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Abstract

For centuries, neuroscience has proposed models of the neurobiology of language
processing that are static and localised to few temporal and inferior frontal regions. Although
existing models have offered some insight into the processes underlying lower-level language
features, they have largely overlooked how language operates in the real world.

Here, we aimed at investigating the network organisation of the brain and how it
supports language processing in a naturalistic setting. We hypothesised that the brain is
organised in a multiple core-periphery and dynamic modular architecture, with canonical
language regions forming high-connectivity hubs. Moreover, we predicted that language
processing would be distributed to much of the rest of the brain, allowing it to perform more
complex tasks and to share information with other cognitive domains.

To test these hypotheses, we collected the Naturalistic Neuroimaging Database of
people watching full length movies during functional magnetic resonance imaging. We
computed network algorithms to capture the voxel-wise architecture of the brain in individual
participants and inspected variations in activity distribution over different stimuli and over
more complex language features. Our results confirmed the hypothesis that the brain is
organised in a flexible multiple core-periphery architecture with large dynamic communities.
Here, language processing was distributed to much of the rest of the brain, together forming
multiple communities. Canonical language regions constituted hubs, explaining why they
consistently appear in various other neurobiology of language models. Moreover, language
processing was supported by other regions such as visual cortex and episodic memory regions,
when processing more complex context-specific language features. Overall, our flexible and
distributed model of language comprehension and the brain points to additional brain regions
and pathways that could be exploited for novel and more individualised therapies for patients

suffering from speech impairments.



Impact statement

The work presented in this thesis describes the first alternative model of the
neurobiology of language and the brain in the real world, using a network-based approach. This
model is highly flexible and can account for and explain the complexity and variability of
language processing in a natural setting, as we detail in the subsequent chapters.

The model we propose here has significant implications for our understanding of the
neurobiology of language, arguably the most complex and unique human behaviour. We show
that language processing is much more distributed, dynamic and flexible than any existing
other model suggests. Regions largely considered as the sole loci of language processing in
existing models, here take a specific role in coordinating and directing more distributed
language areas. By considering both the roles and dynamics of canonical language regions and
distributed regions, our model offers new insights on putative regions and pathways to exploit
for the development of novel speech therapies, to help facilitate the recovery of patients
suffering from aphasia (or any other speech disability).

Moreover, our network model has important implications for the study of any other
complex brain behaviour. Our model is the most detailed brain connectome to date, in terms of
spatial and temporal resolution, as well as mathematical description. Indeed, it is based on
individual participant networks at the resolution of single voxels, over the scale of a full-length
movie. Furthermore, it is described using six different network measures at the level of
individual voxels and participants’ networks, making it the most comprehensive network
model to date. These features make the model ideal for future studies on individual cognitive
abilities and cognitive strategies, for identifying biomarkers of mental health in individual
participants, and for developing personalised therapeutics and speech therapies.

Finally, as part of this work, we made publicly available the Naturalistic Neuroimaging
Database, which can be a resource for any neuroscientist investigating brain behaviours in
naturalistic settings. The database is currently one of the largest and most varied open-source
datasets available, offering limitless possibilities for research into brain behaviour and

development of new data-driven approaches.
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Chapter 1: Introduction

What makes us human? Although there are likely many different answers to this
question, it is undeniable that one of the defining features of our species is our ability to
communicate with words. As such, a major goal of neuroscience has long been to understand
how the brain supports speech production and perception. Although many have investigated
the neurobiology of language and proposed various models over the centuries, there is still
debate over how language and the brain work, with many questions still left unanswered. In
this thesis, we first discuss insights and shortfalls from existing models of the neurobiology of
language, then propose a novel network-based model of how language processing functions in

the real world.

Classical and contemporary language models

Interest in the neurobiology of language started early in the field of neuroscience, with
the pioneering work by Broca and Wernicke. Broca observed that patients with lesions near the
left hemisphere (LH) inferior frontal gyrus (IFG) suffered from speech production
impairments, drawing the conclusion that the brain region was associated with speech
production (Tremblay & Dick, 2016). Later, Wernicke identified another form of speech
impairment whereby patients were unable to comprehend speech due to lesions around the
superior temporal gyrus (STG), which was later reduced to an area near the LH posterior
sylvian fissure by more contemporary neurologists (Tremblay & Dick, 2016). This small region
was deemed the site of language comprehension. The classical model was recapitulated and
expanded by Geschwind, who showed that the arcuate fasciculus, a set of fibres connecting
temporal and inferior frontal regions, connected Broca’s and Wernicke’s language areas, thus

proposing a more network-like model (Geschwind, 1970) (Fig. 1).



Figure 1. Representation of the classical model where B =
Broca’s area, W = Wernicke’s area and A = arcuate fasciculus.
Broca’s area near the inferior frontal gyrus was considered the
site of speech production, while Wernicke’s area was considered
the site of language comprehension, with the arcuate fasciculus
linking the two in the classical model. Image from (Geschwind,
1970).

However, since its conception, the classical model has received criticism from several sources.
For one, it was found that lesions to Broca’s area, or rather its supposed locus in the brain near
the IFG, did not simply cause speech production but also language comprehension deficits;
similarly, lesions in Wernicke’s area (near the posterior STG) were associated with symptoms
of paraphasia, a deficit of speech production, as well as perception deficits, indicating that the
behaviours ascribed to each locus in the classical model were inaccurate (Binder, 2015;
Dronkers et al., 2017; Hagoort, 2016; Hickok & Poeppel, 2007). Secondly, aphasia disabilities
traditionally associated with lesions to Broca’s and Wernicke’s areas were found to also result
from lesions in regions outside these two classical areas, indicating that other areas are also
important to language processing (Mesulam et al., 2015; Poeppel et al., 2012). Thirdly, the
classical model’s anatomical loci could not be precisely located in any individual human brain,
due to high intersubject variability and cytoarchitectonic complexity of the loci, raising
questions about the structural basis of the model that suggests a universal locus for each of
speech perception and production functions across human brains (Amunts et al., 1999). Finally,
the model reduced language to overly simplistic ‘production’ and ‘perception’ behaviours from
lesion observations, but failed to inspect any individual language feature, such as phonemes

(Poeppel & Hickok, 2004; Tremblay & Dick, 2016). Therefore, although still widely discussed



and taught (e.g., in psychology and medical schools), the classical model has been largely
discredited.

As neuroimaging technologies, such as functional magnetic resonance imaging (fMRI)
and electroencephalogram (EEG), emerged, neuroscientists were able to collect more evidence
on brain activity as a response to particular stimuli. This allowed for more focus on processes
underlying the neurobiology of language and the brain. The most cited model to date is the
dual-stream model put forward by Hickok and Poeppel (Hickok & Poeppel, 2007; Poeppel &
Hickok, 2004). The origin of the model came from an incongruence in the clinical literature,
whereby it was found that some patients presenting damage in frontal and inferior parietal
regions were unable to distinguish syllables but could still understand words, and vice versa
(Hickok & Poeppel, 2007). Later neuroimaging studies identified another paradox: during
various speech perception tasks, regions around both Broca’s and Wernicke’s areas were
activated, whilst damage to either of the two areas resulted most often in speech production

deficits rather than perception deficits (Hickok & Poeppel, 2007).

The dual-stream aimed to resolve these paradoxes and provide a unifying and
mechanistic model of language comprehension and production. The model proposes that the
neurobiology of language is divided into two streams, one ventral and one dorsal, involved in
speech perception and production respectively (Poeppel & Hickok, 2004). The dorsal stream
relates articulatory and auditory signals and maps to premotor cortex, posterior IFG, Sylvian
parietal temporal region (Spt) and insula; the ventral stream maps sound to meaning and
activates superior and middle temporal gyri (STG, MTG) in a mostly bilateral fashion (Hickok
& Poeppel, 2007). The model allows some convergence between speech production and
perception circuits in the superior temporal sulcus (STS) for phonological processing (Hickok
& Poeppel, 2007). As can be seen in Fig. 2, the dual-stream model involves few more areas
than the classical model, although still primarily in the LH temporal lobe, and these map around
what might be postulated as Broca’s (e.g., IFG) and Wernicke’s (e.g., Spt) regions in the
classical model (Nasios et al., 2019).

10



a Via higher-order frontal networks
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Articulatory network Sensorimotor interface Input from
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(bilateral) (bilateral) [cy CIStTUS
Combinatorial network | Ventral stream Lexical interface ‘
aMTG, alTS —— pPMTG, pITS
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Figure 2. Schematic representation of the dual stream model,
where areas in purple represent the ventral stream and in blue the
dorsal stream. Image from (Hickok & Poeppel, 2007). The
ventral stream maps sound to meaning (e.g., language
comprehension), while the dorsal stream maps sound to

articulatory movements (e.g., speech production).

From a mechanistic standpoint, the network proposed in the dual stream has only been
tested by one study, that we are aware of, using diffusion tensor imaging (DTI) and simple
speech production and perception tasks (e.g., listen to sentences vs pseudo-sentences) (Saur et
al., 2008). The authors first identified ‘language’ regions by subtraction and maximum peaks,
then mapped the underlying white matter tracts to these regions. The results indicated that the
arcuate and uncinate fasciculi underlie the dorsal and ventral pathways respectively (Saur et
al., 2008). Although this was taken as evidence for the dual-stream model processes, regions,
and connectivity, the study had methodological shortcomings that might render the findings
questionable, such as (i) using simple tasks as representatives of the complex behaviour of
language in the real world; (ii) assuming that task subtraction isolates the specific language
component; (iii) assuming that there should be functional specificity for language regions; and
(iv) assuming that structural connectivity matches functional connectivity. Perhaps the biggest

contribution that the dual-stream model has offered is that it has started a conversation about a
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network representation of the neurobiology of language, and has begun to consider language

as a slightly more complex human behaviour (Skipper, 2015a).

Although it has not been thoroughly tested as a model, most of the current literature on
the neurobiology of language frames results in terms of dual-stream models, assuming that the
regions and connections proposed by the model are correct. Indeed, studies on healthy controls
and aphasic patients have both endorsed the localised and constrained view of the dual-stream:
for instance, lesion studies investigating language processing deficits in stroke survivors have
pointed to similar pathways as those proposed by the dual-stream, with deficits that relate to
the functional role of those pathways (i.e., lesions to ventral pathway result in comprehension
deficits) (Fridriksson et al., 2016), and task-based neuroimaging studies have repeatedly
reported those same regions (for an extensive review on this issue see (Price, 2012)). Strikingly,
across various language meta-analyses the same regions (roughly IFG, STG, and MTG) plus a

few neighbouring areas appear repeatedly, as shown in Fig. 3.

Figure 3. Overlap of various language meta-analysis terms from

Neurosynth (Yarkoni et al., 2011). These include the meta-
analysis terms ‘language comprehension’, ‘comprehension’,
‘sentence comprehension’, ‘speech perception’, ‘language
network’, ‘language’. Yellow indicates the highest overlap
among all meta-analysis terms, orange/red represents medium
overlap, and blue represents unique patterns to a single meta-
analysis term. Here, the IFG, STG, MTG and parts of premotor
cortex consistently appear as the highest overlapping regions

across meta-analyses.
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This has given the impression that unique language processes occur in the same brain
loci, sharing the same pathways and possibly overlapping each other in discourse
comprehension. Although the authors of the dual-stream model have criticised the classical
Broca-Wernicke view for its localisational and simplistic explanation of the neurobiology of
language, the dual-stream model arguably suffers from similar shortcomings. Here, a variety
of complex language processes were simplified and grouped into either ‘speech perception’ or
‘production’, rather than having their respective features inspected in detail in contextually

meaningful settings.

Distributed language regions

Are the proposed classical and dual-stream model regions the only frameworks to
explore language and the brain? A growing body of literature has begun to inspect more
specific and complex processes of language comprehension and individual differences. This
work suggests that the neurobiology of language is more distributed and dynamic than what
the classical or dual-stream model has presented (Price, 2012; Skipper, 2015a). Here we (non-

exhaustively) review some examples of this work.

Individual differences

Studies on individual differences in the anatomy of ‘language’ regions and the
functional organisation of language processing have raised questions about current models of
the neurobiology of language processing and the brain. For instance, studies have shown that
there is a high amount of intersubject variability across ‘language’ regions, and that using an
averaged ‘language’ map fails to correctly predict individual variations, especially in the case
of aphasic patients’ symptoms and recovery outcomes (Ojemann, 1979). For instance, studies
have found that the between-subject variability in the cytoarchitecture of Broadmann areas
44/45 (i.e., regions mapping to Broca’s area) is significantly higher than the cytoarchitectural

within-subject variability (Amunts et al., 1999).

Since individual brains vary anatomically, and not only around ‘language’ regions, it
follows that their functional activity patterns will vary as well, with implications for language
processing (Juch et al., 2005). For instance ‘language’ regions were found to have some of the
least functional overlap between subjects when compared to other brain regions (e.g., motor
areas) (Frost & Goebel, 2012). Moreover, individual functional variability studies during

performance of language tasks have shown that participants’ individual frontal and temporal
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activity peaks were heterogeneously and widely distributed, and that only the group averaged
centre of mass fell within the ‘language’ regions proposed by neurobiology of language models
(Burton et al., 2001). Further supporting this finding, intersubject variability studies on memory
retrieval of words have shown that individual participants activate unique and distributed
activity patterns, which include among others the supplementary motor area and prefrontal
cortex, which relate to the participant’s ability to ‘visualise’ words (Miller et al., 2012) or to
individual cognitive strategies during the retrieval process (Heun et al., 2000). These variations
are not due to noise, but could result from one of three features: (i) they represent a genetic
feature of the individual, (ii) they relate to a difference in cognitive strategy, or (iii) they are a

result of changes in contextual information (Seghier & Price, 2018).

Semantics

Individual differences represent only one source of variability during language
processing. Another source is individual word meaning. Here, neuroimaging studies have also
identified regions outside of ‘language’ areas that are important for processing semantic
embeddings of words, revealing that word semantics map to brain regions based on the
meaning that each word embodies or evokes. For instance, distinct semantic categories gave
rise to very different activity patterns, particularly around sensorimotor areas, matching the
perceptual and action meaning that the word embodied (Mitchell et al., 2008; Pulvermiiller,

2013).

Supporting this embodied cognition theory, studies have demonstrated that processing
of semantic embeddings of words involves activation of not only ‘language’ regions as
‘semantic hubs’, but also of sensorimotor regions when listening to words evoking action (e.g.,
‘kick’), of the olfactory cortex when listening to words related to smell (e.g., ‘garlic’), of the
visual cortex when listening to words evoking colours (e.g., ‘red’), and of the auditory cortex
when listening to words evoking sounds (e.g., ‘telephone’) (Gonzalez et al., 2006; Kiefer et al.,
2008; Martin et al., 1995; Tomasello et al., 2017). Moreover, when relating to time information
describing past and present events, which are temporally concrete, these processes map onto
visual and parahippocampal cortices usually associated with concrete object processing; whilst
when describing future intentions, which are temporally abstract, these activate regions in the
medial prefrontal cortex, temporo-parietal junction and posterior cingulate usually associated

with the mentalizing network (Gilead et al., 2013). These distributed regions activate within
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50-150 milliseconds of the word onset, meaning that they are not likely post-perceptual

processes (Garcia et al., 2019; MacGregor et al., 2012; Shtyrov et al., 2014).

Using voxel-wise modelling, Huth et al. showed in higher spatial detail that words
belonging to the same semantic category activate unique activity patterns mapping to the
perceptual region they relate to, revealing that the overall semantic map extends to most of the
rest of the brain (Huth et al., 2016), such as the fusiform, hippocampus, pars orbitalis,
cerebellum, superior and middle frontal gyri (Ghosh et al., 2010; Price, 2010).

Formulaic and overlearned speech

Another complex feature of language processing that current models of the
neurobiology of language fail to address is that of formulaic expressions. Formulaic
expressions are multi-word expressions that are overlearned, and these comprise a large portion
of our everyday speech. They include, among others, idioms, proverbs, expletives, common
speech formulas such as ‘I don’t know’, and overused words or sentences that may vary from
individual to individual (Van Lancker Sidtis & Sidtis, 2018). An extensive literature on aphasia
has revealed that, even when large portions of the LH temporal lobe are damaged, such as in
global aphasia, patients retain the ability to produce formulaic expressions, such as overlearned
lists (e.g., Monday, Tuesday, Wednesday, etc.) and swear words (Bridges & Van Lancker
Sidtis, 2013). Given that ‘language’ regions are extensively damaged and therefore cannot be
processing formulaic speech in aphasia, three alternative routes have been proposed: (i) RH
homologous ‘language’ regions, (ii) subcortical regions, or (iii) sensorimotor regions are

involved in processing formulaic expressions (Sidtis, 2014; Van Lancker Sidtis, 2012).

There is weak support for the first, with evidence coming from studies on damage to
RH homologous ‘language’ regions, showing that this results in significantly less use of
formulaic language (Sidtis, 2014). In support of the second, patients suffering from Parkinson’s
disease (PD), whose subcortical areas are targeted by the disease, progressively lose the ability
to produce formulaic expressions (Bridges et al., 2013; Lee & Van Lancker Sidtis, 2020; Van
Lancker Sidtis et al., 2015). Moreover, patients suffering from Alzheimer’s disease (AD), who
have intact subcortical structures, produce significantly more formulaic expressions than

healthy controls (Bridges & Van Lancker Sidtis, 2013; Van Lancker Sidtis et al., 2015).

In support of the third, in a recent study we tested the hypothesis that overlearned speech

is processed by a uniquely distributed and less fixed network of brain regions. Here, we showed
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that overlearned sentences are processed in sensorimotor regions before the typical
hemodynamic response rises, and that overlearned sentences are predicted faster and more
accurately than previously unheard sentences (Skipper et al., 2021). Moreover, ‘language’
regions were not involved in processing overlearned speech, with the brain’s connectivity
profile undergoing significant reconfiguration with increased learning (Skipper et al., 2021).
As overlearned sentences are very common in everyday speech, our results suggest that
language processing in the real world does not solely involve ‘language’ regions but is widely
distributed, and that specific features of language should be investigated to probe the full extent

of the neurobiology of language (Skipper et al., 2021).

In line with some of the above findings, the limited literature on expletives has provided
further support for a distributed nature of language processing. Expletives constitute a more
complex formulaic language feature, as these are not simply formulaic expressions but are also
significantly driven by context. The same swear word, in fact, can have both a negative or
positive emotional meaning, depending on the context in which it is uttered (Hansen et al.,
2019). Some fMRI studies have revealed a distributed activity in anterior cingulate cortex,
insula, and thalamus involved in producing and processing taboo words, with the IFG involved
in modulating the emotional meaning and social context of swear words (Hansen et al., 2019;
Sulpizio et al., 2019). MRI studies on patients suffering from Tourette’s syndrome (TS) showed
that the increased swearing in TS patients is likely a result of reduced IFG activity, basal
ganglia dysfunction, and activity in the insula, thalamus, and cerebellum, pointing to an
involvement of subcortical structures in processing swear words (Finkelstein, 2018; Van
Lancker & Cummings, 1999). These observations suggest that processing of formulaic
expressions happens away from ‘language’ regions and into sensorimotor and subcortical
regions, depending on how much they are overlearned and on the context in which they are

presented (Van Lancker Sidtis & Sidtis, 2018; Sidtis et al., 2018).

Aphasia

Current models of the neurobiology of language are largely based on clinical
observations of language deficits in aphasic patients, but they have nonetheless failed to
consider what happens in the brain during recovery. Immediately after a stroke, spontaneous
neuroplasticity starts a rewiring process that aids language recovery (Stemmer, 2015). This
process happens heterogeneously in individual aphasic patients across large portions of both

brain hemispheres, and leading to various degrees of recovery, suggesting that (i) recovery is
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aided by distributed brain regions processing language, and (ii) these vary from person to
person (Stemmer, 2015; Wilson et al., 2019). Some of the regions involved in these
neuroplasticity processes are thought to involve subcortical and medial regions, such as

precuneus and basal ganglia (Schevenels et al., 2020).

Although there is still large debate and little evidence on the exact brain regions that
are involved in neuroplasticity after stroke (perhaps due to the heterogeneous nature of the
recovery process) (Wilson, 2020), there are arguments in favour of a distributed network of
language processing from studies on lesions to other brain regions that also cause language
impairments. For instance, thalamic stroke causing lesions to the LH thalamic area also result
in aphasia, demonstrating that subcortical regions are involved in some form of language
processing (Fritsch et al., 2020). These regions are thought to help in attentional processes
underlying the neurobiology of language (Crosson, 2013; Fritsch et al., 2020). Moreover,
patients with cerebellar damage have also been reported to experience aphasic symptoms, with
the cerebellum proposed to help in speech articulation, in temporal sequencing of language, or
in predictive processing during language comprehension (De Smet et al., 2013; Marién et al.,

2014; Skipper & Lametti, 2021; van Dun & Marién, 2016).

Measures of central tendency

As we have seen, when studies investigate individual variability or more complex
language features, they identify distributed language processing regions that paint a complex
picture of the neurobiology of language. However, the question remains as to why ‘language’
regions consistently appear in task-based studies and meta-analyses (see Fig. 3). One obvious
answer is that, as the dual-stream model suggests, these are the only true language processing
regions, and what the distributed language literature has found are regions that simply share
information with language processing ones (e.g., attention or mentalizing network). An
alternative, however, is that ‘language’ regions appear as a result of the combined use of the
subtractive method and central tendency measures, which pervade most of the neuroimaging

literature.

Indeed, most of the existing neuroimaging literature has not considered (i) language as
a complex behaviour, instead relying on simple stimuli/tasks and averaging methods, (ii)
individual anatomical and cognitive differences between participants’ brains, instead using the
aggregate, or (iii) shared processes between language and other cognitive domains, instead

using simple stimuli/tasks and subtractive methods.
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For example, using simple stimuli/tasks and averaging over them only identifies shared
brain regions across all of the conditions. Most likely these include: (i) primary auditory regions
related to the listening task and (ii) some domain-general or low-level language processing

region that activate with any language stimulus/task (e.g., STG, IFG, MTG).

Adding to this, most studies aggregate over participants to identify some shared patterns
of activity. These stable regions are likely to be (i) primary auditory regions as they all hear the
same stimuli, (ii) ‘language’ regions that consistently activate with any language task, and (iii)
perhaps some domain-general cognitive strategy regions that are common to all participants.
However, individual brains vary both anatomically and functionally (Burton et al., 2001; Frost
& Goebel, 2012), indicating that aggregate methods (i) remove individual functional variability
(Seghier & Price, 2018), and (ii) mistakenly assume that different individual brains can be

accurately mapped onto an aggregate cytoarchitecture (Amunts et al., 1999).

Finally, using simple stimuli/tasks with subtractive methods would map the activity to
small regions that are considered to be task-specific, revealing nothing about possible
interactions with other cognitive domains that are still important to language processing.
Instead, these complexities are likely to be ignored because the subtractive method presumes
that the activity from the comparison task (e.g., nonwords) does not overlap with the language
feature being investigated (e.g., words). However, the two tasks share some acoustic features
and likely both require the involvement of other cognitive domains (e.g., attention, decision-
making) for processing, as some studies have indeed shown (Mattheiss et al., 2018).
Nevertheless, these overlapping features are considered to be irrelevant to language processing
under the assumption that brain functional domains are functionally segregated: this has led to
the tautology of using language localisers based on task subtraction to study the neurobiology

of language (Blank & Fedorenko, 2020; Fedorenko et al., 2010; Pritchett et al., 2018).

These central tendency and subtractive methods have been used in nearly all the
existing literature on language comprehension, along with simple stimuli and tasks. For
instance, neuroimaging studies investigating lower-level lexical features, such as phonemes
and syllables, typically present participants with stimuli such as ‘be’ and ‘po’ sounds and
instruct them to press a button when they distinguish a difference (Goranskaya et al., 2016).
These in no way represent the lexical features they are attempting to isolate (Skipper, 2015).
Other examples of simple task-based methods involve asking participants to listen to single

words and pseudo- or nonwords and subtracting the BOLD activity between these groups
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(Braun et al., 2015). Again, this method reduces language processing to a segregated function,
incorrectly assuming that the activity produced by processing nonwords should be completely
separate from that of processing words (Mattheiss et al., 2018). Overall, these have led to a

poor representation of language in all its complexity and richness.

Hubs

Central tendency methods have contributed to the reduction of various language
features’ dynamic and distributed behaviour into a focus on only ‘language’ regions, as these
represent a consistently shared area, perhaps due to their proximity to the auditory cortex that
receives acoustic inputs. Although it may be tempting to conclude that ‘language’ regions must
therefore be the only true language processing areas, a more plausible explanation is that they
are a convergence zone where connections from other dynamic language processing brain areas
pass through. It is thus likely that ‘language’ regions constitute high-connectivity hubs that
control and direct a wider network of distributed and variable brain regions during language

comprehension.

Hubs are defined as regions (or nodes) where a significant number of connections (or
edges) go in and out of (Fornito et al., 2016). Hubs can relate to the structural white matter
substrate, in which case they represent nodes of high connectivity for neural connections, or to
the functional organisation, in which they represent nodes of high functional influence for the
rest of the network (van den Heuvel & Sporns, 2013). Most of the research in this area has
focused on global brain hubs, identifying these as the cingulate, precuneus, insula, superior
frontal and superior temporal cortices in both functional and structural networks (De Domenico
et al., 2016; Hagmann et al., 2008; van den Heuvel & Sporns, 2011). These are considered the
‘backbone’ of the brain network, directing communication and interaction for all other regions
(Fornito et al., 2016). These findings seem to indicate that aside from the STG, no other
‘language’ region acts as a hub, neither in anatomical nor functional networks. However, recent
neuroimaging studies have proposed a hierarchical organisation of hubs in the functional brain
network, with the above-mentioned regions sitting at the top of the hierarchy, and other regions
acting as weaker intermediary hubs, where they exert their influence at a more regional
functional level (van den Heuvel & Sporns, 2013). These intermediary hubs have been classed
in two categories: (i) either they help in connecting two functional modalities together so that
they may share some processing and improve integration (i.e., connector hubs), or (ii) they

have a fundamental role in directing information flow and processing within their own
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functional domain, increasing coordination (i.e., provincial hubs) (Fornito et al., 2016;

Hagmann et al., 2008; Joyce et al., 2010; van den Heuvel & Sporns, 2013).

In this hierarchical organisation of hubs in the brain, ‘language’ regions were found to
act as provincial hubs across participants, in various language and non-language (e.g., motor
learning) tasks (Bassett et al., 2013; den Ouden et al., 2012; Li et al., 2020). Studies on the
functional connectivity of language processing are few, perhaps because most of the literature
to date has assumed that the ‘language’ regions represent the full extent of the neurobiology of
language. The limited existing studies focusing on whole-brain functional connectivity and
individual network variability have identified a much more distributed and hierarchical
‘language network’, within which ‘language’ regions constitute the top of the regional
hierarchy as hubs (Akiki & Abdallah, 2019; Hertrich et al., 2020). Because of their prominent
appearance and role in causing aphasia, some of the lesion literature has also now begun to
propose that ‘language’ regions are hubs, indicating that they have a central function in a wider
neurobiology of language network (Mesulam et al., 2015; Migliaccio et al., 2016). Indeed,
during the early stages of recovery, the brain attempts to rewire around ‘language’ areas at first
and extends to other brain regions in later stages (Schevenels et al., 2020; Stemmer, 2015;
Wilson et al., 2019). Overall, this evidence tentatively points to ‘language’ regions as being
part of a hierarchy of hubs with the STG as a global brain hub, and IFG, MTG, etc. as

intermediary hubs, with putative other regions around these yet to be properly defined.

Network organisation of the brain

From this follows that ‘language’ regions result from averaging and subtracting
methods likely because (i) they are a commonly activated feature of all language stimuli/tasks,
and (i) some of the ‘language’ regions are global hubs (e.g., STG), with the others likely
connecting and distributing around these to form intermediary structures. It seems clear, then,
that if we want to understand the role of ‘language’ regions as putative hubs, as well as other
regions’ contributions to language processing, a better approach to investigating the
neurobiology of language may be through the use of graph theory. I will first provide a brief

overview of the main network theory measures.

Graph theory

Graph theory aims at describing how elements (e.g., people, brain regions, proteins,

etc.) are connected through mathematical models (Rombach et al., 2014). There are three layers
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at which a network can be described: global, mesoscale, and local (Rombach et al., 2014).
Intuitively, global network measures provide a general overview of the network’s properties as
a whole: for instance, global efficiency measures the network’s ease in communicating across
all points (Preti et al., 2017). The mesoscale organisation represents the division into
components of the network: for instance, the network may be partitioned into functionally
segregated components, namely communities (Newman, 2006). Finally, the local level
describes how each node behaves within the network: for instance, one could measure how
many connections pass through any given node, namely node centrality (Borgatti & Everett,

20006).

