) the pronoun 

is incoherent with the antecedent (e.g., ‘Julie was walking home. He had been at a party’) 

(Hammer et al., 2007; Qiu et al., 2012). Such studies have found that these tasks activated 

mostly the IFG, MTG, and dorsolateral prefrontal cortex (dlPFC) : the IFG is proposed to 

activate with increasing task demands (e.g., ambiguity), the MTG when resolving incongruent 

gender of the pronoun and referent, and the dlPFC was proposed to have a general role in 

decision-making processes to help assign a referent (Hammer et al., 2007, 2011; Hertrich et al., 

2021; McMillan et al., 2012; Qiu et al., 2012).  

Here, we found no activation of the MTG nor IFG, with very minimal activation of the 

dlPFC (Fig. 7B). Instead, pronouns for both the male and female character activated 

predominantly regions in the visual cortex (e.g., FFA) and other circumscribed sensorimotor 
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regions. Here, the lack of activation in ‘language’ regions typically engaged during 

incongruences between pronoun and referent, may be due to the fact that the referents could be 

more easily resolved through the rich contextual information afforded in the movie.  

Instead, we found a network composed of mPFC, hippocampus, parahippocampal area 

and precuneus likely involved in episodic memory and consolidation of context-dependent 

representations. Previous studies have suggested a fundamental role of the mPFC in activating 

situation models (Baldassano et al., 2018; Yarkoni et al., 2008), likely through a role in Theory 

of Mind and Default Mode networks. Here, the mPFC has a role in decision-making tasks, 

distinguishing between self and others and creating mental representations (Baetens et al., 

2014; Cheetham et al., 2014; Isoda & Noritake, 2013; Moran et al., 2011; Smith et al., 2018; 

Xu et al., 2005). However, as the mPFC was active along with the hippocampus, 

parahippocampal area and precuneus in the present study, its role is more likely to be in support 

of memory processes.  

In particular, research has shown that the mPFC is active during memory consolidation 

(i.e., long-term memory formation), after receiving information from the hippocampus (Euston 

et al., 2012; Takashima et al., 2006). The latter, instead, is involved in short-term memory 

reactivation, particularly during context-dependent episodic memory, together with the 

parahippocampal area and precuneus (Chang et al., 2021; Dickerson & Eichenbaum, 2010; 

Flegal et al., 2014; Maviel et al., 2004; Michelmann et al., 2021). Once information is fully 

consolidated, the mPFC inhibits activation of the hippocampus, to avoid building new 

representations of existing memories (Baldassano et al., 2018; Takashima et al., 2006). We 

thus propose that the activation of this network in the pronoun branch is as follows: (i) 

hippocampus, parahippocampal area and precuneus reinstate a situation model from working 

memory to help resolve the referent, (ii) meanwhile the mPFC updates the situation model with 

the newly encountered dialogue information and consolidates it in long-term memory. Given 

that the participants had not previously seen the movie, it is reasonable that the hippocampus 

would be engaged in the reactivation of context-specific situation models, while the mPFC 

consolidates these representations. It would be interesting to study possible temporal variations 

in hippocampus/mPFC over the movie, as well as test this activity in repeated movie viewings.  

Situation models and character representations 
Although much of the literature has discussed situation models for building discourse 

representations (Zwaan et al., 1995; Zwaan & Radvansky, 1998; Zwaan, 2016), to the best of 
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our knowledge, there is still no evidence for their existence nor for their involvement in 

pronoun resolution. Here we were able to detect putative context-dependent situation models 

for the representation of characters, and their reactivation during pronoun resolution. Situation 

models containing character representations were generally built in sensorimotor (i.e., primary 

auditory, visual and some motor) regions (Fig. 7A).  

The two characters mainly differed in voxel distributions around the primary visual 

cortex, OCT region, occipitoparietal area and STG/STS (Fig. 7A). These regions are all 

involved in visual perception at different levels: at first the ventral pathway forms different 

distributions in the primary visual cortex that relate to face perception of different characters 

(Sheth & Young, 2016), then the dorsal pathway engages the occipitoparietal area to process 

information visually encoded by actions (Freud et al., 2016), while the STG/STS was recently 

shown to form a third pathway that integrates the previous two to process social interactions 

afforded by visual information (e.g., gestures, facial expressions etc.) (Manfredi et al., 2017; 

Pitcher & Ungerleider, 2021).  

The character representations were not purely due to visual perception, although these 

regions were highly active, but also incorporated clusters of voxels involved in imagery, 

abstraction, attention and construction of representations, as shown by the Neurosynth meta-

analysis term correlations (see Table 3). Given that situation models are highly imagistic by 

nature (Zwaan, 2016), the presence of clusters relating to imagery further suggests that the 3D 

bi-DNN model has likely isolated processes/regions involved in building situation models of 

character representations. 

Content retrieval 

Our findings support the hypothesis that pronouns would reactivate sensorimotor 

fingerprints related to the character representation in different situation models. We found that 

the primary visual cortex and parts of the OCT area, occipitoparietal cortex, and the STG/STS 

were reactivated during pronoun resolution (Fig. 7B and C). These suggest that when a pronoun 

is uttered, a search for the situation model in working memory reinstates the activity 

distribution specific to the representation of the referent. 

Studies on content retrieval have shown that the brain reactivates specific perceptual 

activity fingerprints when recalling distinct contextual information in the absence of the 

stimulus. Indeed, there is ample evidence in the episodic memory literature suggesting that the 
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higher the reactivation of the same activity patterns between antecedent and new event the 

better the retrieval (Frankland et al., 2019; Oedekoven et al., 2017; Yaffe et al., 2014). For 

instance, a study using naturalistic stimuli in the form of short videos, showed that increased 

overlap between antecedent and reinstatement increases vividness of the antecedent video 

during recall (St-Laurent et al., 2015). The patterns reactivated during free recall are unique to 

the category they represent (e.g., face, object, place) (Polyn et al., 2005) or the context they 

refer to (Nyberg et al., 2000), although overlap between activity distributions of 

categories/contexts proportionally increases with their similarity (Norman et al., 2006). In line 

with previous research, we found that the sensorimotor activity distributions of Tom vs Summer 

character representations mostly overlapped, likely because they both related to the ‘face’ 

category or similar contextual situation models (Fig. 7). 

Our study builds upon the content retrieval literature, by linking visual information of 

specific characters to their unique retrieval through pronouns in a naturalistic setting, where 

the stimuli are complex and continuous and free recall cannot be tested.  

Comparison of GLM and 3D bi-DNN 

Since the computations within DNN models may be difficult to interpret (Sheu, 2020), 

we additionally conducted a more typical GLM analysis on visual vs pronoun instances to use 

as a comparison tool for our DNN results. The two models showed differences in the specific 

voxel activations in both the visual and pronoun instances. Nonetheless, the general trend of 

distribution of activity was somewhat comparable: for instance, during the visual instances 

both models identified activity in and around sensorimotor regions. The GLM revealed 

activations mostly in sensory association and secondary visual areas (Fig. 8A), while the DNN 

in primary visual, secondary visual and FFA regions (Fig. 7A). These patterns were generally 

in line with (i) the nature of audio-visual stimuli (i.e., visual cortex activation), and (ii) our 

hypothesis of building situation models through sensorimotor areas.  

 During pronoun instances, instead, ‘language’ regions (e.g., STG, MTG, STS) were 

significantly active in the GLM model (Fig. 8B). Such activation in ‘language’ regions would 

normally be expected for a linguistic task, such as pronoun resolution (Hammer et al., 2007;  

Li et al., 2018).  As previously discussed, however, this activation was not present in the DNN 

pronoun model. Perhaps, at thresholds lower than the 95th percentile that was applied here, 

‘language’ regions may start to become apparent in the DNN as well.  Interestingly, in both 

GLM and DNN models, pronouns activated parts of the visual cortex, such as FFA, strongly 
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suggesting that reactivation of visual imagery (or situation models) is necessary to resolve 

specific pronoun referents. Unlike the DNN pronoun maps, we found no activity in mentalizing 

regions (e.g., mPFC) and limited activation of parahippocampal areas in the GLM pronoun 

maps. These results could indicate that the mPFC has a more general role in processing ongoing 

narrative, rather than specifically activating situation models during retrieval. 

Limitations 

One limitation of the present study was that, due to the limited number of pronouns in 

movies, we opted not to remove those pronouns where there was a flashback or on-screen 

presence of a character referent in the movie. For instance, Summer’s face appears in some 

scenes where other characters are referring to her as ‘she’, similarly Tom may appear when the 

narrator in the movie refers to him as ‘he’. This limitation may bias both GLM and DNN 

models towards a character’s face rather than the pronoun retrieval process. Nevertheless, this 

happened in 29% of the 84 initially detected pronouns (n.b. some pronouns referring to Tom 

and Summer may not be detected by the speech-to-text transcript, therefore would not be 

included as samples here). Moreover, these instances usually happened as single blocks, and 

since we limited pronouns to be at least 5 sec apart in either past or future direction, resulting 

in 21 pronoun samples for Summer and 8 for Tom prior to balancing, it likely further reduced 

the co-occurrence of characters on-screen. This issue is mostly relevant for the GLM model, 

where the addition of penalising functions to discourage the model from detecting visual 

features is not possible, unlike in DNN models. In future, to improve on this issue, we could 

ignore instances where the face is on screen during pronoun referencing and collect more 

participants to increase the sample size. 

The small sample size represents a significant limitation, particularly for the GLM 

model. Low sample and high dimensionality are also known issues of DNNs, but recent studies 

have suggested that multiple dropout layers successfully offset the risk of overfitting (Liu et 

al., 2017). Indeed, using multiple stringent dropouts resulted in no overfitting in our DNN 

model (Fig. 6). Finally, BOLD signals in a fast-event design, such as in movies, present non-

linear relationships between variables (Pfeuffer et al., 2003; Vazquez & Noll, 1998), which 

GLMs cannot model, due to their underlying assumption of linearity between variables. Since 

DNNs can model nonlinear relationships in the data, the results of our DNN model are likely 

much more robust that those of the GLM.  
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Implications 

In the present study we have shown that pronoun resolution requires the reactivation of 

unique character representations from perceptually built situation models. This is the first time, 

to our knowledge, that (i) the existence of situation models for character representations in the 

brain is demonstrated, and (ii) sensorimotor character representations are shown to be needed 

for inferring referents.  

This has significant implications for our understanding of the neurobiology of language 

in the real world. Existing models are limited in that they do not account for linguistic 

complexities and how these may drive multi-modal interactions between language, memory 

and perception, which are known to be elicited by context (Friston & Price, 2001; Skipper, 

2015a). This study demonstrated that when inspecting natural contextual dependencies in 

specific linguistic features, the distribution of activity includes regions outside classical 

‘language’ areas and requires the interplay between various modalities. 

Difficulties in pronoun resolution are a common feature in any type of aphasia, 

irrespective of language (Arslan et al., 2021), but particularly in agrammatic aphasics (Jarema 

& Friederici, 1994). Importantly, some aphasic patients have difficulty associating the pronoun 

to the correct subject referent, highlighting how the process of retrieval may be impaired 

(Peristeri & Tsimpli, 2013). Our finding that pronoun resolution depends on the reactivation of 

sensorimotor character representations could offer insights for the development of novel speech 

therapies, to target more specific language features and associated processes to speed recovery.  

Conclusion 

In this study we demonstrated that pronouns in naturalistic discourse reactivate a set of 

sensorimotor character representations, that were built as part of situation models when the 

characters were visually present. These models were built not only perceptually, but also 

recruited Theory of Mind and Default Mode regions required for forming imagistic 

simulations. The sensorimotor distribution of character representations mostly overlapped 

between the two characters, likely because they shared a similar context in the movie. However, 

character representations also experienced small variations around visual regions, showing that 

situation models can help point to a unique character representation during pronoun resolution. 
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Overall, these findings highlight the importance of studying individual language 

features in a more complex and natural environment and demonstrate that the neurobiology of 

language is more distributed than existing models suggest. These distributed areas may offer 

new avenues for novel speech therapies for aphasic patients. 
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3.2 Are 'language regions' an artefact of averaging? 

Abstract 
Neuroimaging studies, meta-analyses, and theoretical models of the neurobiology of 

language all suggest that several superior and middle temporal and inferior frontal brain regions 

are responsible for language processing. These observations derive from research that heavily 

relies on measures of central tendency, such as averaging activity patterns from heterogeneous 

stimuli, tasks, and participants. We hypothesise that the use of such methods obscures the 

whole brain distribution of language processing, and that ‘language’ regions are, rather, 

network hubs, coordinating other regions whose activity is variable. To test this hypothesis, we 

used movie functional magnetic resonance imaging data and scored heard words for their 

sensorimotor properties. Analyses revealed that these properties form unique distributed 

patterns of activity involving most of the brain. Dynamic functional connectivity analyses 

identified variable connectivity states, which only resulted in ‘language’ regions when 

averaged together. These findings suggest that the natural neurobiology of language forms a 

whole-brain arrangement composed of hubs and dynamic regions that is made invisible by 

averaging over very different linguistic categories. Aphasia resulting from damage to hub 

regions might be better explained by their separation from associated dynamic regions. 

Introduction 
Traditional models of the neurobiology of language based on lesion studies proposed 

that regions in the left posterior sylvian fissure and inferior frontal gyrus (IFG) are the 

anatomical loci of language comprehension and speech production respectively (Dronkers et 

al., 2017; Geschwind, 1970; Nasios et al., 2019). Over the last decades, this classical model 

has been revisited and updated using more modern lesion analyses and, mostly, task-based 

neuroimaging studies to include bilaterally the superior and middle temporal gyrus (STG and 

MTG), Sylvian parietal-temporal region (Spt) and premotor cortex (Hickok & Poeppel, 2004, 

2007; Rauschecker & Scott, 2009; Rauschecker & Tian, 2000). These regions in the most cited 

models are said to form dual-streams, involving a dorsal stream for mapping acoustic to 

articulatory processes and a ventral stream mapping sound to meaning (Hickok & Poeppel, 

2007). Regions belonging to the dual-stream model consistently emerge in lesion analyses and 

studies using various phonological, grammatical, lexical etc. stimuli and tasks. 
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Why are these regions prominent in language models? Lesion and neuroimaging studies 

supporting the classical and dual-stream models are usually based on simple stimuli and tasks. 

In studies of lower-level speech perception, participants might listen to phonemes or syllables 

and press a button when they detect some instructed difference (Goranskaya et al., 2016). In 

studies of word processing, participants might read single words vs nonwords (Braun et al., 

2015). Further, in studies of sentence processing, participants might listen to normal sentences 

vs nonword sequences (Fedorenko et al., 2010; Fedorenko et al., 2012). Resulting activation 

patterns from these simplistic and artificial tasks are then typically subtracted in some manner 

and averaged within and then across participants. The resulting patterns for all of phonetic, 

grammatical, lexical and semantic tasks consistently map onto a set of common regions (STG, 

MTG, and IFG). Further supporting this, neuroimaging meta-analyses also show consistent 

activation of the IFG, STG, and MTG with some additional variability around these (Fig. 9).  

 

Figure 9. Overlap of various language meta-analysis terms from 

Neurosynth (Yarkoni et al., 2011). These include the meta-

analysis terms ‘language comprehension’, ‘comprehension’, 

‘sentence comprehension’, ‘speech perception’, ‘language 

network’, ‘language’. Yellow indicates highest overlap between 

meta-analyses, Orange/Red represents some overlap, and Blue 

represents unique patterns. IFG, STG, and MTG consistently 

appear across meta-analyses.  

