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A B S T R A C T   

Aims: To investigate whether serum miR-145-5p levels were associated with micro-macrovascular chronic 
complications in patients with type 1 diabetes (DM1). 
Methods: A nested case-control study from the EURODIAB Prospective Complications Study was performed. Cases 
(n = 289) had one or more complications of diabetes, whereas controls (n = 153) did not have any complication. 
We measured miR-145-5p levels by qPCR and investigated the association with diabetes complications. 
Results: Mean miR-145-5p levels were significantly lower in cases with microangiopathy [2.12 (0.86–4.94)] 
compared to controls [3.15 (1.21–7.36), P < 0.05] even after adjustment for age, gender, and diabetes duration. 
In logistic regression analysis, miR-145-5p levels in the lowest tertile were associated with an over three-fold 
increased odds ratio (OR) of albuminuria [3.22 (1.17–8.81)], independently of both demographic and 
diabetes-related factors. In addition, mir145-5p levels in the lowest tertile were independently and inversely 
associated with arterial hypertension [1.96 (1.08–3.56)] and hypertension was the mediator of the relationship 
between miR-145-5p and albuminuria. 
Conclusions: In this large cohort of DM1 patients, we found an inverse association between miR-145-5p and 
albuminuria that was mediated by systemic hypertension.   

1. Introduction 

Diabetes mellitus is associated with long-term vascular complica
tions that affect both quality of life and mortality rate [1]. Both hyper
glycemia and hypertension are major determinants in the development 
of diabetic complications. Moreover, formation of advanced glycation 
end products (AGEs) and altered production of cytokines, including the 
pro-sclerotic cytokine transforming growth factor-β1 (TGF-β1) and the 
proangiogenic cytokine vascular endothelial growth factor (VEGF), are 
believed to play an important role in mediating the deleterious effects of 

hyperglycemia [2]. Currently available clinical and biohumoral markers 
of diabetic complications are insufficient for the early diagnosis and the 
prognostic stratification of patients at high risk. Therefore, there is the 
need to identify new diagnostic/prognostic biomarkers. 

MicroRNAs (miRNAs) are evolutionarily conserved small sequences 
of non-coding RNAs that control gene expression at the post- 
transcriptional level by targeting the 3′ untranslated region of mRNAs 
[3]. MiRNAs regulate most biological processes and have been involved 
in the pathogenesis of chronic diabetic complications [4,5]. Although 
miRNAs function cell-intrinsically to regulate gene expression, 
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extracellular miRNAs are also present in body fluids. Circulating miR
NAs are protected from degradation as they are either enclosed in 
extracellular vesicles (EV) [6,7] or bound to lipoprotein complexes [8]. 
Serum profiles of miRNAs may change in pathological conditions in a 
disease-specific manner and this together with the remarkable stability 
of miRNAs in biofluids make miRNAs an attractive new class of potential 
biomarkers [9,10]. 

Among miRNAs, miR-145-5p is of particular interest in the context of 
vascular complications. MiR-145-5p is highly expressed by vascular 
muscle cells (VSMC) and to a lesser extent by endothelial cells (EC), 
monocyte-macrophages, fibroblasts, and both glomerular and tubular 
epithelial cells [11–19]. MiR-145-5p is induced by high glucose, TGF-β1 
[20], and shear stress [15,16], and has several vasoprotective effects. In 
particular, miR-145-5p promotes both differentiation and contractility 
of VSMC with a shift from a proliferative/synthetic (atherogenic) to a 
quiescent/contractile (non-atherogenic) phenotype [12,13,21], limits 
vascular fibrosis by downregulating the TGF-β1 receptor of type 2 [22], 
and reduces inflammation by downregulating the junctional adhesion 
molecule-A on EC [15,16] and by lowering macrophage polarization 
towards a M1 pro-inflammatory phenotype [17]. In microvascular 
retinal EC, miR-145-5p represses VEGF and attenuates high glucose- 
induced oxidative stress [23,24]. In renal cells, miR-145-5p reduces 
high glucose-induced podocyte apoptosis [25], inhibits both cell pro
liferation and release of inflammatory cytokines by mesangial cells [26], 
and suppresses tubular-mesenchymal transition [27]. Consistently, 
studies in both experimental animals and humans have shown changes 
in miR-145-5p expression in various diseased vascular beds. MiR-145-5p 
is downregulated in the atherosclerotic plaques of experimental ani
mals. However, there is an increase in miR-145-5p expression in 
advanced human atherosclerotic plaques as well as in the atherosclerotic 
plaques of hypertensive patients [28], suggesting that both severe 
vascular injury and hypertension may upregulate miR-145-5p. 