Although the global measures may provide some insights on differences between
networks, such as comparing healthy control and patient networks, most of the existing
biological research focuses on the mesoscale and local measures, as they provide more detailed
representations of a network. Two main algorithms are used to assess the mesoscale
organisation, namely community partitioning and core-periphery (Rombach et al., 2014).
Community partitioning is an ongoing issue in network theory, given the difficulty in
partitioning a network into correct functional communities without any prior knowledge;
depending on the algorithm and parameters chosen to partition a network, the resulting
community organisation may vary (Fortunato & Barthélemy, 2007). Among the many
community partition algorithms, the most widely used and accepted is the Newman-Girvan
modularity maximisation algorithm, which separates communities if their intra-connectivity is

significantly higher than if they were to be joined to another community (Newman, 2006).

Core-periphery algorithms, instead, separate the network into two components,
whereby cores must have high intra- and inter-connectivity, while the periphery should be
dynamic and loosely connected to the rest of the network (Borgatti & Everett, 2000). Despite
its seemingly simple definition, core-periphery algorithms are scarce, or they inaccurately
estimate cores using proxy measures such as node centrality (Borgatti & Everett, 2006; da Silva

et al., 2008).

Among centrality measures, the most widely used are: (i) degree, which measures
overall connections of a node; (ii) eigenvector, which measures influence of a node with respect
to its neighbours; (iii) betweenness, which measures how important a node is for bridging

groups of other nodes; and (iv) closeness, which measures how easy to reach a given node is
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(Barucca et al., 2015; Telesford et al., 2011). How have these measures been used in

neuroimaging?

Network neuroscience

Most of the neuroimaging literature focusing on the functional connectivity of the brain
is based on group-averaged resting-state networks (RSNs), which are collected in the absence
of a task (or rather, the participant is left lying in the scanner) (Sporns, 2013). Research on
RSNs has found that the brain network contains highly stable global hubs, as previously
described (De Domenico et al., 2016; Hagmann et al., 2008; van den Heuvel & Sporns, 2011).
These hub regions have important roles for a network’s integration and communication (van
den Heuvel & Sporns, 2013). At the mesoscale level, five to eight functional communities were
identified in RSNs grossly mapping to regions such as central regions, parieto-frontal regions,
medial-occipital areas, fronto-temporal and lateral-occipital cortices, matching partitions of the
anatomical network (Chen et al., 2008; Meunier et al., 2010). These functional communities
were shown to be relatively immutable over time (Hutchison et al., 2013). The overwhelming
consensus from the resting-state network studies seems to be that (i) brain regions have
specialised into highly segregated functional modules (i.e., having high modularity), (ii) stable
hub regions promote integration between these communities, and (iii) the brain network is

highly static.

Is the brain segregated, integrated, or both? And is the brain static? Recent task-based
studies on functional connectivity have shown that as we move from rest to more complex
tasks, the architecture of the network changes dramatically to become less segregated and more
integrated (Shine et al., 2015; Yue et al., 2017). Moreover, these studies demonstrated that the
brain architecture is much more flexible than previous RSN studies reported; here, modularity
is not a static feature, but is highly related to functional integration (Park & Friston, 2013). This
means that although certain regions are more likely to perform a given function, they are not
necessarily bound to it; their role depends on how to best minimise energy requirements and
increase efficiency for the entire network (Bassett & Bullmore, 2006). These dynamics are
tightly controlled and are important for the proper functioning of the brain. They aid during
learning and neurodevelopment by undergoing significant rearrangements (Bassett et al., 2011;
Guetal., 2019), but when disrupted may lead to onset of disease (Alexander-Bloch et al., 2012;
de Haan et al., 2012).
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Control of these dynamics is made possible through a hierarchy of hub regions that act
as connectors between two or more communities and are highly flexible (Sporns, 2013). One
study on overlapping community organisation found that connector hubs allow communities
to temporarily share functions, doing so by increasing integration at the overlap between two

or more modules (de Reus et al., 2014).

Although still developing, the task-based fMRI literature is already offering a new
perspective on the brain network, indicating that it is more flexible and that it balances both
integration and segregation, fluctuating between these two features depending on specific tasks
or changes in demand (Cole et al., 2013; Friston & Price, 2011; Shine et al., 2015; van den
Heuvel & Sporns, 2013). These findings are further supported by recent research on individual
brain networks, which have identified significant restructuring of the connectivity and
communities of the brain during changes in cognitive states, during individual decision or
cognitive strategies, during neurodevelopment, and during learning (Barnes et al., 2014;
Feilong et al., 2018; Gu et al., 2019; Kong et al., 2019; Salehi et al., 2018, 2019; Seghier &
Price, 2018; Vindras et al., 2012).

Network models of language

What can these findings about the brain network tell us about language processing?
Since the brain is highly dynamic, separated into communities that can evolve over time with
tasks and cognitive demands, and these are connected and controlled by a hierarchy of hubs,
then it is likely that the neurobiology of language is (i) not static, (ii) not limited to ‘language’
regions, and (iii) composed of a mixture of both hubs and dynamic regions. However, existing
models of the neurobiology of language do not account for this dynamic and complex
behaviour, rather perpetuating static and localised views of language processing because of the

use of central tendency measures.

The only alternative model to the dual-stream that investigates language processing in
some detail through functional connectivity has proposed the existence of a ‘language network’
that is organised in a core-periphery organisation that maps to the same ‘language’ regions as
the dual-stream model (Fedorenko & Thompson-Schill, 2014). Here, Fedorenko and colleagues
proposed that LH ‘language’ regions acted as the core of the ‘language network’, with the RH
‘language’ regions being a periphery (Chai et al., 2016; Fedorenko & Thompson-Schill, 2014).

The idea of a ‘language network’ is gaining support in the literature and has been mentioned
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in ~10,000 studies, based on a Google search. Although this work has clearly begun the
conversation on possible alternative models of the neurobiology of language using a network
framework, it is based on few assumptions: (i) it defines the boundaries of the ‘language
network’ using simple artificial task-based language localisers assuming that these are enough
to reflect the complexity of natural language processing, and (ii) it uses subtractive techniques
that assume functional specificity. This means that currently we still lack a model of the
neurobiology of language that can explain the complexity and variability of language

processing in the real world. Here, we review three candidate models.

One possible network organisation supporting language is modularity. Modularity,
through its functional segregation properties, would help explain why ‘language’ regions (e.g.,
STG, MTG, and IFG) have a clear propensity for language processing functions and appear in
all neuroimaging studies. Since modular organisations can still evolve over time, modularity
can also identify other regions involved in language processing as a function of task, by
mapping regions that join into language modules over time. However, because modularity
seeks to find some independence among communities, it falls short on addressing potential
shared processes (i.e., overlaps) between communities (Gu et al., 2019). These complex
relationships between communities could be important for predicting cognitive demand and

context-related changes.

Another alternative is a core-periphery architecture. Core-periphery architectures have
significant evolutionary advantages: (i) a highly connected core allows integration of
information across the network, (ii) through its redundancy in connections it increases
robustness to perturbation; meanwhile (iii) dynamically changing peripheries allow increased
variability (Faber et al., 2019; Fornito et al., 2016; Stefaniak et al., 2020). These properties of
core-periphery networks could help explain how the brain supports individual differences and
neuroplasticity. Moreover, it was shown that, due to their high wiring, large lesions to core
nodes result in much more deleterious effects than damage to peripheral nodes (Fornito et al.,
2016; Zhao et al., 2011). If ‘language’ regions are part of the core, this would explain why
damage to these regions causes severe language impairments. Although core-periphery
addresses more dynamic and distributed behaviours, it cannot explain why brain regions

preferentially assume certain functions.

A final organisation may involve modularity and core-periphery simultaneously.

Indeed, in various scale-free networks, it was shown that multiple mesoscale organisations tend

24



to co-exist (Rombach et al., 2014). This may be also true of the brain. Here, a joined modularity
and core-periphery organisation would help address the following: (i) individual variability,
(1) neuroplasticity after injury, (iii) distributed language regions, and (iv) the role of ‘language’
regions. Only one neuroimaging study, to the best of our knowledge, has inspected these two
architectures simultaneously. Here, it was demonstrated that a joined mesoscale organisation
helps predict neurodevelopment and individual differences much better than a given single

measure (Gu et al., 2019).

Overarching hypotheses

In the present thesis we therefore hypothesise that the brain is organised in a core-
periphery and modular architecture that supports language processing in the real world. We
propose that language processing is highly dynamic and distributed across the brain, with

‘language’ regions appearing in the aggregate because they act as cores or hubs.
For each result chapter, the overarching hypotheses are as follows:

1. Result chapter 1: The brain creates unique and distributed sensorimotor representations
of individual characters in movies. These unique representations are reactivated during
resolution of pronominal references.

2. Result chapter 2: Individual sensorimotor embeddings of words form distributed
activity patterns encompassing most of the brain. This variability has been obscured by
central tendency measures, which only identify ‘language’ regions as these are stable
hubs.

3. Result chapter 3: The brain is both a core-periphery and modular network where
‘language’ regions are intermediary cores connecting to a wide and dynamic periphery,

together sharing language processing functions.

Thesis organisation

The present thesis is organised in three subsequent chapters, of which one will describe
three original research studies testing our hypotheses. Below are brief overviews of each

chapter’s contents:

e Chapter 2: Here we will introduce a new open-source dataset, namely the Naturalistic
Neuroimaging Database (NNDb), that was collected to help address language as a

complex behaviour, which is currently missing in existing neurobiology of language
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models. We will describe the data collection and preprocessing methods involved in
creating the NNDb, which is now one of the largest and most varied open-source
naturalistic fMRI datasets available.

Chapter 3.1: Here we aimed at investigating the distribution of the neurobiology of
language during a specific language feature, namely pronoun resolution. We show that
the brain builds unique perceptual representations of a character through sensorimotor
(mainly auditory and visual cortices) regions. We further demonstrate that these activity
fingerprints are later reactivated during retrieval and resolution of pronoun references
to the specific character.

Chapter 3.2: Here we further investigate the extent of distribution of the neurobiology
of language during processing of sensorimotor embeddings of words. We show that
language processing recruits most of the rest of the brain, forming unique activity
patterns for each sensorimotor embedding. We further show that aggregate methods
result in ‘language’ regions, because these act as connectivity hubs. We finally
demonstrate that ‘language’ regions connect directly to the distributed sensorimotor
embedding regions.

Chapter 3.3: Here we investigate a network architecture that best supports language
processing in the real world. We propose a novel joined mesoscale architecture of the
brain, with a simultaneous multi-core-periphery and modularity organisation, whereby
known language regions form intermediary cores and link to a wide and dynamic
periphery, together forming one or more communities in individual subjects at different
times. We then reproduce findings from the RSN literature using group-averaged
networks, and show that these are devoid of any individual variability and do not
represent any single participant’s network.

Chapter 4: Here we discuss in more depth how our model of the neurobiology of
language processing supports language in the real world, taking into account individual

variability and language as a complex behaviour.
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Chapter 2: Methods

Abstract

Neuroimaging has advanced our understanding of the neurobiology of language using
simple and artificial stimuli that do not account for the complexity and richness of the real
world. To address these methodological limitations, we collected and made publicly available
the ‘Naturalistic Neuroimaging Database’ (NNDb) to allow for a more complete
understanding of the neurobiology of language and the brain, as well as other cognitive
domains, under more ecological settings. Eighty-six participants underwent behavioural testing
and watched one of 10 critically acclaimed full-length movies during functional magnetic
resonance imaging. The timeseries were preprocessed using standard neuroimaging techniques
and the resulting data is shown to be of high quality. The NNDb can be used to answer questions
previously unaddressed with standard neuroimaging approaches, progressing our knowledge

of how language and the brain operate in the real world.

Introduction

For centuries neuroscientists have attempted to investigate how the brain supports
language processing, arguably the most complex human behaviour. Progress towards
understanding the neurobiology of language and the brain has been made using task-based
functional magnetic resonance imaging (fMRI), and more recently using resting-state networks
coupled with task-based meta-analyses. Here, research has identified a set of regions mostly
mapping to inferior frontal and temporal lobe cortices, that are considered the loci for speech
perception and production in the brain (Hickok & Poeppel, 2007). While these studies have led
to a number of important discoveries and have started the conversation on mechanisms
underlying language processing, we review evidence indicating that more naturalistic stimuli
and tasks are required to understand the complexities and contextual dependencies of language

in the real world.

Task-fMRI

For task-fMRI, general behavioural processes are decomposed into discrete component
processes that can theoretically be associated with specific activity patterns from linguistic
features. To ensure experimental control and because of reliance on the subtractive method

(Friston et al., 1996), these putative components are studied with stimuli that often do not
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resemble things participants might naturally encounter and language tasks they might actually
perform in the real-world (a topic long debated) (Brunswik, 1943, 1955; Neisser, 1976). For
example, language comprehension has been broken down into component processes like
phonology and semantics. These individual subprocesses are largely localised in the brain using
isolated auditory-only ‘speech’ sounds (like ‘ba’) in the case of phonology and single written
words in the case of semantics (Skipper, 2015b). Participants usually make a meta-linguistic
judgement about these stimuli, with a corresponding button response (e.g., a two-alternative

forced choice indicating whether a sound is ‘ba’ or ‘pa’).

The result of relying on these ‘laboratory style’ stimuli and tasks is that our
neurobiological understanding of language derived from task-fMRI may not be representative
of how the brain processes linguistic information in the real world. This is perhaps one reason
why fMRI test-retest reliability is so low, with an average intraclass correlation (ICC) of 0.1-
0.5 across various studies and fMRI setups (Bennett & Miller, 2010; Gorgolewski et al., 2013,
Elliot et al., 2020). Indeed, more ecologically valid stimuli like movies have higher reliability
than resting- or task-fMRI, with studies showing significantly higher intersubject correlations
and lower head motion in movie paradigms (ICC > 0.7) (Vanderwal et al., 2015; Wang et al.,
2017). This is not only because they decrease head movement and improve participant
compliance (Greene et al., 2018; Madan, 2018; Vanderwal et al., 2015). Rather, naturalistic
stimuli have higher test-retest reliability mostly because they are more representative of
operations the brain normally performs and provide more constraints on processing (Burton et
al., 2001; Chen & Small, 2007; Miller et al., 2002, 2009; Vanderwal et al., 2017; Wang et al.,
2017).

Resting-fMRI

There has arguably been a significant increase in our understanding of the network
organization of the human brain, and how this may support complex functions such as language
processing, because of the public availability of large resting-fMRI datasets, analysed with
dynamic functional connectivity measures coupled with task-based meta-analyses (Bullmore
& Sporns, 2009; Preti et al., 2017). These include the INDI ‘1000 Functional Connectomes
Project’ (Biswal et al., 2010), ‘Human Connectome Project’ (HCP) (Van Essen et al., 2013)
and UK Biobank (Miller et al., 2016). Collectively, these datasets have more than 6,500
participants laying in a scanner ‘resting’. Resulting resting-state networks are said to represent

the ‘intrinsic’ network architecture of the brain, i.e., networks that are present even in the
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absence of explicit tasks. These networks are often claimed to be modular, meaning they

support segregated functions (Gonzalez-Castillo & Bandettini, 2018).

As participants are left lying in the scanner, they are likely switching between staying
awake, mentalizing, trying not to think and engaging in inner speech (Gonzalez-Castillo &
Bandettini, 2018; Hurlburt et al., 2015). Thus, resting-fMRI cannot be truly considered at ‘rest’.
Though some of these behaviours are ‘natural’ (e.g., mind-wandering), unlike task-fMRI, there
is no verifiable way to label resulting regional or network activity patterns (Sonkusare et al.,
2019; Vanderwal et al., 2019). At best, reverse inference through meta-analyses is used to
obtain gross labels, such as ‘auditory’ and ‘attention’ networks (Skipper & Hasson, 2017;
Smith et al., 2009; Tahedl & Schwarzbach, 2020). Despite claims that these ‘intrinsic’ networks
constrain the connectivity of task-fMRI networks, it is increasingly suggested that this is not
necessarily so (Gonzalez-Castillo & Bandettini, 2018). The brain becomes less modular with
task (Di et al., 2013), particularly with increased task demands (Braun et al., 2015; Kitzbichler
et al., 2011; Vatansever et al., 2015). Indeed, up to 76% of the connections between task- and
resting-fMRI differ (Kaufmann et al., 2017). Furthermore, more ecological stimuli result in
new sets of networks that are less modular and only partly constrained by resting networks
(Kim et al., 2018; Simony et al., 2016). For instance, during a natural vision fMRI study,
functional networks behaved significantly more dynamically, through splitting and merging
the networks observed during resting state (e.g., the dorsal attention resting state network split
into two clusters during natural vision), forming new functional groupings that varied with the

changing cognitive demands (Kim et al., 2018).

Naturalistic-fMRI

Based on considerations like these, there is a growing consensus that taking a more
ecological approach to neuroscience might increase our understanding of language and the
brain, as well as other brain behaviours (Eickhoff et al., 2020; Hasson et al., 2010; Hasson &
Honey, 2012; Krakauer et al., 2017; Maguire, 2012; Matusz et al., 2019; Olshausen & Field,
2006; Skipper, 2015b; Spiers & Maguire, 2007; Vanderwal et al., 2021; Varoquaux &
Poldrack, 2018). This includes conducting more neuroimaging studies with ‘naturalistic’
stimuli. Similar to prior definitions (Bottenhorn et al., 2019; Sonkusare et al., 2019),
‘naturalistic’ might be defined on a continuum from short, static, simple, decontextualised,
repeating, unisensory stimuli with low ecological validity (as described above) to long,

dynamically changing, complex, contextualised, continuous, typically multisensory stimuli
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with high ecological validity. We identified at least 16 (DuPre et al., 2019) (with more being
added (di Oleggio Castello et al., 2020)) publicly available fMRI datasets using ‘naturalistic’
stimuli more on the latter end of this continuum. However, there are no datasets with a large
number of participants, long naturalistic stimuli and stimulus variability. Although most studies
collect data from ~20 participants, it was shown that small sample sizes have low statistical
power, meaning inflated rates of false negatives (Lohmann et al., 2017). Moreover, fMRI
studies on effect sizes of samples ranging from 20-80 subjects replicating typical group-level
analyses (e.g., general linear models), showed that a minimum of 40 subjects are necessary for
detecting high effect sizes and a minimum of 80 participants are required for detecting medium
effect sizes and producing replicable task-fMRI results (Geuter et al., 2018; Turner et al., 2018).
Naturalistic-fMRI datasets with larger participant numbers tend to use short (~10 minute) audio
or audiovisual clips. However, studies on functional connectivity during naturalistic viewing
indicate that for single subject studies a minimum of 25 min scan time are preferred, with
continued significant improvement in test-retest reliability over scans up to 4 hr long (Anderson
et al., 2011). Moreover, longer scanning sessions, from 1.5 hr to multiple daily sessions,
showed significantly higher intraclass correlation values in resting state data as well (Gordon

etal., 2017; Laumann et al., 2015; Xu et al., 2016).

Longer duration fMRI datasets using more naturalistic stimuli have a small number of
participants and one stimulus (though see (Nastase et al., 2019)). These include 11 people
watching ‘Raiders of the Lost Ark’ (Haxby et al., 2011) and 20 listening to an audio description
of ‘Forrest Gump’ during fMRI (Hanke et al., 2014, 2016). These datasets have currently
mostly been used to develop and test novel analytical models for neuroimaging data, such as
hyperalignment for individual subject functional network analyses (Haxby et al., 2011).
However, with only one movie, generalisability is limited. More movies would not only
increase generalisability to specific behaviours, but they would also increase the variety of
stimuli and contexts to better inspect individual variability of language features. These could
then be used to label finer grained patterns of activity, e.g., making machine learning/decoding

approaches more feasible (Combrisson & Jerbi, 2015; Khosla et al., 2019; Varoquaux, 2018).

Indeed, there is no a priori reason participants need to watch the same movie (or listen
to the same audio). Existing long datasets might use one stimulus because intersubject
correlation is a commonly used method for analysing fMRI data from more naturalistic stimuli
that are difficult to model (Hasson et al., 2004). Though this is a powerful ‘model-free’

approach (for an overview, see (Nummenmaa et al., 2018)), it requires participants to watch
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the same movie. However, ‘model-free’ (more data-driven) methods like independent
component analysis (Bartels & Zeki, 2004), regional homogeneity (Zang et al., 2004), hidden
Markov model (Baldassano et al., 2017) and dynamic mode decomposition (Casorso et al.,
2019) and more model-based analysis involving convolution/deconvolution, can be also done
at the individual participant level with different movies. This would increase generalisability

and the possibility of more detailed analyses through more varied stimulus annotations.

NNDb

To fill these gaps in publicly available data, we collected and made publicly available
a 'Naturalistic Neuroimaging Database' (NNDDb) from 86 people who each completed a battery
of behavioural tests and watched a full-length movie during movie naturalistic-fMRI. We
sought to reach a balance that promotes generalisability, allows a large variety of linguistic
features and events to be investigated and supports studies on individual variability as well as
intersubject correlations. To achieve this, our participants watched 10 different movies from
10 different genres they had not previously seen. This is because studies have shown that
repeated movie viewings might change the functional network architecture of the brain (Andric
etal., 2016). We validated that the data was of high quality, and that this increased further with
preprocessing, by calculating voxel-wise temporal signal-to-noise ratio (tSNR) and inter-
subject correlation (ISC) across and within movies. tSNR on fully preprocessed data ranged
between 13.37-98.03 (M = 63.82, SD = 20.79). Moreover, similar to prior work, the maximum
ISC was r=0.28; when the entire dataset was split in half, the results were largely spatially
indistinguishable from each other (r=0.96) (for specific details and figures, see original
publication (Aliko et al., 2020)). Fig. 4 provides an overview of the study and preprocessing

steps.
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Figure 4. Schematic overview of the naturalistic neuroimaging
database procedures, preprocessing and data validation.
Procedures (green) occurred over two sessions separated by
about three weeks on average. Session one consisted primarily of
a battery of behavioural tests to quantify individual differences.
In session two, functional magnetic resonance imaging (MRI)
was acquired while participants watched one of 10 full length
movies followed by anatomical MRI.

Data discovery is nearly unlimited with the NNDb as there are a vast number of
annotations that can be made from the movies and approaches to analysis, thus supporting
studies investigating various brain behaviours in the real world. This includes more than
replicating prior findings with more ecologically valid stimuli. That is, there are a number of
broad open questions that the NNDb can be used to address for the first time, like the systematic
study of how context is used by the brain (Skipper, 2015b). Given the lack of robust
neuroimaging biomarkers for mental illness (Boeke et al., 2019; Kapur et al., 2012), the NNDb
might also help increase the pace of clinically relevant discovery, e.g., by uncovering labelled

network patterns that predict individual differences (Eickhoff et al., 2020).
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Methods

Participants

The initial goal for the NNDb was to collect fMRI data of 84 participants watching 10
full-length movies from 10 different genres. Specifically, we set out to collect data on 18
subjects for 2 of the movies, and on 6 subjects for the remaining 8 movies (2x18 + 6x8 = 84
subjects), based on sample size considerations reviewed above (Anderson et al., 2011; Geuter
et al., 2018; Gordon et al., 2017; Laumann et al., 2015; Lohmann et al., 2017; Turner et al.,
2018; Xu et al., 2016) and to have stimulus variability. Overall, the rationale was to have power
for across movies analyses (thus 84 participants), but at the same time have two larger datasets

to test hypotheses on a more typical sample of participants.

To reach 84 individuals, we recruited 120 possible participants using the pool

management software (http://www.sona-systems.com/). The following inclusion criteria were

applied: no permanent metal implants, right-handedness, native English speaker, no
claustrophobia, no history of psychiatric or neurological disorders, not taking medication,
without hearing impairment and unimpaired or corrected vision. Furthermore, we ensured that
each participant had not seen at least two of the 10 movies. From this initial screening, out of
the 120 recruits, 91 met the inclusion criteria. Two of the 91 recruits were excluded from the
main NNDb dataset as they were determined to be left-handed after all, but were later added in
the event that other researchers had less stringent inclusion criteria for their studies; two
participants were excluded because they requested to stop the scan, and one had low data

quality due to excessive motion.

This resulted in a final dataset of 86 participants (42 females, range of age 18—58 years,
M =26.81, SD = 10.09 years). These were pseudo-randomly assigned to a movie they had not
previously seen, (usually) from a genre they reported to be less familiar with in a pre-scan
questionnaire. Table 1 provides a summary of participant demographics by movie. At the
conclusion of the study, participants were paid £7.5 per hour for behavioural testing and £10
per hour for scanning to compensate for their time (receiving ~£40 in total). The study was
approved by the ethics committee of University College London (Project ID FMR1/2013/002)
and participants provided written informed consent to take part in the study and share their

anonymised data.
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N Movie Age % = Bachelor’s (%)
Female | BAME | Monolingual | Participant | Mother

20 500 Days of Summer 27.70 | 50.00 30.00 85.00 75.00 60.00
18 Citizenfour 27.00 | 50.00 41.18 77.78 61.11 66.67
6 12 Years a Slave 27.17 | 50.00 66.67 50.00 50.00 50.00
6 Back to the Future 22.17 | 50.00 40.00 66.67 66.67 83.33
6 Little Miss Sunshine 35.67 | 33.33 66.67 66.67 50.00 16.67
6 The Prestige 34.17 | 50.00 0.00 100.00 83.33 33.33
6 Pulp Fiction 22.67 | 50.00 83.33 66.67 33.33 0
6 | The Shawshank Redemption | 22.17 | 50.00 100.00 50.00 50.00 83.33
6 Split 22.67 | 50.00 50.00 83.33 66.67 33.33
6 The Usual Suspects 23.17 | 50.00 66.67 83.33 100.00 33.33

Table 1. Description of participants in the NNDb. N is the sample

size for each of the 10 movies. In total, 86 participants were

included in the final dataset. Age is expressed as the average in

each movie. Gender is expressed as percent (%) female. Ethnic

diversity is expressed as percent Black, Asian and Minority

Ethnic (BAME). Most participants were monolingual English

native speakers. Educational attainment of both the participant

and the participant’s mother is expressed as percent with a

Bachelor’s degree or higher.

Procedure

The 86 participants attended two sessions on separate days. During session one,
participants completed the cognitive and emotional batteries and a hearing test from the sensory
battery of the National Institute of Health (NIH) Toolbox (Gershon et al., 2013). These
represent standardised tools and tests for assessing individual neurological and behavioural
functions, such as working memory and language (Gershon et al., 2013). Some tests, such as
motor and other sensory tests, were excluded from the Toolbox as they required more complex
setups and physical implementations (e.g., walking). Moreover, we collected demographic
data, such as age, ethnicity, educational attainment etc. (see Table 1). Participants completed
the NIH tests in a sound shielded testing room using headphones and an iPad. At the end of the
NIH tests, participants completed a questionnaire on movie habits that was used to determine

which of the 10 movies they would watch in the scanning session.
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After 2-4 weeks (M = 20.36 days; SD = 23.20), participants were invited for the second
session, consisting of (i) functional and (ii) anatomical MRI scans and (iii) a final questionnaire
related to aspects of the movie they watched. Except for one case, this was the order in which
the session was conducted. Prior to entering the scanning suite, participants reporting corrected
vision were provided with MRI-safe glasses, matching their eye prescription to the nearest 0.5
value. Once in the scanning suite, participants chose a comfortable earbud size to be fitted on
the noise-attenuating headphones. Next, participants were placed in the head-coil with pillows
under the head, covering the ears and under the knees for both comfort and to reduce movement
during the scans. Participants were then asked to select a comfortable and clear audio-stimulus
volume. Participants were given a bulb in their right hand and instructed to squeeze if
something was wrong, or they needed a break during the movie. They were instructed to stay

as still as they could throughout scanning as movement would render the scans unusable.

fMRI movie scans were acquired with one to three breaks on average, depending on the
length of the movie: longer movies had more breaks. During breaks, participants were told that
they could relax but not move. To ensure that this was the case, and that participants were
awake and comfortable we monitored participants via a camera over their left eye. If they
appeared drowsy or seemed to move too much during the movie, we gave them a warning over
the intercom by producing a beep or speaking to them. In rare cases we stopped the scan to
speak with the participant. After the movie, an anatomical scan was collected, and once out of
the scanner participants filled out a questionnaire. Finally, participants were paid and sent

home.