Why do different task-based studies and meta-analyses result in the same ‘language’ 

regions? The simplest answer is that the set of regions found in the literature are indeed the 

sole loci for processing language in the brain, and that this is the true extent of the language 
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processing network. Alternatively, ‘language’ regions may result as a product of central 

tendency measures, such as averaging, and subtracting methods. Indeed, averaging over a 

multitude of words or sentences that have different meanings and contexts would identify only 

regions that are common to all the words/sentences: these are likely to be some general 

language processing regions. Moreover, aggregating over participants would identify activity 

patterns that they all share: these are likely to be again (i) acoustic processing regions, (ii) 

domain-general language regions, and (iii) domain-general cognitive strategy regions. Any 

unique activity pattern related to individual word meanings, individual sentence contexts or 

individual participants would disappear when applying measures of central tendency, which 

are instead biased towards finding commonalities across all stimuli, tasks and participants. 

These central tendency methods have been used in nearly all the existing literature on language 

comprehension, as they allow to draw conclusions at the population-level. 

What happens when we do not use central tendency measures? When investigating 

individual elements (e.g., individual words, sentences etc.), many studies have found more 

distributed activity patterns during language comprehension. For instance, studies on word 

semantics revealed that individual words are represented in brain regions outside known 

language areas based on the meaning or concept that each word evokes: names of objects 

related to acoustic features (e.g., ‘telephone’) activate auditory regions (Kiefer et al., 2008), 

names of colours (e.g., ‘blue’) activate colour-processing visual areas (Martin et al., 1995), and 

words representing object categories activate unique activity patterns in visual cortices, 

matching the patterns activated when looking at images of the same categories (Shinkareva et 

al., 2011) even in the absence of the auditory or visual stimulus respectively. In a more detailed 

study, Huth and colleagues (Huth et al., 2016) mapped the activity of individual semantic 

categories, showing that these elicit (i) unique activity patterns and (ii) together tile nearly the 

whole brain. These distributed regions are recruited early during processing of a word, within 

150 ms from word onset, meaning they do not represent a post-perceptual process, but are 

rather an integral component of the processing of the word of interest (García et al., 2019; 

Kiefer et al., 2008; MacGregor et al., 2012; Shtyrov et al., 2014).  

Given that ‘language’ regions are still present in individual variability maps, it seems 

unlikely for these regions to be mere artefacts of central tendency measures. An alternative and 

more plausible explanation is that ‘language’ regions have a central role in coordinating other 

highly distributed and dynamic language processing areas, and thus are active during any 

language task. To explore these putative regional differences, one could apply network 
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measures. Indeed, network studies have already identified a set of regions that have significant 

influence on the rest of the brain, and where most of the brain’s connections concentrate 

(Hagmann et al., 2008). These are known as hubs or rich-club and play a fundamental role in 

network communication and integration (van den Heuvel & Sporns, 2013). Across the whole 

brain the main identified hubs include the cingulate, precuneus, insula, superior frontal and 

superior temporal cortices (De Domenico et al., 2016; Hagmann et al., 2008; van den Heuvel 

& Sporns, 2011). These form the main ‘backbone’ upon which other regions can communicate 

and interact (Fornito et al., 2016). Furthermore, studies have shown that a hierarchy of hubs 

exist in the human brain (van den Heuvel & Sporns, 2013). Intermediary hubs have important 

roles at more local scales, whereby they may link various subnetworks (i.e., ‘connector’ hubs 

for integration), or have a central role within a specific subnetwork (i.e., ‘provincial’ hubs for 

coordination) (Fornito et al., 2016; van den Heuvel & Sporns, 2013).  

Although ‘language’ regions do not appear as global hubs (except for the STG), these 

regions were shown to act as provincial hubs across participants and in various tasks (Bassett 

et al., 2013; den Ouden et al., 2012; Li et al., 2020). Studies on the network organisation of 

language and the brain are limited, with most investigating connectivity within ‘language’ 

regions through the use of language localisers or pre-selected regions-of-interest (ROIs), 

leading to the idea that a circumscribed ‘language network’ exists (Chai et al., 2016; Fedorenko 

& Thompson-Schill, 2014). However, the few studies focusing on whole brain connectivity 

and individual variability have identified a much more distributed and hierarchical ‘language 

network’, within which ‘language’ regions constitute the top of the hierarchy (Akiki & 

Abdallah, 2019; Hertrich et al., 2020). For instance, Akiki & Abdallah (2019) computed nodal 

consistency of voxels grouped into 22 functional sub-networks; the results showed that 

‘language’ regions had some of the lowest consistency values, which the authors interpreted as 

these regions acting as connectivity hubs during various tasks. Taken together, these limited 

findings tentatively suggest that ‘language’ regions may be hubs of a wider language 

processing network. 

Here, we test the hypothesis that central tendency measures have so far only revealed 

language hubs. We propose that the neurobiology of language is (i) highly dynamic and 

distributed in the real world, and that (ii) ‘language’ regions are intermediary (provincial) hubs. 

In order to achieve this, we investigate the neurobiology of language processing during a 

naturalistic movie-watching task, using the Naturalistic Neuroimaging Database (NNDb) data. 

In the present manuscript we selected 38 participants from the NNDb (20 watched ‘500 Days 
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of Summer’ and 18 watched ‘Citizenfour’, average movie length = 6137 sec). In order to test 

whether the neurobiology of language processing is distributed during sensorimotor 

representation of words, we scored individual heard words for their sensorimotor embeddings 

over 11 dimensions (auditory, visual, gustatory, haptic, interoceptive, olfactory, foot-leg, hand-

arm, mouth, head, torso) and analysed how these drive activity patterns in the brain. We then 

computed the average of all heard words and the average of all individual sensorimotor maps, 

and compared these to the language meta-analysis map from Neurosynth (Yarkoni et al., 2011), 

to study whether only the aggregate resembles ‘language’ regions. We then constructed 

individual voxel-wise networks using a sliding-window approach and measured the strength of 

connectivity (or centrality) for each voxel. Centrality values were aggregated over time, space 

and participants to test whether only ‘language’ regions emerge from the aggregate as 

provincial hubs. 

Methods 
For more details on participants, data acquisition and preprocessing, please refer to 

Chapter 2 and the original publication (Aliko et al., 2020). 

Neuroimaging data 

We obtained fMRI data from 38 participants (19 females, range of age 19-58 years, M 

= 27.4 years, SD = 10.2 years) in the Naturalistic Neuroimaging Dataset (NNDb) (Aliko et al., 

2020). We selected only participants who watched either ‘500 Days of Summer’ or 

‘Citizenfour’ from the 10 available in the NNDb; of these, 20 participants watched ‘500 Days 

of Summer’ and 18 watched ‘Citizenfour’. The data was preprocessed as detailed in Chapter 

2. 

Lancaster norm annotations 

Movies were annotated for word onset and duration using available subtitle scripts and 

the ‘Amazon Transcribe’ tool from ‘Amazon Web Services’ that performs speech-to-text 

translation (see Chapter 2). The audio file of the movie was converted into text with timings 

for on and offset for all words. Because the transcript did not capture all spoken words, some 

timings were estimated using a script that applied dynamic time warping (Aliko et al., 2020). 

Finally, words that were contracted (e.g., “he’d” instead of “he would”) were modified to their 

full spelling and the onset and duration of each of the words was estimated by dividing the 
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original duration by the number of letters in the new words. For instance, if the word “he’s” 

had originally an onset at 10 seconds and duration of 2 seconds, the new spelling would have 

duration of: 

● “He” has onset at 10 sec and duration of 2 sec/4 letters new spelling = 0.5 sec/letter * 2 

letters in word = 1 sec 

● “Is” has onset at 10 sec + 1 sec = 11 sec and duration 2 sec - 1 sec = 1 sec 

Although in spoken English, the ‘he’ in ‘he’s’ would last longer than the ‘s’, we estimated the 

duration of the non-contracted version from the full spelling.  

In order to investigate the activity distribution of single words, we overlapped the full 

word annotations to the Lancaster Sensorimotor Norms (LSN) that provide the largest 

perceptual and action assessment of ~40,000 English words, collected from the average of 

3,500 individuals’ scores on a scale 0-5 (Lynott et al., 2020). We are aware of only one similar 

study to ours that has used LSN in an fMRI setting to study language comprehension. Here, 

the authors used LSN together with other psycholinguistic scores (e.g., word concreteness and 

word frequency) and extracted principal components to use as modulators in a naturalistic 

narrative fMRI study: the findings revealed distributed activation in areas such as DMN, insula, 

occipito-parietal cortex etc., during language processing (Wu et al., 2022).  

On average, 95.8% of the words in the movies had a corresponding entry in the LSN 

(M = 11,277; SD = 3708.1 words). The resulting scoring from LSN produce 11 regressors for 

the following sensorimotor entries in order of appearance: auditory (A), gustatory (G), haptic 

(H), interoceptive (I), olfactory (O), visual (V), foot/leg (Fl), hand/arm (Ha), head (He), mouth 

(M) and torso (T). Regressors for words in the movie annotations that overlapped the LSN 

database were separated from words in the movie not classified in the LSN database (M = 

4.2%, SD = 0.8% of words in movies), resulting in two text files of the following format 

respectively: 

Regressor 1 (LSN classification present). Onset*A,G,H,I,O,V,Fl,Ha,He,M,T:duration 

Regressor 2 (LSN classification missing). Onset:duration 

Two confound regressors for low-level visual and low-level auditory features were also 

included for each word in the model, to control for effects due to visual stimulation and auditory 

ones unrelated to words. We selected sound energy as the auditory control regressor. Sound 
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energy measures the root-mean square acoustic energy of an audio signal, meaning how loud 

the audio signal is (Shain et al., 2020). Sound energy was calculated every 100 ms using the 

Python library librosa (on average, Mvalue= 8x10-3 W, SDvalue = 4.5x10-3 W) (McFee et al., 

2015). Contrast luminance was selected as the visual regressor: it measures the standard 

deviation in luma (brightness) values of the pixels in an image (Goodyear & Menon, 1998). 

Contrast luminance was computed at every frame in the movie using the Python library 

OpenCV  (on average, Mvalue = 53.7 lm, SDvalue = 17.6 lm) (github.com/opencv/opencv). Both 

the sound energy and contrast luminance values were averaged over the duration of the words 

where the LSN classification was present. For instance, if a word had a duration of 200 ms, 

two values of sound energy (each at 100 ms) would be averaged together and 5000 values of 

contrast luminance would be averaged together (each at 0.04 ms). In the event that the word 

duration was smaller than the sampling rate of either control regressor, the value of 1 sampling 

step was assigned to the word. Thus, for instance, if a word had a duration of 10 ms, the sound 

energy value assigned to the word would be 100 ms, and the contrast luminance would be the 

average of 250 values.  

Finally, a third control regressor was included in the model, namely word frequency of 

individual words, in order to remove effects due to the commonality of the word rather than its 

sensorimotor embedding (Willems et al., 2016). We used the log-transform of word frequency 

database Subtlex UK (van Heuven et al., 2014), because even though the movies were US 

productions, our participants lived in the UK at the time of the study (on average, Mvalue = 6.2, 

SDvalue = 1.2). One word in ‘Citizenfour’ did not have an associated word frequency value, 

because it was missing in the Subtlex database; we therefore assigned a value of ‘0’ frequency 

to the word. This would not affect the final results of the analysis, since it constituted 1 word 

out of 13,898 other words within the same movie. 

The final file containing words that overlapped the LSN database had the following format: 

Onset*A,G,H,I,O,V,Fl,Ha,He,M,T,luminance,soundpower,frequency:duration 

Multiple linear regression and linear mixed effects analysis 

Multiple linear regression using duration and amplitude modulation was performed 

using the AFNI program 3dDeconvolve (Cox, 1996) with three regressors: (i) regressor of 

interest for single words that had LSN scores, sound energy (low-level auditory feature), 

contrast luminance (low-level visual feature) and word frequency confounds over the duration 
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of each word (Mante et al., 2005; Moulden et al., 1990; Shain et al., 2020; van Dijk et al., 

2020), (ii) regressor for single words without LSN scores, and (iii) regressor for times where 

no words are present (non-words) (on average, Mvalue = 1707 sec, SDvalue = 179 sec). The 

amplitude modulated regression identifies areas of the brain where the BOLD signal varies 

proportionally with the regressors of interest; while the duration modulated regression 

identifies areas of the brain where the BOLD signal varies proportionally with the duration of 

the stimulus (Cox, 1996). The linear regression also outputs the effect of the baseline stimulus 

(e.g., words) on the BOLD signal, which we called ‘words’ in this manuscript.  

The resulting beta maps from the multiple linear regression with amplitude modulation 

were input into a linear mixed effects (LME) model using 3dLME, since the individual words 

were sampled within-participant (Cox, 1996). In the LME model, we set beta coefficient, age, 

gender and movie watched for each participant as fixed effects. We set participant as a random 

effect, whereby the intercept of the slope was allowed to vary by a small random amount 

compared to the group average for each participant. We computed the baselines for all 11 

Lancaster norms and for ‘words’. 

The results of the LME for each Lancaster norm map and for the ‘words’ map were 

corrected for multiple comparisons using a cluster-size correction procedure in AFNI. First, we 

estimated the smoothness and autocorrelation function of neighbouring voxels using the 

3dFWHMx command (Cox, 1996). Then we ran 3dClustSim over 6 uncorrected individual 

voxel p-values (.05, .02, .01, .005, .002, .001) and an alpha threshold of .01. Using the 

significant cluster sizes whereby faces or edges need to touch, and voxels are contiguous if 

they are either positive or negative at each p-threshold, we merged the thresholded maps at 

each p-threshold to obtain significant voxels (𝝰=0.01).  

Centrality analysis 

We constructed time-varying connectivity matrices using a sliding-window approach. 

First the original fMRI timeseries was resampled to 5mm3 to reduce computational complexity 

of the network analyses. The timeseries was then divided into windows of 1 min length, sliding 

every 10 sec to allow for a 50 sec overlap between one window and the next. A pairwise 

Pearson’s product moment correlation coefficient was computed on each window using the 

AFNI program 3dDegreeCentrality (Cox, 1996). The resulting correlation matrices were 
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proportionally thresholded to obtain a 10% sparsity in each time window: the top 10% values 

were considered a connection between two voxels and used to build a connectivity matrix.  

Centrality of a node measures how important that node is for the integrity and 

information-flow of the network. Centrality can be determined using various metrics that 

provide different information on the role of the node of interest in the network. Four centrality 

values were measured at each voxel for each window, namely degree, eigenvector, closeness 

and betweenness. Degree centrality is the sum of inward and outward connections from a node; 

eigenvector centrality is a measure of influence on a network, meaning that a high-connectivity 

node linked to nodes of high connectivity will have higher eigenvector centrality (i.e., be more 

influential) than a high-connectivity node linked to low-connectivity nodes; betweenness 

centrality measures the shortest paths that pass through a given node; closeness centrality 

measures the inverse of the distance of shortest paths passing through the node (van den Heuvel 

& Sporns, 2013). Although these centrality metrics provide different details on a node’s 

importance, they are highly correlated to one-another (Li et al., 2015; Oldham et al., 2019), 

thus ranking nodes across measures is most informative to create a detailed map of the network 

nodes’ influences (van den Heuvel & Sporns, 2013). We ranked nodes based on each of the 

four centrality measures, calculated the Spearman’s ranking correlation coefficient (𝝆) between 

pairwise measures, and clustered nodes using Ward’s linkage distance. The clusters were 

further evaluated using the Davies-Bouldin score, to obtain an optimal clustering of nodes 

across centrality metrics (Oldham et al., 2019).  