There is relatively little information on serum miR-145-5p levels in 
patients with vascular diseases. Circulating miR-145-5p levels were 
elevated in patients with unstable angina [29,30] and myocardial 
infarction, but reduced in patients with coronary artery disease (CAD) 
[31–34] and inversely associated with CAD severity [35]. However, 
there is no information on circulating miR-145-5p in vascular diseases in 
the context of diabetes. 

We previously reported that miR-145-5p was one of the 25 differ
entially expressed miRNAs in a profiling analysis performed in pooled 
serum samples from patients with type 1 diabetes (T1DM) patients with 
and without chronic complications [36]. Herein, we explored the po
tential independent associations of miR-145-5p with micro/macro- 
vascular complications of T1DM by measuring miR-145-5p in individ
ual serum samples from T1DM patients of the EURODIAB PCS nested 
case-control study. 

2. Methods 

2.1. Patient sample 

The EURODIAB IDDM Complications Study (1989–1991) was per
formed to identify risk factors for vascular diabetes complications in 
3,250 patients with T1DM [37]. Participants were 15–60 years old and 
they were randomly selected in 31 European diabetes centres. 

Approximately 6 to 8 years after baseline examinations, participants 
were recalled for follow-up assessment (1997–1999, EURODIAB Pro
spective Complication Study) and 1,880 subjects (57.8%) returned for 
examination (median follow-up 7.3) [38]. 

A nested case-control study was designed at the follow-up exami
nation [39]. Cases (n = 356) were subjects with CVD, diabetic reti
nopathy, or albuminuria, while controls (n = 185) were completely free 
of complications [40,41]. The design allowed to efficiently compare 
individuals with one or more complications with individuals free of 
complications. 

Of these 541 individuals, clinical data and serum samples for miR- 
145-5p measurement were available for 460 subjects (300 cases and 
160 controls) (Fig. 1). Eighteen samples were excluded because both 
miR-145-5p and the endogenous control U6 were undetectable; there
fore, the present analyses were performed on 289 cases and 153 con
trols. Case and control subjects were unmatched, so that the impact of 
key variables could still be assessed, and any adjustments were taken 
care of at the analysis stage. The EURODIAB study was approved by the 
Ethical Committee and the procedures were in accordance with the 
Helsinki Declaration. 

2.2. Definitions and measurements 

Hypertension was defined as systolic blood pressure (SBP) ≥ 140 
mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg and/or use of 
antihypertensive agents [42]. Retinopathy was diagnosed and graded 
based on the EURODIAB protocol [43]. The presence of diabetic ne
phropathy was assessed by measuring albumin excretion rate (AER) in 
24-hour urine collections and classified in normoalbuminuria (<20 µg/ 
min), microalbuminuria (20–200 µg/min), and macroalbuminuria 
(≥200 µg/min). Glomerular filtration rate (eGFR) was estimated using 
the Modification of Diet in Renal Disease study equation [44]. CVD was 
defined as myocardial infarction, coronary artery bypass graft, angina or 
stroke and/or ischemic ECG-changes that were centrally classified based 
on the Minnesota coding system. ELISA kits were used to measure both 
Amadori albumin and serum TGF-β1 levels (R&D Systems. Oxon, UK), as 
previously described [45]. 

2.3. RNA isolation 

Serum samples (200 µl) were added to 750 µl of TRIZOL®LS reagent 
(Thermo Fisher, Milan, Italy). Mixtures were left for 15 min at room 
temperature (RT), then Cel-miR-39 (3 µl spike-in) and chloroform (200 
µl) were added. After mixing, incubation (RT for 5 min), and centrifu
gation, the upper aqueous phase was collected and incubated with iso
propanol (500 µl) for 10 min at RT. After centrifugation, pellets were 
washed with ethanol (75%), air-dried, and then re-suspended in RNAse- 
free H2O (25 μl). Quality of RNA was evaluated by capillary electro
phoresis on an Agilent-2100 Bioanalyzer (Agilent Technologies, Santa 
Clara, CA). 

2.4. Reverse transcription and pre-amplification 

TaqMan MicroRNA Reverse Transcription Kit was used for reverse 
transcription (RT). Briefly, a fixed volume of RNA (3 µl) was reverse 
transcribed on a Veriti thermocycler (Thermo Fisher, Milan, Italy) as 
follows: 16 ◦C for 30 min, 42 ◦C for 30 min and 85 ◦C for 5 min. RT 
products were pre-amplified using the Megaplex PreAmp Primers 
(Thermo Fisher, Milan, Italy). Both RT and PreAmp products were 
stored at − 20 ◦C. 