Movie Stimuli

The movies were selected from 10 different genres, in order to have varied stimuli in
the final dataset. Criteria for selection included: having an average critical acclaim score of
>70% on publicly available metrics of success (e.g., IMDDb, Rotten Tomatoes) and having
received nominations for cinematic awards (e.g., Academy Award). Table 2 provides an

overview of the 10 movies participants watched during fMRI.
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Movie Genre Year | Length (sec) Scores (%)
IMDb | Meta | RT
500 Days of Summer Romance 2009 5470 77 76 85
Citizenfour Documentary | 2014 6804 81 88 96
12 Years a Slave Historical 2013 7715 81 96 96
Back to the Future Sci-fi 1985 6674 85 86 96
Little Miss Sunshine Comedy 2006 5900 78 80 9
The Prestige Thriller 2006 7515 85 66 76
Pulp Fiction Action 1994 8882 89 94 94
The Shawshank Redemption Drama 1994 8181 93 80 91
Split Horror 2016 6739 73 62 76
The Usual Suspects Crime 1995 6102 86 84 95

Table 2. Description of the movies used in the naturalistic
neuroimaging database. Ten full length movies were chosen
from 10 genres. These were required to have been successful,
defined as an average Internet Movie Database (IMDDb,
https://www.imdb.com/), Metacritic (Meta,
https://www.metacritic.com/) and Rotten Tomatoes (RT,
https://www.rottentomatoes.com/) score greater than 70%.
IMDDb scores were converted to percentages for this calculation.
Movie lengths are given in seconds (s), also equivalent to the

number of whole brain volumes collected when participants
watched these movies during functional magnetic resonance
imaging.

All movies were purchased and stored as .iso’ files. Relevant sections of the DVD (i.e.,
excluding menus and extra features) were directly concatenated to an ‘mpg’ container using

the command:

ffmpeg -i concat: VTS 01 1.VOB)\|... VIS 01 8.VOB -c copy -f dvd

movie_name.mpg

Where -c’ copies the codec and ‘-f” specifies the DVD format. The DVD video size

and quality are as follows:

e Video (codec): MPEG-PS
e Audio (codec, sampling rate, bits per sample, channels): AC-3, 48.0 kHz, 16, 6
e Resolution (pixels): 720 x 576 (except Citizenfour which was 720 x 480)
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e Aspect Ratio: 16:09 (except The Usual Suspects and Pulp Fiction which were 2.40:1
4:3, respectively)
e Frame rate (fps): 25 (except Citizenfour which was 23.976)

The audiovisual files were screened using full-screen mode through a mirror reversing
LCD projector to a rear-projection screen measuring 22.5 cm x 42 cm with a field of view angle
of 19.0°. The screen was placed at the back of the MRI bore and was reflected through a mirror
above the participants’ eyes. High quality audio was presented in stereo via a Yamaha amplifier
through Sensimetrics S14 scanner noise-attenuating insert earphones

(https://www.sens.com/products/model-s14/).

Movie Pausing

Movies were played with as few breaks as possible to allow for a natural viewing
experience, avoid misalignments between one scan and the other due to participants moving,
and reduce discontinuity in the hemodynamic response. Additionally, continuous viewing
reduces chances of either hardware or human error in matching the movie on the computer to
the stimulus presented to the participant, and therefore allows to match movie features to brain
responses. Since the scanning sequence we used required breaks at least every 1 hr (see
‘Acquisition’ below), we played each movie in ~45 min segments, identifying points in the
plot where no important action nor dialogue was happening. In rare cases, the participants
signalled to stop themselves, in which case we would later still stop at the predetermined breaks
to maintain all datasets as similar as possible. To maintain continuity and allow for these
stopping times, we created a script using an Arduino device to allow us to stop the scanner and
pause the movie at any time and resume where the movie left off when the scanner was

restarted.

Specifically, a Linux BASH script opened movies using ‘MPlayer’

(http://www.mplayerhq.hu/). The script then went into a state of waiting for a TTL (transistor-

transistor logic) pulse from the scanner, which would indicate that scanning had begun. Pulses
were received through a USB port connected to an Arduino Nano programmed to read and pass
TTL pulses from the scanner to the script. When the scan sent the first TTL pulse, eight seconds
were allowed to elapse before the movie began to play, to let the scanner reach a state of
equilibrium. When the scanner was paused, the movie pausing BASH script stopped the movie
within 100 ms: this was because the script monitors for TTL pulses every 50 ms, but if an initial

pulse was not registered, the script required that the next pulse also did not arrive thus reaching
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100 ms delay. When the scan was restarted, eight seconds were again allowed to pass before

the movie was played.

Moreover, the scanner software dropped the last brain volume whenever a movie was
paused, leading to up to one second (= 1 TR) to be lost from the fMRI timeseries. To solve this

problem, two versions of the script were created as follows:

1. The movie picked up from where it left off affecting N = 29 or 33.72% of participants.
2. The movie was rewound by the amount of time lost when the volume was dropped. To
calculate this, the script used three output files that it generated when running: a

MPlayer output file, current time file and final output file.

Every 50 ms when the TTL pulse was received, the script would send a command to
MPlayer to get the time position in the movie, which was provided as a value up to one decimal
and stored in the MPlayer output file. The script would then read the last line of the MPlayer
output file and write a new line in the current time file. Here, every line consisted of (i) a
timestamp formed by the elapsed milliseconds from the end of the previous second in Linux

epoch format, and (ii) the newly acquired time position in the movie.

If paused, the movie was then rewound by the amount in (i) by passing a command to
Mplayer through ‘slave’ mode. When the scanner was restarted, the movie began within 100
ms of the first TTL pulse (again, because it had to receive at least two pulses). Due to a coding
error, version (2) of the script occasionally fast forwarded when it should have been rewound
in N = 13 or 15.12% of participants. Because fast forwarding could not be greater than one
second and the error affected only 47.44% of the runs for those 13 participants, data timing
quality was not compromised more than in version (1) on average. After fixing this error, the
movies rewound correctly whenever the scanner was stopped for the remaining participants for

the remainder of the study (N =44 or 51.16% of participants).

This was achieved by using values stored in the final output file, that comprised start,
pause and calculated rewind times in linux epoch format. For details on how the rewind times

were calculated, please refer to the original publication at (Aliko et al., 2020).

Movie Annotations

Spoken words from the movie dialogues were annotated for onset/offset in the movies

using fully automated approaches. These were used for analyses in the subsequent chapters. To
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achieve this, we extracted the audio track in ‘.wav’ format and the subtitle track as a .txt’ file
from each movie’s ‘.iso’ file. The .wav audio file was transcribed from speech to text using
‘Amazon Transcribe’, a machine learning tool from Amazon Web Services (AWS;

https://aws.amazon.com/transcribe/). The resulting transcripts contained onset and offset

timings for individual words, although the algorithm did not transcribe all words or transcribed
some incorrectly. In order to obtain a final transcript containing all the correct words with
corresponding onset/offset times, we compared the AWS transcripts to the subtitle files, which
contained the correct words but lacked individual words’ timings. Instead, subtitle files had

onset and offset of sentences.

Therefore, to fix errors from the AWS algorithm, a script was written that first uses
dynamic time warping (DTW (Giorgino & Others, 2009)) to align word onsets from the speech-
to-text transcript to corresponding subtitle words in each individual subtitle page, starting 0.5
seconds before and ending 0.5 seconds after the page to account for possible subtitle
inaccuracies. To improve matches between subtitles and transcripts, punctuation was removed,
and words were stemmed. Subtitle words that matched or that were similar to the transcriptions
during the DTW procedure inherited the timing of the transcriptions and were returned to their
original unstemmed form. Non-identical words were assigned the word’s transcription timing
that had maximum Jaro similarity (given Jaro similarity > .60) with that subtitle word. Here,
Jaro similarity measures the distance between strings of letters, and the higher its value the
more similar two strings are (Cayhono, 2019). Finally, if multiple words in the subtitles aligned
with a single transcript word (e.g., ‘is’, ’a’, ‘story’ in the subtitles and 'story' in the
transcription), we gave the timing of the transcribed word to the matched subtitle or most

similar word if the Jaro similarity was > .60.
The remaining unlabelled subtitle words were estimated in one of three ways:

1. ‘Continuous’ words used the onset and offset times from adjacent words directly,
making them the most accurate, e.g., in ‘Tom, drive [Jane] home please’ the missing
word Jane would take as onset the offset of drive, and as offset the onset of home.

2. ‘Partial’ estimation meant that more than one word between matched/similar words was
missing. In such cases the length of each word was approximated by counting the
number of letters in each missing word and dividing the intermediary time

proportionally. For e.g., in ‘Tom, [drive] [Jane] home please’ the missing words drive
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and Jane have 5 and 4 letters respectively; the time between offset of 7om and onset of
home would be assigned 55% to drive and 44.44% to Jane.

3. ‘Full’ estimation occurred when there were no matching/similar words transcribed, and
the onsets of missing words were estimated from the onset and offset of the subtitles.
As for partial estimation, word onsets were estimated proportionally using word length.
However, due to occasional pauses in dialogues, this might result in unreasonably long
word durations. For e.g., in ‘Tom, drive Jane home please... 10 sec pause... [Be]
[careful]’ the words be and careful would be assigned ~2 sec and ~8 sec length each.
In such cases, we truncated estimated words < 10 letters and more than 2.5 standard
deviations from the mean word length in conversational speech (i.e.,, > 1000 ms) to the
mean (i.c.,, 600 ms, based on (Tucker et al., 2019)). As it is common for words more
than 10 letters to be longer than 1 second when spoken, estimated word lengths for
words with >10 letters and < 2 sec were kept. Estimations > 2 sec were truncated to

1000 ms.

Finally, words were reorganised based on their onset times, and overlaps in time
removed by matching the order of words in the subtitles and re-assigning onset times based on

adjacent words to the wrongly labelled word.

Acquisition

Functional and anatomical images were acquired on a 1.5T Siemens MAGNETOM
Avanto with a 32-channel head coil (Siemens Healthcare, Erlangen, Germany). We used
multiband EPI (Feinberg et al., 2010; Feinberg & Setsompop, 2013) (TR =1 s, TE = 54.8 ms,
flip angle of 75°, 40 interleaved slices, resolution = 3.2 mm isotropic), with 4x multiband factor
and no in-plane acceleration; to reduce cross-slice aliasing (Todd et al., 2016), the ‘leak block’
option was enabled (Cauley et al., 2014). Slices were manually obliqued to include as much of
the brain as possible, although few aspects of the cerebellum were occasionally lost (see
‘Cerebellar Coverage’ section later). Since the EPI sequence had a software limitation of 1 hr
of consecutive scanning, scans were stopped at around each 1 hr mark. Depending on the length
of the movie (see Table 2), between 5,470 and 8,882 volumes were collected per participant.
A 10 min high-resolution T1-weighted MPRAGE anatomical MRI scan followed the functional
scans (TR =2.73 s, TE = 3.57 ms, 176 sagittal slices, resolution = 1.0 mm)?>.
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Preprocessing

MRI data files were converted from IMA to NIfTI format and preprocessed using
mainly the AFNI software (Cox, 1996). In the original version we manually programmed each
preprocessing step, but in subsequent analyses we used the afni_proc.py standardised approach
(Cox, 1996). Below we detail the general step-by-step preprocessing steps from the

afni_proc.py script, for anatomical and functional scans separately (see Fig. 4 for overview).

Anatomical

The anatomical MRI scan was corrected for image intensity non-uniformity with
AFNTI’s 3dUniformize command and deskulled using ROBEX (Iglesias et al., 2011) in all cases,
except for one participant where 3dSkullStrip performed better. The resulting anatomical image
was nonlinearly aligned (using auto_warp.py) to the MNI N27 template brain, an average of
27 anatomical scans from a single participant (‘Colin’) (Holmes et al., 1998). The anatomical
scan was inflated and registered with Freesurfer software using recon-all and default

parameters (version 6.0, http://www.freesurfer.net) (Destrieux et al., 2010; Fischl, 2012).

Resulting automated anatomical parcellations were used to calculate the extent of cerebellar
coverage and to create white matter and ventricle (i.e., cerebral spinal fluid containing) regions
of interest that could be used as noise regressors (Destrieux et al., 2010). These regions were
resampled into functional dimensions and eroded to assure they did not impinge on grey matter

voxels. Finally, anatomical images were ‘defaced’ for anonymity

(https://github.com/poldracklab/pydeface).

Functional

The fMRI timeseries were corrected for slice-timing differences (3d7shift) and
despiked (3dDespike). Next, volume registration was done by aligning each timepoint to the
mean functional image of the centre timeseries (3dvolreg). For 23 (or 26.74%) of participants,
localiser scans were redone because, for e.g., the participant moved during a break and the top
slice of the brain was lost. For these participants, we resampled all functional grids to have the
same ‘xyz’ extent (3dresample) and manually nudged runs to be closer together (to aid in
volume registration). For all participants, we then aligned the functional data to the anatomical
images (align_epi_anat.py). Occasionally, the volume registration and/or this step failed as
determined by manual inspection of all data. In those instances, we either performed the same
procedure as for the re-localised participants (N = 5 or 5.81%) or reran the align_epi_anat.py

script, allowing for greater maximal movement (N = 6 or 6.98%). Finally, the volume-
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registered and anatomically aligned functional data were (nonlinearly) aligned to the MNI

template brain (3dNwarpApply).

We then spatially smoothed all timeseries to achieve a level of 6mm full-width half
maximum, regardless of the smoothness it had on input (3dBlurToFWHM (Friedman et al.,
2006)). These were then normalised. In the older version of the preprocessing, we normalised
to have a sum of squares of 1 per run, however this meant that short runs had very large
normalised timeseries amplitudes. To fix these issues we performed a different normalisation
as suggested by the AFNI team (see https://openneuro.org/datasets/ds002837). Finally, all
regressors were detrended (3dTproject) in one step. The first included a set of commonly used
regressors (Caballero-Gaudes & Reynolds, 2017): 1) Legendre polynomials whose degree
varied with run lengths (following a formula of [number of timepoints * TR]/150); 2) Six
demeaned motion regressors from the volume registration; 3) A demeaned white matter activity
regressor from the averaged timeseries in white matter regions; and 4) A demeaned
cerebrospinal fluid regressor from the averaged timeseries activity in ventricular regions. The
second, involved ICA artefacts that were manually selected (see next section ‘ICA artefact

removal’).

Timing Correction

To match to the stimuli, timing correction was done to account for delays caused by the
movie pausing script to assure that fMRI timeseries and movies are well aligned. Specifically,
this script introduced a known 100 ms delay that was cumulative for each break in the movie.
Furthermore, depending on the versions of the script, there was also a possible additional
(cumulative) delay from not rewinding (v1) or occasionally fast-forwarding (v2.1). These
delays were calculated as previously described. Furthermore, the script output files allowed us
to quantify potentially variable soft and hardware delays and account for these as well. In
particular, every voxel of the detrended timeseries was shifted back in time using interpolation

to account for all delays, in the same manner as in slice timing correction but over all voxels

uniformly (3dTshif?).

Specifically, in v1 of the script, if the movie stopped at, e.g., 1000.850 and the last full
TR was lost, it means that 850 ms of the movie was watched but is missing from the timeseries.
To account for the missing information, we added a TR to the timeseries being collected before
the scanner was stopped and interpolated the next run backwards in time the amount not

covered by this TR. The added TR was created by retrieving the last timepoint of the run in
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which the movie was stopped and the first timepoint of the run after the movie was stopped
and averaging these. Thus, for the 850 ms of movie watched but dropped, there were 150 ms
too much time added to the movie by adding a TR (because our TR = 1 second). Thus, we
shifted the next run back this amount so that the timeseries is theoretically continuous again
(though this is never really possible). As the details of these calculations are complex and not
fundamental to the scope of this thesis, we limit our explanation to the above. For a more
comprehensive and detailed explanation of these calculations, please refer to the original

publication (Aliko et al., 2020).

ICA Artefact Removal

Spatial independent component analysis (ICA) is a powerful tool for detecting and
removing artefacts that substantially improves signal-to-noise ratio in movie naturalistic-fMRI
data (Liu et al., 2019). Using the first preprocessing version, we concatenated the timeseries
after detrending for motion and white matter/cerebrospinal fluid regressors and after timing
correction. Here, as in the HCP, we did spatial ICA on this timeseries with 250 dimensions
using melodic (version 3.14) from FSL (Smith et al., 2013). Next, we manually labelled and
removed artefacts from timeseries, following an existing guide (Griffanti et al., 2017). Myself
and two other trained authors went through all 250 components and associated timecourses,
labelling the components as ‘good’, ‘maybe’, or ‘artefact’. As described in Griffanti et al.
(Griffanti et al., 2017), there are a typical set of ‘artefact’ components with identifiable
topologies that can be categorised as ‘motion’, ‘veins’, ‘arteries’, ‘cerebrospinal fluid
pulsation’, ‘fluctuations in subependymal and transmedullary veins’ (i.e.,, ‘white matter’),
‘susceptibility artefacts’, ‘multi-band acceleration’ and ‘MRI-related’ artefacts. Our strategy
was to preserve signal by not removing components classified as ‘maybe’. On a subset of 50
datasets (58.14% of the data), another author classified all components to check for
consistency. We then discussed discrepancies and modified labels as warranted. It was
expected that, similar to prior studies, about 70-90% of the 250 components would be classified
as artefacts (Griffanti et al., 2017). Once done, the identified ICA artefact component
timecourses were included as additional regressors in the single detrending step in the second

preprocessing version, and the timeseries were concatenated (3d7project).

Limitations

First, with respect to data acquisition, the study was conducted at 1.5 T. Had it been

conducted at 3 T, signal-to-noise ratios (SNR) would theoretically double. However, in practice
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SNR is only about 25% better and susceptibility artefacts are worse at 3 T (Wardlaw et al.,

2012). That said, we are soon starting to collect a new version of the database using a 3 T scan.

With regard to stimuli, it should be acknowledged that neither the fMRI setting nor
movies themselves are necessarily ‘natural’ or completely realistic (Carroll, 1985; Carroll &
Seeley, 2013). In addition to the somewhat artificial environment of the magnet, there is
continual rhythmic noise. Although we did not use noise cancelling headphones, the use of
noise attenuating ones and the addition of pillows to cover participant’s ears should mitigate

this limitation.

There are a few other general issues with using movie stimuli. First, movies are long.
Though this does not seem to adversely affect motion, it could be problematic for some (e.g.,
clinical) populations in future work. Second, for clinical ‘biomarker’ purposes (Boeke et al.,
2019; Kapur et al., 2012), long movies might be too expensive even if patients could sit still
for 1.5 hours or more. However, there is no a priori reason that models cannot be trained on

(e.g., network-based representations of) NNDb data but tested on shorter excerpts of movies.

Finally, there is a limitation with regard to the participants themselves. 10 participants
asked for (unplanned) breaks, and these might thus have a different pattern of activity before
breaks. However, if it is assumed that this lasts for 20 seconds, it means that only 0.06% of the
data were affected. This is unlikely to have a big impact on the results. Indeed, we censored
timepoints during that time in five participants and it made no discernible difference to data

quality (see (Aliko et al., 2020)).
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Chapter 3: Results

3.1 The brain reactivates sensorimotor representations of unique characters
during pronoun resolution

Abstract

One of the most complex tasks in language comprehension is reference resolution. How
does the brain link words such as "she" to a specific person? While one crucial component of
reference resolution involves 1) keeping track of ongoing linguistic information in a dialogue,
another is that 2) the brain infers the correct referent from probing ongoing situation models,
imagistic representations of the events indirectly conveyed by language. Existing linguistic
research suggests this is the case, yet there is no direct neurobiological evidence for situation
models during language comprehension. Here, we developed a 3D branched deep neural
network trained on functional magnetic resonance imaging data collected during movie
watching to distinguish between two main characters, achieving a final accuracy of ~93%. The
model regions most strongly supporting these predictions included mostly visual and auditory
cortices, with subtle differences between characters. The model distinguished which characters
are referred to by pronouns using the same sensorimotor regions, as well as the hippocampus
and precuneus (involved in episodic memory retrieval) and the medial prefrontal cortex
(involved in memory and mentalizing). Overall, our findings indicate that imagistic situation
models are reactivated to resolve references during language comprehension. This regular use
of situation models in natural language comprehension further suggests that the processes

associated with language comprehension are complex and distributed.

Introduction

Real-world processing involves complex and contextually-rich information that the
brain must be able to distinguish, process and retrieve for learning and comprehension over
short times. Existing models of the neurobiology of language do not take this contextual
complexity of language into account, mostly discussing only general aspects of ‘speech
perception’ and ‘speech production’. As such these models are limited to a small set of brain
regions but growing evidence suggests that, when more specific elements of language are
considered, the neurobiology of language extends to many more brain regions (Gonzalez et al.,

2006; Huth et al., 2016; Price, 2010; Skipper et al., 2021; Xu et al., 2005). As language is a
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complex behaviour, we should thus focus on inspecting language features that encompass
various aspects of this contextual richness. One circumscribed linguistic characteristic that fits

this profile and is well established linguistically, is pronouns.

Pronouns without context provide little information (except for gender, number, case),
and are underspecified, but when encountering pronouns in a discourse or narrative the human
brain is capable of quickly inferring to whom/what the pronoun refers (Greene et al., 1992).
Indeed, anyone can easily identify the referents of the two pronouns in the sentence ‘John went
to pick up Jane at school. He drove her home’: through the gender information conveyed by
the pronouns, we understand that ‘he’ refers to John and ‘her’ to Jane. However, in the sentence
‘John picked up James to take #im home. He had been at a party’, where two male characters
are present, we can still easily understand that ‘him’ refers to James, as likely does the ‘he’
pronoun, based on the context of the previous sentence. How does the brain know who the

pronoun is referring to?

Linguistic models have proposed that pronouns initially trigger a search back in
memory, this search is restricted by the gender/number/case of the pronoun (e.g., ‘she’ can only
refer to a female character, and ‘it’ can only refer to objects), and the interpretation of the
context points to a referent (Wittenberg et al., 2021). This interpretation is possibly supported
via a process that builds contextual meaning incrementally with each added word in a sentence
(Altmann & Steedman, 1988). Indeed, humans do not remember every single word in a
discourse, but rather recall the gist or concept of a conversation (Campos & Alonso-Quecuty,
2006). Therefore, it is likely that the brain builds a general contextual representation of a

sentence to help the interpretation of a reference later on (Wittenberg et al., 2021).

These representations are so-called situation models, which capture the embodied
sensorimotor, emotional, and imagistic concepts of an event, character, location and action
(Baldassano et al., 2018; Yarkoni et al., 2008; Zwaan & Radvansky, 1998). Numerous
linguistic and fMRI studies have provided evidence for a role of situation models in processing
of pronouns and have proposed that the process behind building situation models involves
activating sensorimotor, language and emotional representations (Altmann & Ekves, 2019;
Bergen et al., 2007; Zwaan et al., 1995; Zwaan & Radvansky, 1998; Zwaan, 2016; Zwaan et
al., 2002). For instance, some such studies have shown that only when processing sentences
relating to motion in a real space the visual field or motor regions are activated, but not during

lexical priming (Bergen et al., 2007; Schuil et al., 2013). The generalised nature of situation
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models allows them to track event-based representations in sentences by linking antecedent
concepts to the newly encountered ones (Altmann & Kamide, 2009). Since pronouns on their
own carry little information about the referent, their resolution requires that the brain link the
general representations of the current and preceding context (McMillan et al., 2012), a process

that can be supported by an imagistic model such as situation models.

Neuroimaging studies on narrative comprehension have attempted to identify where
situation models are retrieved in the brain. Most of the literature has pointed to an important
role of the medial prefrontal cortex (mPFC) in activating situation models during retrieval. In
particular, in an fMRI study, the changes in activity in this region were a good predictor for
classifying specific event schemas (e.g., watching an airport or a restaurant scene), but only if
the temporal sequence of an event was intact (Baldassano et al., 2018). This fundamental role
of the mPFC in maintaining situation models active in memory seems reasonable, given that
this region is part of the mentalizing and Default Mode networks, which are involved in
decision-making processes and construction of imagery (Baetens et al., 2014; Euston et al.,
2012; Isoda & Noritake, 2013; Xu et al., 2005). However, the mPFC, was also found to be
involved in narrative comprehension in general (Fletcher et al., 1995; Hasson et al., 2007),
during processing of coherent consecutive sentences (Ferstl & von Cramon, 2002) and
understanding of themes in a story (Xu et al., 2005). Since there has been no direct study
inspecting a role of the mPFC in activating situation models, it may well be that this region
simply processes coherent and consecutive naturalistic events, rather than specifically activate

situation models in memory.

Aside from the mPFC, the only other regions considered important for retrieving
situation models during linguistic processing include the middle temporal gyrus (MTQG),
inferior frontal gyrus (IFG), and angular gyrus (AG), all part of the ‘language’ regions in
existing neurobiology of language models (Hammer et al., 2007; Hickok & Poeppel, 2007; Li
et al., 2018). These ‘language’ regions also consistently appear in various meta-analyses and
task-based studies, suggesting a domain-general role in language processing - as we detailed
in Chapter 1 - rather than a specific role in reactivating situation models to support pronoun

resolution.

Since ‘language’ regions and the mPFC both have domain-general roles (Euston et al.,
2012; Hagoort & Indefrey, 2014), it seems reasonable to think that these regions may activate

with any linguistic retrieval task, and that there should be other brain regions involved during
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referent-specific pronoun resolution. Although there is behavioural and linguistic evidence for
the involvement of situation models in resolving context-specific pronoun referents, no
neuroimaging study to date, to the best of our knowledge, has found concrete evidence for this

process.

However, research on content retrieval has offered some insights into how a stimulus
in one modality (e.g., memory of a person) may activate the conceptual representation of that
stimulus in the associated modality (e.g., activation of face fusiform area). Some such studies
have initially shown that the activity patterns of various visual representations of objects, places
and faces are distributed across different regions in the visual cortex, depending on their
category, with other studies reconstructing specific human faces from this unique brain activity
fingerprints in visual regions, during free recall (Haxby et al., 2001; Norman et al., 2006;
VanRullen & Reddy, 2019). These findings indicate two things: (i) that the brain activates
distinct perceptual patterns to process different faces, and that (ii) these patterns are reliably
reactivated during recall. Although studies on content retrieval have provided evidence for the
distinct formation of representations and their retrieval pathways during processing of visual
information, there is still lack of evidence linking linguistic retrieval (e.g., pronouns) to

imagistic simulations of situation models in the brain.

Here, we investigated the neurobiological mechanisms behind pronoun resolution. We
hypothesise that antecedent visual representations of a character activate sensorimotor regions
to build unique situation models, and that these regions are later reactivated during pronominal
referencing in the absence of a character’s visual representation, thus linking the antecedent to
the referent. Moreover, we predict that individual character references will elicit mostly
overlapping activity patterns, with few distinct voxel distributions that allow the brain to
distinguish between character-specific situation models in memory. These context-dependent
differences are predicted to be in and around sensorimotor regions rather than in mentalizing

regions (e.g., mPFC), as previous research may suggest.

To test these hypotheses, we used fMRI scans of 20 participants watching the full-
length movie ‘500 Days of Summer’ from the Naturalistic Neuroimaging Database (NNDDb).
We labelled faces and pronominal references of the two main characters (Summer and Tom, a
woman and a man respectively) in the movie and used the 3D brain volumes in the relevant
visual and pronoun reference timepoints as input to a branched 3D deep neural network model.

The model was implemented to first distinguish the two character references in the visual and
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pronoun domain separately, and to then find shared activations of the visual and pronoun
representations of each character. Finally, we performed guided backpropagation to identify

the clusters of voxels that the model used to learn to distinguish each character reference.

Methods

Neuroimaging data

We used fMRI data from 20 subjects (10 females, range of age 19-53 years, M = 27.7
years, SD = 10.1 years) from our Naturalistic Neuroimaging Dataset (NNDb) (Aliko et al.,
2020). All participants watched the movie ‘500 Days of Summer’, selected because it has the
largest sample size for a single movie. The data was preprocessed as detailed in Chapter 2 and

the original publication (Aliko et al., 2020).

Face detection in movies

To detect character faces, we first selected the five main characters by filtering the five
highest grossing actors in the movie from ‘The Movie Database’ website (themoviedb.org).
We created a folder for each actor and manually downloaded images from Google Images,
ensuring that the face of each actor was the main focus of the photo and that multiple angles of
their face were included (e.g., left, right, up, down). This is important for training face detection
models, since in movies characters may be facing cameras at different angles. Moreover, where
possible, we downloaded images of actors from the specific movie, because the movie makeup
and costumes may significantly change the appearance of an actor. On average, M=27.8 and

SD=11.0 images were used for training the model for each actor.