Hubs are defined as nodes that are most strongly connected to the rest of the network, 

therefore having an important structural and possibly functional role (van den Heuvel & 

Sporns, 2011). If the 𝝆 coefficients for the pairwise centrality measures resulted to be 

significant as the literature proposes, we would average the four Z-transformed centrality 

scores to create a single centrality value per node. There is no consensus measure or method to 

determine hubs in a network, thus we defined hubs to be the nodes in the 90th percentile of the 

average centrality score. Although a cut-off of 90th percentile is arbitrary, it allows for strong 

selectivity of nodes while still maintaining the configuration of clusters of high centrality. The 

thresholded centrality window maps were input into the Affinity Propagation Clustering (APC) 

algorithm, in order to determine exemplar configurations that are stable across time 

(Bodenhofer et al., 2011). The resulting dendrogram that APC outputs was cut in half, such 

that clusters of interest were the ones surviving the halfway cut-off of the tree. In order to test 

whether canonical language regions only appear in the group average rather than be very stable 
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across time in a single participant, we concatenated the most representative windows for each 

cluster (known as exemplars) at the halfway mark for each participant into one map and 

Independent Component Analysis (ICA) was computed over 100 dimensions using melodic 

(Woolrich et al., 2009). Melodic normalises variance of the timecourses and thresholds maps 

at p > .5, which assumes an equal loss from false positives and negatives (Woolrich et al., 

2009). Due to the nature of fMRI data collection and preprocessing, noise cannot be completely 

removed from the final dataset. Thus, ICA not only outputs stable components, but may also 

include noise ones that could be due to regular physiological or machine noise. We selected 

non-noisy stable components manually, identifying them as components that conform to the 

grey matter forming largely bilateral patterns, and do not fall into regions outside of the brain 

or in white matter and cerebrospinal fluid areas. Noise components that included areas outside 

of the brain, were randomly distributed or included white matter and ventricles were discarded. 

Finally, we measured the spatial correlation coefficient of each exemplar from APC and each 

ICA component to the language meta-analysis regions. 

Results 

Distribution of sensorimotor properties of words 

We first tested the hypothesis that word processing results in distributed patterns of 

activity throughout the entire brain and that this pattern is obscured by the use of measures of 

central tendency, resulting in ‘language’ regions (i.e., most commonly, the S/MTG and IFG). 

To do this, we used a method previously demonstrated to result in distributed patterns of 

activity when the semantic properties of words are taken into consideration (rather than simply 

averaged over) (Huth et al., 2016). Differently from the previous study, we used the LSN 

database to score words in movies based on 11 sensorimotor embeddings and used these as 

modulators of the BOLD fMRI signal. Below is an example of how two words are scored in 

the LSN on a scale of 0-5 (red = highest score category for the word). 

 

Word A G H I O V Fl Ha He M T 

LOVE 2.056 0.722 3 4.389 1.056 2.667 1.5 2.444 3.667 3.611 3.333 

TABLE 0.684 0.053 3.263 0.158 0.158 4.737 1.65 2.45 1.75 0.55 1.35 
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This analysis produced 12 beta maps, one for ‘words’ and 11 for each of the 

sensorimotor modulators of those words. For the group level analysis, ‘words’ and 

sensorimotor beta coefficient maps were input into a linear mixed-effects and corrected for 

multiple comparisons (Chen et al., 2013). The corrected maps for words and the individual 

effects of Lancaster norms are shown in Fig. 10. Each LSN map shows a unique distribution, 

although in patterns not related to their perceptual reference (e.g., Olfactory map did not 

activate olfactory cortex). 

 

Figure 10. Maps for each of the 11 sensorimotor embeddings. 

Maps were corrected for multiple comparisons with a cluster-size 

correction and multiple thresholds approach (𝛂 = 0.01). Each 

map formed unique and distributed activity patterns, mainly 

around (i) primary auditory, motor, visual and premotor areas, 

(ii) subcortical regions, (iii) some frontal regions. For all maps, 

cluster size = 20. 
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In order to determine whether the ‘words’ map closely resembled ‘language’ meta-

analysis regions and whether sensorimotor maps were more distributed, we computed the 

spatial correlation of each positive map to the ‘language’ meta-analysis map from Neurosynth 

(Yarkoni et al., 2011).  The ‘words’ map had r = 0.42 spatial correlation with the ‘language’ 

meta-analysis map (Fig. 11). The primary difference was the relative lack of IFG in the ‘words’ 

map. In contrast, the individual sensorimotor maps had poor spatial correlation (on average Mr 

= 0.09, SD = 0.11) with the ‘language’ meta-analysis map. 

 

Figure 11. ‘Words’ map corrected for multiple comparisons 

using a cluster-size correction and multiple thresholds approach 

(𝛂 = 0.01). This represents the activity resulting from all words 

in movies. The ‘words’ regions are highly correlated to the 

‘language’ meta-analysis map (black outline). However, the IFG 

is mostly missing in the ‘words’ map and activity is more equally 

distributed bilaterally. Cluster size = 20. 

We then grouped the sensorimotor maps together to investigate how distributed the 

overall pattern of activity was. The overall sensorimotor map extended over 63.7% of other 

brain regions outside the ‘language’ meta-analysis areas (i.e., regions resulting from the 

difference between all brain voxels and ‘language’ meta-analysis areas, with the exclusion of 

white matter and ventricles) (Fig. 12A). Individually, however, sensorimotor norm maps 

extended outside ‘language’ meta-analysis regions by M = 8.0% (SD = 8.1%, range = 0.9% - 

25.2%). We then thresholded the overall sensorimotor map to the 90th percentile of values in 

order to test whether multiple applications of central tendency measures and high thresholding 

would also result in the ‘language’ regions. Here, the remaining regions map to the STG, IFG 
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and occipital cortex (r = 0.26 with ‘language’ meta-analysis map, Fig. 12B). Although the IFG 

now somewhat appears in the map, the presence of occipital regions and lack of premotor areas 

likely drive down the spatial correlation value with the ‘language’ meta-analysis map. 

Moreover, the activity in the S/MTG is less distributed than in the ‘words’ map, potentially due 

to the high threshold (90th percentile) applied here. Indeed, the unthresholded sensorimotor 

map (Fig. 12A) included these missing areas, as well as the whole IFG. 

Figure 12. Map of distribution of sensorimotor embeddings. A) 

Overall distribution of sensorimotor embeddings after multiple 

comparisons correction at 𝛂 = 0.01, with Orange/Red = higher 

average beta values and Yellow = lower average beta values. The 

distribution encompassed many regions outside ‘language’ areas 

(black outline). B) Thresholded (90th percentile) values from 

average distributed sensorimotor map correlate with the 

Neurosynth ‘language’ meta-analysis map (black outline). 

Cluster size = 20. 



 

83 

Connectivity of canonical language and distributed regions 

The prior results suggest two measures of central tendency would yield primarily 

STG/MTG and IFG regions. We next tested whether these ‘language’ regions act as 

connectivity hubs while distributed regions form a dynamic periphery. To do this, we measured 

four centrality metrics (degree, eigenvector, betweenness, closeness) for every voxel, or node. 

Despite differences, the four metrics had a significant (p < .001) Spearman’s ranking 

correlation (Mrho = 0.94, SDrho = 0.02) with one another at the group level (i.e., across time 

windows and across participants). We averaged the Z-transformed centrality metrics and 

thresholded them to the 90th percentile to obtain the most connected nodes. We then applied 

APC in order to identify temporal cluster configurations of high-connectivity states 

(Bodenhofer et al., 2011). This means that if a group of high-centrality nodes recurred over 

time, it would constitute a stable APC cluster. This method identified on average M = 51.6 (SD 

= 6.0) temporal hub configurations across participants. Among the ~52 exemplars, we found, 

on average, low (Mr = 0.11, SDr = 0.05) spatial correlation with the ‘language’ meta-analysis 

regions; only 0.2% had a medium correlation comparable to the ‘words’ map (> .3). 

In order to test the hypothesis that ‘language’ regions appear in the aggregate because 

they are high-connectivity hubs coordinating distributed regions, we ran independent 

component analysis (ICA). Although ‘language’ meta-analysis regions were correlated with 

few APC exemplars, we hypothesise that they will correlate much more with components of 

the aggregate. Here, we identified 33 non-noise ICA components. We computed the spatial 

correlation of each of the 33 states with the ‘language’ meta-analysis map, to determine 

whether any of the states matched ‘language’ meta-analysis regions. Two of the 33 components 

had r = 0.52 and r = 0.40 correlation value with the ‘language’ meta-analysis regions 

respectively (Fig. 13), whilst the other 31 components had Mr = 0.04, SDr = 0.05 spatial 

correlation on average. 
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Figure 13. Two ICA components from aggregate analyses that 

had high correlation with the ‘language’ meta-analysis map from 

Neurosynth (white outline). Component 1 had r = 0.52 and 

component 2 had r = 0.40 correlation. Cluster size = 20. 

To further investigate potential differences between the connectivity profiles of 

‘language’ regions and sensorimotor map regions, we clustered the original four centrality 

values using Ward’s minimum variance, which consistently divided voxels in each time 

window into two groups (M = 2.00, SD = 0.02) across all participants: one high-centrality and 

one low-centrality cluster. In very rare cases, the clustering method detected >2 clusters of 

centrality, but since the vast majority of windows divided centrality values into 2 groups, we 

recomputed the few outlier time windows by forcing them to split the data into 2 clusters to 
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investigate spatial variations in connectivity over time. Fig. 14 shows the average voxel-wise 

cluster affiliation over time at the group level. Voxels closer to a value of 1 are low-centrality 

ones across most of the time windows, whilst voxels closer to a value of 2 are high-centrality 

ones most of the time. Voxels with intermediary values (e.g., 1.5) switch often between a high 

and low centrality state.  

 

Figure 14. Average voxel centrality cluster (high vs low) 

affiliation over time and participants. Values closer to 2 mean the 

voxel was a hub most of the time across participants (Red), 

values closer to 1 mean the voxel was highly dynamic (Blue). 

Intermediate values (White/Grey) are voxels that change 

allegiance between low and high centrality (e.g., provincial 

hubs). MTG and IFG are mostly in intermediary centrality 

clusters, with STG in high centrality ones. Cluster size = 20. 

From the sensorimotor map voxels, we subtracted the ‘words’ map voxels, in order to 

maintain only distributed regions not in ‘language’ areas: this was then called the distributed 

map. To test the hypothesis that distributed regions are dynamic peripheral nodes most of the 

time, while ‘language’ regions are provincial hubs, we computed the mean cluster assignment 

of the ‘words’ and distributed map voxels separately for each time window. We considered 

values >1.7 to be voxels that belonged to high centrality clusters most of the time, since the 
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maximum cluster value after averaging over windows was 1.863, and therefore >1.7 represents 

~90% of the maximum value. We found that the ‘words’ map voxels had a value >1.7 for M = 

24.2%, SD = 10.1% of time windows across participants. In contrast, the distributed map had 

a value of >1.7 for only M = 3.6%, SD = 2.1% of time windows across participants. Finally, in 

order to test whether ‘words’ map regions strongly connect to distributed regions when the 

former acted as hubs, we inspected the specific connectivity profiles of windows where the 

mean cluster assignment of ‘words’ map voxels was >1.7. This analysis showed that when 

‘words’ map voxels were hubs, they shared M = 44.0%, SD = 2.2% of connections with the 

distributed regions across participants.  

Discussion 
Here, we tested the hypothesis that the neurobiology of language processing is highly 

dynamic and distributed across the brain during natural language comprehension, and that the 

use of central tendency measures has averaged out activity in the dynamic distributed regions, 

resulting in only ‘language’ regions, as these are provincial hubs. Our results showed that each 

sensorimotor embedding gave rise to unique patterns in the brain, whose activity extended to 

regions well beyond ‘language’ regions (Fig. 12). Instead, the overall effect of ‘words’ and of 

the thresholded and averaged sensorimotor maps in the brain led to an activity profile that 

closely resembled ‘language’ meta-analysis regions (Fig. 11 and 12B), suggesting that only 

when averaging over stimuli and at the group level we begin seeing patterns resembling current 

language models. From a network perspective, ‘language’ regions acted as provincial hubs 

forming nearly half of all connections with the distributed regions (Fig. 13 and 14). Here, we 

review each of our findings in more detail in the sections below. 

Distributed regions in language processing 

We found that individual sensorimotor embeddings of words produce highly distributed 

patterns of activity that encompass other regions of the brain outside of ‘language’ areas, 

adding to similar evidence from the semantic embedding literature (Huth et al., 2016). When 

grouping all sensorimotor embedding maps, we found that the pattern of activity encompassed 

large portions (>60%) of the rest of the brain. Although each sensorimotor embedding map 

overlapped on average only ~8% of the rest of the brain, individual words are represented by 

multiple sensorimotor embeddings. For instance, the word ‘boy’ from ‘500 Days of Summer’ 

scored particularly highly for all of Auditory (2.438), Visual (4) and Head (2.789) domains. 
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This means that an individual word’s embedding will elicit a brain activity pattern that is much 

more distributed than a single sensorimotor embedding map, and thus will more closely 

resemble the overall distributed map, with the distribution skewed towards the more significant 

sensorimotor embedding domain of the word. The distributed regions included parts of the 

prefrontal cortex, premotor and primary motor regions, insula, posterior cingulate, angular 

gyrus, precuneus, occipital cortex, some subcortical regions, primary auditory and sensory 

association areas.  

Many other studies investigating individual variability, outside the semantic embedding 

literature, support our finding on the brain areas forming distributed language regions. For 

instance, studies on the predictive processes that help in relating previous semantic context to 

incoming words found an involvement of the hippocampal complex (Maess et al., 2016; Piai 

et al., 2016), while the medial prefrontal and posterior cingulate were shown to process episodic 

and semantic memory words (Hertrich et al., 2020). Moreover, the precuneus and temporal 

lobe bilaterally, were implicated in processing context-specific semantic meanings (Hertrich et 

al., 2020).  

Individual brains vary anatomically, therefore it follows that functional activity patterns 

will vary as well (Juch et al., 2005). Aside from structural differences, individual differences 

in cognitive performance, experience of the real-world and cognitive strategy all contribute to 

increasing functional variability (Van Horn et al., 2008), having implications for language 

processing. Supporting this idea, intersubject variability studies using memory retrieval of 

words have shown that individual participants activate different and largely distributed activity 

patterns (e.g., supplementary motor area, prefrontal cortex, etc.) that relate to their ability to 

‘visualise’ the word (Miller et al., 2012) or to individual cognitive strategies (Heun et al., 2000).  

Studies on context of sentences revealed that the brain activates regions related to the 

meaning of a sentence, either spatially or temporally. For instance, the preceding context to an 

action verb in a sentence activates primary motor regions in anticipation of the upcoming verb 

(Schuil et al., 2013). On a temporal scale, sentences describing past and present events map 

onto occipital and parahippocampal cortices usually associated with concrete object 

processing, whilst sentences describing future intentions activate regions in the medial 

prefrontal cortex, temporo-parietal junction and posterior cingulate usually associated with the 

mentalizing network (Gilead et al., 2013).  
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Studies on language experience have also identified extended regions of language 

processing, with different distributions. For instance, some have suggested that formulaic 

expressions, meaning multi-word expressions that are overused in daily communication, are 

processed in subcortical regions (Van Lancker Sidtis & Sidtis, 2018; Sidtis et al., 2018). Indeed, 

usage of formulaic and overlearned language is often maintained during aphasia, even when 

extensive damage to ‘language’ regions has occurred (Van Lancker Sidtis & Sidtis, 2018), and 

this may be because subcortical regions, that may be processing formulaic speech, are 

preserved in aphasia (Van Lancker Sidtis, 2012). In a recent study, we have specifically 

demonstrated that overlearned sentences, as opposed to novel sentences, are processed faster 

and into sensorimotor regions rather than ‘language’ regions (Skipper et al., 2021). Taken 

together, this evidence points to a highly distributed network during complex language 

processing. Our findings offer yet more evidence for an extended neurobiology of language 

processing that varies with stimuli, with time and across participants. 

Language hubs 

Although variability is clearly important, most neuroimaging studies continue to use 

central tendency measures to derive stable activity patterns that supposedly represent some 

feature of language processing. This has led to the notion that ‘language’ regions are the sole 

language processing areas across various language tasks.  

Here, we showed that central tendency measures applied across stimuli, time and 

participants inevitably remove all significant variability and reduce language processing to 

‘language’ regions. We found that the ‘word’ map was highly correlated to current distributions 

of ‘language’ regions (r > .4). The STG and MTG, but not the IFG, appeared bilaterally in this 

average ‘baseline’ map. The pattern in the LH was more similar to the ‘language’ meta-analysis 

regions than the RH, with our map showing a more equal distribution in the two hemispheres. 

This is possibly because words in movies are presented sequentially as part of natural 

dialogues, while in traditional neuroimaging studies words are presented randomly and in 

isolation, having no relation to one another. The more bilateral distribution and lack of IFG 

may be indicative of high semantic context in the movies. This finding reflects previous 

research showing that homologous language regions in the RH are recruited to process context 

and narratives (Ferstl et al., 2005; Mitchell & Crow, 2005; Stemmer, 2015), while the IFG is 

mostly active during higher task demands, such as resolving incongruent references, that would 

not be required in continuous stimuli, such as movies (Hammer et al., 2007; Martin & Cheng, 
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2006). Similarly, when averaging and thresholding the grouped sensorimotor maps, the 

surviving activation fell in and around ‘language’ regions (r = .26), albeit less than the ‘word’ 

map, further suggesting that typical averaging methods mask variability and generally result in 

‘language’ areas. 

Our network analyses revealed that the reason for the consistent appearance of these 

‘language’ regions in aggregate analyses, is that they are somewhat stable provincial hubs. Two 

pieces of evidence support this: (i) we identified two group-level hub components that were 

highly correlated (r > .4) to the ‘language’ meta-analysis regions - these hubs involved the 

STG, MTG (bilaterally in Fig. 13 top and LH in Fig. 13 bottom), left IFG and parts of the 

premotor cortex; (ii) ‘language’ regions acted as hubs for ~25% of the time across participants 

(Fig. 14).  

‘Language’ regions were integrated in a complex connectivity map that included both 

stable and dynamic regions: the first group involved voxels in STG, occipital, some primary 

motor and sensory association regions, and the angular gyrus; the second group involved voxels 

in the insula, cingulate, anterior temporal lobe, supplementary motor area and subcortical 

regions. Many of the dynamic and intermediary regions were part of the distributed 

sensorimotor regions, and these areas constituted >40% of all connections to ‘language’ 

regions. This result indicates that (i) distributed regions likely share a function with ‘language’ 

regions; (ii) distributed regions disappear in the aggregate because they tend to be more 

dynamic.  

Supporting our finding of a hierarchy of stability in the brain, task-based network 

studies have demonstrated that both spatially and temporally, sensory association and primary 

regions form strong and stable connections to the rest of the brain, with subcortical areas 

exhibiting more flexibility (Achard et al., 2006; Bassett et al., 2013; Hwang et al., 2013; 

Schedlbauer & Ekstrom, 2019). In this organisation, ‘language’ regions exhibit some 

variability in connectivity strength, appearing in intermediate layers of the network hierarchy 

(Bassett et al., 2013; den Ouden et al., 2012; Li et al., 2020). 

Models 

Current models of the neurobiology of language do not support the distributed and 

dynamic behaviour of language processing that we have observed here, rather considering 

language processing as a static and localised network (Fedorenko & Thompson-Schill, 2014). 
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Instead, a better model should account for all individual variability and treat language as a 

complex behaviour. 

Some recent network studies have identified a novel organisation of the brain network, 

namely core-periphery, that can unify the hierarchy of connectivity we have observed here 

(Bassett et al., 2013; Gu et al., 2019). Core-periphery structures combine two network 

dynamics: the core is a set of highly stable hubs that control a set of flexible regions, or 

periphery, that vary significantly over time (Csermely et al., 2013; Rombach et al., 2014). Core-

periphery networks allow for high complexity, robustness to perturbations and rewiring of 

connections to maximise energy demands, task requirements and allow recovery after lesion 

(Cinelli et al., 2017; Csermely et al., 2013).  

We take inspiration from these studies, to propose that ‘language’ regions are part of a 

global core, tethering a dynamic and flexible periphery of other distributed language processing 

regions.  

Limitations 

This study inevitably suffered from some limitations, which we will address here. For 

instance, the distributed sensorimotor embedding regions we have identified may not be 

performing any language processing, rather activating as (i) a feature of other aspects in the 

movie or (ii) a post-perceptual language process. Several considerations mitigate against these 

possibilities. To address the first point, we included sensorimotor embeddings as word 

modulators to limit the possibility that these were connected to other movie features. Moreover, 

we added confound and contrast regressors to further control for nuisance from other audio-

visual elements of the movies. 

To address the second point, previous studies on word semantic processing have shown 

that distributed regions outside of ‘language’ areas activate within 50-150ms of the word onset, 

suggesting their activation is not a post-perceptual process (García et al., 2019; Kiefer et al., 

2008; MacGregor et al., 2012; Shtyrov et al., 2014). Moreover, since movies represent a 

continuous stimulus, there is no opportunity to think or reflect back on the listened words. 

Finally, we demonstrated that these regions directly and tightly connect to ‘language’ regions. 

A final limitation, with respect to the network analysis, is that we did not inspect 

specific language features to probe the connectivity profiles, and therefore we may not have 
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identified language-specific connections or components. In future, we could compare, for 

instance, high and low word frequency: we expect the former to resemble ‘language’ features 

more, and the latter to be more distributed.  

Implications 

In this study we showed that language processing of individual sensorimotor 

embeddings during real world behaviour forms unique, highly distributed and dynamic patterns 

of activity. This work adds to a growing body of evidence suggesting that existing neurobiology 

of language models need to be revisited to incorporate individual variability, contextual 

variations, etc. (Skipper, 2015). We propose that a better model may be a core-periphery 

organisation, allowing for (i) high levels of variability through a dynamic periphery, (ii) 

robustness to perturbations through highly connected cores, (iii) integration of communication 

for higher task demands through the complex interaction of cores and periphery (Csermely et 

al., 2013).  

This organisation, however, would have ramifications for the way traditional 

neuroimaging studies are conducted. The consistent use of central tendency measures would 

obscure the dynamic variability of the periphery, only revealing core structures. Different 

methods are thus needed to better inspect the network organisation of language and the brain. 

We suggest methods such as multi-voxel pattern analysis, hyperalignment, deconvolution, 

cluster-size thresholds, and Bayesian techniques that consider individual variations as well as 

stable activity and can therefore identify both cores and peripheries (Cohen et al., 2017; Forman 

et al., 1995; Hasson & Honey, 2012; Haxby et al., 2011). 

Finally, our findings have important implications for our understanding of aphasia and 

its recovery. The high wiring cost of hubs means that damage to these regions would have more 

deleterious effects on function than damage to dynamic and distributed areas (Fornito et al., 

2016; Zhao et al., 2011). As ‘language’ regions are hubs, this would help explain the 

symptomatology of aphasia. On the other hand, the presence of the more dynamic distributed 

regions would explain how the brain mitigates speech deficits via neuroplasticity recovery 

processes, which are known to happen outside ‘language’ regions (Hertrich et al., 2020; Kiran 

& Thompson, 2019). Overall, these findings offer new insights for novel speech therapies into 

other regions and processes involved in the neurobiology of language. 
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Conclusion 

We have demonstrated that when inspecting individual features of words, such as their 

sensorimotor embeddings, these form unique and distributed patterns of activity encompassing 

most of the brain. Here, ‘language’ regions have a role in coordinating these dynamic 

distributions, acting as provincial hubs. Due to the highly dynamic nature of individual 

language features, typical central tendency measures have not been able to capture these 

distributed regions, favouring instead static and localised models of the neurobiology of 

language. 
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3.3 The brain is a multi core-periphery network with dynamic communities: a 
flexible model of the neurobiology of language 

Abstract 
Existing models of the neurobiology of language cannot accommodate complex and 

contextually determined aspects of language processing in the real world. Evidence from 

studies investigating complex language features points to a distributed and dynamic nature of 

the neurobiology of language. Thus, a more flexible model of language and the brain is needed 

to account for this variability and complexity. Three network-based organisations that may 

support this are (i) a highly segregated organisation, namely modularity, (ii) a highly dynamic 

organisation, namely core-periphery, or (iii) a combination of both. To account for all 

complexities of language, we propose that both modularity and core-periphery are needed to 

support natural language processing, as together they allow for both flexibility and some 

functional specificity. To test this, we used data from the NNDb and analysed individual time-

varying voxel-based networks using core-periphery and modularity algorithms. Results suggest 

a model whereby ‘language’ regions are situated in a merged global multi core-periphery and 

modular network of large, dynamically changing communities. Known ‘language’ regions 

constitute one of multiple cores, but only act as such for short time periods. We further 

demonstrate that distributed brain regions perform language processing, as these form large 

communities with known ‘language’ cores, encompassing most of the brain. This organization 

accounts for the complexity of language processing in the real world and can be informative as 

to which brain regions and processes have the potential for faster language rehabilitation after 

lesion. 

Introduction 
Language is one of the most complex human behaviours, yet most of the existing 

neuroscience literature has reduced it to simple task-based studies that in no way represent or 

account for the natural complexity of language processing. Here, the most cited model of the 

neurobiology of language, namely the dual-stream model, has perpetuated the notion that 

language processing is mostly localised to inferior frontal (IFG) and superior and middle 

temporal gyri (STG, MTG), and that these somehow form two streams for grossly performing 

‘speech perception’ and ‘production’ (Hickok & Poeppel, 2004). Nevertheless, a growing body 

of evidence shows that when inspecting more complex features of language processing, such 

as context or semantics, the neurobiology of language encompasses much of the rest of the 



 

94 

brain, forming distributed and highly variable activity patterns (Huth et al., 2016; Ojemann, 

1979; Sidtis et al., 2018; Skipper, 2015; Skipper et al., 2021). This was also demonstrated in 

previous chapters of this thesis, where we showed that pronoun resolution and sensorimotor 

word embeddings activate unique and largely distributed activity patterns. In order to account 

for this high level of complexity and variability, we thus need models of the neurobiology of 

language that are significantly more flexible. For this, network neuroscience may offer insights 

on the underlying processes supporting this complex human behaviour. Here, we review 

network architectures and how they may support the neurobiology of language in the real 

world. 

Modularity 

Most existing network neuroscience studies describe the network organisation of the 

brain using resting-state networks (RSNs). These are networks built from BOLD signals of 

participants in the absence of a task, or rather the participant is left lying in a functional 

magnetic resonance imaging (fMRI) scanner (Sporns, 2013). RSN studies have indicated that 

the network architecture best representing the functional organisation of the brain is modularity 

(Hutchison et al., 2013; Zalesky et al., 2014). Modularity is a property of intermediary (also 

referred to as mesoscale) network architectures, whereby the network’s elements, known as 

nodes, are grouped into functionally and spatially segregated components, also known as 

communities (Fornito et al., 2016b) (Fig. 15A). These are defined as clusters with high intra-

connectivity density compared to the rest of the network (van den Heuvel & Sporns, 2013). 

Research on brain RSNs has shown that the functional connectome is divided into few 

highly segregated communities that map grossly onto the Default Mode network (DMN) and 

attention network, as well as to generic behavioural domains (e.g., emotion or perception) 

(Sporns & Betzel, 2016), and that these are relatively static over time (Hutchison et al., 2013). 

RSNs have thus portrayed a picture of the brain as a rather static network, with functions clearly 

separated and localised to specific brain regions. Although RSNs, and modularity, have been 

shown to well represent the underlying ‘baseline’ connectivity of the brain at rest (Laird et al., 

2011), task-based connectivity studies have identified additional task-evoked dynamics that 

RSNs could not account for (Cole et al., 2014).  

To account for this variability, task-based dynamic functional connectivity studies have 

proposed a more flexible model of modularity, where modularity is not a static feature, but 
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rather it describes a quality of functional integration (Park & Friston, 2013). This means that 

certain regions of the brain have a propensity for a given function, but that they are not 

necessarily bound to it; their role depends on how best to minimise energy requirements and 

increase efficiency for the entire network (Bassett & Bullmore, 2006). For instance, the 

modular organisation of the brain was shown to undergo significant rearrangements during 

learning (Bassett et al., 2011), during neurodevelopment (Gu et al., 2019), and during disease 

(Alexander-Bloch et al., 2012; de Haan et al., 2012).    

Evidence suggests that these connectivity variations are supported by a hierarchical 

modular organisation of the brain. Here, larger communities mapping onto general anatomical 

areas (e.g., occipital, fronto-temporal, and prefrontal) are stable over time, with smaller 

communities (correlating to multimodal association cortices) experiencing dynamic changes 

(Meunier et al., 2009, 2010). Further reinforcing the notion of hierarchical modularity, 

neurological studies have shown that disrupting the organisation of this hierarchy causes weak 

and random connections to form, leading to deleterious functions (Russo et al., 2014). These 

findings indicate that hierarchical relationships between larger and smaller communities may 

support complex brain behaviours, having a fundamental role in maintaining healthy cognitive 

functions. 

How can hierarchical modularity support the neurobiology of language? A possibility 

is that the neurobiology of language forms a large community in the higher layers of the 

hierarchy that encompasses smaller dynamic communities at lower hierarchical levels, each of 

which may support a specific language feature (e.g., semantic or phoneme processing). 

Although this model would support individual variability of language features, it still does not 

support complex communication among various language features nor between language 

processing and other cognitive domains (e.g., attention, emotion, etc.), as communities are by 

definition segregated. Although inter-community connections do exist, these are usually sparse 

and mostly serve to integrate information across communities rather than afford functional 

overlaps (Cherifi et al., 2019; Zalesky et al., 2014).  

Core-periphery 

Although hierarchical modularity details relationships between communities that may 

support individual features of language processing, it still holds a rather localisational and 

semi-static view that does not fully explain the complex relationships between language and 
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other cognitive domains that task-based studies have identified (Pulvermüller, 2013; Schuil et 

al., 2013). To address this outstanding issue, a more dynamic and flexible model, such as core-

periphery, may be appropriate. 

Core-periphery involves two components: a core, whereby a group of nodes is 

connected to every point of the network, which coordinates a set of dynamic nodes that can 

only form connections to the core, namely the periphery (Borgatti & Everett, 2000) (Fig. 15B). 

Although core-periphery structures have been demonstrated in various biological networks, 

such as protein interactomes, metabolic pathways and cellular signalling pathways (Csermely 

et al., 2013), they are rarely investigated in the context of functional brain connectivity. This is 

likely because most neuroimaging studies have mainly sought to isolate stable functional 

components, such as communities, that also tend to be more consistent across subjects, whilst 

core-periphery structures relate to dynamic and variable elements of a network (e.g., individual 

variability) that cannot be detected with central tendency methods (Zalesky et al., 2014).  

Core-periphery architectures in such biological networks were shown to have 

significant evolutionary advantages. First, the core allows for integration of information by 

controlling a high number of connections; second, a flexible periphery allows for quick 

environmental adaptations (Faber et al., 2019; Fornito et al., 2016a; Stefaniak et al., 2020). 

Moreover, due to the high connectivity of the core, the network is afforded significant 

redundancy and therefore is resilient to perturbation (Cinelli et al., 2017). Indeed, if only few 

core connections are severed, the redundancy ensures that the function of the core remains 

largely intact; however, more extensive, and repeated damage to the core causes significantly 

more disruption to function than damage to peripheral nodes that are loosely connected (Fornito 

et al., 2016a; Zhao et al., 2011).  

How would a core-periphery organisation support language processing? The opposing 

dynamics of core and periphery explain several complex language behaviours: (i) individual 

language features may be processed simultaneously in distributed and flexible peripheries, 

while (ii) ‘language’ regions could act as a core to help coordinate this distribution; (iii) 

extensive lesions in ‘language’ regions (i.e., the putative core) would result in severe aphasic 

symptoms, but (iv) these functions may be regained through rewiring in peripheral regions. 

Although this model would support more complex language behaviours, it still assumes that a 

single core region coordinates a group of peripheral nodes that cannot directly communicate 

with each other (Borgatti & Everett, 2000).  
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Alternative model 

Modularity and core-periphery only partially address the question of how the brain 

supports language processing in the real world, with each model assuming certain 

organisational restraints (e.g., non-overlapping communities, or one core and one periphery). 