We used an existing face detection algorithm implemented in python from the package
face-recognition that allows detection of specific actors
(github.com/ageitgey/face recognition). The algorithm works by first encoding (i.e., lowering
the dimension) images of faces to 128 dimensions. These are saved to a “.pickle” file and
accessed when running the detection algorithm on the movie. Since detecting faces in full-
length movies can be computationally intensive and thus slow, we used a multi-threaded batch
approach for the encoding step and a multi-process approach for the detection step at each
movie frame. To divide the movie frame-by-frame we used the python package openCV
(github.com/opencv/opencv). Frame counts were then transformed to seconds and results saved

to a “.json” dictionary file of this format:
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{Frame in sec: [character 1, (character 2...)]}

The face recognition algorithm has some error associated with its predictions, which
cannot be calculated unless all character faces are manually labelled frame-by-frame and
compared to predictions. To reduce this error without the need for manual labelling, we only
considered a character to be on screen if that character was predicted in over 50% of predicted
frames in a TR (=1 sec). For instance, if within a TR there were 6/10 frames with predicted
faces of Tom, then Tom’s face would be considered detected within that TR. Secondary
characters were ignored here, even if they may have been present with one of the two main
characters on screen. We, however, ensured not to select any times where Tom and Summer

were together on screen.

Pronominal reference annotation

Movie audio signals were annotated using the Amazon AWS speech-to-text translator
(aws.amazon.com/transcribe/) (see Chapter 2 for details). From the word transcripts we
selected the word timings for ‘500 Days of Summer’ and filtered out all possible pronominal
references to female and male referents (i.e., ‘he/she’, ‘his/hers’, ‘him/her’). We matched the
pronoun onset to the subtitle start time containing the pronoun and used the integer of the
subtitle onset as the TR (=1 sec) of interest. This is because subtitles constituted short sentences
spanning ~1-2 TRs. Finally, we manually labelled to which character the pronouns referred to
and filtered pronominal instances referring to the two main leads in the movie (i.e., Tom and
Summer). This was done because although ‘she’ and ‘he’ pronouns were used to also refer to
secondary characters, these instances were not sufficient for training a neural network.
Moreover, if a subtitle contained more than one pronoun, and these referred to different
characters, these instances were removed from the training data. At the end, the data contained

only cases where either Summer or Tom alone were being referenced through pronouns.

Since we aimed at investigating overlaps between pronoun and visual representation of
a character, we deemed it important to maintain some temporal correlation between the selected
samples. For this, we matched pronoun and visual samples of Tom vs Summer if the visual
instance of a character happened within 2 min of the upcoming pronoun reference for the same
character and no less than 30 sec beforehand: these two time limits were arbitrarily selected.
Nevertheless, these were chosen because it seems likely that the situation model retrieved

during the upcoming pronoun reference will be most similarly represented by a close (but not
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overlapping) antecedent representation of a character. Therefore, we considered the visual
reference of a character to be instances when a situation model was built (or updated) through
perceptual information. Finally, we ensured that instances of Tom and Summer were at least 5
sec apart from each other in either past or future time direction to a given sample: this was to
reduce potential overlaps between the two main characters either in the visual or pronoun
domain, specifically in scenes where they acted together, and the camera may have been
switching between the two characters. All other pronoun samples were dropped, and
unmatched visual samples were also removed. Although here we chose to focus on Tom vs
Summer, other characters were also occasionally on screen or speaking in a scene along with

one of the two main characters.

Data preprocessing and feature selection

In order to account for properties of the hemodynamic response function (HRF), we
slid the onset of visual and pronouns representations by 3 sec, after which the HRF begins to
peak on average (5-7sec from onset stimulus) (Yesilyurt et al., 2008). For this reason, we
selected from the 4D dataset the 3D brain volumes from 3 to 7 sec and averaged these to

produce a less noisy signal centred around the theoretical peak of the HRF.

We identified imbalances between the samples of Tom and Summer, with Summer
having more samples than the 7om dataset. In order to fix the imbalance, we applied random
oversampling with replacement on the Tom dataset using the python package imblearn
(https://github.com/scikit-learn-contrib/imbalanced-learn). This resulted in 21 samples per
character for each participant (i.e., total of 420 samples for each character), with the final
sample comprising 840 total samples of 3D (64x76x64 voxels) brain volumes for each of the

visual and pronoun datasets (i.e., 1,680 brain volumes for the entire model).

For each participant we removed the voxels outside the brain and in white
matter/ventricles and then computed a group mask to ensure all brain images had the same
number of input features, which is a requirement for the input to a convolutional neural network
(Conv) layer (Hashemi, 2019). Then we centred the samples to approximately have mean = 0

and standard deviation = 1, using the formula:

(X - px)/ox

51



This is a typical preprocessing step for Conv layers that helps the model learn and
converge faster (Huang et al., 2020). Finally, we randomly shuffled the 3D volumes and labels,
to avoid overfitting. Labels for Tom and Summer were then converted to one-hot encoding (i.e.,

vectorised categorical labels) for input into the deep neural network.

Model selection and training

The model for the 3D deep neural network (DNN) matched the existing architecture
and hyperparameters proposed by (Vu et al., 2020), which was used to classify 4 simple tasks
(e.g., motor vs language) in an fMRI experiment. Here, we built upon it by creating two
branches, one for visual data and one for pronoun data, that were then merged for output. This
was done to (i) have most layers separate to later inspect where in the brain visual vs pronoun
referents map onto; and (ii) merge the final layers to identify any shared voxels of visual and

pronoun referents.

As per the specifications detailed by Vu and colleagues, each branch consisted of 3
convolutional layers (Conv 1-3). The Conv layers were built with the following
hyperparameters: Conv1l had kernel size 7x7x7 and 8 filters, with a stride of 1; Conv2 had
kernel size 5x5x5 with 16 filters and stride of 1; Conv3 had kernel size 3x3x3 with 32 filters
and stride of 1 (Vu et al., 2020). The first two Conv layers were followed by an average pooling
layer with stride 2 to reduce feature dimensions. Then we applied a flattening layer to vectorise
convolved features to 1D, and finally added a fully connected layer with 128 nodes. We then
added a further dropout layer with 50% retention probability to reduce overfitting. The two
branches of visual and pronoun were then concatenated with a further 50% retention probability
dropout layer, and finally output into a fully connected layer with 2 nodes (i.e., classes) for
prediction. Each Conv layer and the branches’ fully connected layers had ‘ReLu’ activation
functions, whilst the output fully connected layer had a ‘sigmoid’ activation function (Vu et
al., 2020). Ridge regression (L2) regularisation was applied to the output layer activity to

discourage overfitting.

The loss function for the model was binary cross-entropy, since we only had 2 classes.
We applied a stochastic gradient descent (SGD) optimizer with initial learning rate (Lro) of 10

3, which was step-decayed using the formula:

Lr=Lr, * rate decay (current_step / decay_steps)
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Where Lr is the new learning rate for a given step, rate of decay was 0.96 and decay
steps were set to 100,000. Given that we had a small sample set that may be prone to overfitting

in complex models, we tested 3 model complexities:

1. Three Conv layers as in (Vu et al., 2020)

2. Two Conv layers (removed Convl)

3. One Conv layer (removed Conv1 and Conv2) and added 50% dropout after Conv3 layer

Fig. 5 shows a diagram of the final selected architecture and hyperparameters used.
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Figure 5. Diagram of the final 3D DNN branched model.
Separate 3D volume inputs are fed into a visual and pronoun
branch. The first layers of each branch consist of a 3x3x3
convolutional layer with 32 filters (stride 1), with a 50% dropout,
which are flattened and input into a 128 node fully connected
layer. A 50% probability dropout reduces overfitting before
merging the visual and pronoun branches. A final 50% dropout
and fully connected layer (2 nodes) provide the output

predictions.
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The model was compared to other 2 deep neural networks for performance, using
accuracy and loss as metrics. We compared the model to a 2D ResNet50-based transfer learning
model and a 3D DNN with increasing kernel size: the first allows us to test whether using brain
volumes instead of slices is better to identify relationships between voxel clusters, the second
is useful for comparison of hyperparameters (see Supplementary Materials S1-3 for detailed

model information).

Moreover, the reason why simpler models (e.g., support vector machine) could not be
tested was because of the two branching inputs, which can only be accommodated by DNN
models. The architectures and hyperparameters for the other 2 models that were tested can be
found in Supplementary Materials S1-S3. The data was split into 80% training and 20% testing.
The performance of the 3 models were tested using 10-fold cross validation over 10 epochs on
the training data and for each fold the accuracy and loss were also computed on the hold-out
test data. The 3D bi-DNN was then trained on the entire dataset (i.e., 1,680 pairs of samples)

over 100 epochs with early stopping to reduce computational load.

Saliency map visualisation

In order to visualise which voxels of the 3D images the model was learning from, we
computed saliency maps using vanilla guided backpropagation. Given an image / belonging to
class ¢ (either Summer or Tom here) the class score Sc(I) can be approximated to a linear

function using Taylor’s expansion rule, such that:
S.(D=wll+b

Where w is the weight of a voxel and b the bias term. Solving the derivative for w, we

get the following:

58,
- |1,

w =

The collection of w for each voxel represents the saliency map of an image (Simonyan

etal., 2013).

We selected the 3D volumes for Summer and Tom separately, ran each through vanilla
guided backpropagation and averaged the resulting maps for each image to obtain an overall
map of each character representation. Due to the branched nature of our model, each character’s

guided backpropagation resulted in 2 saliency maps for each character: one for pronoun and
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one for visual, which shared the higher layers (i.e., concatenation and output layer). We
performed paired t-tests of Summer vs Tom (visualt+pronoun) and visual vs pronoun
(Summer+Tom). However, because we could not easily trace back the index of the samples
after the shuffling of the data, we could not separate the samples by participant (i.e., separate
into 20 clusters), resulting in high degrees of freedom in the t-test. We then thresholded each
of the 4 resulting saliency maps to the 95 percentile to ensure that the strongest weights were
maintained, thus maintaining the voxels that the model used the most to learn from. 5 voxel
clusters in each of the 4 maps were then compared to Neurosynth meta-analysis maps (Yarkoni
et al., 2011), in order to identify the highest correlated functional term associated with the

cluster of interest.

General linear model analysis

Although the DNN model offers the possibility to detect voxels active during visual vs
pronoun instances of a character (and any putative reactivations) even with small sample sizes,
it is known to potentially suffer from low interpretability (Sheu, 2020). As such, we applied a
general linear model (GLM) using a canonical HRF on the same time points from the DNN
model (i.e., start time shifted 3 sec to account for HRF rise), using the AFNI program
3dDeconvolve (Cox, 1996), in order to further test our hypotheses through more typical
analyses. The GLM would output a beta map for each of the following: (i) Tom visual instances,
(i1) Tom pronoun instances, (iii) Summer visual instances, (iv) Summer pronoun instances. The
resulting beta maps for each subject were input into a linear mixed-effects model (3dLmE),
with subject as a random effect, and age and gender as additional fixed effects. Finally, the
group-level maps were corrected for multiple comparisons using a cluster-size approach. First,
we estimated the smoothness and autocorrelation function of neighbouring voxels using the
3dFWHMx command (Cox, 1996). Then we ran 3dClustSim over 6 uncorrected individual
voxel p-values (.05, .02, .01, .005, .002, .001) and an alpha threshold of .01. Using the
significant cluster sizes whereby faces or edges need to touch, and voxels are contiguous if
they are either positive or negative at each p-threshold, we merged the thresholded maps at

each p-threshold to obtain significant voxels («=0.01).
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Results

Model selection and performance

We tested three different DNNs for classifying Tom and Summer using visual/pronominal

information. Here, the (i) transfer-learning ResNet50-based model achieved an average

validation accuracy of labelling Tom vs Summer both visually and through pronouns of 47.9%
(SD = 10.7%), with M=0.72 (SD=0.05) loss over 10 folds. On the hold-out test data (20% of
dataset), the model reached an average accuracy of 50.5% (SD=2.3%) and M=0.72 (SD=0.04)

loss. The (ii) 3D increasing kernel size DNN reached an average validation accuracy of

labelling Tom vs Summer both visually and through pronouns of 70.5% (SD = 5.3%), with
M=0.64 (SD=0.01) loss over 10 folds. On the hold-out test data, the model reached an average
accuracy of 70.1% (SD=3.4%) and M=0.64 (SD=0.01) loss.

Finally, we tested the (iii) 3D decreasing kernel size DNN at various complexities:

1.

Three Conv layers: reached an average validation accuracy of labelling Tom vs Summer
both visually and through pronouns of 47.3% (SD = 10.9%) and an average validation
loss of 0.69 (SD = 0.003). This last model also achieved an average testing accuracy
across folds of 56.8% (SD = 6.4%) and an average loss of 0.69 (SD = 0.0008).

Two Conv layers: reached an average validation accuracy of labelling Tom vs Summer
both visually and through pronouns of 71.7% (SD = 11.9%) and an average validation
loss of 0.66 (SD = 0.01). This last model also achieved an average testing accuracy
across folds of 75.7% (SD = 6.1%) and an average loss of 0.66 (SD = 0.004).

One Conv layer: reached an average validation accuracy of labelling Tom vs Summer
both visually and through pronouns of 91.4% (SD = 2.0%) and an average validation
loss of 0.34 (SD = 0.04). This last model also achieved an average testing accuracy
across folds of 92.6% (SD = 1.1%) and an average loss of 0.34 (SD = 0.02), indicating
that it was stable across folds and appropriate for the task (i.e., not overfitting), unlike
the former models. We named this model ‘3D bi-DNN’. The training, validation and

testing accuracy per fold for the (i), (ii) and (iii) final models are summarised in Fig. 6.
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Figure 6. Plots of the accuracy (left column) and loss (right
column) over 10 folds during cross validation. Over 10 folds: top
row represents the RSN pretrained model (47.9% accuracy, 0.72
loss); middle row is the 3D DNN with increasing kernel size
(70.5% accuracy, 0.64 loss); bottom row is the final 1-Conv layer
3D bi-DNN model (92.6% accuracy, 0.34 loss). The last model
outperforms the others in terms of both increased accuracy and
reduced error.

After selecting the 3D bi-DNN with a single Conv layer as the best model, we trained

it over 100 epochs on the entire dataset with early stopping to reduce the computational load.
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Saliency maps and GLM maps

We wanted to then visualise which voxels the model had used to distinguish between
Tom and Summer referents, in order to infer possible visual and pronominal overlaps. Saliency
maps resulted in 420 maps for each of the (two) character’s faces and 420 for each character’s
pronoun referent. A paired t-test of (i) Summer vs Tom and (ii) visual vs pronoun over 840
samples each resulted in all within-brain voxels being significant (p < 107), due to the high
degrees of freedom. The results of the averaged maps thresholded at the 95" percentile are
shown in Fig. 7. The most prominent regions the model focused on in the visual branch were
parts of the primary visual, secondary visual, STG, superior temporal sulcus (STS),
parahippocampus and occipitotemporal cortex (OCT) (Fig. 7A). For the pronoun branch, the
regions the model learned from were primary visual, secondary visual, dmPFC, precuneus and
hippocampus (Fig. 7B). The two characters overlapped over 38% in the visual and 57% in the
pronoun maps respectively and differed primarily in voxels around sensorimotor regions in
both. Moreover, within each character’s maps, the visual and pronoun branches overlapped for
8% (for both Tom and Summer), with the overlapping regions being the visual cortex and
parahippocampal areas (Fig. 7C). Here the visual references mapped to STG and OCT, while
pronoun references mapped to mPFC and precuneus more. From the visual and pronoun maps
of each character, we selected the 6 largest clusters in each and ran correlations against
functional meta-analysis terms from the database Neurosynth (Yarkoni et al., 2011). Table 3

shows the top 5 functional meta-analysis terms for each of the 6 voxel clusters of choice.

Interestingly, the GLM results did not exactly match the distribution patterns of the
saliency maps (Fig. 8). During the visual instances, the GLM revealed significant activation in
the occipital lobe, with overlap between the two characters in the parieto-occipital junction, but
surprisingly no activation in face fusiform area (FFA) (Fig. 8A). During pronominal instances,
the GLM revealed a prominent STG, STS and MTG distribution with large overlap between
the two characters, as well as some character-specific distribution in visual areas (e.g., FFA)

and overlapping activity in parts of the visual association area (Fig. 8B bottom right).
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Figure 7. Saliency maps from vanilla guided backpropagation.
For all figures, threshold = 95th percentile. A) Overlap of average
visual maps for Tom vs Summer, where Red = overlap of two
characters; Blue = Tom only; Yellow = Summer only. Cluster
size = 20. The two characters had high overlap in visual (e.g.,
FFA in bottom view) and sensorimotor regions during visual
references, with small differences in activity around these
regions. B) Overlap of average pronoun maps for Tom vs
Summer, where Red = overlap of two characters; Blue = Tom
only; Yellow = Summer only. Cluster size =20. The two
characters overlapped in visual cortices and mPFC. Medial
image: medial view showing mPFC (circled in pink) and its

coordinates. Here, most voxels overlap between Summer and
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M overlap

. Tom

[ summer

Tom pronouns (i.e., red coloured). C) Overlap of average
Summer and Tom maps for visual and pronoun references, where
Yellow = overlap of two references; Green = visual only; Purple
= pronoun only. Cluster size = 40. Pronoun and visual references
overlapped in visual cortex and parahippocampal area, with

slightly different patterns of activity.

‘he’ vs ‘she’

[l overlap

. Tom
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Figure 8. GLM of visual and pronominal references. A) Overlap
of corrected group-level visual beta maps for Tom vs Summer,
where Red = overlap of two characters; Blue = Tom only; Yellow
= Summer only. Cluster size =20. The two characters had little
overlap in the GLM with Tom showing more distributed patterns.
The only overlapping region was at the parieto-occipital
boundary. B) Overlap of corrected group-level pronoun beta
maps for Tom vs Summer, where Red = overlap of two
characters; Blue = Tom only; Yellow = Summer only. Cluster
size =20. Here, the distribution was mostly in the left hemisphere,
particularly STG/STS, which had the highest level of overlap
between the two characters. Some visual association areas
(bottom right image), however, also showed overlap between
Tom and Summer. Both Tom and Summer showed some activity

in FFA, although not overlapping.
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Table 3. Table of top 5 Neurosynth functional terms which

correlated to the coordinates of centres of six clusters in each

character’s visual and pronoun reference. The visual references

mapped mainly to sensorimotor regions involved in visual, motor

and language processing, but also included some elements of

imagery/abstraction. These patterns of activity were reactivated

during pronoun references. The latter also activated episodic

memory and mentalizing regions.
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Discussion

Here, we aimed at testing the hypothesis that pronoun resolution reactivates unique
sensorimotor character representations through context-dependent situation models, which
were built in those same sensorimotor regions during perceptual (i.e., visual) processing of a

character.

To test this, we implemented a 3D branched deep neural network that takes as input the
3D brain volumes of matched visual and pronoun references of a character in a movie. Our
model achieved ~93% accuracy of distinguishing two main characters in a given movie using
both visual and pronoun references. Saliency maps thresholded at the 95th percentile for the
visual branch of the 3D bi-DNN model, revealed that the model learned to distinguish between
perceptual references of Tom and Summer through the bilateral involvement of primary and
secondary visual regions, STG, STS, parahippocampal area and some primary motor cortex
(Fig. 7A). This distribution is in line with our hypothesis that situation models are built via

sensorimotor simulations.

Saliency maps thresholded at the 95th percentile for the pronoun branch of the 3D bi-
DNN model, showed that the model used voxels in primary visual cortices, FFA, hippocampus
and parahippocampal area, precuneus and mPFC to distinguish between Tom and Summer
during pronoun resolution (Fig. 7B). Our findings suggest that pronoun resolution may require
a search in memory for the appropriate situation model to reactivate representations of a

character, which was built and retrieved through sensorimotor regions.

Results from the GLM analysis indicate a different distribution of activity for visual
and pronoun instances compared to the 3D bi-DNN model (Fig. 8). Nonetheless, the pronoun
maps also showed activation and overlap between the two characters in visual association areas,
as well as separate activity patterns in the FFA, indicating involvement of visual areas for
pronoun resolution (Fig. 8B). Surprisingly, the visual map did not have any activity in the FFA
(Fig. 8A). Rather, the activity for Tom was much more distributed than that of Summer, in areas
such as posterior parietal, IFG and secondary visual areas, with the two characters only

overlapping around the parieto-occipital junction.

Model of pronoun resolution

Prior studies have proposed that narrative-based situation models may be built through

sensorimotor regions (Zwaan, 2016), that are activated in the mPFC (Yarkoni et al., 2008) and
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in ‘language’ regions during pronoun resolution (Hammer et al., 2007; Li et al., 2018).
However, aside from general aspects of the retrieval process, no concrete neuroimaging
evidence was found on how pronouns may activate these simulations, nor for the actual

existence of these unique simulations in the brain.

Our findings from the 3D bi-DNN model show for the first time that situation models
may be simulated through representations in sensorimotor and mentalizing regions when the
brain encounters a character perceptually. Based on our findings and the models already
proposed by the linguistic literature (Altmann & Kamide, 2009; Wittenberg et al., 2021), we

speculate the following model of pronoun resolution based on previous visual information:

1. When a pronoun is uttered, ‘language’ regions engage with episodic memory regions
to activate a search in memory for the referent

2. This search involves activating the appropriate situation model in which that referent is
represented

3. Once the appropriate situation model is active this will point to a specific character (i.e.,
referent)

4. This representation reactivates character-specific activity in sensorimotor regions,

where the visual-based representation was originally built

Here we dissect some of these proposed processes.

Pronouns and episodic memory

Studies on pronoun resolution have identified a set of regions that activate when either
(1) the referent is more ambiguous as it can refer to either of two characters; or (ii) the pronoun
is incoherent with the antecedent (e.g., ‘Julie was walking home. He had been at a party’)
(Hammer et al., 2007; Qiu et al., 2012). Such studies have found that these tasks activated
mostly the IFG, MTG, and dorsolateral prefrontal cortex (dIPFC) : the IFG is proposed to
activate with increasing task demands (e.g., ambiguity), the MTG when resolving incongruent
gender of the pronoun and referent, and the dIPFC was proposed to have a general role in
decision-making processes to help assign a referent (Hammer et al., 2007, 2011; Hertrich et al.,

2021; McMillan et al., 2012; Qiu et al., 2012).

Here, we found no activation of the MTG nor IFG, with very minimal activation of the
dIPFC (Fig. 7B). Instead, pronouns for both the male and female character activated

predominantly regions in the visual cortex (e.g., FFA) and other circumscribed sensorimotor
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regions. Here, the lack of activation in ‘language’ regions typically engaged during
incongruences between pronoun and referent, may be due to the fact that the referents could be

more easily resolved through the rich contextual information afforded in the movie.

Instead, we found a network composed of mPFC, hippocampus, parahippocampal area
and precuneus likely involved in episodic memory and consolidation of context-dependent
representations. Previous studies have suggested a fundamental role of the mPFC in activating
situation models (Baldassano et al., 2018; Yarkoni et al., 2008), likely through a role in Theory
of Mind and Default Mode networks. Here, the mPFC has a role in decision-making tasks,
distinguishing between self and others and creating mental representations (Baetens et al.,
2014; Cheetham et al., 2014; Isoda & Noritake, 2013; Moran et al., 2011; Smith et al., 2018;
Xu et al.,, 2005). However, as the mPFC was active along with the hippocampus,
parahippocampal area and precuneus in the present study, its role is more likely to be in support

of memaory processcs.

In particular, research has shown that the mPFC is active during memory consolidation
(i.e., long-term memory formation), after receiving information from the hippocampus (Euston
et al., 2012; Takashima et al., 2006). The latter, instead, is involved in short-term memory
reactivation, particularly during context-dependent episodic memory, together with the
parahippocampal area and precuneus (Chang et al., 2021; Dickerson & Eichenbaum, 2010;
Flegal et al., 2014; Maviel et al., 2004; Michelmann et al., 2021). Once information is fully
consolidated, the mPFC inhibits activation of the hippocampus, to avoid building new
representations of existing memories (Baldassano et al., 2018; Takashima et al., 2006). We
thus propose that the activation of this network in the pronoun branch is as follows: (i)
hippocampus, parahippocampal area and precuneus reinstate a situation model from working
memory to help resolve the referent, (i1) meanwhile the mPFC updates the situation model with
the newly encountered dialogue information and consolidates it in long-term memory. Given
that the participants had not previously seen the movie, it is reasonable that the hippocampus
would be engaged in the reactivation of context-specific situation models, while the mPFC
consolidates these representations. It would be interesting to study possible temporal variations

in hippocampus/mPFC over the movie, as well as test this activity in repeated movie viewings.

Situation models and character representations
Although much of the literature has discussed situation models for building discourse

representations (Zwaan et al., 1995; Zwaan & Radvansky, 1998; Zwaan, 2016), to the best of
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our knowledge, there is still no evidence for their existence nor for their involvement in
pronoun resolution. Here we were able to detect putative context-dependent situation models
for the representation of characters, and their reactivation during pronoun resolution. Situation
models containing character representations were generally built in sensorimotor (i.e., primary

auditory, visual and some motor) regions (Fig. 7A).

The two characters mainly differed in voxel distributions around the primary visual
cortex, OCT region, occipitoparietal area and STG/STS (Fig. 7A). These regions are all
involved in visual perception at different levels: at first the ventral pathway forms different
distributions in the primary visual cortex that relate to face perception of different characters
(Sheth & Young, 2016), then the dorsal pathway engages the occipitoparietal area to process
information visually encoded by actions (Freud et al., 2016), while the STG/STS was recently
shown to form a third pathway that integrates the previous two to process social interactions
afforded by visual information (e.g., gestures, facial expressions etc.) (Manfredi et al., 2017;

Pitcher & Ungerleider, 2021).

The character representations were not purely due to visual perception, although these
regions were highly active, but also incorporated clusters of voxels involved in imagery,
abstraction, attention and construction of representations, as shown by the Neurosynth meta-
analysis term correlations (see Table 3). Given that situation models are highly imagistic by
nature (Zwaan, 2016), the presence of clusters relating to imagery further suggests that the 3D
bi-DNN model has likely isolated processes/regions involved in building situation models of

character representations.

Content retrieval

Our findings support the hypothesis that pronouns would reactivate sensorimotor
fingerprints related to the character representation in different situation models. We found that
the primary visual cortex and parts of the OCT area, occipitoparietal cortex, and the STG/STS
were reactivated during pronoun resolution (Fig. 7B and C). These suggest that when a pronoun
is uttered, a search for the situation model in working memory reinstates the activity

distribution specific to the representation of the referent.

Studies on content retrieval have shown that the brain reactivates specific perceptual
activity fingerprints when recalling distinct contextual information in the absence of the

stimulus. Indeed, there is ample evidence in the episodic memory literature suggesting that the
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higher the reactivation of the same activity patterns between antecedent and new event the
better the retrieval (Frankland et al., 2019; Oedekoven et al., 2017; Yaffe et al., 2014). For
instance, a study using naturalistic stimuli in the form of short videos, showed that increased
overlap between antecedent and reinstatement increases vividness of the antecedent video
during recall (St-Laurent et al., 2015). The patterns reactivated during free recall are unique to
the category they represent (e.g., face, object, place) (Polyn et al., 2005) or the context they
refer to (Nyberg et al.,, 2000), although overlap between activity distributions of
categories/contexts proportionally increases with their similarity (Norman et al., 2006). In line
with previous research, we found that the sensorimotor activity distributions of 7om vs Summer
character representations mostly overlapped, likely because they both related to the ‘face’

category or similar contextual situation models (Fig. 7).

Our study builds upon the content retrieval literature, by linking visual information of
specific characters to their unique retrieval through pronouns in a naturalistic setting, where

the stimuli are complex and continuous and free recall cannot be tested.
Comparison of GLM and 3D bi-DNN

Since the computations within DNN models may be difficult to interpret (Sheu, 2020),
we additionally conducted a more typical GLM analysis on visual vs pronoun instances to use
as a comparison tool for our DNN results. The two models showed differences in the specific
voxel activations in both the visual and pronoun instances. Nonetheless, the general trend of
distribution of activity was somewhat comparable: for instance, during the visual instances
both models identified activity in and around sensorimotor regions. The GLM revealed
activations mostly in sensory association and secondary visual areas (Fig. 8 A), while the DNN
in primary visual, secondary visual and FFA regions (Fig. 7A). These patterns were generally
in line with (i) the nature of audio-visual stimuli (i.e., visual cortex activation), and (ii) our

hypothesis of building situation models through sensorimotor areas.

During pronoun instances, instead, ‘language’ regions (e.g., STG, MTG, STS) were
significantly active in the GLM model (Fig. 8B). Such activation in ‘language’ regions would
normally be expected for a linguistic task, such as pronoun resolution (Hammer et al., 2007,
Lietal., 2018). As previously discussed, however, this activation was not present in the DNN
pronoun model. Perhaps, at thresholds lower than the 95" percentile that was applied here,
‘language’ regions may start to become apparent in the DNN as well. Interestingly, in both

GLM and DNN models, pronouns activated parts of the visual cortex, such as FFA, strongly
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suggesting that reactivation of visual imagery (or situation models) is necessary to resolve
specific pronoun referents. Unlike the DNN pronoun maps, we found no activity in mentalizing
regions (e.g., mPFC) and limited activation of parahippocampal areas in the GLM pronoun
maps. These results could indicate that the mPFC has a more general role in processing ongoing

narrative, rather than specifically activating situation models during retrieval.

Limitations

One limitation of the present study was that, due to the limited number of pronouns in
movies, we opted not to remove those pronouns where there was a flashback or on-screen
presence of a character referent in the movie. For instance, Summer’s face appears in some
scenes where other characters are referring to her as ‘she’, similarly 7om may appear when the
narrator in the movie refers to him as ‘he’. This limitation may bias both GLM and DNN
models towards a character’s face rather than the pronoun retrieval process. Nevertheless, this
happened in 29% of the 84 initially detected pronouns (n.b. some pronouns referring to Tom
and Summer may not be detected by the speech-to-text transcript, therefore would not be
included as samples here). Moreover, these instances usually happened as single blocks, and
since we limited pronouns to be at least 5 sec apart in either past or future direction, resulting
in 21 pronoun samples for Summer and 8 for Tom prior to balancing, it likely further reduced
the co-occurrence of characters on-screen. This issue is mostly relevant for the GLM model,
where the addition of penalising functions to discourage the model from detecting visual
features is not possible, unlike in DNN models. In future, to improve on this issue, we could
ignore instances where the face is on screen during pronoun referencing and collect more

participants to increase the sample size.

The small sample size represents a significant limitation, particularly for the GLM
model. Low sample and high dimensionality are also known issues of DNNs, but recent studies
have suggested that multiple dropout layers successfully offset the risk of overfitting (Liu et
al., 2017). Indeed, using multiple stringent dropouts resulted in no overfitting in our DNN
model (Fig. 6). Finally, BOLD signals in a fast-event design, such as in movies, present non-
linear relationships between variables (Pfeuffer et al., 2003; Vazquez & Noll, 1998), which
GLMs cannot model, due to their underlying assumption of linearity between variables. Since
DNNs can model nonlinear relationships in the data, the results of our DNN model are likely

much more robust that those of the GLM.
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Implications

In the present study we have shown that pronoun resolution requires the reactivation of
unique character representations from perceptually built situation models. This is the first time,
to our knowledge, that (i) the existence of situation models for character representations in the
brain is demonstrated, and (ii) sensorimotor character representations are shown to be needed

for inferring referents.

This has significant implications for our understanding of the neurobiology of language
in the real world. Existing models are limited in that they do not account for linguistic
complexities and how these may drive multi-modal interactions between language, memory
and perception, which are known to be elicited by context (Friston & Price, 2001; Skipper,
2015a). This study demonstrated that when inspecting natural contextual dependencies in
specific linguistic features, the distribution of activity includes regions outside classical

‘language’ areas and requires the interplay between various modalities.

Difficulties in pronoun resolution are a common feature in any type of aphasia,
irrespective of language (Arslan et al., 2021), but particularly in agrammatic aphasics (Jarema
& Friederici, 1994). Importantly, some aphasic patients have difficulty associating the pronoun
to the correct subject referent, highlighting how the process of retrieval may be impaired
(Peristeri & Tsimpli, 2013). Our finding that pronoun resolution depends on the reactivation of
sensorimotor character representations could offer insights for the development of novel speech

therapies, to target more specific language features and associated processes to speed recovery.

Conclusion

In this study we demonstrated that pronouns in naturalistic discourse reactivate a set of
sensorimotor character representations, that were built as part of situation models when the
characters were visually present. These models were built not only perceptually, but also
recruited Theory of Mind and Default Mode regions required for forming imagistic
simulations. The sensorimotor distribution of character representations mostly overlapped
between the two characters, likely because they shared a similar context in the movie. However,
character representations also experienced small variations around visual regions, showing that

situation models can help point to a unique character representation during pronoun resolution.
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Overall, these findings highlight the importance of studying individual language
features in a more complex and natural environment and demonstrate that the neurobiology of
language is more distributed than existing models suggest. These distributed areas may offer

new avenues for novel speech therapies for aphasic patients.
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3.2 Are 'language regions' an artefact of averaging?

Abstract

Neuroimaging studies, meta-analyses, and theoretical models of the neurobiology of
language all suggest that several superior and middle temporal and inferior frontal brain regions
are responsible for language processing. These observations derive from research that heavily
relies on measures of central tendency, such as averaging activity patterns from heterogeneous
stimuli, tasks, and participants. We hypothesise that the use of such methods obscures the
whole brain distribution of language processing, and that ‘language’ regions are, rather,
network hubs, coordinating other regions whose activity is variable. To test this hypothesis, we
used movie functional magnetic resonance imaging data and scored heard words for their
sensorimotor properties. Analyses revealed that these properties form unique distributed
patterns of activity involving most of the brain. Dynamic functional connectivity analyses
identified variable connectivity states, which only resulted in ‘language’ regions when
averaged together. These findings suggest that the natural neurobiology of language forms a
whole-brain arrangement composed of hubs and dynamic regions that is made invisible by
averaging over very different linguistic categories. Aphasia resulting from damage to hub

regions might be better explained by their separation from associated dynamic regions.

Introduction

Traditional models of the neurobiology of language based on lesion studies proposed
that regions in the left posterior sylvian fissure and inferior frontal gyrus (IFG) are the
anatomical loci of language comprehension and speech production respectively (Dronkers et
al., 2017; Geschwind, 1970; Nasios et al., 2019). Over the last decades, this classical model
has been revisited and updated using more modern lesion analyses and, mostly, task-based
neuroimaging studies to include bilaterally the superior and middle temporal gyrus (STG and
MTG), Sylvian parietal-temporal region (Spt) and premotor cortex (Hickok & Poeppel, 2004,
2007; Rauschecker & Scott, 2009; Rauschecker & Tian, 2000). These regions in the most cited
models are said to form dual-streams, involving a dorsal stream for mapping acoustic to
articulatory processes and a ventral stream mapping sound to meaning (Hickok & Poeppel,
2007). Regions belonging to the dual-stream model consistently emerge in lesion analyses and

studies using various phonological, grammatical, lexical etc. stimuli and tasks.
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Why are these regions prominent in language models? Lesion and neuroimaging studies
supporting the classical and dual-stream models are usually based on simple stimuli and tasks.
In studies of lower-level speech perception, participants might listen to phonemes or syllables
and press a button when they detect some instructed difference (Goranskaya et al., 2016). In
studies of word processing, participants might read single words vs nonwords (Braun et al.,
2015). Further, in studies of sentence processing, participants might listen to normal sentences
vs nonword sequences (Fedorenko et al., 2010; Fedorenko et al., 2012). Resulting activation
patterns from these simplistic and artificial tasks are then typically subtracted in some manner
and averaged within and then across participants. The resulting patterns for all of phonetic,
grammatical, lexical and semantic tasks consistently map onto a set of common regions (STG,
MTG, and IFG). Further supporting this, neuroimaging meta-analyses also show consistent

activation of the I[FG, STG, and MTG with some additional variability around these (Fig. 9).

Figure 9. Overlap of various language meta-analysis terms from

Neurosynth (Yarkoni et al., 2011). These include the meta-
analysis terms ‘language comprehension’, ‘comprehension’,
‘sentence comprehension’, ‘speech perception’, ‘language
network’, ‘language’. Yellow indicates highest overlap between
meta-analyses, Orange/Red represents some overlap, and Blue
represents unique patterns. [IFG, STG, and MTG consistently

appear across meta-analyses.

Why do different task-based studies and meta-analyses result in the same ‘language’
regions? The simplest answer is that the set of regions found in the literature are indeed the

sole loci for processing language in the brain, and that this is the true extent of the language

71



processing network. Alternatively, ‘language’ regions may result as a product of central
tendency measures, such as averaging, and subtracting methods. Indeed, averaging over a
multitude of words or sentences that have different meanings and contexts would identify only
regions that are common to all the words/sentences: these are likely to be some general
language processing regions. Moreover, aggregating over participants would identify activity
patterns that they all share: these are likely to be again (i) acoustic processing regions, (ii)
domain-general language regions, and (iii) domain-general cognitive strategy regions. Any
unique activity pattern related to individual word meanings, individual sentence contexts or
individual participants would disappear when applying measures of central tendency, which
are instead biased towards finding commonalities across all stimuli, tasks and participants.
These central tendency methods have been used in nearly all the existing literature on language

comprehension, as they allow to draw conclusions at the population-level.

What happens when we do not use central tendency measures? When investigating
individual elements (e.g., individual words, sentences etc.), many studies have found more
distributed activity patterns during language comprehension. For instance, studies on word
semantics revealed that individual words are represented in brain regions outside known
language areas based on the meaning or concept that each word evokes: names of objects
related to acoustic features (e.g., ‘telephone’) activate auditory regions (Kiefer et al., 2008),
names of colours (e.g., ‘blue’) activate colour-processing visual areas (Martin et al., 1995), and
words representing object categories activate unique activity patterns in visual cortices,
matching the patterns activated when looking at images of the same categories (Shinkareva et
al.,2011) even in the absence of the auditory or visual stimulus respectively. In a more detailed
study, Huth and colleagues (Huth et al., 2016) mapped the activity of individual semantic
categories, showing that these elicit (i) unique activity patterns and (ii) together tile nearly the
whole brain. These distributed regions are recruited early during processing of a word, within
150 ms from word onset, meaning they do not represent a post-perceptual process, but are
rather an integral component of the processing of the word of interest (Garcia et al., 2019;

Kiefer et al., 2008; MacGregor et al., 2012; Shtyrov et al., 2014).

Given that ‘language’ regions are still present in individual variability maps, it seems
unlikely for these regions to be mere artefacts of central tendency measures. An alternative and
more plausible explanation is that ‘language’ regions have a central role in coordinating other
highly distributed and dynamic language processing areas, and thus are active during any

language task. To explore these putative regional differences, one could apply network
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measures. Indeed, network studies have already identified a set of regions that have significant
influence on the rest of the brain, and where most of the brain’s connections concentrate
(Hagmann et al., 2008). These are known as hubs or rich-club and play a fundamental role in
network communication and integration (van den Heuvel & Sporns, 2013). Across the whole
brain the main identified hubs include the cingulate, precuneus, insula, superior frontal and
superior temporal cortices (De Domenico et al., 2016; Hagmann et al., 2008; van den Heuvel
& Sporns, 2011). These form the main ‘backbone’ upon which other regions can communicate
and interact (Fornito et al., 2016). Furthermore, studies have shown that a hierarchy of hubs
exist in the human brain (van den Heuvel & Sporns, 2013). Intermediary hubs have important
roles at more local scales, whereby they may link various subnetworks (i.e., ‘connector’ hubs
for integration), or have a central role within a specific subnetwork (i.e., ‘provincial’ hubs for

coordination) (Fornito et al., 2016; van den Heuvel & Sporns, 2013).

Although ‘language’ regions do not appear as global hubs (except for the STG), these
regions were shown to act as provincial hubs across participants and in various tasks (Bassett
et al., 2013; den Ouden et al., 2012; Li et al., 2020). Studies on the network organisation of
language and the brain are limited, with most investigating connectivity within ‘language’
regions through the use of language localisers or pre-selected regions-of-interest (ROIs),
leading to the idea that a circumscribed ‘language network’ exists (Chai et al., 2016; Fedorenko
& Thompson-Schill, 2014). However, the few studies focusing on whole brain connectivity
and individual variability have identified a much more distributed and hierarchical ‘language
network’, within which ‘language’ regions constitute the top of the hierarchy (Akiki &
Abdallah, 2019; Hertrich et al., 2020). For instance, Akiki & Abdallah (2019) computed nodal
consistency of voxels grouped into 22 functional sub-networks; the results showed that
‘language’ regions had some of the lowest consistency values, which the authors interpreted as
these regions acting as connectivity hubs during various tasks. Taken together, these limited
findings tentatively suggest that ‘language’ regions may be hubs of a wider language

processing network.

Here, we test the hypothesis that central tendency measures have so far only revealed
language hubs. We propose that the neurobiology of language is (i) highly dynamic and
distributed in the real world, and that (ii) ‘language’ regions are intermediary (provincial) hubs.
In order to achieve this, we investigate the neurobiology of language processing during a
naturalistic movie-watching task, using the Naturalistic Neuroimaging Database (NNDb) data.

In the present manuscript we selected 38 participants from the NNDb (20 watched ‘500 Days
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of Summer’ and 18 watched ‘Citizenfour’, average movie length = 6137 sec). In order to test
whether the neurobiology of language processing is distributed during sensorimotor
representation of words, we scored individual heard words for their sensorimotor embeddings
over 11 dimensions (auditory, visual, gustatory, haptic, interoceptive, olfactory, foot-leg, hand-
arm, mouth, head, torso) and analysed how these drive activity patterns in the brain. We then
computed the average of all heard words and the average of all individual sensorimotor maps,
and compared these to the language meta-analysis map from Neurosynth (Yarkoni et al., 2011),
to study whether only the aggregate resembles ‘language’ regions. We then constructed
individual voxel-wise networks using a sliding-window approach and measured the strength of
connectivity (or centrality) for each voxel. Centrality values were aggregated over time, space
and participants to test whether only ‘language’ regions emerge from the aggregate as

provincial hubs.

Methods

For more details on participants, data acquisition and preprocessing, please refer to

Chapter 2 and the original publication (Aliko et al., 2020).

Neuroimaging data

We obtained fMRI data from 38 participants (19 females, range of age 19-58 years, M
= 27.4 years, SD = 10.2 years) in the Naturalistic Neuroimaging Dataset (NNDb) (Aliko et al.,
2020). We selected only participants who watched either ‘500 Days of Summer’ or
‘Citizenfour’ from the 10 available in the NNDb; of these, 20 participants watched ‘500 Days
of Summer’ and 18 watched ‘Citizenfour’. The data was preprocessed as detailed in Chapter

2.

Lancaster norm annotations

Movies were annotated for word onset and duration using available subtitle scripts and
the ‘Amazon Transcribe’ tool from ‘Amazon Web Services’ that performs speech-to-text
translation (see Chapter 2). The audio file of the movie was converted into text with timings
for on and offset for all words. Because the transcript did not capture all spoken words, some
timings were estimated using a script that applied dynamic time warping (Aliko et al., 2020).
Finally, words that were contracted (e.g., “he’d” instead of “he would”’) were modified to their

full spelling and the onset and duration of each of the words was estimated by dividing the
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original duration by the number of letters in the new words. For instance, if the word “he’s”
had originally an onset at 10 seconds and duration of 2 seconds, the new spelling would have

duration of:

e “He” has onset at 10 sec and duration of 2 sec/4 letters new spelling = 0.5 sec/letter * 2

letters in word = 1 sec
o “Is” has onset at 10 sec + 1 sec = 11 sec and duration 2 sec - 1 sec =1 sec

Although in spoken English, the ‘he’ in ‘he’s’ would last longer than the ‘s’, we estimated the

duration of the non-contracted version from the full spelling.

In order to investigate the activity distribution of single words, we overlapped the full
word annotations to the Lancaster Sensorimotor Norms (LSN) that provide the largest
perceptual and action assessment of ~40,000 English words, collected from the average of
3,500 individuals’ scores on a scale 0-5 (Lynott et al., 2020). We are aware of only one similar
study to ours that has used LSN in an fMRI setting to study language comprehension. Here,
the authors used LSN together with other psycholinguistic scores (e.g., word concreteness and
word frequency) and extracted principal components to use as modulators in a naturalistic
narrative fMRI study: the findings revealed distributed activation in areas such as DMN, insula,

occipito-parietal cortex etc., during language processing (Wu et al., 2022).

On average, 95.8% of the words in the movies had a corresponding entry in the LSN
(M =11,277; SD = 3708.1 words). The resulting scoring from LSN produce 11 regressors for
the following sensorimotor entries in order of appearance: auditory (A), gustatory (G), haptic
(H), interoceptive (I), olfactory (O), visual (V), foot/leg (F1), hand/arm (Ha), head (He), mouth
(M) and torso (T). Regressors for words in the movie annotations that overlapped the LSN
database were separated from words in the movie not classified in the LSN database (M =
4.2%, SD = 0.8% of words in movies), resulting in two text files of the following format

respectively:
Regressor 1 (LSN classification present). Onset*4,G,H,1,0,V,Fl,Ha,He,M, T:duration
Regressor 2 (LSN classification missing). Onset:duration

Two confound regressors for low-level visual and low-level auditory features were also
included for each word in the model, to control for effects due to visual stimulation and auditory

ones unrelated to words. We selected sound energy as the auditory control regressor. Sound
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energy measures the root-mean square acoustic energy of an audio signal, meaning how loud
the audio signal is (Shain et al., 2020). Sound energy was calculated every 100 ms using the
Python library librosa (on average, Myae= 8x103 W, SDyae = 4.5x10 W) (McFee et al.,
2015). Contrast luminance was selected as the visual regressor: it measures the standard
deviation in luma (brightness) values of the pixels in an image (Goodyear & Menon, 1998).
Contrast luminance was computed at every frame in the movie using the Python library
OpenCV (on average, Myae = 53.7 Im, SDyaie = 17.6 Im) (github.com/opencv/opencv). Both
the sound energy and contrast luminance values were averaged over the duration of the words
where the LSN classification was present. For instance, if a word had a duration of 200 ms,
two values of sound energy (each at 100 ms) would be averaged together and 5000 values of
contrast luminance would be averaged together (each at 0.04 ms). In the event that the word
duration was smaller than the sampling rate of either control regressor, the value of 1 sampling
step was assigned to the word. Thus, for instance, if a word had a duration of 10 ms, the sound
energy value assigned to the word would be 100 ms, and the contrast luminance would be the

average of 250 values.

Finally, a third control regressor was included in the model, namely word frequency of
individual words, in order to remove effects due to the commonality of the word rather than its
sensorimotor embedding (Willems et al., 2016). We used the log-transform of word frequency
database Subtlex UK (van Heuven et al., 2014), because even though the movies were US
productions, our participants lived in the UK at the time of the study (on average, Myaiwe = 6.2,
SDvaie = 1.2). One word in ‘Citizenfour’ did not have an associated word frequency value,
because it was missing in the Subtlex database; we therefore assigned a value of ‘0’ frequency
to the word. This would not affect the final results of the analysis, since it constituted 1 word

out of 13,898 other words within the same movie.
The final file containing words that overlapped the LSN database had the following format:

Onset*A4,G,H,1,0,V,Fl,Ha,He,M, T,luminance,soundpower,frequency.duration

Multiple linear regression and linear mixed effects analysis

Multiple linear regression using duration and amplitude modulation was performed
using the AFNI program 3dDeconvolve (Cox, 1996) with three regressors: (i) regressor of
interest for single words that had LSN scores, sound energy (low-level auditory feature),

contrast luminance (low-level visual feature) and word frequency confounds over the duration
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of each word (Mante et al., 2005; Moulden et al., 1990; Shain et al., 2020; van Dijk et al.,
2020), (i1) regressor for single words without LSN scores, and (iii) regressor for times where
no words are present (non-words) (on average, Myawe = 1707 sec, SDvawe = 179 sec). The
amplitude modulated regression identifies areas of the brain where the BOLD signal varies
proportionally with the regressors of interest; while the duration modulated regression
identifies areas of the brain where the BOLD signal varies proportionally with the duration of
the stimulus (Cox, 1996). The linear regression also outputs the effect of the baseline stimulus

(e.g., words) on the BOLD signal, which we called ‘words’ in this manuscript.

The resulting beta maps from the multiple linear regression with amplitude modulation
were input into a linear mixed effects (LME) model using 3dLME, since the individual words
were sampled within-participant (Cox, 1996). In the LME model, we set beta coefficient, age,
gender and movie watched for each participant as fixed effects. We set participant as a random
effect, whereby the intercept of the slope was allowed to vary by a small random amount
compared to the group average for each participant. We computed the baselines for all 11

Lancaster norms and for ‘words’.

The results of the LME for each Lancaster norm map and for the ‘words’ map were
corrected for multiple comparisons using a cluster-size correction procedure in AFNI. First, we
estimated the smoothness and autocorrelation function of neighbouring voxels using the
3dFWHMx command (Cox, 1996). Then we ran 3dClustSim over 6 uncorrected individual
voxel p-values (.05, .02, .01, .005, .002, .001) and an alpha threshold of .01. Using the
significant cluster sizes whereby faces or edges need to touch, and voxels are contiguous if
they are either positive or negative at each p-threshold, we merged the thresholded maps at

each p-threshold to obtain significant voxels («=0.01).

Centrality analysis

We constructed time-varying connectivity matrices using a sliding-window approach.
First the original fMRI timeseries was resampled to 5mm? to reduce computational complexity
of the network analyses. The timeseries was then divided into windows of 1 min length, sliding
every 10 sec to allow for a 50 sec overlap between one window and the next. A pairwise
Pearson’s product moment correlation coefficient was computed on each window using the

AFNI program 3dDegreeCentrality (Cox, 1996). The resulting correlation matrices were
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proportionally thresholded to obtain a 10% sparsity in each time window: the top 10% values

were considered a connection between two voxels and used to build a connectivity matrix.

Centrality of a node measures how important that node is for the integrity and
information-flow of the network. Centrality can be determined using various metrics that
provide different information on the role of the node of interest in the network. Four centrality
values were measured at each voxel for each window, namely degree, eigenvector, closeness
and betweenness. Degree centrality is the sum of inward and outward connections from a node;
eigenvector centrality is a measure of influence on a network, meaning that a high-connectivity
node linked to nodes of high connectivity will have higher eigenvector centrality (i.e., be more
influential) than a high-connectivity node linked to low-connectivity nodes; betweenness
centrality measures the shortest paths that pass through a given node; closeness centrality
measures the inverse of the distance of shortest paths passing through the node (van den Heuvel
& Sporns, 2013). Although these centrality metrics provide different details on a node’s
importance, they are highly correlated to one-another (Li et al., 2015; Oldham et al., 2019),
thus ranking nodes across measures is most informative to create a detailed map of the network
nodes’ influences (van den Heuvel & Sporns, 2013). We ranked nodes based on each of the
four centrality measures, calculated the Spearman’s ranking correlation coefficient (p) between
pairwise measures, and clustered nodes using Ward’s linkage distance. The clusters were
further evaluated using the Davies-Bouldin score, to obtain an optimal clustering of nodes

across centrality metrics (Oldham et al., 2019).

Hubs are defined as nodes that are most strongly connected to the rest of the network,
therefore having an important structural and possibly functional role (van den Heuvel &
Sporns, 2011). If the p coefficients for the pairwise centrality measures resulted to be
significant as the literature proposes, we would average the four Z-transformed centrality
scores to create a single centrality value per node. There is no consensus measure or method to
determine hubs in a network, thus we defined hubs to be the nodes in the 90th percentile of the
average centrality score. Although a cut-off of 90th percentile is arbitrary, it allows for strong
selectivity of nodes while still maintaining the configuration of clusters of high centrality. The
thresholded centrality window maps were input into the Affinity Propagation Clustering (APC)
algorithm, in order to determine exemplar configurations that are stable across time
(Bodenhofer et al., 2011). The resulting dendrogram that APC outputs was cut in half, such
that clusters of interest were the ones surviving the halfway cut-off of the tree. In order to test

whether canonical language regions only appear in the group average rather than be very stable
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across time in a single participant, we concatenated the most representative windows for each
cluster (known as exemplars) at the halfway mark for each participant into one map and
Independent Component Analysis (ICA) was computed over 100 dimensions using melodic
(Woolrich et al., 2009). Melodic normalises variance of the timecourses and thresholds maps
at p > .5, which assumes an equal loss from false positives and negatives (Woolrich et al.,
2009). Due to the nature of fMRI data collection and preprocessing, noise cannot be completely
removed from the final dataset. Thus, ICA not only outputs stable components, but may also
include noise ones that could be due to regular physiological or machine noise. We selected
non-noisy stable components manually, identifying them as components that conform to the
grey matter forming largely bilateral patterns, and do not fall into regions outside of the brain
or in white matter and cerebrospinal fluid areas. Noise components that included areas outside
of the brain, were randomly distributed or included white matter and ventricles were discarded.
Finally, we measured the spatial correlation coefficient of each exemplar from APC and each

ICA component to the language meta-analysis regions.

Results

Distribution of sensorimotor properties of words

We first tested the hypothesis that word processing results in distributed patterns of
activity throughout the entire brain and that this pattern is obscured by the use of measures of
central tendency, resulting in ‘language’ regions (i.e., most commonly, the S/MTG and IFG).
To do this, we used a method previously demonstrated to result in distributed patterns of
activity when the semantic properties of words are taken into consideration (rather than simply
averaged over) (Huth et al., 2016). Differently from the previous study, we used the LSN
database to score words in movies based on 11 sensorimotor embeddings and used these as
modulators of the BOLD fMRI signal. Below is an example of how two words are scored in

the LSN on a scale of 0-5 (red = highest score category for the word).

Word A G H I o A Fl Ha He M T

LOVE 2.056 0.722 3 4389 1.056 2667 1.5 2444 3667 3.611 3.333

TABLE 0.684 0.0563 3.263 0.158 0.158 4.737 165 245 175 0.55 1.35
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This analysis produced 12 beta maps, one for ‘words’ and 11 for each of the
sensorimotor modulators of those words. For the group level analysis, ‘words’ and
sensorimotor beta coefficient maps were input into a linear mixed-effects and corrected for
multiple comparisons (Chen et al., 2013). The corrected maps for words and the individual
effects of Lancaster norms are shown in Fig. 10. Each LSN map shows a unique distribution,
although in patterns not related to their perceptual reference (e.g., Olfactory map did not

activate olfactory cortex).
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Figure 10. Maps for each of the 11 sensorimotor embeddings.
Maps were corrected for multiple comparisons with a cluster-size
correction and multiple thresholds approach (a = 0.01). Each
map formed unique and distributed activity patterns, mainly
around (i) primary auditory, motor, visual and premotor areas,
(i1) subcortical regions, (iii) some frontal regions. For all maps,

cluster size = 20.
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In order to determine whether the ‘words’ map closely resembled ‘language’ meta-
analysis regions and whether sensorimotor maps were more distributed, we computed the
spatial correlation of each positive map to the ‘language’ meta-analysis map from Neurosynth
(Yarkoni et al., 2011). The ‘words’ map had r = 0.42 spatial correlation with the ‘language’
meta-analysis map (Fig. 11). The primary difference was the relative lack of IFG in the ‘words’
map. In contrast, the individual sensorimotor maps had poor spatial correlation (on average M;

=0.09, SD = 0.11) with the ‘language’ meta-analysis map.

Figure 11. ‘Words’ map corrected for multiple comparisons

using a cluster-size correction and multiple thresholds approach
(a0 =0.01). This represents the activity resulting from all words
in movies. The ‘words’ regions are highly correlated to the
‘language’ meta-analysis map (black outline). However, the IFG
is mostly missing in the ‘words’ map and activity is more equally

distributed bilaterally. Cluster size = 20.

We then grouped the sensorimotor maps together to investigate how distributed the
overall pattern of activity was. The overall sensorimotor map extended over 63.7% of other
brain regions outside the ‘language’ meta-analysis areas (i.e., regions resulting from the
difference between all brain voxels and ‘language’ meta-analysis areas, with the exclusion of
white matter and ventricles) (Fig. 12A). Individually, however, sensorimotor norm maps
extended outside ‘language’ meta-analysis regions by M = 8.0% (SD = 8.1%, range = 0.9% -
25.2%). We then thresholded the overall sensorimotor map to the 90" percentile of values in
order to test whether multiple applications of central tendency measures and high thresholding

would also result in the ‘language’ regions. Here, the remaining regions map to the STG, IFG
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and occipital cortex (r = 0.26 with ‘language’ meta-analysis map, Fig. 12B). Although the IFG
now somewhat appears in the map, the presence of occipital regions and lack of premotor areas
likely drive down the spatial correlation value with the ‘language’ meta-analysis map.
Moreover, the activity in the S/MTG is less distributed than in the ‘words’ map, potentially due
to the high threshold (90" percentile) applied here. Indeed, the unthresholded sensorimotor
map (Fig. 12A) included these missing areas, as well as the whole IFG.

Figure 12. Map of distribution of sensorimotor embeddings. A)
Overall distribution of sensorimotor embeddings after multiple
comparisons correction at & = 0.01, with Orange/Red = higher
average beta values and Yellow = lower average beta values. The
distribution encompassed many regions outside ‘language’ areas
(black outline). B) Thresholded (90th percentile) values from
average distributed sensorimotor map correlate with the
Neurosynth ‘language’ meta-analysis map (black outline).