An alternative model could include both these organisations with some additional features in 

each structure.  

Core-periphery and modularity have been previously found together in empirical 

networks, thus the presence of one does not exclude the existence of the other (Rombach et al., 

2014; van den Heuvel & Sporns, 2013). For instance, each line in the London Underground 

network contains some core stations (e.g., Waterloo station) that connect to a wide array of 

small peripheral stations (e.g., Green Park station), with each metro line representing a single 

community (e.g., Northern Line) (Rombach et al., 2014). However, the two models exhibit 

some diverging features, with communities having low inter-connectivity, while the core has 

high inter-connectivity (Borgatti & Everett, 2000; Newman, 2006). To solve these 

inconsistencies and allow for both to co-exist, some authors have proposed additional features 

in each architecture.  

For instance, instead of a single core and periphery, networks such as the international 

airport network were better described by multiple core-periphery pairs, whereby each continent 

had their own core-periphery group (Kojaku & Masuda, 2017). Unlike classical core-periphery 

structures, these multiple core-periphery pairs map onto known communities (Kojaku & 

Masuda, 2017; Yan & Luo, 2019) (Fig. 15D). Conversely, new modularity algorithms allow 

the existence of community overlaps; here, overlapping areas consist mainly of core regions 

and better represent complex network relationships (Lancichinetti et al., 2010; Yang & 

Leskovec, 2014) (Fig. 15C). Although these novel algorithms have identified more detailed 

and complex features in various networks, only one study, to the best of our knowledge, has 

investigated the co-existence of these two structures in the resting-state brain to some extent 

(Gu et al., 2019). 
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Figure 15. Different mesoscale network architectures. A) 

Modularity involves segregation of functions, with communities 

(red, blue, green, orange) exhibiting high intra-connectivity and 

low inter-connectivity. B) Core-periphery involves a highly 

connected core (red) and a dynamic and loosely connected 

periphery (black). C) Overlapping modularity allows 

communities (blue, green, orange) to share some regions (red). 

D) Multiple core-periphery pairs (red and blue/green/orange 

small circles) map onto separate communities (blue, green, 

orange large circles). 

Here, we propose that the brain network organisation best supporting the complexity 

and variability of language processing is a combined core-periphery and modular architecture, 

with multiple dynamic core-periphery pairs and overlapping communities (i.e., Fig. 15D and 

15C combined). We propose that these two meso-scale architectures combine such that each 

community is composed of core-periphery pairs, with cores being more stable components of 

the network, whilst the periphery drives community evolution. For example, we expect to see 
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merging and splitting of communities over time, in particular between neighbouring regions. 

Within this network context, we hypothesise that established ‘language’ regions act mostly as 

one of the multiple cores, and that they connect to a large periphery, together encompassing 

one or more communities. Furthermore, we predict, based on our findings in Chapter 3.2, that 

primary visual and auditory regions will be the most stable core regions. 

In order to test our hypotheses, we used data from 37 participants in the Naturalistic 

Neuroimaging Database (NNDb), who watched one of two movies: 20 watched ‘500 Days of 

Summer’ and 17 watched ‘Citizenfour’ (Aliko et al., 2020). We constructed individual voxel-

wise functional connectivity networks using a sliding window approach and analysed these 

using a novel core-periphery algorithm based on node influence, and a greedy implementation 

of Newman’s modularity algorithm to partition the network into communities (Blondel et al., 

2008; Shen et al., 2021). We performed the same analysis on group-averaged networks in order 

to test the hypothesis that average networks, which are widely used in the literature, have 

constrained our view of how flexible brain networks are in the real world. Finally, we inspected 

the specific dynamics of the neurobiology of language. Few studies using voxel-wise networks 

exist, and these have not analysed individual-level networks (Preti & Van De Ville, 2017; 

Tagliazucchi et al., 2016; Wink et al., 2012). Ours, to the best of our knowledge, is the first 

study to analyse voxel-wise individual networks for different brain mesoscale organisations.  

Methods 

Network construction 

We obtained fully preprocessed fMRI data of 37 participants (right-handed, range of 

age 19-58 years, Mage = 27.5 years, SDage = 10.2 years, 19 females) watching one of 2 movies 

(‘500 Days of Summer’ or ‘Citizenfour’) from the NNDb (Aliko et al., 2020). Originally, the 

dataset comprised 38 participants, but one participant from ‘Citizenfour’ was removed post-

hoc due to issues with their network construction (further explanation below). 

To reduce computational load in network analyses, which are highly computationally 

costly, the voxel resolution was downsampled from 3mm3 to 5mm3, resulting in 66,424 total 

voxels for each participant, of which M = 15,889.7, SD = 471.6 were in-brain voxels after 

masking. In order to investigate the dynamic functional connectivity of the brain during movie-

watching, we divided the fMRI timeseries into 1 min windows with a 10 sec step size (in a 
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typical sliding-window approach), resulting in a total of ‘movie length - 59/10’ windows for 

each participant. Specifically, the movie ‘500 Days of Summer’ resulted in 5470-59/10 = 542 

windows, while the movie ‘Citizenfour’ in 6804-59/10 = 675 windows. There is no agreement 

on the correct window length and time step to use, thus we tested lengths from 30-60 sec and 

time steps from 1-10 sec and selected 60 sec length and 10 sec step as the most appropriate for 

our data and computational resources: in particular, <60 sec windows resulted in inclusion of 

too much noise, while <10 sec step size resulted in exponentially slower algorithm 

performance. The choice of window length and step size is also in agreement with the literature, 

which has mostly used window lengths between 30 sec and 1 min, and window/step ratios <50 

(Preti et al., 2017; Zalesky et al., 2014). 

The adjacency matrix was constructed for each window using the AFNI program 

3dDegreeCentrality, which computes the pairwise Pearson’s correlation coefficient for every 

voxel (Cox, 1996). We applied a proportional threshold to each matrix, in order to maintain the 

same edge density across participants and make comparisons between participants watching 

different movies more robust (Garrison et al., 2015). Since there is no consensus on the 

thresholding value to use, we tested a range of threshold values (5-30%): at 5% the matrix was 

too sparse and few connections survived the threshold, while at >15% the matrix was too dense 

with no discernible patterns and requiring large computational resources. We therefore applied 

a more appropriate threshold of 10%, meaning that the top 10% of correlation coefficients 

would constitute a connection (corresponding to 1 in the binary adjacency matrix), with values 

in the bottom 90% set to zero.  

One participant in ‘Citizenfour’ was removed from the dataset due to issues in 

constructing their network. Each window should have the same number of nodes at the end of 

thresholding, but we encountered ~20 windows with less nodes than expected in this 

participant, possibly a defect introduced during the anatomical alignment preprocessing step 

prior to time-correction. Adding these voxels back to the adjacency matrix as disconnected 

nodes would result in network algorithms identifying disjointed elements; alternatively, adding 

them as a connection would create false relationships in the network. We therefore opted for 

discarding the participant’s data as an outlier (further investigation is ongoing), which resulted 

in the final 37 participants being included in the present manuscript. 
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Individual network analyses 

A network can be described globally, at the meso-scale and at the individual node level. 

Here, we sought to investigate the meso-scale features of the architecture of the network and 

the functional relationships between groups of voxels. We therefore computed various graph 

theoretic measures on every window for each participant. From now on we will refer to single 

voxels as nodes, for simplicity.  

The meso-scale architecture of a network provides information on how groups of nodes 

are functionally related or clustered. Various algorithms can be used to identify different meso-

scale structures. Here, we chose to compute core-periphery and community partitioning 

algorithms. A core-periphery structure implies that a network is divided into a cluster of nodes 

with high inter- and intra-connectivity (core) and a group of loosely connected and dynamic 

nodes (periphery) (Borgatti & Everett, 2006; Verma et al., 2016). We applied the core-

periphery algorithm that we developed in a recent publication (Shen et al., 2021), which is able 

to detect core-periphery structures at higher accuracy and at higher efficiency than other 

existing algorithms. The algorithm starts by assuming that a node exerts a certain amount of 

influence on the network, which is calculated using a function derived from a random walk 

with restart model equation. The resulting node influence vectors are incorporated into a 

probability matrix of influence scores, with the top 10% of values considered as core nodes 

(for mathematical proofs see (Shen et al., 2021)).  

Community partitioning is an ongoing issue in the field of graph theory, due to its 

computational complexity (Newman, 2006). The fundamental concept of community 

partitioning is to identify clusters or modules of nodes in a network that share a common 

function (Blondel et al., 2008; Lancichinetti & Fortunato, 2012). Many algorithms exist for 

partitioning the network, but the most widely used is based on the optimization of Newman’s 

modularity function, which clusters nodes into modules if their in-module connectivity is 

higher than the connectivity between clusters, and compares the value against a null network 

model (Newman, 2006; Sporns, 2013). The modularity score Q is computed as follows: 
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Where N is the number of nodes, m is the sum of edges in the network, Aij is the edge 

between nodes i and j, ki and kj are the sum of edges of nodes i and j respectively, and 𝛿(𝑐𝑖, 𝑐𝑗) 

is Kronecker’s function for clusters of nodes i and j respectively. Here the null model is the 

Newman-Girvan matrix (𝑘%𝑘&/2m) (Bassett et al., 2013; Lancichinetti & Fortunato, 2009). 

Since optimizing modularity is computationally intensive, we used the greedy modularity 

algorithm developed by Blondel et al. (Blondel et al., 2008), which we will refer to as the 

Louvain algorithm from now on. The algorithm works in two phases: 

1. Initially each node is assigned to a single community. Neighbouring nodes i and j are 

joined, and Q is calculated. If joining i and j increases the value of Q compared to 

keeping them separate, then nodes i and j are assigned to the same community. The 

algorithm stops when changes in assignment can no longer improve Q. 

2. The clusters are then considered as single nodes, with edges within modules represented 

as self-loops. Phase 1 is applied to this new network. 

The two phases are iterated until a maximum Q score is reached. Since Louvain is non-

deterministic, it can produce slightly different partitions every time it is applied to the network 

(Bassett et al., 2013). We therefore performed 100 iterations of Louvain for each window and 

built a consensus matrix Dij, where each entry ij is the probability of finding nodes i and j in 

the same module across iterations. Louvain was then run a further 50 iterations on each 

thresholded Dij matrix. Here, ij pairs that have a probability of being in the same community 

lower than a thresholding parameter are removed from the Dij matrix prior to re-applying 

Louvain. We tested a range of values for the thresholding parameter 𝜏, specifically values of 

.1, .2, .3 and .4, the latter being the maximum recommended 𝜏 value for Louvain in the literature 

(Fornito et al., 2016b; Lancichinetti & Fortunato, 2012).  

Moreover, modularity is known to suffer from a resolution limit, in that it cannot detect 

smaller modules because they do not maximise the modularity score (Fortunato & Barthélemy, 

2007; Lancichinetti & Fortunato, 2011). One solution to this problem is the addition of a 

parameter 𝛾 before the null model term, that allows to resolve smaller clusters (Fornito et al., 

2016b). Here we tested a range of values of 𝛾, namely 1 (default), 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 

1.7, 1.8, 1.9 and 2, and selected the parameter value that generated the highest similarity score 

across iterations. To measure partition similarity across iterations, we computed the normalised 
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mutual information score (NMI), which outputs a value in the range [0,1] with 1 being identical 

partitions and 0 being different partitions (Taya et al., 2016).  

Overall, then, at each 𝛾 we tested four 𝜏 values; we selected the 𝛾 value providing on 

average the highest NMI score; within the chosen 𝛾 we selected the 𝜏 value producing on 

average the highest Q. These parameters were tested on one randomly selected matrix from 

each participant (i.e., total of 37 matrices), and the optimal values selected by averaging across 

all 37 matrices. From these tests, we identified a single 𝛾 and 𝜏 as optimal, and used them to 

run Louvain on all matrices and participants. Although ideally, we would have run the 

parameter tests on all windows for all participants, this was computationally unfeasible. From 

this testing we determined that a 𝛾 = 1 and 𝜏 = .4 produced the most consistent partitioning 

with the highest modularity scores (MNMI = .74, SDNMI = .10; MQ = .65, SDQ = .06).  

Since modularity optimization may produce a high Q score even for random networks, 

such as Erdos-Renyi random networks (Guimerà et al., 2004), we measured the significance of 

the partitions found by the Louvain algorithm using a non-parametric permutation test. We 

randomly shuffled the community assignments for all nodes in a window, maintaining the 

number of clusters and their size the same, and calculated the new Q score (Betzel & Bassett, 

2017). We repeated this process for 100 iterations, and measured the p-value as follows: 

𝑝	 = 𝛴	(𝑄'()*+,(- 	> 	𝑄)(./	)/	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

We considered a significant partitioning as one with p-value < .001. Ideally, we would 

have run this test 1,000 - 10,000 times, but due to its high computational requirements it was 

unfeasible. 

Identification of stable core states 

In order to determine relationships between core configurations over time, we 

performed Affinity Propagation Clustering (APC) on the coreness values across time windows 

for each participant (Bodenhofer et al., 2011). APC is a data-driven clustering technique that 

does not require setting a priori parameters of cluster size, therefore valuable when a ground 

truth of the data is missing. APC clusters data by their relationship, meaning that the algorithm 

infers a hierarchy from the data (Bodenhofer et al., 2011). This can be represented as a 

dendrogram tree with relationships as branches and individual states as leaves. The lowest 

hierarchical layer represents the most divergent states, with branches in higher layers being 



 

104 

states that are more similar to one another. Here, we selected the middle branches of the 

hierarchy, meaning the dendrogram tree was cut in half and the top hierarchies were 

maintained, with their leaves considered as states of interest. This was done because the lowest 

branches resulted in clusters with very few time points included, while the higher layers 

contained most of the data and thus did not identify enough time configuration clusters. These 

states thus represent different temporal configurations of the network’s core. 

In order to compare core-periphery configurations at the individual and aggregate level, 

we performed group spatial Independent Component Analysis (ICA) over 100 dimensions on 

the concatenated APC states using melodic (Smith et al., 2013), to determine stable core 

configurations that were shared across participants (Yeo et al., 2014). We chose 100 

components as opposed to the maximum of 500, because we were interested in broader spatial 

clusters; at the same time, we did not select < 100 components, to avoid including noise or 

individual variability in the components. We therefore manually selected components of 

interest based on whether they conformed to the grey matter in a mostly bilateral way, to 

remove any possible noise or individual variability. Altogether, these two methods help us 

identify the most robust core states for each participant (APC) and across participants (ICA) 

respectively. In a traditional core-periphery network we would expect only one core state, 

whereas in a multi-core-periphery network we would expect multiple configurations of the core 

(Verma et al., 2016; Yan & Luo, 2019). 

To further investigate how cores vary over time, we analysed the change in core 

assignment across time windows at the participant level. We joined all time windows for one 

participant in a single matrix of the form NxT, where N are the number of nodes and T the 

number of time windows. We then calculated coresi/T, meaning the probability of a given node 

i being assigned a 1 (core) value across all time windows. The values were then averaged at 

the group level and thresholded at 90th, 80th, 70th and 50th percentiles to identify stable 

configurations. 

Community evolution 

Putative changes happening in communities were investigated using an algorithm for 

greedy Jaccard similarity over time windows (Thompson et al., 2017). Since the Louvain 

algorithm is non-deterministic and since it was applied on static time windows, the community 

label assignments may vary from one time step to the next. The greedy Jaccard algorithm re-
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assigns labels from one window to the next based on how similar the largest community at time 

(t+1) was to the largest community at time t, determining whether a community has 

significantly changed by either: (i) splitting into smaller communities; (ii) joining another 

community. After re-assigning community labels, we collated all time windows for a 

participant to form a NxT matrix, where N is the number of nodes and T the number of windows. 

We then computed the probability of nodes i and j appearing in the same community over time 

windows, saving the results in a new NxN matrix. We thresholded the matrix again at .4 to 

maintain only the higher probability values and ran 50 iterations of Louvain to identify temporal 

communities. 

Group-level community partitioning 

We sought to investigate possible differences between the individual and group-level 

community partitions at each time window. For this purpose, we computed an anatomical mask 

containing only shared voxels from the adjacency matrices of all participants in a movie. This 

resulted in an anatomical mask with 13,217 voxels for ‘Citizenfour’ and one with 13,568 for 

‘500 Days of Summer’. For each participant we ran the AFNI program 3dDegreeCentrality as 

before with a 10% edge density proportional threshold (Cox, 1996). The resulting correlation 

matrices were averaged across participants to create a single NxN matrix (N = number of 

nodes). The group matrix was further thresholded at a low correlation value of r = .1 to remove 

any possibly remaining weak connections: this was done because proportional thresholding 

leads to some participants possibly having weaker connections than others, that then drive 

down some correlations in the average, leading to disjointed components (Garrison et al., 

2015). The resulting matrix was transformed into a binary adjacency matrix of [0,1] values 

representing connectivity (1 = connection, 0 = not connected). The Louvain and core-periphery 

algorithms were computed on the group-level matrix using the same parameters as above (i.e., 

𝛾 = 1 for 100 iterations, 𝜏 = .4 thresholding and 50 further iterations for Louvain). 

In order to compare individual-level and group-level communities, we first calculated 

the total number of communities detected in a single time window in the two networks. To 

examine in more depth the differences in community partition, we re-assigned community 

labels using the previously described greedy Jaccard similarity algorithm. Then, we calculated 

how many temporal communities were identified in the two networks (i.e., how often a 

community was reassigned label). Finally, normalised mutual information (NMI) was 

calculated for each individual-level partitioning against the group-level one, to measure how 
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similar the individual communities were to the group average. Since NMI only works on same-

size vectors, we matched group and individual-level number of nodes by first finding shared 

voxels and then removing nodes in each participant that were not in the group network. 

Community organisation of language processing 

We aimed at understanding more in-depth the community and core-periphery 

partitioning of the neurobiology of language processing. For this, we computed a multiple 

linear regression using a canonical hemodynamic response function over each word in the two 

movies for every participant. The word regressor for ‘500 Days of Summer’ included 8,985 

words, while the one for ‘Citizenfour’ included 14,606 words in total. Each word regressor 

consisted of the start time of the individual word onsets in milliseconds. We included a contrast 

regressor for non-word timings, meaning times when no word was spoken in the movies, in 

our analysis. These non-word regressors were composed of 1,834 timepoints for ‘500 Days of 

Summer’ and 1,581 timepoints for ‘Citizenfour’. The regression analysis was performed using 

AFNI’s 3dDeconvolve function (Cox, 1996). Subsequently, we performed a mixed effects 

model analysis using AFNI’s command 3dMEMA, and thresholded the resulting t-statistic map 

at 𝜶 = .001. The resulting map corresponds to the activation produced by all words on average 

across two movies, which we called ‘words’ map.  

We extracted the voxel ‘xyz’ coordinates of the ‘words’ regions and used these to count 

how many unique community labels overlapped this region, with the caveat that the overlap 

had to include at least 10% of the ‘words’ map voxels. This means that if a community 

overlapped < 10% of voxels in the ‘words’ regions, it would not be considered as being 

involved in word processing. The 10% cut-off was arbitrary, but it eliminated very small 

clusters. We computed the unique ‘words’ communities at each window for each participant. 

We then calculated the percentage of the rest of the brain that were also part of these same 

‘words’ communities: for example, if community 3 (C3) significantly overlapped the ‘words’ 

map, we calculated the percentage as follows: 

(C3 all_voxels - C3 word_voxels)/ (all_brain_voxels - word_voxels)*100 

This was then summed over all communities overlapping the ‘word’ map and calculated 

for each window for each participant.  
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We also investigated how much the ‘words’ map contributed to the core regions at any 

given time point, by calculating the total of core ‘words’ nodes over all possible cores in a 

window. We then aimed at inspecting connections between core ‘words’ nodes and its 

associated periphery. The core-periphery algorithm does output additional information about 

core-periphery links by pairing these two into groups, much like community partitioning. From 

this information, we extracted those pairs overlapping core ‘words’ nodes and calculated the 

distribution of the associated periphery over the rest of the brain as a percentage.  

Results 

Core-periphery structure  

In order to investigate whether the brain is organised in a core-periphery architecture, 

we ran a novel algorithm that identifies core-periphery structures (Shen et al., 2021). Our 

results show that on average across time windows and participants, there were M = 922 (SD = 

107.9) core nodes (corresponding to 5.3% of grey matter voxels at 5mm3 resolution), with the 

remainder being peripheral nodes (or voxels). The number of core nodes varied across time 

and participants, with the range being 586 - 1257 (~3-7% of grey matter) core nodes. 

To determine whether there were different temporal configurations of cores, we ran 

APC on cores and selected an exemplar for each cluster. This resulted in M = 54.7 (SD = 6.1) 

core exemplars on average across participants. The core configurations changed every M = 11 

time windows (i.e., 160 sec) (SD = 6.5 time windows, or 110 sec) across participants, meaning 

that the core-periphery distribution in the brain varied every ~2-3 min (+/- 1 SD range = 50 sec 

- 270 sec) of the movie on average. 

In order to determine whether circumscribed sensorimotor and ‘language’ regions act 

as the most stable cores, we computed group spatial ICA on core exemplars. Out of the 100 

ICA components, we identified 16 stable non-noise components, which we then correlated with 

meta-analysis maps from the Neurosynth database (Table 4, Fig. 16). The results show that at 

the individual level (i.e., APC analysis) there were more core configurations than in the 

aggregate (i.e., ICA analysis). 
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Table 4. Top 3 associated Neurosynth meta-analysis functional 

terms for each of the 16 core group ICA components. These map 

mostly to sensorimotor regions (e.g., visual, auditory, motor) and 

Default Mode regions. The ICA maps were directly submitted to 

Neurosynth and correlated to existing meta-analysis terms. 
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Figure 16. Maps of the 16 core ICA components from the 

aggregate analyses. Multiple spatial configurations of cores 

existed at various time points. These included ‘language’ regions, 

primary visual and primary auditory cortices, sensory association 

areas, prefrontal areas and precuneus/posterior cingulate. Cluster 

size = 20. 

To further investigate whether auditory/visual sensorimotor regions, in particular, 

represented the most stable core nodes across subjects we measured how often voxels belonged 

to a core. To find stable temporal configurations, we considered the 90th, 80th, 70th and 50th 

percentiles of values across all participants. At the 90th percentile (Fig. 17), voxels in primary 

auditory and visual, and medial prefrontal areas survived, with a pattern showing r = .24 

correlation with the vision functional term from Neurosynth, as would be expected in a movie 

task. Below the 90th percentile, the voxel distributions had poor correlations (r < 0.1) with any 

Neurosynth meta-analysis term, and were not included here.  
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Figure 17. Map of most stable temporal cores (thresholded at 

90th percentile). The most stable and strong cores appear as 

sensorimotor regions (e.g., primary visual, auditory, some motor) 

and some DMN components (e.g., medial prefrontal and angular 

gyrus). Cluster size = 20. 

Community partitioning 

In order to identify putative functional components of the brain, we ran the modularity 

optimisation algorithm, Louvain. On average, the algorithm found M = 3.7 communities (SD 

= 0.5) at the final (consensus) step, with average modularity score MQF = 0.66 (SDQF = 0.06) 

(Fig. 18 shows example communities from consecutive windows of a participant). The final 

consensus partition modularity score was significantly higher than the initial partitioning score 

(MQI = 0.23, SDQI = 0.03) across windows and participants (t = 1038.9; p < 0.001). Higher Q 

scores are indicative of higher quality of the partitions obtained (Fornito et al., 2016b). 
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Figure 18. Community evolution in consecutive time windows 

in an example participant brain. Voxels are coloured based on 

their community allegiance. Time 1 is divided into 5 

communities, which are mostly stable until Time 2. At Time 3, 

the dark blue community disappears, being split between the 

cyan and pink communities. Cluster size = 20. 

To ensure that the communities identified with Louvain were non-random, as could be 

the case with some high Q values, we performed a non-parametric permutation test. The results 

indicated that the original partitions were significant (p-value < 0.001) across all participants 

and time windows compared to randomly shuffled communities.  

We then re-assigned community labels to track their evolution and putative dynamic 

behaviour over time. Our results show that on average individual-level communities underwent 

M = 59.4, SD = 8.9 variations over ~609 time windows on average (Supplementary Materials 

S4 shows an example video of variations).  
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In order to test whether communities formed stable temporal configurations, we built a 

matrix Dij for each participant where entry (i,j) indicates the probability of nodes i and j being 

part of the same community over time. In rare cases, the algorithm partitioned a participant’s 

network into large communities and smaller ones of 1-100 voxels; since the latter are most 

likely outliers due to noise, we only considered communities of size >1000 voxels, which was 

the minimum size of other participants’ communities. This produced M = 5, SD = 0.7 temporal 

communities on average across participants (Fig. 19 shows an example participant for each 

movie). 

 

Figure 19. Temporal communities from example participants in 

‘500 Days of Summer’ and ‘Citizenfour’. On average, we 

identified five communities stable over time. These mostly map 

to central sulcus (red), temporal (dark blue), occipital (cyan), 

prefrontal (pink), subcortical (yellow) regions across participants 

and movies. Cluster size = 20. 

Differences between individual and group-averaged communities 

Most of the network neuroscience literature uses group-averaged adjacency matrices to 

determine the brain network organisation. We aimed at comparing our community findings at 

the individual-level to the group average brain network in order to test whether individual 

networks are much more variable than the group.  

For a given time window, the group level had M = 5.5, SD = 0.7 communities on 

average, compared to the previously found average of M = 3.7 communities (SD = 0.5) at the 

individual level. Moreover, on average, group-level communities experienced less variations 

(M = 37.5, SD = 4.5; Supplementary Materials S5 shows a video of variations) than the 

individual-level ones. These group-level communities did not resemble any individual-level 

partitions, with a low similarity score (MNMI = 0.05, SDNMI = 0.02). 
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Network architecture in language regions  

We next aimed at inspecting the meso-scale network organisation of regions typically 

associated with language processing. We predicted that ‘language’ cores would form dynamic 

communities with distributed peripheral nodes. On average, across windows and participants, 

we found M = 3 communities (SD = 0.26) overlapping the ‘words’ map regions, meaning most 

of the communities in the individual networks overlapped the ‘words’ regions at any given 

time. These communities extended, on average, over M = 84.8% (SD = 6.9%) of the rest of the 

brain, showing largely distributed patterns.  

From a core-periphery perspective, M = 5.3% (SD = 1.1%) of core nodes fell within 

‘words’ regions across windows and participants. Moreover, we identified on average M = 

37.0% (SD = 7.0%) of core-periphery pairs across windows overlapped ‘words’ regions, when 

these were a core. Finally, we found that M = 50.0% (SD = 7.0%) of the rest of the brain (i.e., 

areas outside ‘words’ regions) acted as a periphery linked to ‘words’ core nodes. Note that the 

reason we find 50% of distributed brain regions whilst in the community analysis we found 

84.8% is that in the core-periphery analysis we excluded all other core nodes not in ‘words’ 

regions within the same core-periphery pairs, because we were solely interested in peripheral 

nodes. Therefore, ‘words’ core nodes were connected to other core nodes elsewhere in the 

brain, but we did not report the values here. 

Discussion 

In the present study we sought to investigate whether a highly flexible and distributed 

mesoscale architecture of the brain network would better support the neurobiology of language 

comprehension in the real world. We hypothesised that the model best supporting the 

complexity and variability of language processing would be a combination of core-periphery 

and modularity with added features: specifically, we predicted that multiple core-periphery 

pairs would map onto large and dynamic overlapping communities. 

Our results confirmed that in individual brain networks, both multiple core-periphery 

pairs and dynamic communities co-exist, but due to algorithm limitations we could not inspect 

overlaps. Here, various components of ‘language’ regions acted as cores at different times (Fig. 

16, components 3, 5, 7). These, in turn, connected to a periphery of other brain regions, together 

forming multiple large dynamic communities encompassing most of the brain. Overall, the 

picture is of a highly flexible network architecture that supports complex language features. 
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Neurobiology of language comprehension 

Traditional models of the neurobiology of language have proposed a very static and 

modular organisation of language processing regions, mainly limited to the STG, MTG, some 

premotor regions and IFG (Hickok & Poeppel, 2007; Poeppel et al., 2012). Within this context, 

network studies on language processing have assumed an anatomically constrained 

organisation of language, by using localiser tasks to select ‘language’ regions a priori for 

network analysis and building group-averaged networks (Chai et al., 2016; Fedorenko & 

Thompson-Schill, 2014). Although these studies have introduced some novelty into how we 

think about language through more process-oriented models, they fall short on methodologies 

and interpretations by suggesting that constrained and average network models are somehow 

representative of the richness and complexity of language in the real world (Seghier & Price, 

2018).  

We have demonstrated that this is indeed not the case when more complex and 

individual features of language are considered (see Chapter 3.1 and 3.2). This view is supported 

by a growing body of literature showing that the neurobiology of language is highly distributed, 

dynamic and variable (Huth et al., 2016; Price, 2010; Pulvermüller, 2018; Skipper et al., 2021). 

In accordance with this flexibility, our findings on individual participant networks revealed 

that ‘language’ regions acted as one of the multi-core structures connecting to a wide periphery 

of other brain regions. The latter spanned on average 50% of the rest of the brain, suggesting 

that language processing likely involves largely dynamic and distributed regions.  

Our findings further showed that the ‘language’ core-periphery nodes formed numerous 

pairs, together clustering into ~3 large communities overlapping >80% of other brain regions 

at any given time. Moreover, these pairs connected ‘language’ cores to other core regions 

elsewhere in the brain, indicating integration and sharing of information with other brain areas. 

Although the majority of previous studies have only identified at most 2 communities or 

networks involved in language processing (Fedorenko & Thompson-Schill, 2014; Hickok & 

Poeppel, 2007), others have demonstrated the existence of a main language network associated 

with more distributed brain regions still involved in language processing (Hertrich et al., 2020). 

In Hertrich et al.’s study, the main language network comprised more stable regions that 

overlapped core ‘words’ regions in our study, whilst their associated networks overlapped with 

peripheral nodes in our study (Hertrich et al., 2020). It is clear, then, that more complex and 

flexible models of the neurobiology of language are needed to account for both these findings.  
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Flexible network model 

What model best represents the complexity of language in the real world? Modularity 

alone tends to support dual-stream or ‘language network’ models due to its highly segregated 

and somewhat static nature (Newman, 2006). Although there is increasing evidence suggesting 

communities vary over time through hierarchical relationships (Bassett et al., 2011; Meunier 

et al., 2009), these still do not fully account for (i) individual variability and (ii) complex 

language features (e.g., context).  

A core-periphery organisation, instead, can afford high flexibility through a dynamic 

and loosely connected periphery (Borgatti & Everett, 2000). Possibly due to this high level of 

variability, this model is understudied in functional brain connectivity, where group-averaged 

networks are typically used. The only existing evidence for a core-periphery brain architecture 

has identified sensorimotor regions as highly stable cores across time (Bassett et al., 2013). 

This finding is replicated in our results, whereby these same regions (i.e., primary visual, 

auditory and some motor) were the most stable cores across time and participants, suggesting 

an important role of these regions for the stability of the entire network (Fig. 17).  