Cluster size = 20.
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Connectivity of canonical language and distributed regions

The prior results suggest two measures of central tendency would yield primarily
STG/MTG and IFG regions. We next tested whether these ‘language’ regions act as
connectivity hubs while distributed regions form a dynamic periphery. To do this, we measured
four centrality metrics (degree, eigenvector, betweenness, closeness) for every voxel, or node.
Despite differences, the four metrics had a significant (p < .001) Spearman’s ranking
correlation (Mo = 0.94, SDmo = 0.02) with one another at the group level (i.e., across time
windows and across participants). We averaged the Z-transformed centrality metrics and
thresholded them to the 90™ percentile to obtain the most connected nodes. We then applied
APC in order to identify temporal cluster configurations of high-connectivity states
(Bodenhofer et al., 2011). This means that if a group of high-centrality nodes recurred over
time, it would constitute a stable APC cluster. This method identified on average M = 51.6 (SD
= 6.0) temporal hub configurations across participants. Among the ~52 exemplars, we found,
on average, low (Mr = 0.11, SDr = 0.05) spatial correlation with the ‘language’ meta-analysis

regions; only 0.2% had a medium correlation comparable to the ‘words’ map (> .3).

In order to test the hypothesis that ‘language’ regions appear in the aggregate because
they are high-connectivity hubs coordinating distributed regions, we ran independent
component analysis (ICA). Although ‘language’ meta-analysis regions were correlated with
few APC exemplars, we hypothesise that they will correlate much more with components of
the aggregate. Here, we identified 33 non-noise ICA components. We computed the spatial
correlation of each of the 33 states with the ‘language’ meta-analysis map, to determine
whether any of the states matched ‘language’ meta-analysis regions. Two of the 33 components
had r = 0.52 and r = 0.40 correlation value with the ‘language’ meta-analysis regions
respectively (Fig. 13), whilst the other 31 components had M; = 0.04, SD; = 0.05 spatial

correlation on average.
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Component 1

Component 2

Figure 13. Two ICA components from aggregate analyses that

had high correlation with the ‘language’ meta-analysis map from
Neurosynth (white outline). Component 1 had r = 0.52 and

component 2 had r = 0.40 correlation. Cluster size = 20.

To further investigate potential differences between the connectivity profiles of
‘language’ regions and sensorimotor map regions, we clustered the original four centrality
values using Ward’s minimum variance, which consistently divided voxels in each time
window into two groups (M = 2.00, SD = 0.02) across all participants: one high-centrality and
one low-centrality cluster. In very rare cases, the clustering method detected >2 clusters of
centrality, but since the vast majority of windows divided centrality values into 2 groups, we

recomputed the few outlier time windows by forcing them to split the data into 2 clusters to
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investigate spatial variations in connectivity over time. Fig. 14 shows the average voxel-wise
cluster affiliation over time at the group level. Voxels closer to a value of 1 are low-centrality
ones across most of the time windows, whilst voxels closer to a value of 2 are high-centrality
ones most of the time. Voxels with intermediary values (e.g., 1.5) switch often between a high

and low centrality state.

low centrality - - high centrality

Figure 14. Average voxel centrality cluster (high vs low)
affiliation over time and participants. Values closer to 2 mean the
voxel was a hub most of the time across participants (Red),
values closer to 1 mean the voxel was highly dynamic (Blue).
Intermediate values (White/Grey) are voxels that change
allegiance between low and high centrality (e.g., provincial
hubs). MTG and IFG are mostly in intermediary centrality
clusters, with STG in high centrality ones. Cluster size = 20.

From the sensorimotor map voxels, we subtracted the ‘words’ map voxels, in order to
maintain only distributed regions not in ‘language’ areas: this was then called the distributed
map. To test the hypothesis that distributed regions are dynamic peripheral nodes most of the
time, while ‘language’ regions are provincial hubs, we computed the mean cluster assignment
of the ‘words’ and distributed map voxels separately for each time window. We considered

values >1.7 to be voxels that belonged to high centrality clusters most of the time, since the
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maximum cluster value after averaging over windows was 1.863, and therefore >1.7 represents
~90% of the maximum value. We found that the ‘words’ map voxels had a value >1.7 for M =
24.2%, SD = 10.1% of time windows across participants. In contrast, the distributed map had
a value of >1.7 for only M = 3.6%, SD = 2.1% of time windows across participants. Finally, in
order to test whether ‘words’ map regions strongly connect to distributed regions when the
former acted as hubs, we inspected the specific connectivity profiles of windows where the
mean cluster assignment of ‘words’ map voxels was >1.7. This analysis showed that when
‘words’ map voxels were hubs, they shared M = 44.0%, SD = 2.2% of connections with the

distributed regions across participants.

Discussion

Here, we tested the hypothesis that the neurobiology of language processing is highly
dynamic and distributed across the brain during natural language comprehension, and that the
use of central tendency measures has averaged out activity in the dynamic distributed regions,
resulting in only ‘language’ regions, as these are provincial hubs. Our results showed that each
sensorimotor embedding gave rise to unique patterns in the brain, whose activity extended to
regions well beyond ‘language’ regions (Fig. 12). Instead, the overall effect of ‘words’ and of
the thresholded and averaged sensorimotor maps in the brain led to an activity profile that
closely resembled ‘language’ meta-analysis regions (Fig. 11 and 12B), suggesting that only
when averaging over stimuli and at the group level we begin seeing patterns resembling current
language models. From a network perspective, ‘language’ regions acted as provincial hubs
forming nearly half of all connections with the distributed regions (Fig. 13 and 14). Here, we

review each of our findings in more detail in the sections below.

Distributed regions in language processing

We found that individual sensorimotor embeddings of words produce highly distributed
patterns of activity that encompass other regions of the brain outside of ‘language’ areas,
adding to similar evidence from the semantic embedding literature (Huth et al., 2016). When
grouping all sensorimotor embedding maps, we found that the pattern of activity encompassed
large portions (>60%) of the rest of the brain. Although each sensorimotor embedding map
overlapped on average only ~8% of the rest of the brain, individual words are represented by
multiple sensorimotor embeddings. For instance, the word ‘boy’ from 500 Days of Summer’

scored particularly highly for all of Auditory (2.438), Visual (4) and Head (2.789) domains.
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This means that an individual word’s embedding will elicit a brain activity pattern that is much
more distributed than a single sensorimotor embedding map, and thus will more closely
resemble the overall distributed map, with the distribution skewed towards the more significant
sensorimotor embedding domain of the word. The distributed regions included parts of the
prefrontal cortex, premotor and primary motor regions, insula, posterior cingulate, angular
gyrus, precuneus, occipital cortex, some subcortical regions, primary auditory and sensory

association areas.

Many other studies investigating individual variability, outside the semantic embedding
literature, support our finding on the brain areas forming distributed language regions. For
instance, studies on the predictive processes that help in relating previous semantic context to
incoming words found an involvement of the hippocampal complex (Maess et al., 2016; Piai
etal., 2016), while the medial prefrontal and posterior cingulate were shown to process episodic
and semantic memory words (Hertrich et al., 2020). Moreover, the precuneus and temporal
lobe bilaterally, were implicated in processing context-specific semantic meanings (Hertrich et

al., 2020).

Individual brains vary anatomically, therefore it follows that functional activity patterns
will vary as well (Juch et al., 2005). Aside from structural differences, individual differences
in cognitive performance, experience of the real-world and cognitive strategy all contribute to
increasing functional variability (Van Horn et al., 2008), having implications for language
processing. Supporting this idea, intersubject variability studies using memory retrieval of
words have shown that individual participants activate different and largely distributed activity
patterns (e.g., supplementary motor area, prefrontal cortex, etc.) that relate to their ability to

‘visualise’ the word (Miller et al., 2012) or to individual cognitive strategies (Heun et al., 2000).

Studies on context of sentences revealed that the brain activates regions related to the
meaning of a sentence, either spatially or temporally. For instance, the preceding context to an
action verb in a sentence activates primary motor regions in anticipation of the upcoming verb
(Schuil et al., 2013). On a temporal scale, sentences describing past and present events map
onto occipital and parahippocampal cortices usually associated with concrete object
processing, whilst sentences describing future intentions activate regions in the medial
prefrontal cortex, temporo-parietal junction and posterior cingulate usually associated with the

mentalizing network (Gilead et al., 2013).
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Studies on language experience have also identified extended regions of language
processing, with different distributions. For instance, some have suggested that formulaic
expressions, meaning multi-word expressions that are overused in daily communication, are
processed in subcortical regions (Van Lancker Sidtis & Sidtis, 2018; Sidtis et al., 2018). Indeed,
usage of formulaic and overlearned language is often maintained during aphasia, even when
extensive damage to ‘language’ regions has occurred (Van Lancker Sidtis & Sidtis, 2018), and
this may be because subcortical regions, that may be processing formulaic speech, are
preserved in aphasia (Van Lancker Sidtis, 2012). In a recent study, we have specifically
demonstrated that overlearned sentences, as opposed to novel sentences, are processed faster
and into sensorimotor regions rather than ‘language’ regions (Skipper et al., 2021). Taken
together, this evidence points to a highly distributed network during complex language
processing. Our findings offer yet more evidence for an extended neurobiology of language

processing that varies with stimuli, with time and across participants.

Language hubs

Although variability is clearly important, most neuroimaging studies continue to use
central tendency measures to derive stable activity patterns that supposedly represent some
feature of language processing. This has led to the notion that ‘language’ regions are the sole

language processing areas across various language tasks.

Here, we showed that central tendency measures applied across stimuli, time and
participants inevitably remove all significant variability and reduce language processing to
‘language’ regions. We found that the ‘word’ map was highly correlated to current distributions
of ‘language’ regions (r > .4). The STG and MTG, but not the IFG, appeared bilaterally in this
average ‘baseline’ map. The pattern in the LH was more similar to the ‘language’ meta-analysis
regions than the RH, with our map showing a more equal distribution in the two hemispheres.
This is possibly because words in movies are presented sequentially as part of natural
dialogues, while in traditional neuroimaging studies words are presented randomly and in
isolation, having no relation to one another. The more bilateral distribution and lack of IFG
may be indicative of high semantic context in the movies. This finding reflects previous
research showing that homologous language regions in the RH are recruited to process context
and narratives (Ferstl et al., 2005; Mitchell & Crow, 2005; Stemmer, 2015), while the IFG is
mostly active during higher task demands, such as resolving incongruent references, that would

not be required in continuous stimuli, such as movies (Hammer et al., 2007; Martin & Cheng,
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2006). Similarly, when averaging and thresholding the grouped sensorimotor maps, the
surviving activation fell in and around ‘language’ regions (r = .26), albeit less than the ‘word’
map, further suggesting that typical averaging methods mask variability and generally result in

‘language’ areas.

Our network analyses revealed that the reason for the consistent appearance of these
‘language’ regions in aggregate analyses, is that they are somewhat stable provincial hubs. Two
pieces of evidence support this: (i) we identified two group-level hub components that were
highly correlated (r > .4) to the ‘language’ meta-analysis regions - these hubs involved the
STG, MTG (bilaterally in Fig. 13 top and LH in Fig. 13 bottom), left IFG and parts of the
premotor cortex; (ii) ‘language’ regions acted as hubs for ~25% of the time across participants

(Fig. 14).

‘Language’ regions were integrated in a complex connectivity map that included both
stable and dynamic regions: the first group involved voxels in STG, occipital, some primary
motor and sensory association regions, and the angular gyrus; the second group involved voxels
in the insula, cingulate, anterior temporal lobe, supplementary motor area and subcortical
regions. Many of the dynamic and intermediary regions were part of the distributed
sensorimotor regions, and these areas constituted >40% of all connections to ‘language’
regions. This result indicates that (i) distributed regions likely share a function with ‘language’
regions; (ii) distributed regions disappear in the aggregate because they tend to be more

dynamic.

Supporting our finding of a hierarchy of stability in the brain, task-based network
studies have demonstrated that both spatially and temporally, sensory association and primary
regions form strong and stable connections to the rest of the brain, with subcortical areas
exhibiting more flexibility (Achard et al., 2006; Bassett et al., 2013; Hwang et al., 2013;
Schedlbauer & Ekstrom, 2019). In this organisation, ‘language’ regions exhibit some
variability in connectivity strength, appearing in intermediate layers of the network hierarchy

(Bassett et al., 2013; den Ouden et al., 2012; Li et al., 2020).

Models

Current models of the neurobiology of language do not support the distributed and
dynamic behaviour of language processing that we have observed here, rather considering

language processing as a static and localised network (Fedorenko & Thompson-Schill, 2014).
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Instead, a better model should account for all individual variability and treat language as a

complex behaviour.

Some recent network studies have identified a novel organisation of the brain network,
namely core-periphery, that can unify the hierarchy of connectivity we have observed here
(Bassett et al., 2013; Gu et al., 2019). Core-periphery structures combine two network
dynamics: the core is a set of highly stable hubs that control a set of flexible regions, or
periphery, that vary significantly over time (Csermely et al., 2013; Rombach et al., 2014). Core-
periphery networks allow for high complexity, robustness to perturbations and rewiring of
connections to maximise energy demands, task requirements and allow recovery after lesion

(Cinelli et al., 2017; Csermely et al., 2013).

We take inspiration from these studies, to propose that ‘language’ regions are part of a
global core, tethering a dynamic and flexible periphery of other distributed language processing

regions.

Limitations

This study inevitably suffered from some limitations, which we will address here. For
instance, the distributed sensorimotor embedding regions we have identified may not be
performing any language processing, rather activating as (i) a feature of other aspects in the
movie or (ii) a post-perceptual language process. Several considerations mitigate against these
possibilities. To address the first point, we included sensorimotor embeddings as word
modulators to limit the possibility that these were connected to other movie features. Moreover,
we added confound and contrast regressors to further control for nuisance from other audio-

visual elements of the movies.

To address the second point, previous studies on word semantic processing have shown
that distributed regions outside of ‘language’ areas activate within 50-150ms of the word onset,
suggesting their activation is not a post-perceptual process (Garcia et al., 2019; Kiefer et al.,
2008; MacGregor et al., 2012; Shtyrov et al., 2014). Moreover, since movies represent a
continuous stimulus, there is no opportunity to think or reflect back on the listened words.

Finally, we demonstrated that these regions directly and tightly connect to ‘language’ regions.

A final limitation, with respect to the network analysis, is that we did not inspect

specific language features to probe the connectivity profiles, and therefore we may not have
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identified language-specific connections or components. In future, we could compare, for
instance, high and low word frequency: we expect the former to resemble ‘language’ features

more, and the latter to be more distributed.

Implications

In this study we showed that language processing of individual sensorimotor
embeddings during real world behaviour forms unique, highly distributed and dynamic patterns
of activity. This work adds to a growing body of evidence suggesting that existing neurobiology
of language models need to be revisited to incorporate individual variability, contextual
variations, etc. (Skipper, 2015). We propose that a better model may be a core-periphery
organisation, allowing for (i) high levels of variability through a dynamic periphery, (ii)
robustness to perturbations through highly connected cores, (iii) integration of communication
for higher task demands through the complex interaction of cores and periphery (Csermely et

al., 2013).

This organisation, however, would have ramifications for the way traditional
neuroimaging studies are conducted. The consistent use of central tendency measures would
obscure the dynamic variability of the periphery, only revealing core structures. Different
methods are thus needed to better inspect the network organisation of language and the brain.
We suggest methods such as multi-voxel pattern analysis, hyperalignment, deconvolution,
cluster-size thresholds, and Bayesian techniques that consider individual variations as well as
stable activity and can therefore identify both cores and peripheries (Cohen et al., 2017; Forman

et al., 1995; Hasson & Honey, 2012; Haxby et al., 2011).

Finally, our findings have important implications for our understanding of aphasia and
its recovery. The high wiring cost of hubs means that damage to these regions would have more
deleterious effects on function than damage to dynamic and distributed areas (Fornito et al.,
2016; Zhao et al.,, 2011). As ‘language’ regions are hubs, this would help explain the
symptomatology of aphasia. On the other hand, the presence of the more dynamic distributed
regions would explain how the brain mitigates speech deficits via neuroplasticity recovery
processes, which are known to happen outside ‘language’ regions (Hertrich et al., 2020; Kiran
& Thompson, 2019). Overall, these findings offer new insights for novel speech therapies into

other regions and processes involved in the neurobiology of language.
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Conclusion

We have demonstrated that when inspecting individual features of words, such as their
sensorimotor embeddings, these form unique and distributed patterns of activity encompassing
most of the brain. Here, ‘language’ regions have a role in coordinating these dynamic
distributions, acting as provincial hubs. Due to the highly dynamic nature of individual
language features, typical central tendency measures have not been able to capture these
distributed regions, favouring instead static and localised models of the neurobiology of

language.
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3.3 The brain is a multi core-periphery network with dynamic communities: a
flexible model of the neurobiology of language

Abstract

Existing models of the neurobiology of language cannot accommodate complex and
contextually determined aspects of language processing in the real world. Evidence from
studies investigating complex language features points to a distributed and dynamic nature of
the neurobiology of language. Thus, a more flexible model of language and the brain is needed
to account for this variability and complexity. Three network-based organisations that may
support this are (i) a highly segregated organisation, namely modularity, (ii) a highly dynamic
organisation, namely core-periphery, or (iii) a combination of both. To account for all
complexities of language, we propose that both modularity and core-periphery are needed to
support natural language processing, as together they allow for both flexibility and some
functional specificity. To test this, we used data from the NNDb and analysed individual time-
varying voxel-based networks using core-periphery and modularity algorithms. Results suggest
a model whereby ‘language’ regions are situated in a merged global multi core-periphery and
modular network of large, dynamically changing communities. Known ‘language’ regions
constitute one of multiple cores, but only act as such for short time periods. We further
demonstrate that distributed brain regions perform language processing, as these form large
communities with known ‘language’ cores, encompassing most of the brain. This organization
accounts for the complexity of language processing in the real world and can be informative as
to which brain regions and processes have the potential for faster language rehabilitation after

lesion.

Introduction

Language is one of the most complex human behaviours, yet most of the existing
neuroscience literature has reduced it to simple task-based studies that in no way represent or
account for the natural complexity of language processing. Here, the most cited model of the
neurobiology of language, namely the dual-stream model, has perpetuated the notion that
language processing is mostly localised to inferior frontal (IFG) and superior and middle
temporal gyri (STG, MTG), and that these somehow form two streams for grossly performing
‘speech perception’ and ‘production’ (Hickok & Poeppel, 2004). Nevertheless, a growing body
of evidence shows that when inspecting more complex features of language processing, such

as context or semantics, the neurobiology of language encompasses much of the rest of the
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brain, forming distributed and highly variable activity patterns (Huth et al., 2016; Ojemann,
1979; Sidtis et al., 2018; Skipper, 2015; Skipper et al., 2021). This was also demonstrated in
previous chapters of this thesis, where we showed that pronoun resolution and sensorimotor
word embeddings activate unique and largely distributed activity patterns. In order to account
for this high level of complexity and variability, we thus need models of the neurobiology of
language that are significantly more flexible. For this, network neuroscience may offer insights
on the underlying processes supporting this complex human behaviour. Here, we review
network architectures and how they may support the neurobiology of language in the real

world.

Modularity

Most existing network neuroscience studies describe the network organisation of the
brain using resting-state networks (RSNs). These are networks built from BOLD signals of
participants in the absence of a task, or rather the participant is left lying in a functional
magnetic resonance imaging (fMRI) scanner (Sporns, 2013). RSN studies have indicated that
the network architecture best representing the functional organisation of the brain is modularity
(Hutchison et al., 2013; Zalesky et al., 2014). Modularity is a property of intermediary (also
referred to as mesoscale) network architectures, whereby the network’s elements, known as
nodes, are grouped into functionally and spatially segregated components, also known as
communities (Fornito et al., 2016b) (Fig. 15A). These are defined as clusters with high intra-

connectivity density compared to the rest of the network (van den Heuvel & Sporns, 2013).

Research on brain RSNs has shown that the functional connectome is divided into few
highly segregated communities that map grossly onto the Default Mode network (DMN) and
attention network, as well as to generic behavioural domains (e.g., emotion or perception)
(Sporns & Betzel, 2016), and that these are relatively static over time (Hutchison et al., 2013).
RSNs have thus portrayed a picture of the brain as a rather static network, with functions clearly
separated and localised to specific brain regions. Although RSNs, and modularity, have been
shown to well represent the underlying ‘baseline’ connectivity of the brain at rest (Laird et al.,
2011), task-based connectivity studies have identified additional task-evoked dynamics that
RSNs could not account for (Cole et al., 2014).

To account for this variability, task-based dynamic functional connectivity studies have

proposed a more flexible model of modularity, where modularity is not a static feature, but
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rather it describes a quality of functional integration (Park & Friston, 2013). This means that
certain regions of the brain have a propensity for a given function, but that they are not
necessarily bound to it; their role depends on how best to minimise energy requirements and
increase efficiency for the entire network (Bassett & Bullmore, 2006). For instance, the
modular organisation of the brain was shown to undergo significant rearrangements during
learning (Bassett et al., 2011), during neurodevelopment (Gu et al., 2019), and during disease

(Alexander-Bloch et al., 2012; de Haan et al., 2012).

Evidence suggests that these connectivity variations are supported by a hierarchical
modular organisation of the brain. Here, larger communities mapping onto general anatomical
areas (e.g., occipital, fronto-temporal, and prefrontal) are stable over time, with smaller
communities (correlating to multimodal association cortices) experiencing dynamic changes
(Meunier et al., 2009, 2010). Further reinforcing the notion of hierarchical modularity,
neurological studies have shown that disrupting the organisation of this hierarchy causes weak
and random connections to form, leading to deleterious functions (Russo et al., 2014). These
findings indicate that hierarchical relationships between larger and smaller communities may
support complex brain behaviours, having a fundamental role in maintaining healthy cognitive

functions.

How can hierarchical modularity support the neurobiology of language? A possibility
is that the neurobiology of language forms a large community in the higher layers of the
hierarchy that encompasses smaller dynamic communities at lower hierarchical levels, each of
which may support a specific language feature (e.g., semantic or phoneme processing).
Although this model would support individual variability of language features, it still does not
support complex communication among various language features nor between language
processing and other cognitive domains (e.g., attention, emotion, etc.), as communities are by
definition segregated. Although inter-community connections do exist, these are usually sparse
and mostly serve to integrate information across communities rather than afford functional

overlaps (Cherifi et al., 2019; Zalesky et al., 2014).

Core-periphery

Although hierarchical modularity details relationships between communities that may
support individual features of language processing, it still holds a rather localisational and

semi-static view that does not fully explain the complex relationships between language and
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other cognitive domains that task-based studies have identified (Pulvermiiller, 2013; Schuil et
al., 2013). To address this outstanding issue, a more dynamic and flexible model, such as core-

periphery, may be appropriate.

Core-periphery involves two components: a core, whereby a group of nodes is
connected to every point of the network, which coordinates a set of dynamic nodes that can
only form connections to the core, namely the periphery (Borgatti & Everett, 2000) (Fig. 15B).
Although core-periphery structures have been demonstrated in various biological networks,
such as protein interactomes, metabolic pathways and cellular signalling pathways (Csermely
et al., 2013), they are rarely investigated in the context of functional brain connectivity. This is
likely because most neuroimaging studies have mainly sought to isolate stable functional
components, such as communities, that also tend to be more consistent across subjects, whilst
core-periphery structures relate to dynamic and variable elements of a network (e.g., individual

variability) that cannot be detected with central tendency methods (Zalesky et al., 2014).

Core-periphery architectures in such biological networks were shown to have
significant evolutionary advantages. First, the core allows for integration of information by
controlling a high number of connections; second, a flexible periphery allows for quick
environmental adaptations (Faber et al., 2019; Fornito et al., 2016a; Stefaniak et al., 2020).
Moreover, due to the high connectivity of the core, the network is afforded significant
redundancy and therefore is resilient to perturbation (Cinelli et al., 2017). Indeed, if only few
core connections are severed, the redundancy ensures that the function of the core remains
largely intact; however, more extensive, and repeated damage to the core causes significantly
more disruption to function than damage to peripheral nodes that are loosely connected (Fornito

etal., 2016a; Zhao et al., 2011).

How would a core-periphery organisation support language processing? The opposing
dynamics of core and periphery explain several complex language behaviours: (i) individual
language features may be processed simultaneously in distributed and flexible peripheries,
while (ii) ‘language’ regions could act as a core to help coordinate this distribution; (iii)
extensive lesions in ‘language’ regions (i.e., the putative core) would result in severe aphasic
symptoms, but (iv) these functions may be regained through rewiring in peripheral regions.
Although this model would support more complex language behaviours, it still assumes that a
single core region coordinates a group of peripheral nodes that cannot directly communicate

with each other (Borgatti & Everett, 2000).
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Alternative model

Modularity and core-periphery only partially address the question of how the brain
supports language processing in the real world, with each model assuming certain
organisational restraints (e.g., non-overlapping communities, or one core and one periphery).
An alternative model could include both these organisations with some additional features in

each structure.

Core-periphery and modularity have been previously found together in empirical
networks, thus the presence of one does not exclude the existence of the other (Rombach et al.,
2014; van den Heuvel & Sporns, 2013). For instance, each line in the London Underground
network contains some core stations (e.g., Waterloo station) that connect to a wide array of
small peripheral stations (e.g., Green Park station), with each metro line representing a single
community (e.g., Northern Line) (Rombach et al., 2014). However, the two models exhibit
some diverging features, with communities having low inter-connectivity, while the core has
high inter-connectivity (Borgatti & Everett, 2000; Newman, 2006). To solve these
inconsistencies and allow for both to co-exist, some authors have proposed additional features

in each architecture.

For instance, instead of a single core and periphery, networks such as the international
airport network were better described by multiple core-periphery pairs, whereby each continent
had their own core-periphery group (Kojaku & Masuda, 2017). Unlike classical core-periphery
structures, these multiple core-periphery pairs map onto known communities (Kojaku &
Masuda, 2017; Yan & Luo, 2019) (Fig. 15D). Conversely, new modularity algorithms allow
the existence of community overlaps; here, overlapping areas consist mainly of core regions
and better represent complex network relationships (Lancichinetti et al., 2010; Yang &
Leskovec, 2014) (Fig. 15C). Although these novel algorithms have identified more detailed
and complex features in various networks, only one study, to the best of our knowledge, has
investigated the co-existence of these two structures in the resting-state brain to some extent

(Guetal., 2019).
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A) Modularity B) Core-periphery

C) Overlapping modularity D) Multiple core-periphery

@
/

Figure 15. Different mesoscale network architectures. A)
Modularity involves segregation of functions, with communities
(red, blue, green, orange) exhibiting high intra-connectivity and
low inter-connectivity. B) Core-periphery involves a highly
connected core (red) and a dynamic and loosely connected
periphery (black). C) Overlapping modularity allows
communities (blue, green, orange) to share some regions (red).
D) Multiple core-periphery pairs (red and blue/green/orange
small circles) map onto separate communities (blue, green,

orange large circles).

Here, we propose that the brain network organisation best supporting the complexity
and variability of language processing is a combined core-periphery and modular architecture,
with multiple dynamic core-periphery pairs and overlapping communities (i.e., Fig. 15D and
15C combined). We propose that these two meso-scale architectures combine such that each
community is composed of core-periphery pairs, with cores being more stable components of

the network, whilst the periphery drives community evolution. For example, we expect to see
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merging and splitting of communities over time, in particular between neighbouring regions.
Within this network context, we hypothesise that established ‘language’ regions act mostly as
one of the multiple cores, and that they connect to a large periphery, together encompassing
one or more communities. Furthermore, we predict, based on our findings in Chapter 3.2, that

primary visual and auditory regions will be the most stable core regions.

In order to test our hypotheses, we used data from 37 participants in the Naturalistic
Neuroimaging Database (NNDb), who watched one of two movies: 20 watched ‘500 Days of
Summer’ and 17 watched ‘Citizenfour’ (Aliko et al., 2020). We constructed individual voxel-
wise functional connectivity networks using a sliding window approach and analysed these
using a novel core-periphery algorithm based on node influence, and a greedy implementation
of Newman’s modularity algorithm to partition the network into communities (Blondel et al.,
2008; Shen et al., 2021). We performed the same analysis on group-averaged networks in order
to test the hypothesis that average networks, which are widely used in the literature, have
constrained our view of how flexible brain networks are in the real world. Finally, we inspected
the specific dynamics of the neurobiology of language. Few studies using voxel-wise networks
exist, and these have not analysed individual-level networks (Preti & Van De Ville, 2017;
Tagliazucchi et al., 2016; Wink et al., 2012). Ours, to the best of our knowledge, is the first

study to analyse voxel-wise individual networks for different brain mesoscale organisations.

Methods

Network construction

We obtained fully preprocessed fMRI data of 37 participants (right-handed, range of
age 19-58 years, Mage = 27.5 years, SDage = 10.2 years, 19 females) watching one of 2 movies
(‘500 Days of Summer’ or ‘Citizenfour’) from the NNDb (Aliko et al., 2020). Originally, the
dataset comprised 38 participants, but one participant from ‘Citizenfour’ was removed post-

hoc due to issues with their network construction (further explanation below).

To reduce computational load in network analyses, which are highly computationally
costly, the voxel resolution was downsampled from 3mm? to Smm?, resulting in 66,424 total
voxels for each participant, of which M = 15,889.7, SD = 471.6 were in-brain voxels after
masking. In order to investigate the dynamic functional connectivity of the brain during movie-

watching, we divided the fMRI timeseries into 1 min windows with a 10 sec step size (in a
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typical sliding-window approach), resulting in a total of ‘movie length - 59/10° windows for
each participant. Specifically, the movie ‘500 Days of Summer’ resulted in 5470-59/10 = 542
windows, while the movie ‘Citizenfour’ in 6804-59/10 = 675 windows. There is no agreement
on the correct window length and time step to use, thus we tested lengths from 30-60 sec and
time steps from 1-10 sec and selected 60 sec length and 10 sec step as the most appropriate for
our data and computational resources: in particular, <60 sec windows resulted in inclusion of
too much noise, while <10 sec step size resulted in exponentially slower algorithm
performance. The choice of window length and step size is also in agreement with the literature,
which has mostly used window lengths between 30 sec and 1 min, and window/step ratios <50

(Preti et al., 2017; Zalesky et al., 2014).

The adjacency matrix was constructed for each window using the AFNI program
3dDegreeCentrality, which computes the pairwise Pearson’s correlation coefficient for every
voxel (Cox, 1996). We applied a proportional threshold to each matrix, in order to maintain the
same edge density across participants and make comparisons between participants watching
different movies more robust (Garrison et al., 2015). Since there is no consensus on the
thresholding value to use, we tested a range of threshold values (5-30%): at 5% the matrix was
too sparse and few connections survived the threshold, while at >15% the matrix was too dense
with no discernible patterns and requiring large computational resources. We therefore applied
a more appropriate threshold of 10%, meaning that the top 10% of correlation coefficients
would constitute a connection (corresponding to 1 in the binary adjacency matrix), with values

in the bottom 90% set to zero.

One participant in ‘Citizenfour’ was removed from the dataset due to issues in
constructing their network. Each window should have the same number of nodes at the end of
thresholding, but we encountered ~20 windows with less nodes than expected in this
participant, possibly a defect introduced during the anatomical alignment preprocessing step
prior to time-correction. Adding these voxels back to the adjacency matrix as disconnected
nodes would result in network algorithms identifying disjointed elements; alternatively, adding
them as a connection would create false relationships in the network. We therefore opted for
discarding the participant’s data as an outlier (further investigation is ongoing), which resulted

in the final 37 participants being included in the present manuscript.
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Individual network analyses

A network can be described globally, at the meso-scale and at the individual node level.
Here, we sought to investigate the meso-scale features of the architecture of the network and
the functional relationships between groups of voxels. We therefore computed various graph
theoretic measures on every window for each participant. From now on we will refer to single

voxels as nodes, for simplicity.

The meso-scale architecture of a network provides information on how groups of nodes
are functionally related or clustered. Various algorithms can be used to identify different meso-
scale structures. Here, we chose to compute core-periphery and community partitioning
algorithms. A core-periphery structure implies that a network is divided into a cluster of nodes
with high inter- and intra-connectivity (core) and a group of loosely connected and dynamic
nodes (periphery) (Borgatti & Everett, 2006; Verma et al., 2016). We applied the core-
periphery algorithm that we developed in a recent publication (Shen et al., 2021), which is able
to detect core-periphery structures at higher accuracy and at higher efficiency than other
existing algorithms. The algorithm starts by assuming that a node exerts a certain amount of
influence on the network, which is calculated using a function derived from a random walk
with restart model equation. The resulting node influence vectors are incorporated into a
probability matrix of influence scores, with the top 10% of values considered as core nodes

(for mathematical proofs see (Shen et al., 2021)).

Community partitioning is an ongoing issue in the field of graph theory, due to its
computational complexity (Newman, 2006). The fundamental concept of community
partitioning is to identify clusters or modules of nodes in a network that share a common
function (Blondel et al., 2008; Lancichinetti & Fortunato, 2012). Many algorithms exist for
partitioning the network, but the most widely used is based on the optimization of Newman’s
modularity function, which clusters nodes into modules if their in-module connectivity is
higher than the connectivity between clusters, and compares the value against a null network

model (Newman, 2006; Sporns, 2013). The modularity score Q is computed as follows:

I < ki k;
Q = %Z[Aij —%] 6(ci, ¢j)
ij
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Where N is the number of nodes, m is the sum of edges in the network, 4;; is the edge
between nodes i and /, k; and 4; are the sum of edges of nodes i and j respectively, and §(c;, ¢;)
is Kronecker’s function for clusters of nodes i and j respectively. Here the null model is the
Newman-Girvan matrix (k;k;/2m) (Bassett et al., 2013; Lancichinetti & Fortunato, 2009).
Since optimizing modularity is computationally intensive, we used the greedy modularity
algorithm developed by Blondel et al. (Blondel et al., 2008), which we will refer to as the

Louvain algorithm from now on. The algorithm works in two phases:

1. Initially each node is assigned to a single community. Neighbouring nodes i and j are
joined, and Q is calculated. If joining i and j increases the value of Q compared to
keeping them separate, then nodes i and j are assigned to the same community. The

algorithm stops when changes in assignment can no longer improve Q.

2. The clusters are then considered as single nodes, with edges within modules represented

as self-loops. Phase 1 is applied to this new network.

The two phases are iterated until a maximum Q score is reached. Since Louvain is non-
deterministic, it can produce slightly different partitions every time it is applied to the network
(Bassett et al., 2013). We therefore performed 100 iterations of Louvain for each window and
built a consensus matrix Djj, where each entry #j is the probability of finding nodes i and j in
the same module across iterations. Louvain was then run a further 50 iterations on each
thresholded Dj matrix. Here, ij pairs that have a probability of being in the same community
lower than a thresholding parameter are removed from the Dj matrix prior to re-applying
Louvain. We tested a range of values for the thresholding parameter 7, specifically values of
.1,.2, .3 and .4, the latter being the maximum recommended 7 value for Louvain in the literature

(Fornito et al., 2016b; Lancichinetti & Fortunato, 2012).

Moreover, modularity is known to suffer from a resolution limit, in that it cannot detect
smaller modules because they do not maximise the modularity score (Fortunato & Barthélemy,
2007; Lancichinetti & Fortunato, 2011). One solution to this problem is the addition of a
parameter y before the null model term, that allows to resolve smaller clusters (Fornito et al.,
2016b). Here we tested a range of values of y, namely 1 (default), 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,
1.7, 1.8, 1.9 and 2, and selected the parameter value that generated the highest similarity score

across iterations. To measure partition similarity across iterations, we computed the normalised
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mutual information score (NMI), which outputs a value in the range [0,1] with 1 being identical

partitions and 0 being different partitions (Taya et al., 2016).

Overall, then, at each y we tested four 7 values; we selected the y value providing on
average the highest NMI score; within the chosen y we selected the T value producing on
average the highest Q. These parameters were tested on one randomly selected matrix from
each participant (i.e., total of 37 matrices), and the optimal values selected by averaging across
all 37 matrices. From these tests, we identified a single y and 7 as optimal, and used them to
run Louvain on all matrices and participants. Although ideally, we would have run the
parameter tests on all windows for all participants, this was computationally unfeasible. From
this testing we determined that a y = 1 and 7 = .4 produced the most consistent partitioning

with the highest modularity scores (Mnmi = .74, SDnmr = .10; Mg = .65, SDq = .06).

Since modularity optimization may produce a high Q score even for random networks,
such as Erdos-Renyi random networks (Guimera et al., 2004), we measured the significance of
the partitions found by the Louvain algorithm using a non-parametric permutation test. We
randomly shuffled the community assignments for all nodes in a window, maintaining the
number of clusters and their size the same, and calculated the new Q score (Betzel & Bassett,

2017). We repeated this process for 100 iterations, and measured the p-value as follows:

P =2 (Qpermutea > Qrear)/ iterations

We considered a significant partitioning as one with p-value <.001. Ideally, we would
have run this test 1,000 - 10,000 times, but due to its high computational requirements it was

unfeasible.

Identification of stable core states

In order to determine relationships between core configurations over time, we
performed Affinity Propagation Clustering (APC) on the coreness values across time windows
for each participant (Bodenhofer et al., 2011). APC is a data-driven clustering technique that
does not require setting a priori parameters of cluster size, therefore valuable when a ground
truth of the data is missing. APC clusters data by their relationship, meaning that the algorithm
infers a hierarchy from the data (Bodenhofer et al., 2011). This can be represented as a
dendrogram tree with relationships as branches and individual states as leaves. The lowest

hierarchical layer represents the most divergent states, with branches in higher layers being
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states that are more similar to one another. Here, we selected the middle branches of the
hierarchy, meaning the dendrogram tree was cut in half and the top hierarchies were
maintained, with their leaves considered as states of interest. This was done because the lowest
branches resulted in clusters with very few time points included, while the higher layers
contained most of the data and thus did not identify enough time configuration clusters. These

states thus represent different temporal configurations of the network’s core.

In order to compare core-periphery configurations at the individual and aggregate level,
we performed group spatial Independent Component Analysis (ICA) over 100 dimensions on
the concatenated APC states using melodic (Smith et al., 2013), to determine stable core
configurations that were shared across participants (Yeo et al., 2014). We chose 100
components as opposed to the maximum of 500, because we were interested in broader spatial
clusters; at the same time, we did not select < 100 components, to avoid including noise or
individual variability in the components. We therefore manually selected components of
interest based on whether they conformed to the grey matter in a mostly bilateral way, to
remove any possible noise or individual variability. Altogether, these two methods help us
identify the most robust core states for each participant (APC) and across participants (ICA)
respectively. In a traditional core-periphery network we would expect only one core state,
whereas in a multi-core-periphery network we would expect multiple configurations of the core

(Verma et al., 2016; Yan & Luo, 2019).

To further investigate how cores vary over time, we analysed the change in core
assignment across time windows at the participant level. We joined all time windows for one
participant in a single matrix of the form Nx7, where N are the number of nodes and 7 the
number of time windows. We then calculated cores;/T, meaning the probability of a given node
i being assigned a 1 (core) value across all time windows. The values were then averaged at
the group level and thresholded at 90th, 80th, 70th and 50th percentiles to identify stable

configurations.

Community evolution

Putative changes happening in communities were investigated using an algorithm for
greedy Jaccard similarity over time windows (Thompson et al., 2017). Since the Louvain
algorithm is non-deterministic and since it was applied on static time windows, the community

label assignments may vary from one time step to the next. The greedy Jaccard algorithm re-
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assigns labels from one window to the next based on how similar the largest community at time
(t+1) was to the largest community at time #, determining whether a community has
significantly changed by either: (i) splitting into smaller communities; (ii) joining another
community. After re-assigning community labels, we collated all time windows for a
participant to form a Nx7 matrix, where N is the number of nodes and 7"the number of windows.
We then computed the probability of nodes i and j appearing in the same community over time
windows, saving the results in a new NxN matrix. We thresholded the matrix again at .4 to
maintain only the higher probability values and ran 50 iterations of Louvain to identify temporal

communities.

Group-level community partitioning

We sought to investigate possible differences between the individual and group-level
community partitions at each time window. For this purpose, we computed an anatomical mask
containing only shared voxels from the adjacency matrices of all participants in a movie. This
resulted in an anatomical mask with 13,217 voxels for ‘Citizenfour’ and one with 13,568 for
500 Days of Summer’. For each participant we ran the AFNI program 3dDegreeCentrality as
before with a 10% edge density proportional threshold (Cox, 1996). The resulting correlation
matrices were averaged across participants to create a single NxN matrix (N = number of
nodes). The group matrix was further thresholded at a low correlation value of r =.1 to remove
any possibly remaining weak connections: this was done because proportional thresholding
leads to some participants possibly having weaker connections than others, that then drive
down some correlations in the average, leading to disjointed components (Garrison et al.,
2015). The resulting matrix was transformed into a binary adjacency matrix of [0,1] values
representing connectivity (1 = connection, 0 = not connected). The Louvain and core-periphery
algorithms were computed on the group-level matrix using the same parameters as above (i.e.,

y =1 for 100 iterations, T = .4 thresholding and 50 further iterations for Louvain).

In order to compare individual-level and group-level communities, we first calculated
the total number of communities detected in a single time window in the two networks. To
examine in more depth the differences in community partition, we re-assigned community
labels using the previously described greedy Jaccard similarity algorithm. Then, we calculated
how many temporal communities were identified in the two networks (i.e., how often a
community was reassigned label). Finally, normalised mutual information (NMI) was

calculated for each individual-level partitioning against the group-level one, to measure how
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similar the individual communities were to the group average. Since NMI only works on same-
size vectors, we matched group and individual-level number of nodes by first finding shared

voxels and then removing nodes in each participant that were not in the group network.

Community organisation of language processing

We aimed at understanding more in-depth the community and core-periphery
partitioning of the neurobiology of language processing. For this, we computed a multiple
linear regression using a canonical hemodynamic response function over each word in the two
movies for every participant. The word regressor for ‘500 Days of Summer’ included 8,985
words, while the one for ‘Citizenfour’ included 14,606 words in total. Each word regressor
consisted of the start time of the individual word onsets in milliseconds. We included a contrast
regressor for non-word timings, meaning times when no word was spoken in the movies, in
our analysis. These non-word regressors were composed of 1,834 timepoints for ‘500 Days of
Summer’ and 1,581 timepoints for ‘Citizenfour’. The regression analysis was performed using
AFNTI’s 3dDeconvolve function (Cox, 1996). Subsequently, we performed a mixed effects
model analysis using AFNI’s command 3dMEMA, and thresholded the resulting t-statistic map
at @ = .001. The resulting map corresponds to the activation produced by all words on average

across two movies, which we called ‘words’ map.

We extracted the voxel ‘xyz’ coordinates of the ‘words’ regions and used these to count
how many unique community labels overlapped this region, with the caveat that the overlap
had to include at least 10% of the ‘words’ map voxels. This means that if a community
overlapped < 10% of voxels in the ‘words’ regions, it would not be considered as being
involved in word processing. The 10% cut-off was arbitrary, but it eliminated very small
clusters. We computed the unique ‘words’ communities at each window for each participant.
We then calculated the percentage of the rest of the brain that were also part of these same
‘words’ communities: for example, if community 3 (C3) significantly overlapped the ‘words’

map, we calculated the percentage as follows:
(C3 all_voxels - C3 word_voxels)/ (all_brain_voxels - word voxels)*100

This was then summed over all communities overlapping the ‘word’” map and calculated

for each window for each participant.
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We also investigated how much the ‘words’ map contributed to the core regions at any
given time point, by calculating the total of core ‘words’ nodes over all possible cores in a
window. We then aimed at inspecting connections between core ‘words’ nodes and its
associated periphery. The core-periphery algorithm does output additional information about
core-periphery links by pairing these two into groups, much like community partitioning. From
this information, we extracted those pairs overlapping core ‘words’ nodes and calculated the

distribution of the associated periphery over the rest of the brain as a percentage.

Results

Core-periphery structure

In order to investigate whether the brain is organised in a core-periphery architecture,
we ran a novel algorithm that identifies core-periphery structures (Shen et al., 2021). Our
results show that on average across time windows and participants, there were M = 922 (SD =
107.9) core nodes (corresponding to 5.3% of grey matter voxels at Smm? resolution), with the
remainder being peripheral nodes (or voxels). The number of core nodes varied across time

and participants, with the range being 586 - 1257 (~3-7% of grey matter) core nodes.

To determine whether there were different temporal configurations of cores, we ran
APC on cores and selected an exemplar for each cluster. This resulted in M = 54.7 (SD = 6.1)
core exemplars on average across participants. The core configurations changed every M = 11
time windows (i.e., 160 sec) (SD = 6.5 time windows, or 110 sec) across participants, meaning
that the core-periphery distribution in the brain varied every ~2-3 min (+/- 1 SD range = 50 sec

- 270 sec) of the movie on average.

In order to determine whether circumscribed sensorimotor and ‘language’ regions act
as the most stable cores, we computed group spatial ICA on core exemplars. Out of the 100
ICA components, we identified 16 stable non-noise components, which we then correlated with
meta-analysis maps from the Neurosynth database (Table 4, Fig. 16). The results show that at
the individual level (i.e., APC analysis) there were more core configurations than in the

aggregate (i.e., ICA analysis).
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Component ICA number Functionalterm 1 Functionalterm 2 Functional term 3
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Spatial Objects Attentional
Vision Visual Stimulus Navigation
Sentences Comprehension Linguistic
Memory Retrieval Episodic Recognition Memory
Sounds Listening Speech
Motion Perception Visual Motion
Speech Production Vocal Naming
Face Object Vision
Default Mode Autobiographical Mentalizing
Navigation Spatial Theory of Mind
Default Mode Referential Self Referential
Retrieval Memory Working Memory
Action Tactile Action Observation
Working Memory Task Calculation
Movement Motor Imagery Stimulation
Movement Motor Task Tactile

Table 4. Top 3 associated Neurosynth meta-analysis functional
terms for each of the 16 core group ICA components. These map
mostly to sensorimotor regions (e.g., visual, auditory, motor) and
Default Mode regions. The ICA maps were directly submitted to

Neurosynth and correlated to existing meta-analysis terms.
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Figure 16. Maps of the 16 core ICA components from the
aggregate analyses. Multiple spatial configurations of cores
existed at various time points. These included ‘language’ regions,
primary visual and primary auditory cortices, sensory association
areas, prefrontal areas and precuneus/posterior cingulate. Cluster

size = 20.

To further investigate whether auditory/visual sensorimotor regions, in particular,
represented the most stable core nodes across subjects we measured how often voxels belonged
to a core. To find stable temporal configurations, we considered the 90th, 80th, 70th and 50th
percentiles of values across all participants. At the 90th percentile (Fig. 17), voxels in primary
auditory and visual, and medial prefrontal areas survived, with a pattern showing r = .24
correlation with the vision functional term from Neurosynth, as would be expected in a movie
task. Below the 90th percentile, the voxel distributions had poor correlations (r < 0.1) with any

Neurosynth meta-analysis term, and were not included here.
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Figure 17. Map of most stable temporal cores (thresholded at

90th percentile). The most stable and strong cores appear as
sensorimotor regions (e.g., primary visual, auditory, some motor)
and some DMN components (e.g., medial prefrontal and angular

gyrus). Cluster size = 20.

Community partitioning

In order to identify putative functional components of the brain, we ran the modularity
optimisation algorithm, Louvain. On average, the algorithm found M = 3.7 communities (SD
= 0.5) at the final (consensus) step, with average modularity score Mqr = 0.66 (SDgr = 0.06)
(Fig. 18 shows example communities from consecutive windows of a participant). The final
consensus partition modularity score was significantly higher than the initial partitioning score
(Mqr = 0.23, SDq1 = 0.03) across windows and participants (t = 1038.9; p < 0.001). Higher O
scores are indicative of higher quality of the partitions obtained (Fornito et al., 2016b).
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Figure 18. Community evolution in consecutive time windows
in an example participant brain. Voxels are coloured based on
their community allegiance. Time 1 is divided into 5
communities, which are mostly stable until Time 2. At Time 3,
the dark blue community disappears, being split between the

cyan and pink communities. Cluster size = 20.

To ensure that the communities identified with Louvain were non-random, as could be
the case with some high Q values, we performed a non-parametric permutation test. The results
indicated that the original partitions were significant (p-value < 0.001) across all participants

and time windows compared to randomly shuffled communities.

We then re-assigned community labels to track their evolution and putative dynamic
behaviour over time. Our results show that on average individual-level communities underwent
M = 59.4, SD = 8.9 variations over ~609 time windows on average (Supplementary Materials

S4 shows an example video of variations).
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In order to test whether communities formed stable temporal configurations, we built a
matrix Dij for each participant where entry (i,j) indicates the probability of nodes i and j being
part of the same community over time. In rare cases, the algorithm partitioned a participant’s
network into large communities and smaller ones of 1-100 voxels; since the latter are most
likely outliers due to noise, we only considered communities of size >1000 voxels, which was
the minimum size of other participants’ communities. This produced M =5, SD = 0.7 temporal
communities on average across participants (Fig. 19 shows an example participant for each

movie).

Figure 19. Temporal communities from example participants in

‘500 Days of Summer’ and ‘Citizenfour’. On average, we
identified five communities stable over time. These mostly map
to central sulcus (red), temporal (dark blue), occipital (cyan),
prefrontal (pink), subcortical (yellow) regions across participants

and movies. Cluster size = 20.

Differences between individual and group-averaged communities

Most of the network neuroscience literature uses group-averaged adjacency matrices to
determine the brain network organisation. We aimed at comparing our community findings at
the individual-level to the group average brain network in order to test whether individual

networks are much more variable than the group.

For a given time window, the group level had M = 5.5, SD = 0.7 communities on
average, compared to the previously found average of M = 3.7 communities (SD = 0.5) at the
individual level. Moreover, on average, group-level communities experienced less variations
(M = 37.5, SD = 4.5; Supplementary Materials S5 shows a video of variations) than the
individual-level ones. These group-level communities did not resemble any individual-level

partitions, with a low similarity score (Mnwmi= 0.05, SDxwvi = 0.02).
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Network architecture in language regions

We next aimed at inspecting the meso-scale network organisation of regions typically
associated with language processing. We predicted that ‘language’ cores would form dynamic
communities with distributed peripheral nodes. On average, across windows and participants,
we found M = 3 communities (SD = 0.26) overlapping the ‘words’ map regions, meaning most
of the communities in the individual networks overlapped the ‘words’ regions at any given
time. These communities extended, on average, over M = 84.8% (SD = 6.9%) of the rest of the

brain, showing largely distributed patterns.

From a core-periphery perspective, M = 5.3% (SD = 1.1%) of core nodes fell within
‘words’ regions across windows and participants. Moreover, we identified on average M =
37.0% (SD = 7.0%) of core-periphery pairs across windows overlapped ‘words’ regions, when
these were a core. Finally, we found that M = 50.0% (SD = 7.0%) of the rest of the brain (i.e.,
areas outside ‘words’ regions) acted as a periphery linked to ‘words’ core nodes. Note that the
reason we find 50% of distributed brain regions whilst in the community analysis we found
84.8% is that in the core-periphery analysis we excluded all other core nodes not in ‘words’
regions within the same core-periphery pairs, because we were solely interested in peripheral
nodes. Therefore, ‘words’ core nodes were connected to other core nodes elsewhere in the

brain, but we did not report the values here.

Discussion

In the present study we sought to investigate whether a highly flexible and distributed
mesoscale architecture of the brain network would better support the neurobiology of language
comprehension in the real world. We hypothesised that the model best supporting the
complexity and variability of language processing would be a combination of core-periphery
and modularity with added features: specifically, we predicted that multiple core-periphery

pairs would map onto large and dynamic overlapping communities.

Our results confirmed that in individual brain networks, both multiple core-periphery
pairs and dynamic communities co-exist, but due to algorithm limitations we could not inspect
overlaps. Here, various components of ‘language’ regions acted as cores at different times (Fig.
16, components 3, 5, 7). These, in turn, connected to a periphery of other brain regions, together
forming multiple large dynamic communities encompassing most of the brain. Overall, the

picture is of a highly flexible network architecture that supports complex language features.
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Neurobiology of language comprehension

Traditional models of the neurobiology of language have proposed a very static and
modular organisation of language processing regions, mainly limited to the STG, MTG, some
premotor regions and IFG (Hickok & Poeppel, 2007; Poeppel et al., 2012). Within this context,
network studies on language processing have assumed an anatomically constrained
organisation of language, by using localiser tasks to select ‘language’ regions a priori for
network analysis and building group-averaged networks (Chai et al., 2016; Fedorenko &
Thompson-Schill, 2014). Although these studies have introduced some novelty into how we
think about language through more process-oriented models, they fall short on methodologies
and interpretations by suggesting that constrained and average network models are somehow
representative of the richness and complexity of language in the real world (Seghier & Price,

2018).

We have demonstrated that this is indeed not the case when more complex and
individual features of language are considered (see Chapter 3.1 and 3.2). This view is supported
by a growing body of literature showing that the neurobiology of language is highly distributed,
dynamic and variable (Huth et al., 2016; Price, 2010; Pulvermiiller, 2018; Skipper et al., 2021).
In accordance with this flexibility, our findings on individual participant networks revealed
that ‘language’ regions acted as one of the multi-core structures connecting to a wide periphery
of other brain regions. The latter spanned on average 50% of the rest of the brain, suggesting

that language processing likely involves largely dynamic and distributed regions.

Our findings further showed that the ‘language’ core-periphery nodes formed numerous
pairs, together clustering into ~3 large communities overlapping >80% of other brain regions
at any given time. Moreover, these pairs connected ‘language’ cores to other core regions
elsewhere in the brain, indicating integration and sharing of information with other brain areas.
Although the majority of previous studies have only identified at most 2 communities or
networks involved in language processing (Fedorenko & Thompson-Schill, 2014; Hickok &
Poeppel, 2007), others have demonstrated the existence of a main language network associated
with more distributed brain regions still involved in language processing (Hertrich et al., 2020).
In Hertrich et al.’s study, the main language network comprised more stable regions that
overlapped core ‘words’ regions in our study, whilst their associated networks overlapped with
peripheral nodes in our study (Hertrich et al., 2020). It is clear, then, that more complex and

flexible models of the neurobiology of language are needed to account for both these findings.
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Flexible network model

What model best represents the complexity of language in the real world? Modularity
alone tends to support dual-stream or ‘language network’ models due to its highly segregated
and somewhat static nature (Newman, 2006). Although there is increasing evidence suggesting
communities vary over time through hierarchical relationships (Bassett et al., 2011; Meunier
et al., 2009), these still do not fully account for (i) individual variability and (ii) complex

language features (e.g., context).

A core-periphery organisation, instead, can afford high flexibility through a dynamic
and loosely connected periphery (Borgatti & Everett, 2000). Possibly due to this high level of
variability, this model is understudied in functional brain connectivity, where group-averaged
networks are typically used. The only existing evidence for a core-periphery brain architecture
has identified sensorimotor regions as highly stable cores across time (Bassett et al., 2013).
This finding is replicated in our results, whereby these same regions (i.e., primary visual,
auditory and some motor) were the most stable cores across time and participants, suggesting

an important role of these regions for the stability of the entire network (Fig. 17).

Although core-periphery networks are more variable and robust, they still assume the
existence of a single core connecting to the whole periphery (Borgatti & Everett, 2000). To
address these shortcomings, we proposed a combined multiple core-periphery and dynamic
modular architecture, as these structures are known to co-exist in various scale-free and
empirical networks (Kojaku & Masuda, 2017; Yan & Luo, 2019). Here, we identified 16
different cores that were somewhat stable over time and across participants (Fig. 16). These
grossly correlated with components of ‘language’, Default Mode network, episodic memory
and sensorimotor regions from Neurosynth meta-analyses, possibly suggesting that group
analyses have so far only identified stable cores rather than the whole distribution of activity
arising from a cognitive task (Table 4). Indeed, this stability waned at the individual-level, with
the multiple cores showing significant re-configurations every ~2-3 min (50 - 270 sec), possibly

matching significant changes in movie stimulus (e.g., scene changes).

Various core-periphery pairs were distributed over 3-4 large communities at any given
time. Both these structures varied significantly over time and across participants, indicating a
highly dynamic and flexible architecture (Fig. 18). These only became highly segregated when

averaging communities over time (Fig. 19). Overall, the flexible network organisation that we
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propose here accounts for (i) individual variability, (ii) contextual changes, (iii) shared

processes between different cognitive domains.

Group-averaged networks

In order to situate our findings within the existing literature, we also computed group-
averaged network analyses, as these are a standard approach in network neuroscience (Gordon
et al., 2017; Lehmann et al., 2019). We predicted that group networks would be less dynamic

and flexible than any individual network, as the former are stripped of any individual variability

Modularity in group-averaged networks identified the same number (~5-8) of
communities as those reported in previous studies on modular structures in both anatomical
and functional brain networks, with similar spatial patterns (Fornito et al., 2016b; He & Evans,
2010; Meunier et al., 2010). These were mostly stable across time (Supplementary Materials
S5), experiencing less variations than individual networks on average. A direct spatial
comparison of time-matched group and individual networks revealed that the two had very
little similarity (NMI = 0.05, where 0 = no identity). These results suggest a large divergence

between individual and group networks.