Although core-periphery networks are more variable and robust, they still assume the 

existence of a single core connecting to the whole periphery (Borgatti & Everett, 2000). To 

address these shortcomings, we proposed a combined multiple core-periphery and dynamic 

modular architecture, as these structures are known to co-exist in various scale-free and 

empirical networks (Kojaku & Masuda, 2017; Yan & Luo, 2019). Here, we identified 16 

different cores that were somewhat stable over time and across participants (Fig. 16). These 

grossly correlated with components of ‘language’, Default Mode network, episodic memory 

and sensorimotor regions from Neurosynth meta-analyses, possibly suggesting that group 

analyses have so far only identified stable cores rather than the whole distribution of activity 

arising from a cognitive task (Table 4). Indeed, this stability waned at the individual-level, with 

the multiple cores showing significant re-configurations every ~2-3 min (50 - 270 sec), possibly 

matching significant changes in movie stimulus (e.g., scene changes). 

Various core-periphery pairs were distributed over 3-4 large communities at any given 

time. Both these structures varied significantly over time and across participants, indicating a 

highly dynamic and flexible architecture (Fig. 18). These only became highly segregated when 

averaging communities over time (Fig. 19). Overall, the flexible network organisation that we 
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propose here accounts for (i) individual variability, (ii) contextual changes, (iii) shared 

processes between different cognitive domains. 

Group-averaged networks 

In order to situate our findings within the existing literature, we also computed group-

averaged network analyses, as these are a standard approach in network neuroscience (Gordon 

et al., 2017; Lehmann et al., 2019). We predicted that group networks would be less dynamic 

and flexible than any individual network, as the former are stripped of any individual variability  

Modularity in group-averaged networks identified the same number (~5-8) of 

communities as those reported in previous studies on modular structures in both anatomical 

and functional brain networks, with similar spatial patterns (Fornito et al., 2016b; He & Evans, 

2010; Meunier et al., 2010). These were mostly stable across time (Supplementary Materials 

S5), experiencing less variations than individual networks on average. A direct spatial 

comparison of time-matched group and individual networks revealed that the two had very 

little similarity (NMI = 0.05, where 0 = no identity). These results suggest a large divergence 

between individual and group networks. 

The group-averaged networks appear to thus be less flexible and dynamic, not 

representing any individual brain. This more static behaviour of group networks, and their 

divergence from individual networks, is well documented in the literature (Gordon & Nelson, 

2021). For instance, individual networks were shown to organise into more dynamic and 

complex structures than group-averaged networks (Braga et al., 2019; Braga & Buckner, 2017; 

Gordon et al., 2017), whereby these dynamics correctly predicted cognitive abilities and states, 

whilst group-averaged networks performed poorly (Barnes et al., 2014; Kong et al., 2019).  

Overall, these findings suggest that in order to investigate the network organisation that 

supports the neurobiology of language, individual network variability must be considered, as 

this is more representative of the flexibility of language in the real world.  

Limitations 

The present study investigated the functional brain network architecture in a naturalistic 

setting. Although naturalistic settings capture many complex behaviours, and therefore relate 

better to the real world (Aliko et al., 2020; Hasson & Honey, 2012), they also pose increased 
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difficulty of controlling stimuli and creating experimental manipulations (e.g., contrasts 

between two conditions).  

Thus, one limitation in the present study was that we did not test variations in language 

processing dynamics. For instance, we could have grouped time windows by their average 

word frequency into low vs. high frequency clusters; then we could have compared the 

dynamics of high and low frequency words to inspect language processing networks in more 

depth. As such, our findings on the specific dynamics of the neurobiology of language remain 

somewhat speculative, and we have thus planned to investigate these further in future work. 

Similarly, we have not shown definitively that core-periphery pairs overlapping ‘words’ 

regions are actually processing language. This may be achieved through similar methods as the 

one detailed above, where we contrast a linguistic and a non-linguistic stimulus while 

controlling for the effects of other movie features. Nevertheless, there is strong evidence and 

support for proposing that the peripheral regions associated with language core regions are 

processing language, as (i) these have correlated nodes by definition, and (ii) they together 

form communities that by definition represent functional segregation (Sporns, 2013a; Wig, 

2017). The only case where these peripheral nodes may not be performing language processing 

functions is if the language core regions (e.g., STG, IFG, MTG) were not performing language 

processing themselves. However, this is unlikely to be the case as these regions are consistently 

active during processing of any language stimulus/task (Chai et al., 2016; Hickok & Poeppel, 

2007; Skipper, 2015).  

Implications 

Several aspects of this work make it highly innovative: for one, we inspected the brain 

network architecture of individual participants at high resolution (voxel-wise), over long time 

periods (~2 h) and during a naturalistic setting. This resolution and complexity have never been 

attempted in previous work, to the best of our knowledge. Thus, the flexible and combined 

core-periphery and modular model that we have proposed provides a much more detailed 

representation of the brain network in the real world, accounting for individual variability and 

contextual changes.  

Moreover, we presented the first model of whole-brain network organisation that 

accounts for the natural complexity of the neurobiology of language. The flexible and dynamic 

organisation can help explain how the neurobiology of language changes during variations in 
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context; the division of language into large communities containing various core-periphery 

pairs allows for different language features to be processed simultaneously (periphery) while 

sharing and integrating information (cores). Furthermore, since ‘language’ regions were part 

of the multi-cores, and since the latter have high wiring costs, this model helps explain why 

lesions in ‘language’ regions cause language impairments (e.g., in aphasia more extensive 

damage to core nodes is significantly more disruptive than damage to peripheral nodes) 

(Fornito et al., 2016a; Zhao et al., 2011).  

As ‘language’ regions in our model connect to a wide periphery performing language 

processing, the model supports evidence from neuroplasticity studies showing that speech 

recovery after a stroke is driven by heterogenous rewiring processes that involve large parts of 

both hemispheres (Crosson et al., 2019; Geranmayeh et al., 2014; Kiran & Thompson, 2019). 

When cores are severed, peripheries closer to nodes may increase their connections to take on 

the role of new cores, restoring functions. This possible mechanism of recovery offers new 

insights into potential regions as targets of novel individualised speech therapies for aphasic 

patients. 

Conclusion 

We have presented a flexible model of the brain network architecture that supports 

language processing in the real world. We show that the brain is organised in a multiple core-

periphery network within a modular architecture of large dynamic communities. In this context, 

‘language’ regions act as one of the multi-core structures and connect to a large and dynamic 

periphery. These two components form multiple dynamic communities together, indicating a 

shared language function.  
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Chapter 4: Discussion and Conclusions 
 Language processing is a complex brain behaviour that depends and heavily relies on 

contextual information, an individual’s cognitive strategies and social and emotional context 

(Price, 2010, 2012; Skipper, 2015). As such, a model of the neurobiology of language 

processing must be able to explain and account for the richness of information and complexity 

that language encompasses. Existing models of the neurobiology of language have undeniably 

provided insights into how the brain supports language functions, identifying regions of the 

brain primarily in superior and middle temporal cortex and inferior frontal cortex that are 

important for processing of any language feature (Fedorenko & Thompson-Schill, 2014; 

Friederici, 2002; Hickok & Poeppel, 2007; Poeppel & Hickok, 2004; Rauschecker & Scott, 

2009). Although our understanding of language and the brain has advanced with these models, 

these are still extremely limited in their consideration of more complex language features and 

individual variability, and therefore do not comprehensively explain language in the real world 

(Skipper, 2015).  

In this work, we aimed at investigating language processing in a more naturalistic 

environment that better represents the complexity of language in the real world. For this, we 

collected neuroimaging and behavioural data of participants watching full length movies in a 

fMRI scanner, as we detailed in Chapter 2. This dataset is now one of the largest naturalistic 

datasets publicly available (Aliko et al., 2020; Madan, 2021).  

We proposed that, when investigating specific language features, language processing 

would be much more distributed, encompassing many other brain regions as appropriate to the 

feature, with unique activity patterns depending on context and embodied meaning of words or 

the goal of the listener. We further proposed that measures of central tendency and subtractive 

methods have obscured this distribution due to its high variability, instead only resulting in 

‘language’ regions. We hypothesised that the reason that ‘language’ regions consistently 

appeared in the aggregate is because these regions act as stable intermediary connectivity hubs 

forming one of many brain cores in a flexible core-periphery architecture. Here, we predicted 

that ‘language’ regions would connect to more distributed areas that form dynamic core-

periphery pairs in order to perform context-dependent language processing. Our work showed 

the following: 

• Chapter 3.1: we demonstrated that during pronoun resolution, unique character 

representations in situation models are reactivated in sensorimotor regions (i.e., mainly 

primary visual and auditory cortices), through a search in memory in episodic memory 
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regions (i.e., hippocampus, precuneus), supported by mentalizing areas (e.g., medial 

prefrontal cortex). 

• Chapter 3.2: we showed that individual sensorimotor embeddings of words activate 

uniquely distributed brain regions. These together encompass most of the rest of the 

brain. Here, ‘language’ regions constitute an intermediary hub, which thanks to its high 

centrality and stability, survives central tendency measures and subtractive methods. 

• Chapter 3.3: we identified that the brain network organisation supporting language 

processing is composed of multiple core-periphery pairs situated in large dynamic 

communities. Here, ‘language’ regions act as somewhat stable cores that form multiple 

communities with largely distributed core-periphery pairs. 

Overall, our experiments demonstrated that real-world language processing is better 

explained by a highly flexible network model composed of a multiple core-periphery 

architecture with dynamically changing communities, where ‘language’ regions direct a 

distributed and variable periphery of other brain regions. This warrants a move away from 

current dual-stream models of the neurobiology of language, to one that considers language as 

a complex, dynamic, distributed and flexible behaviour.  

In the following sections, we will first review a general description of the proposed 

model, then discuss in more detail how various components of the model support language as 

a complex behaviour, and finally suggest implications for our understanding of language and 

the brain, as well as for speech impairments. 

Network model of language and the brain 
In this work, we found that many distributed and variable regions are also involved in 

language processing, where ‘language’ regions act as high-connectivity hubs that are somewhat 

stable over time. As such, we propose that the brain organisation supporting language 

processing has a multiple core-periphery and dynamically modular architecture.  

Core-periphery structures involve two components: a set of highly inter- and intra-

connected nodes (core), and a set of loosely connected and dynamic nodes (periphery) (Borgatti 

& Everett, 2000). The presence of multiple core-periphery pairs affords the network more 

flexibility than typical core-periphery networks (where a single core and a single periphery 

exist) because these can form different core-periphery configurations at different times (Yan 

& Luo, 2019), thus supporting adaptation to a changing environment. The existence of a spatial 

core-periphery structure in brain networks has mostly been hinted at by previous research, 
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where a rich-club organisation (i.e., one form of core configuration) was identified (van den 

Heuvel & Sporns, 2011). The only two research articles, that we could find, inspecting in detail 

the existence of both core and periphery nodes in the brain identified a spatial and temporal 

core-periphery organisation where cores primarily involved Default Mode network (DMN) and 

sensorimotor regions (Bassett et al., 2013; Gu et al., 2019). Our results suggest that these same 

regions, in particular the anterior medial prefrontal cortex (mPFC) and angular gyrus (AG) of 

the DMN, and visual association areas, primary auditory and primary motor in sensorimotor 

regions, were the most stable cores across time. 

The majority of the other multiple cores, however, varied frequently over time, likely 

in response to contextual changes. These less stable intermediary cores involved ‘language’ 

regions (e.g., MTG and IFG), somatosensory association cortices, precuneus, posterior 

cingulate cortex and dorsolateral prefrontal cortex. Here, ‘language’ regions directly connected 

to a wide group of periphery nodes, encompassing about half of the rest of the brain and 

together forming various large communities, thus likely sharing a common function.  

The overall network profile of ‘language’ regions included connections to both 

peripheral regions and other core regions. Overall, these highly distributed language-related 

core-periphery pairs included, at different times, large parts of frontal regions, subcortical 

structures, precuneus, cingulate cortex, medial prefrontal areas, premotor cortex, 

supplementary motor area, and primary auditory and visual cortices. Together, this comprised 

> 80% of the brain.  

Although we found that communities spanned multiple core-periphery pairs and varied 

dynamically, due to algorithmic limitations we could not inspect whether communities 

overlapped nor if they formed hierarchical structures. However, network studies have indicated 

that core-periphery structures are usually an indicator of overlapping communities, where the 

overlaps are composed of cores (Yang & Leskovec, 2014). As such, we predict that core 

regions would sit at the overlap between communities, which was already shown to be the case 

in edge-based rather than node-based brain communities (de Reus et al., 2014). Similarly, some 

studies have found that rich-club organisations, which are tightly connected sets of hubs and 

therefore similar to cores, sit along the overlap between dynamic communities during 

development (Betzel et al., 2017). Moreover, hierarchically modular structures are a well-

established feature of brain networks (Alexander-Bloch et al., 2010; Meunier et al., 2009, 

2010). Fig. 20 below shows a diagrammatic view of the complete proposed structure. 
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Figure 20. Proposed model of the brain network architecture 
supporting language processing in the real world. Core regions 
(red circles) sit at the overlap between communities (green, blue, 
purple and orange circles). The cores connect to various core-
periphery pairs in each community (black circles), as well as 
intermediary hubs (yellow circles) together coordinating the 
periphery node dynamics. ‘Language’ regions are likely to 
behave as the intermediary (yellow) nodes in this diagram, 
coordinating with top-level cores (red) to direct processing in 
peripheries (black). Moreover, communities may form 
hierarchies that support related and progressively more complex 
language functions: orange and green communities are at the top 
of the hierarchy with stable cores, purple and blue are smaller 
communities with intermediary cores. 
 

In what follows we detail how this proposed network architecture with its dynamic and 

distributed nature may support various complex aspects of language processing. 

Semantics 

To understand the semantic meanings of individual words, the brain must be able to 

draw information from the embodied or evoked meaning of that word (Pulvermüller, 2013; 

Pulvermüller et al., 2005). Studies have identified brain regions outside of ‘language’ areas 

active when processing the embodied meaning of a word in that modality: for instance, action 

words activated primary motor regions while words describing colours activated visual cortices 
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(González et al., 2006; Kiefer et al., 2008; Klepp et al., 2019; Pulvermüller, 2013). Similarly, 

we found that largely distributed brain regions including primary auditory, primary visual, 

premotor, middle frontal, somatosensory association cortices and various subcortical structures 

were activated at different times and to various extents when processing sensorimotor 

embeddings of words.  

 A flexible multiple core-periphery and hierarchically and overlapping modular 

network supports notions of embodied cognition as follows (Fig. 21): 

• Different lower-level communities relate to different semantic categories. These 

communities may contain overlapping regions, most likely in core areas, that connect 

similar semantic categories to allow them to share information. These shared patterns 

of activity are known to support semantic category processing (Tomasello et al., 2017).  

• The semantic communities tile most regions of the brain forming unique distributions. 

This extensive and category-specific distribution is supported by various semantic 

studies (e.g., (Binder et al., 2009; Huth et al., 2016)), as well as our results in this work. 

• The modalities to which semantic categories relate to are likely to be composed of a 

mixture of core and peripheral nodes. Here, the cores would coordinate the general 

semantic category processing (i.e., semantic hubs), while peripheries would process 

more fine-grained semantic meanings of individual words. Here, studies have shown 

that ‘language’ regions may constitute some of the semantic hubs (Tomasello et al., 

2017). 
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Figure 21. Semantic processing model. Cores (red) form 
semantic hubs for sharing information between semantic 
categories (orange and blue large circles), each of which 
constitute a community. Individual core-periphery pairs 
(multiple colours) within a community of semantically-related 
items, help process individual words. 

Context 

Context represents a higher-level language feature, building complex relationships 

between the semantic meaning of single words in a sentence (Xu et al., 2005). Language cannot 

exist in the absence of context (Skipper, 2015), and as such it should be thoroughly 

investigated. There are three aspects of context that a comprehensive model of the neurobiology 

of language must consider: (i) since context is fundamental to language, the brain must 

constantly process it; (ii) since context can change rapidly, the brain must allow a flexible and 

dynamic environment; (iii) since the amount of context available varies, the brain must adapt 

to both higher and lower contextual information. 