The group-averaged networks appear to thus be less flexible and dynamic, not
representing any individual brain. This more static behaviour of group networks, and their
divergence from individual networks, is well documented in the literature (Gordon & Nelson,
2021). For instance, individual networks were shown to organise into more dynamic and
complex structures than group-averaged networks (Braga et al., 2019; Braga & Buckner, 2017;
Gordon et al., 2017), whereby these dynamics correctly predicted cognitive abilities and states,

whilst group-averaged networks performed poorly (Barnes et al., 2014; Kong et al., 2019).

Overall, these findings suggest that in order to investigate the network organisation that
supports the neurobiology of language, individual network variability must be considered, as

this is more representative of the flexibility of language in the real world.

Limitations

The present study investigated the functional brain network architecture in a naturalistic
setting. Although naturalistic settings capture many complex behaviours, and therefore relate

better to the real world (Aliko et al., 2020; Hasson & Honey, 2012), they also pose increased
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difficulty of controlling stimuli and creating experimental manipulations (e.g., contrasts

between two conditions).

Thus, one limitation in the present study was that we did not test variations in language
processing dynamics. For instance, we could have grouped time windows by their average
word frequency into low vs. high frequency clusters; then we could have compared the
dynamics of high and low frequency words to inspect language processing networks in more
depth. As such, our findings on the specific dynamics of the neurobiology of language remain

somewhat speculative, and we have thus planned to investigate these further in future work.

Similarly, we have not shown definitively that core-periphery pairs overlapping ‘words’
regions are actually processing language. This may be achieved through similar methods as the
one detailed above, where we contrast a linguistic and a non-linguistic stimulus while
controlling for the effects of other movie features. Nevertheless, there is strong evidence and
support for proposing that the peripheral regions associated with language core regions are
processing language, as (i) these have correlated nodes by definition, and (ii) they together
form communities that by definition represent functional segregation (Sporns, 2013a; Wig,
2017). The only case where these peripheral nodes may not be performing language processing
functions is if the language core regions (e.g., STG, IFG, MTG) were not performing language
processing themselves. However, this is unlikely to be the case as these regions are consistently
active during processing of any language stimulus/task (Chai et al., 2016; Hickok & Poeppel,
2007; Skipper, 2015).

Implications

Several aspects of this work make it highly innovative: for one, we inspected the brain
network architecture of individual participants at high resolution (voxel-wise), over long time
periods (~2 h) and during a naturalistic setting. This resolution and complexity have never been
attempted in previous work, to the best of our knowledge. Thus, the flexible and combined
core-periphery and modular model that we have proposed provides a much more detailed
representation of the brain network in the real world, accounting for individual variability and

contextual changes.

Moreover, we presented the first model of whole-brain network organisation that
accounts for the natural complexity of the neurobiology of language. The flexible and dynamic

organisation can help explain how the neurobiology of language changes during variations in
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context; the division of language into large communities containing various core-periphery
pairs allows for different language features to be processed simultaneously (periphery) while
sharing and integrating information (cores). Furthermore, since ‘language’ regions were part
of the multi-cores, and since the latter have high wiring costs, this model helps explain why
lesions in ‘language’ regions cause language impairments (e.g., in aphasia more extensive
damage to core nodes is significantly more disruptive than damage to peripheral nodes)

(Fornito et al., 2016a; Zhao et al., 2011).

As ‘language’ regions in our model connect to a wide periphery performing language
processing, the model supports evidence from neuroplasticity studies showing that speech
recovery after a stroke is driven by heterogenous rewiring processes that involve large parts of
both hemispheres (Crosson et al., 2019; Geranmayeh et al., 2014; Kiran & Thompson, 2019).
When cores are severed, peripheries closer to nodes may increase their connections to take on
the role of new cores, restoring functions. This possible mechanism of recovery offers new
insights into potential regions as targets of novel individualised speech therapies for aphasic

patients.

Conclusion

We have presented a flexible model of the brain network architecture that supports
language processing in the real world. We show that the brain is organised in a multiple core-
periphery network within a modular architecture of large dynamic communities. In this context,
‘language’ regions act as one of the multi-core structures and connect to a large and dynamic
periphery. These two components form multiple dynamic communities together, indicating a

shared language function.
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Chapter 4: Discussion and Conclusions

Language processing is a complex brain behaviour that depends and heavily relies on
contextual information, an individual’s cognitive strategies and social and emotional context
(Price, 2010, 2012; Skipper, 2015). As such, a model of the neurobiology of language
processing must be able to explain and account for the richness of information and complexity
that language encompasses. Existing models of the neurobiology of language have undeniably
provided insights into how the brain supports language functions, identifying regions of the
brain primarily in superior and middle temporal cortex and inferior frontal cortex that are
important for processing of any language feature (Fedorenko & Thompson-Schill, 2014;
Friederici, 2002; Hickok & Poeppel, 2007; Poeppel & Hickok, 2004; Rauschecker & Scott,
2009). Although our understanding of language and the brain has advanced with these models,
these are still extremely limited in their consideration of more complex language features and
individual variability, and therefore do not comprehensively explain language in the real world
(Skipper, 2015).

In this work, we aimed at investigating language processing in a more naturalistic
environment that better represents the complexity of language in the real world. For this, we
collected neuroimaging and behavioural data of participants watching full length movies in a
fMRI scanner, as we detailed in Chapter 2. This dataset is now one of the largest naturalistic
datasets publicly available (Aliko et al., 2020; Madan, 2021).

We proposed that, when investigating specific language features, language processing
would be much more distributed, encompassing many other brain regions as appropriate to the
feature, with unique activity patterns depending on context and embodied meaning of words or
the goal of the listener. We further proposed that measures of central tendency and subtractive
methods have obscured this distribution due to its high variability, instead only resulting in
‘language’ regions. We hypothesised that the reason that ‘language’ regions consistently
appeared in the aggregate is because these regions act as stable intermediary connectivity hubs
forming one of many brain cores in a flexible core-periphery architecture. Here, we predicted
that ‘language’ regions would connect to more distributed areas that form dynamic core-
periphery pairs in order to perform context-dependent language processing. Our work showed
the following:

e Chapter 3.1: we demonstrated that during pronoun resolution, unique character
representations in situation models are reactivated in sensorimotor regions (i.e., mainly

primary visual and auditory cortices), through a search in memory in episodic memory
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regions (i.e., hippocampus, precuneus), supported by mentalizing areas (e.g., medial

prefrontal cortex).

e Chapter 3.2: we showed that individual sensorimotor embeddings of words activate
uniquely distributed brain regions. These together encompass most of the rest of the
brain. Here, ‘language’ regions constitute an intermediary hub, which thanks to its high
centrality and stability, survives central tendency measures and subtractive methods.

e Chapter 3.3: we identified that the brain network organisation supporting language
processing is composed of multiple core-periphery pairs situated in large dynamic
communities. Here, ‘language’ regions act as somewhat stable cores that form multiple
communities with largely distributed core-periphery pairs.

Overall, our experiments demonstrated that real-world language processing is better
explained by a highly flexible network model composed of a multiple core-periphery
architecture with dynamically changing communities, where ‘language’ regions direct a
distributed and variable periphery of other brain regions. This warrants a move away from
current dual-stream models of the neurobiology of language, to one that considers language as
a complex, dynamic, distributed and flexible behaviour.

In the following sections, we will first review a general description of the proposed
model, then discuss in more detail how various components of the model support language as
a complex behaviour, and finally suggest implications for our understanding of language and

the brain, as well as for speech impairments.

Network model of language and the brain

In this work, we found that many distributed and variable regions are also involved in
language processing, where ‘language’ regions act as high-connectivity hubs that are somewhat
stable over time. As such, we propose that the brain organisation supporting language
processing has a multiple core-periphery and dynamically modular architecture.

Core-periphery structures involve two components: a set of highly inter- and intra-
connected nodes (core), and a set of loosely connected and dynamic nodes (periphery) (Borgatti
& Everett, 2000). The presence of multiple core-periphery pairs affords the network more
flexibility than typical core-periphery networks (where a single core and a single periphery
exist) because these can form different core-periphery configurations at different times (Yan
& Luo, 2019), thus supporting adaptation to a changing environment. The existence of a spatial

core-periphery structure in brain networks has mostly been hinted at by previous research,
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where a rich-club organisation (i.e., one form of core configuration) was identified (van den
Heuvel & Sporns, 2011). The only two research articles, that we could find, inspecting in detail
the existence of both core and periphery nodes in the brain identified a spatial and temporal
core-periphery organisation where cores primarily involved Default Mode network (DMN) and
sensorimotor regions (Bassett et al., 2013; Gu et al., 2019). Our results suggest that these same
regions, in particular the anterior medial prefrontal cortex (mPFC) and angular gyrus (AG) of
the DMN, and visual association areas, primary auditory and primary motor in sensorimotor
regions, were the most stable cores across time.

The majority of the other multiple cores, however, varied frequently over time, likely
in response to contextual changes. These less stable intermediary cores involved ‘language’
regions (e.g., MTG and IFG), somatosensory association cortices, precuneus, posterior
cingulate cortex and dorsolateral prefrontal cortex. Here, ‘language’ regions directly connected
to a wide group of periphery nodes, encompassing about half of the rest of the brain and
together forming various large communities, thus likely sharing a common function.

The overall network profile of ‘language’ regions included connections to both
peripheral regions and other core regions. Overall, these highly distributed language-related
core-periphery pairs included, at different times, large parts of frontal regions, subcortical
structures, precuneus, cingulate cortex, medial prefrontal areas, premotor cortex,
supplementary motor area, and primary auditory and visual cortices. Together, this comprised
> 80% of the brain.

Although we found that communities spanned multiple core-periphery pairs and varied
dynamically, due to algorithmic limitations we could not inspect whether communities
overlapped nor if they formed hierarchical structures. However, network studies have indicated
that core-periphery structures are usually an indicator of overlapping communities, where the
overlaps are composed of cores (Yang & Leskovec, 2014). As such, we predict that core
regions would sit at the overlap between communities, which was already shown to be the case
in edge-based rather than node-based brain communities (de Reus et al., 2014). Similarly, some
studies have found that rich-club organisations, which are tightly connected sets of hubs and
therefore similar to cores, sit along the overlap between dynamic communities during
development (Betzel et al., 2017). Moreover, hierarchically modular structures are a well-
established feature of brain networks (Alexander-Bloch et al., 2010; Meunier et al., 2009,

2010). Fig. 20 below shows a diagrammatic view of the complete proposed structure.
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Periphery

Intermediate layer
cores

Top layer cores

Figure 20. Proposed model of the brain network architecture
supporting language processing in the real world. Core regions
(red circles) sit at the overlap between communities (green, blue,
purple and orange circles). The cores connect to various core-
periphery pairs in each community (black circles), as well as
intermediary hubs (yellow circles) together coordinating the
periphery node dynamics. ‘Language’ regions are likely to
behave as the intermediary (yellow) nodes in this diagram,
coordinating with top-level cores (red) to direct processing in
peripheries (black). Moreover, communities may form
hierarchies that support related and progressively more complex
language functions: orange and green communities are at the top
of the hierarchy with stable cores, purple and blue are smaller
communities with intermediary cores.

In what follows we detail how this proposed network architecture with its dynamic and

distributed nature may support various complex aspects of language processing.

Semantics

To understand the semantic meanings of individual words, the brain must be able to
draw information from the embodied or evoked meaning of that word (Pulvermiiller, 2013;
Pulvermiiller et al., 2005). Studies have identified brain regions outside of ‘language’ areas
active when processing the embodied meaning of a word in that modality: for instance, action

words activated primary motor regions while words describing colours activated visual cortices
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(Gonzalez et al., 2006; Kiefer et al., 2008; Klepp et al., 2019; Pulvermdiller, 2013). Similarly,
we found that largely distributed brain regions including primary auditory, primary visual,
premotor, middle frontal, somatosensory association cortices and various subcortical structures
were activated at different times and to various extents when processing sensorimotor
embeddings of words.

A flexible multiple core-periphery and hierarchically and overlapping modular
network supports notions of embodied cognition as follows (Fig. 21):

o Different lower-level communities relate to different semantic categories. These
communities may contain overlapping regions, most likely in core areas, that connect
similar semantic categories to allow them to share information. These shared patterns
of activity are known to support semantic category processing (Tomasello et al., 2017).

e The semantic communities tile most regions of the brain forming unique distributions.
This extensive and category-specific distribution is supported by various semantic
studies (e.g., (Binder et al., 2009; Huth et al., 2016)), as well as our results in this work.

o The modalities to which semantic categories relate to are likely to be composed of a
mixture of core and peripheral nodes. Here, the cores would coordinate the general
semantic category processing (i.e., semantic hubs), while peripheries would process
more fine-grained semantic meanings of individual words. Here, studies have shown
that ‘language’ regions may constitute some of the semantic hubs (Tomasello et al.,

2017).
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Semantic category
Individual words

Semantic hubs

Figure 21. Semantic processing model. Cores (red) form
semantic hubs for sharing information between semantic
categories (orange and blue large circles), each of which
constitute a community. Individual core-periphery pairs
(multiple colours) within a community of semantically-related
items, help process individual words.

Context

Context represents a higher-level language feature, building complex relationships
between the semantic meaning of single words in a sentence (Xu et al., 2005). Language cannot
exist in the absence of context (Skipper, 2015), and as such it should be thoroughly
investigated. There are three aspects of context that a comprehensive model of the neurobiology
of language must consider: (i) since context is fundamental to language, the brain must
constantly process it; (ii) since context can change rapidly, the brain must allow a flexible and
dynamic environment; (iii) since the amount of context available varies, the brain must adapt
to both higher and lower contextual information.

As such, our model helps explain how these aspects of context are processed as follows
(Fig. 22):

e AG and anterior mPFC form highly stable cores that directly connect to ‘language’
intermediary cores. Indeed, AG and mPFC were shown to be active during processing
of coherent narratives, with a particular role in decision-making, understanding

concepts and inferring relationships between words and sentences (Ferstl & von
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Cramon, 2002; Fletcher et al., 1995; Hasson et al., 2007; Humphries et al., 2006;
Newman et al., 2001; Xu et al., 2005). For instance, we found activation of the mPFC
during pronoun resolution irrespective of character. These are likely to support any
contextual processing function.

Higher-level larger communities encompass multiple core-periphery pairs. Here,
communities can vary dynamically to account for the rapid changes in context. Merging
of two communities, for example, could happen when two previously separate contexts
are joined in new events.

Each large community encompasses multiple smaller ones in the hierarchy. The smaller
ones were likely involved in semantic category processing, which here are merged at
the higher level to support context processing.

Lack of contextual information can be overcome by allocating more peripheral nodes
and integrating various core-periphery pairs to process the ambiguities.

In the presence of high contextual information, less peripheral nodes would need to be
employed to process the current context. As the brain is known to reorganise during
predictive processes (Skipper & Zevin, 2017), these peripheries can instead be used to

help predict upcoming information.
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Language cores

Figure 22. Simplified diagram of context processing
model. ‘Language’ cores (bright red) support processing of
different contexts (orange and blue large circles), each of
which constitute a higher-level community. Many or few
core-periphery pairs (multiple colours) are assigned to a
community depending on level of contextual information
(e.g., low vs high context). Not pictured here are smaller
semantic category processing communities, that together
form the blue/orange ones here. At the top of the
architecture, the mPFC/AG (dark red) oversee these
processes by being engaged in any context-processing task

and directly connecting to ‘language’ cores.

Imagistic representations and memory

During discourse, the brain builds imagistic situation models of the meaning of the
context (Altmann & Ekves, 2019; Zwaan et al., 1995). These are later activated when retrieving
information about an event (Baldassano et al., 2018; Wittenberg et al., 2021; Yarkoni et al.,
2008). For instance, we showed that situation models active in episodic memory reactivate

sensorimotor character representations (e.g., primary visual cortex) when resolving pronouns.
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This process requires the brain to build imageries and conceptual representations of
dialogues, connect antecedent events to new ones (Piai et al., 2016) and retrieve the correct
representations to process the current context (Wittenberg et al., 2021). This particular higher-
level language behaviour is understudied (or rather inexistent) in all existing models of the
neurobiology of language.

Our model, with its high complexity and flexibility supports the formation and retrieval
processes of situation models as follows:

e During the situation model formation, core regions in context-processing and
mentalizing regions (e.g., mPFC) connect to visual, auditory and motor cortices, as well
as ‘language’ regions to build various character/event representations (Zwaan, 2016).
The sensorimotor regions are composed of both intermediary cores and peripheries: the
intermediary cores relate to general category areas (e.g., face vs object), while the
peripheries around these cores form variable patterns relating to specific characters,
places, events etc. The transfer of character/event specific information is facilitated by
‘language’ cores.

o After their creation, situation models are kept active in episodic memory regions (e.g.,
hippocampus, precuneus) (Berkovich-Ohana et al., 2020; Fletcheret al., 1995;
Sreekumar et al., 2018; Wang et al., 2010), and continually probed by ‘language’ cores
to which they connect to (Maguire et al., 1999; Oedekoven et al., 2017). These episodic
memory regions are likely intermediary cores such that (i) they are continually active
to allow language to access situation models, but (ii) are still flexible enough to switch
between different situation models where needed. This flexibility is well documented
in the literature (Duff & Brown-Schmidt, 2012).

e During retrieval, ‘language’ cores and episodic memory regions form one community
to facilitate transfer of information. This process activates a search in memory for the
appropriate situation model. The more ambiguous the referent, the more peripheral
nodes between these regions may be recruited to support the search. Once a situation
model is identified, the community merges with primary visual/auditory/motor cortices,
forming a larger higher-level community, in order to reinstate the pattern of activity for

a specific referent through peripheral nodes.
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Individual variability and shared features

Variability in activity patterns of individual brains for a given task, is an important
predictor of individual cognitive abilities and cognitive strategies (Heun et al., 2000; Miller et
al., 2012; Seghier & Price, 2018; Szenkovits et al., 2012). Due to the consistent use of central
tendency measures in neuroimaging studies, these variations have been mostly ignored in
existing models of the neurobiology of language, instead favouring the most stable activity
patterns across subjects. This has impoverished the extent of our understanding of how
individual brains comprehend various language features and use them to build complex
representations and thoughts.

Our model, instead, is primarily based on individual variability and therefore is more
fit to explain individual differences that underlie the neurobiology of language. At the same
time, we have inspected shared features across participants, thus making our model fit for
explaining both individual and shared (i.e., group) dynamics. Thus, we propose that our model
supports individual differences and shared language features as follows:

o Individual cognitive strategies are supported by dynamic and flexible peripheries and
variable communities at the lower levels of the modular hierarchy. These together form
different configurations in different individuals that support the different strategies.

 Individual cognitive abilities are supported by the amount of integration between core-
periphery pairs and by levels of overlap between different communities. Supposedly,
the higher the overlap of communities, or the higher integration between core-periphery
pairs, the higher the cognitive abilities.

o At the group-level, the presence of higher-level large communities and top-layer stable
cores, ensure that all human brains have the same underlying structure and perform the
same functions. However, the presence of lower layers of the hierarchy for both cores

and communities, support the development of cognitive differences in individual brains.

From the above examples, we conclude that our flexible and hierarchical model
accounts for various complex language features as well as individual variability. Although we
did not exhaustively detail every aspect of language and the brain, we did show that some of
the most complex features can be explained by the model. Overall, we conclude that our model
robustly addresses and supports both findings from existing neurobiology of language models,

as well as evidence from neuroimaging studies of individual variability.
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Implications

Language is arguably the most complex behaviour of the human brain, and as such it
requires a highly flexible model to account for its richness. Existing models of the neurobiology
of language have not done enough to explain the variability of language processing in the real
world, rather perpetuating localisational and static notions of language comprehension.

Here, we proposed the first network-based alternative model of the neurobiology of
language that accounts for real-world behaviour: this model is highly flexible, dynamic and
distributed, and considers both individual variability and the intricacies of various language
features, as we have shown. Our network-based model unifies the notions of previous language
models with findings from individual variability studies, identifying a specific role of
‘language’ regions as coordinative hubs in a wider and more complex language processing
network. This has significant ramifications for our understanding of the neurobiology of
language, as well as the methods commonly used in neuroimaging: it is clear from our work,
that simple stimuli/tasks, central tendency measures and subtractive methods should be at least
coupled with more naturalistic experiments, multivariate and inter-subject variability
approaches, in order to inspect language features in their natural setting.

As such, our model is much better suited for predicting individual cognitive abilities,
for understanding how the brain adapts to task changes, and how neuroplasticity after damage
may help re-establish lost functions. In this latter context, our model has significant
implications for patients with aphasia, as it can help identify additional brain regions and
pathways for rewiring that can be exploited through novel speech therapies. Existing models
cannot explain the heterogeneity in symptoms nor recovery of aphasic patients (Geranmayeh
et al., 2014), and there has been a push in the aphasia literature for a network-based approach
to understanding recovery, as this may help better inspect individual pathways (Kiran &
Thompson, 2019).

Therefore, by accounting for individual variability and proposing a network-based
approach, our model may help better understand the heterogeneity of aphasic symptoms and
recovery pathways (Geranmayeh et al., 2014). Here, our model could significantly boost the
development of individualised speech therapies, through the creation of programs aimed at

rerouting connectivity to brain regions outside of ‘language’ areas in aphasic patients.
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Future work

In this work we have proposed a new flexible network-based model of the neurobiology
of language. However, although we demonstrated a direct contribution of distributed regions
in language processing and proposed pathways for these, we did not inspect the specific
connectivity that various language features elicit. As such, we plan to investigate how word
frequency and semantic context drive the connectivity profiles of language processing in the
future. This would help elucidate the specific contribution in the network model of distributed
vs ‘language’ regions.

Moreover, although we have performed dynamic functional connectivity using a sliding
window approach, this method has its limitations as it (i) requires setting arbitrary parameters
(e.g., window length), and (ii) relies heavily on estimating connections from Pearson’s
correlations rather than using more causational techniques. Thus, in order to verify our
temporal results further, we have already begun conducting analyses using a novel data-driven
approach called temporal delay, that uses a Hilbert transform function to capture the response
delay between voxels’ timeseries (Saad et al., 2003). The preliminary results show that
sensorimotor regions (e.g., primary motor, visual, auditory) experience the longest time delays
relative to other voxels, with a temporal profile indicating that these regions take on the sensory
input first and also gather the processed information from other brain regions at the end. This
is in line with a role as top-layer stable cores. We plan to continue this analysis and include
visibility graph analysis (VGA), a technique to estimate the length and dynamics of temporal
windows for various brain regions (Sannino et al., 2017), in order to inspect the dynamics of
language processing networks in more depth.

Finally, in order to further investigate the relationship between network dynamics and
individual cognitive strategies/abilities, we have implemented a long-short-term memory
(LSTM) machine learning model that predicts the NIH toolbox cognitive scores from the
individual sliding windows’ connectivity: this model has already achieved 98% accuracy in
predicting various cognitive and emotional scores of individual participants from their
connectivity profiles. Interestingly, different graph measures accurately predicted scores at
different time intervals, suggesting that the movie stimuli at a particular time engage a given
cognitive state through a specific connectivity profile. We plan to investigate this point further,
in order to understand how the specific stimulus relates to the network dynamics, and how
these translate to behaviour or cognitive state. This particular study would help elucidate how

individual participants’ network features relate to cognitive strategies and abilities, but also to
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their emotional state. This would allow us to not only understand language and the brain in

more depth, but also investigate individual biomarkers of mental health.

Conclusions

This thesis presented a novel network-based model of natural language processing that
supports the complexity and flexibility of language in the real world. We have demonstrated
that a multiple core-periphery network architecture coupled with dynamic and largely
distributed communities, best encompasses various aspects of language in its natural setting.
This model supports both individual participant variability and shared language features and
pathways, thus making it ideal for investigating individual differences in cognition,

neuroplasticity and disease progression.
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Supplementary Materials

S1. Diagram of 3D DNN with decreasing kernel with 3 layers
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A) Diagram of the 3D DNN with a decreasing kernel size, with hyperparameters and architecture
obtained from (Vu et al., 2020). The model had 3 convolutional layers, which were progressively
removed starting from the top of the hierarchy (input layer) for testing. The final model included only

the last convolutional layer with 3x3x3 kernel size. B) Diagram representing the branched architecture
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containing visual and pronoun branches, with 3 convolutional layers; each branch comprised a single

convolutional layer in the final model.
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Diagram of the 3D DNN model architecture and hyperparameters with increasing kernel size. The
model contained 3 convolutional layers with kernel sizes starting at 1x1x1 and ending at 5x5x5. This
architecture constituted one branch of the model, with the final model having the same architecture as

S1 above.

S3. Diagram of 2D RSN pretrained model
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Diagram of the RSN model with its hyperparameters. Here 2D brain images (slices) were input into the
visual and pronoun branch, each containing a set of convolutional and fully connected layers, whose
weights were pre-trained using the ResNet50 model, and emerging in one long-short-term-memory
(LSTM) layer to combine all 2D slices from one sample into one prediction. The two branches were

finally merged into deeper fully connected layers.
S4. Movie of individual level communities

Link to the movie on an example of individual network communities from ‘500 Days of
Summer’, as they change over time. The change in colour from one image to the next indicates
that a community has evolved (e.g., has split, was born, was merged or died). Communities

varied often, nearing ~60 variations over time.

https://drive.google.com/file/d/1 YhlbCefMCx60gx110aUoPMqgqyeFyEpHD/view?usp=sharing

S5. Movie of group-averaged network communities

Link to the movie on group-averaged network communities from the movie ‘500 Days of
Summer’, as they change over time. The change in colour from one image to the next indicates
that a community has evolved (e.g., has split, was born, was merged or died). Communities did

vary, but less often (< 40) compared to individual-level communities.

https://drive.google.com/file/d/1jcM3ul893U2uYum_Uy-v-3xyPOyXM6ZB/view?usp=sharing

S6. Considerations on network algorithms for future work

Network construction. As is the case for the entire network neuroscience field, there is still no
consensus on the appropriate window and step length to use for the sliding window approach.
Previous studies suggested window lengths of 30-60 sec and <50 sec step size, but no clear
method is available (Preti et al., 2017). It would be interesting to apply various window and
step lengths, to test whether we can capture different dynamics of the network. Here, we
initially computed pairwise Pearson’s correlation values to build adjacency matrices. Various
thresholding approaches are available: from absolute thresholding and proportional edge-
density ones, to more complex n,K-dependent thresholds (Garrison et al., 2015). We chose a
proportional threshold of 10% edge density based on previous literature suggesting that this
method is better suited for network comparisons (Alexander-Bloch et al., 2012), and based on
qualitative inspection and available computational resources. We propose to try an absolute

threshold in future, as it can reveal different features about individual variability, given that the
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resulting individual networks may have different densities and thus structures (Garrison et al.,
2015). An understudied feature of network construction is the role of negative correlation
values, which are removed in all network neuroscience studies. These may still represent
important functional connections, which may be important to define feedback connections or
disease, but they are always discarded as noise (Kazeminejad & Sotero, 2020; Parente &

Colosimo, 2020; Zhan et al., 2017).

Finally, we aimed at obtaining the highest possible resolution of the network which for our data
was 3mm?>. However, due to computational limitations, we chose to resample the network to

5mm? voxel-wise. In future, we aim to increase the resolution of our model further.

Algorithms. Our novel core-periphery algorithm represents a significant improvement in
detection of this meso-scale structure in various networks (Shen et al., 2021). The original
definition of core-periphery was based on the estimation of a ‘coreness’ value for each node
(Borgatti & Everett, 2000), but no algorithm so far is able to estimate this measure, to the best
of our knowledge. Instead, studies have used proxy measures, such as k-core decomposition
and centrality, to define core nodes (Fornito et al., 2016a). However, while all cores are hubs,
not all hubs are cores (Borgatti & Everett, 2006). Our algorithm offers a more accurate estimate
of ‘coreness’ and can detect multiple core-periphery structures that have been described in
various networks (Yan & Luo, 2019), making it overall more suitable than existing algorithms

to detect complex core-periphery structures (Shen et al., 2021).

Finally, although the Louvain algorithm is widely used and has been extensively tested, it
cannot detect overlaps between communities (Lancichinetti et al., 2010; Palla et al., 2005).
These overlaps can be indicative of a shared cognitive function. Overlaps were recently found
in protein-protein interactomes, where they acted as multiple cores of a core-periphery network
(Yang & Leskovec, 2014). It would be interesting to then use a different algorithm, such as
OSLOM that is designed to find overlapping communities (Lancichinetti et al., 2010), to
identify potential overlaps and test whether our multi-cores act as shared nodes between two
or more communities. Since OSLOM requires more computational resources, we aim at

analysing our networks with this novel algorithm in the future.
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