As such, our model helps explain how these aspects of context are processed as follows 

(Fig. 22): 

• AG and anterior mPFC form highly stable cores that directly connect to ‘language’ 

intermediary cores. Indeed, AG and mPFC were shown to be active during processing 

of coherent narratives, with a particular role in decision-making, understanding 

concepts and inferring relationships between words and sentences (Ferstl & von 
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Cramon, 2002; Fletcher et al., 1995; Hasson et al., 2007; Humphries et al., 2006; 

Newman et al., 2001; Xu et al., 2005). For instance, we found activation of the mPFC 

during pronoun resolution irrespective of character. These are likely to support any 

contextual processing function. 

• Higher-level larger communities encompass multiple core-periphery pairs. Here, 

communities can vary dynamically to account for the rapid changes in context. Merging 

of two communities, for example, could happen when two previously separate contexts 

are joined in new events. 

• Each large community encompasses multiple smaller ones in the hierarchy. The smaller 

ones were likely involved in semantic category processing, which here are merged at 

the higher level to support context processing. 

• Lack of contextual information can be overcome by allocating more peripheral nodes 

and integrating various core-periphery pairs to process the ambiguities. 

• In the presence of high contextual information, less peripheral nodes would need to be 

employed to process the current context. As the brain is known to reorganise during 

predictive processes (Skipper & Zevin, 2017), these peripheries can instead be used to 

help predict upcoming information. 
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Figure 22. Simplified diagram of context processing 

model. ‘Language’ cores (bright red) support processing of 

different contexts (orange and blue large circles), each of 

which constitute a higher-level community. Many or few 

core-periphery pairs (multiple colours) are assigned to a 

community depending on level of contextual information 

(e.g., low vs high context). Not pictured here are smaller 

semantic category processing communities, that together 

form the blue/orange ones here. At the top of the 

architecture, the mPFC/AG (dark red) oversee these 

processes by being engaged in any context-processing task 

and directly connecting to ‘language’ cores. 

Imagistic representations and memory 

During discourse, the brain builds imagistic situation models of the meaning of the 

context (Altmann & Ekves, 2019; Zwaan et al., 1995). These are later activated when retrieving 

information about an event (Baldassano et al., 2018; Wittenberg et al., 2021; Yarkoni et al., 

2008). For instance, we showed that situation models active in episodic memory reactivate 

sensorimotor character representations (e.g., primary visual cortex) when resolving pronouns.  
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This process requires the brain to build imageries and conceptual representations of 

dialogues, connect antecedent events to new ones (Piai et al., 2016) and retrieve the correct 

representations to process the current context (Wittenberg et al., 2021). This particular higher-

level language behaviour is understudied (or rather inexistent) in all existing models of the 

neurobiology of language.  

Our model, with its high complexity and flexibility supports the formation and retrieval 

processes of situation models as follows: 

• During the situation model formation, core regions in context-processing and 

mentalizing regions (e.g., mPFC) connect to visual, auditory and motor cortices, as well 

as ‘language’ regions to build various character/event representations (Zwaan, 2016). 

The sensorimotor regions are composed of both intermediary cores and peripheries: the 

intermediary cores relate to general category areas (e.g., face vs object), while the 

peripheries around these cores form variable patterns relating to specific characters, 

places, events etc. The transfer of character/event specific information is facilitated by 

‘language’ cores. 

• After their creation, situation models are kept active in episodic memory regions (e.g., 

hippocampus, precuneus) (Berkovich-Ohana et al., 2020; Fletcheret al., 1995; 

Sreekumar et al., 2018; Wang et al., 2010), and continually probed by ‘language’ cores 

to which they connect to (Maguire et al., 1999; Oedekoven et al., 2017). These episodic 

memory regions are likely intermediary cores such that (i) they are continually active 

to allow language to access situation models, but (ii) are still flexible enough to switch 

between different situation models where needed. This flexibility is well documented 

in the literature (Duff & Brown-Schmidt, 2012). 

• During retrieval, ‘language’ cores and episodic memory regions form one community 

to facilitate transfer of information. This process activates a search in memory for the 

appropriate situation model. The more ambiguous the referent, the more peripheral 

nodes between these regions may be recruited to support the search. Once a situation 

model is identified, the community merges with primary visual/auditory/motor cortices, 

forming a larger higher-level community, in order to reinstate the pattern of activity for 

a specific referent through peripheral nodes.  
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Individual variability and shared features 

Variability in activity patterns of individual brains for a given task, is an important 

predictor of individual cognitive abilities and cognitive strategies (Heun et al., 2000; Miller et 

al., 2012; Seghier & Price, 2018; Szenkovits et al., 2012). Due to the consistent use of central 

tendency measures in neuroimaging studies, these variations have been mostly ignored in 

existing models of the neurobiology of language, instead favouring the most stable activity 

patterns across subjects. This has impoverished the extent of our understanding of how 

individual brains comprehend various language features and use them to build complex 

representations and thoughts. 

Our model, instead, is primarily based on individual variability and therefore is more 

fit to explain individual differences that underlie the neurobiology of language. At the same 

time, we have inspected shared features across participants, thus making our model fit for 

explaining both individual and shared (i.e., group) dynamics. Thus, we propose that our model 

supports individual differences and shared language features as follows: 

• Individual cognitive strategies are supported by dynamic and flexible peripheries and 

variable communities at the lower levels of the modular hierarchy. These together form 

different configurations in different individuals that support the different strategies. 

• Individual cognitive abilities are supported by the amount of integration between core-

periphery pairs and by levels of overlap between different communities. Supposedly, 

the higher the overlap of communities, or the higher integration between core-periphery 

pairs, the higher the cognitive abilities. 

• At the group-level, the presence of higher-level large communities and top-layer stable 

cores, ensure that all human brains have the same underlying structure and perform the 

same functions. However, the presence of lower layers of the hierarchy for both cores 

and communities, support the development of cognitive differences in individual brains. 

 

From the above examples, we conclude that our flexible and hierarchical model 

accounts for various complex language features as well as individual variability. Although we 

did not exhaustively detail every aspect of language and the brain, we did show that some of 

the most complex features can be explained by the model. Overall, we conclude that our model 

robustly addresses and supports both findings from existing neurobiology of language models, 

as well as evidence from neuroimaging studies of individual variability.   
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Implications 
Language is arguably the most complex behaviour of the human brain, and as such it 

requires a highly flexible model to account for its richness. Existing models of the neurobiology 

of language have not done enough to explain the variability of language processing in the real 

world, rather perpetuating localisational and static notions of language comprehension.  

Here, we proposed the first network-based alternative model of the neurobiology of 

language that accounts for real-world behaviour: this model is highly flexible, dynamic and 

distributed, and considers both individual variability and the intricacies of various language 

features, as we have shown. Our network-based model unifies the notions of previous language 

models with findings from individual variability studies, identifying a specific role of 

‘language’ regions as coordinative hubs in a wider and more complex language processing 

network. This has significant ramifications for our understanding of the neurobiology of 

language, as well as the methods commonly used in neuroimaging: it is clear from our work, 

that simple stimuli/tasks, central tendency measures and subtractive methods should be at least 

coupled with more naturalistic experiments, multivariate and inter-subject variability 

approaches, in order to inspect language features in their natural setting. 

As such, our model is much better suited for predicting individual cognitive abilities, 

for understanding how the brain adapts to task changes, and how neuroplasticity after damage 

may help re-establish lost functions. In this latter context, our model has significant 

implications for patients with aphasia, as it can help identify additional brain regions and 

pathways for rewiring that can be exploited through novel speech therapies. Existing models 

cannot explain the heterogeneity in symptoms nor recovery of aphasic patients (Geranmayeh 

et al., 2014), and there has been a push in the aphasia literature for a network-based approach 

to understanding recovery, as this may help better inspect individual pathways (Kiran & 

Thompson, 2019).   

Therefore, by accounting for individual variability and proposing a network-based 

approach, our model may help better understand the heterogeneity of aphasic symptoms and 

recovery pathways (Geranmayeh et al., 2014). Here, our model could significantly boost the 

development of individualised speech therapies, through the creation of programs aimed at 

rerouting connectivity to brain regions outside of ‘language’ areas in aphasic patients. 
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Future work 
In this work we have proposed a new flexible network-based model of the neurobiology 

of language. However, although we demonstrated a direct contribution of distributed regions 

in language processing and proposed pathways for these, we did not inspect the specific 

connectivity that various language features elicit. As such, we plan to investigate how word 

frequency and semantic context drive the connectivity profiles of language processing in the 

future. This would help elucidate the specific contribution in the network model of distributed 

vs ‘language’ regions. 

Moreover, although we have performed dynamic functional connectivity using a sliding 

window approach, this method has its limitations as it (i) requires setting arbitrary parameters 

(e.g., window length), and (ii) relies heavily on estimating connections from Pearson’s 

correlations rather than using more causational techniques. Thus, in order to verify our 

temporal results further, we have already begun conducting analyses using a novel data-driven 

approach called temporal delay, that uses a Hilbert transform function to capture the response 

delay between voxels’ timeseries (Saad et al., 2003). The preliminary results show that 

sensorimotor regions (e.g., primary motor, visual, auditory) experience the longest time delays 

relative to other voxels, with a temporal profile indicating that these regions take on the sensory 

input first and also gather the processed information from other brain regions at the end. This 

is in line with a role as top-layer stable cores. We plan to continue this analysis and include 

visibility graph analysis (VGA), a technique to estimate the length and dynamics of temporal 

windows for various brain regions (Sannino et al., 2017), in order to inspect the dynamics of 

language processing networks in more depth.  

Finally, in order to further investigate the relationship between network dynamics and 

individual cognitive strategies/abilities, we have implemented a long-short-term memory 

(LSTM) machine learning model that predicts the NIH toolbox cognitive scores from the 

individual sliding windows’ connectivity: this model has already achieved 98% accuracy in 

predicting various cognitive and emotional scores of individual participants from their 

connectivity profiles. Interestingly, different graph measures accurately predicted scores at 

different time intervals, suggesting that the movie stimuli at a particular time engage a given 

cognitive state through a specific connectivity profile. We plan to investigate this point further, 

in order to understand how the specific stimulus relates to the network dynamics, and how 

these translate to behaviour or cognitive state. This particular study would help elucidate how 

individual participants’ network features relate to cognitive strategies and abilities, but also to 
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their emotional state. This would allow us to not only understand language and the brain in 

more depth, but also investigate individual biomarkers of mental health. 

Conclusions 

This thesis presented a novel network-based model of natural language processing that 

supports the complexity and flexibility of language in the real world. We have demonstrated 

that a multiple core-periphery network architecture coupled with dynamic and largely 

distributed communities, best encompasses various aspects of language in its natural setting. 

This model supports both individual participant variability and shared language features and 

pathways, thus making it ideal for investigating individual differences in cognition, 

neuroplasticity and disease progression. 
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Supplementary Materials 
S1. Diagram of 3D DNN with decreasing kernel with 3 layers 

 

A) Diagram of the 3D DNN with a decreasing kernel size, with hyperparameters and architecture 

obtained from (Vu et al., 2020). The model had 3 convolutional layers, which were progressively 

removed starting from the top of the hierarchy (input layer) for testing. The final model included only 

the last convolutional layer with 3x3x3 kernel size. B) Diagram representing the branched architecture 
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containing visual and pronoun branches, with 3 convolutional layers; each branch comprised a single 

convolutional layer in the final model. 

S2. Diagram of 3D DNN with increasing kernel 
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Diagram of the 3D DNN model architecture and hyperparameters with increasing kernel size. The 

model contained 3 convolutional layers with kernel sizes starting at 1x1x1 and ending at 5x5x5. This 

architecture constituted one branch of the model, with the final model having the same architecture as 

S1 above. 

S3. Diagram of 2D RSN pretrained model 
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Diagram of the RSN model with its hyperparameters. Here 2D brain images (slices) were input into the 

visual and pronoun branch, each containing a set of convolutional and fully connected layers, whose 

weights were pre-trained using the ResNet50 model, and emerging in one long-short-term-memory 

(LSTM) layer to combine all 2D slices from one sample into one prediction. The two branches were 

finally merged into deeper fully connected layers. 

S4. Movie of individual level communities 

Link to the movie on an example of individual network communities from ‘500 Days of 

Summer’, as they change over time. The change in colour from one image to the next indicates 

that a community has evolved (e.g., has split, was born, was merged or died). Communities 

varied often, nearing ~60 variations over time. 

https://drive.google.com/file/d/1YhlbCgfMCx6Ogx1lOaUoPMqqyeFyEpHD/view?usp=sharing 

S5. Movie of group-averaged network communities 

Link to the movie on group-averaged network communities from the movie ‘500 Days of 

Summer’, as they change over time. The change in colour from one image to the next indicates 

that a community has evolved (e.g., has split, was born, was merged or died). Communities did 

vary, but less often (< 40) compared to individual-level communities. 

https://drive.google.com/file/d/1jcM3uI893U2uYum_Uy-v-3xyP0yXM6ZB/view?usp=sharing 

S6. Considerations on network algorithms for future work 

Network construction. As is the case for the entire network neuroscience field, there is still no 

consensus on the appropriate window and step length to use for the sliding window approach. 

Previous studies suggested window lengths of 30-60 sec and <50 sec step size, but no clear 

method is available (Preti et al., 2017). It would be interesting to apply various window and 

step lengths, to test whether we can capture different dynamics of the network. Here, we 

initially computed pairwise Pearson’s correlation values to build adjacency matrices. Various 

thresholding approaches are available: from absolute thresholding and proportional edge-

density ones, to more complex n,K-dependent thresholds (Garrison et al., 2015). We chose a 

proportional threshold of 10% edge density based on previous literature suggesting that this 

method is better suited for network comparisons (Alexander-Bloch et al., 2012), and based on 

qualitative inspection and available computational resources. We propose to try an absolute 

threshold in future, as it can reveal different features about individual variability, given that the 
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resulting individual networks may have different densities and thus structures (Garrison et al., 

2015). An understudied feature of network construction is the role of negative correlation 

values, which are removed in all network neuroscience studies. These may still represent 

important functional connections, which may be important to define feedback connections or 

disease, but they are always discarded as noise (Kazeminejad & Sotero, 2020; Parente & 

Colosimo, 2020; Zhan et al., 2017).   

Finally, we aimed at obtaining the highest possible resolution of the network which for our data 

was 3mm3. However, due to computational limitations, we chose to resample the network to 

5mm3 voxel-wise. In future, we aim to increase the resolution of our model further.  

Algorithms. Our novel core-periphery algorithm represents a significant improvement in 

detection of this meso-scale structure in various networks (Shen et al., 2021). The original 

definition of core-periphery was based on the estimation of a ‘coreness’ value for each node 

(Borgatti & Everett, 2000), but no algorithm so far is able to estimate this measure, to the best 

of our knowledge. Instead, studies have used proxy measures, such as k-core decomposition 

and centrality, to define core nodes (Fornito et al., 2016a). However, while all cores are hubs, 

not all hubs are cores (Borgatti & Everett, 2006). Our algorithm offers a more accurate estimate 

of ‘coreness’ and can detect multiple core-periphery structures that have been described in 

various networks (Yan & Luo, 2019), making it overall more suitable than existing algorithms 

to detect complex core-periphery structures (Shen et al., 2021). 

Finally, although the Louvain algorithm is widely used and has been extensively tested, it 

cannot detect overlaps between communities (Lancichinetti et al., 2010; Palla et al., 2005). 

These overlaps can be indicative of a shared cognitive function. Overlaps were recently found 

in protein-protein interactomes, where they acted as multiple cores of a core-periphery network  

(Yang & Leskovec, 2014). It would be interesting to then use a different algorithm, such as 

OSLOM that is designed to find overlapping communities (Lancichinetti et al., 2010), to 

identify potential overlaps and test whether our multi-cores act as shared nodes between two 

or more communities. Since OSLOM requires more computational resources, we aim at 

analysing our networks with this novel algorithm in the future. 
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