2.5. Taqman qPCR assay 

Expression of miR-145-5p, U6 snRNA, and Cel-miR-39 was assessed 
using specific Taqman miRNA Assays. Diluted pre-amplification prod
ucts were combined with Taqman miRNA Assay and Taqman Universal 
PCR Master Mix No AmpErase UNG to a final volume of 10 µl and 
amplified on an Applied Biosystems 7900HT thermocycler (95 ◦C for 10 
min, followed by 40 cycles of 95 ◦C for 15 sec and 60 ◦C for 1 min). The 
SDS software was used to calculate raw Ct values. Results were nor
malised to both U6 snRNA and Cel-miR-39. If Ct of both miR-145-5p and 
U6 were ≥ 35 cycles or undetermined, samples were excluded from the 
analyses. Samples with Cel-miR-39 ≥ 35 cycles/undetermined were 
rerun. Relative expression was calculated using the comparative Ct 
method (2-ΔΔCt). 
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2.6. Statistical analyses 

Results were expressed as mean (standard deviation, SD). Non- 
normally distributed variables (miR-145-5p, TGF-β1) were expressed 
as geometric means (25–75 percentiles) and log-transformed prior to 
analyses. Linear correlations of miR-145-5p values with clinical vari
ables were assessed using Pearson’s correlation coefficients. 

Logistic regression analyses were performed to estimate the odd ra
tios (ORs) of miR-145-5p for all and individual diabetes complications 
(nephropathy, retinopathy, CVD), independently of confounders and 
known risk factors. The likelihood ratio test was used to compare nested 
models examining the role of age, sex, diabetes duration, HbA1c, 
Amadori albumin, TGF-β1, and hypertension. Analyses were hypothesis 
oriented and variables were retained in the model if they added signif
icantly to the likelihood of models or to the estimated coefficients of 
predictors. MiR-145-5p levels were categorized by tertile distribution in 
controls. Logistic regression analysis was also performed to estimate the 
ORs of miR-145-5p for hypertension, independently of age, sex, total 
cholesterol, HbA1c, diabetes duration, smoking. Analyses were per
formed on the SPSS software (Version 27). 

3. Results 

3.1. Characteristics of patients 

Participants (n = 442) had a mean age of 39.5 years and a similar 
percentage of men (51.1%) and women (48.9%). Average diabetes 
duration was 21.7 years. Risk factor profile was more adverse in cases 
than in controls (Table 1). Arterial hypertension was present in 56.4% of 
cases and 13.1% of controls. Among cases, 115 subjects had CVD (40%). 
Nephropathy was present in 178 (41.6% microalbuminuria and 58.4% 
macroalbuminuria) and retinopathy in 253 (background 47.4% and 
proliferative 52.6%); however, most cases had both microvascular 
complications (56.7%). 

3.2. Serum miR-145-5p levels 

Individual Ct values of miR-145-5p, U6, Cel-miR-39C are reported in 
the Suppl. Table 1. In the overall population, distribution of miR-145-5p 

values was left-skewed and serum miR-145-5p levels were significantly 
(P = 0.002) lower in hypertensive [1.83 (0.75–3.99)] than in normo
tensive [2.96 (1.13–6.75)] subjects, even after adjustment for age, sex, 
and diabetes duration (P = 0.002) (Fig. 2A). Values of miR-145-5p were 
directly correlated with HDL-cholesterol (r = 0.17, p < 0.001) and 
inversely correlated with BMI (r = -0.11, p < 0.05), SBP (r = -0.15, p <
0.001), A1c (r = -0.12, p < 0.05), and serum creatinine (r = -0.13, p <
0.01). Table 2 shows the correlation matrix between miR-145-5p levels 
and other continuous variables. 

Comparisons between patients with and without complications 
showed that serum miR-145-5p levels were significantly (P = 0.014) 
lower in cases than in controls [2.12 (0.86–4.94) vs. 3.15 (1.21–7.36)] 
(Fig. 2B). The difference was still statistically significant after adjust
ment for age, gender, and duration of diabetes (P = 0.010). Subgroup 

Fig. 1. Design of the study.  

Table 1 
Characteristics of the 442 subjects with T1DM recruited in the cross-sectional 
nested case-control study of the EURODIAB PCS.   

Case subjects Control subjects P 

N 289 153  
Age (years) 41.6 ± 10.8 35.6 ± 7.57  <0.001 
Diabetes duration (years) 25.1 ± 9.2 15.3 ± 7.13  <0.001 
Males (%) 52.9% 47.7%  0.43 
BMI (Kg/m2) 24.9 ± 3.5 23.7 ± 2.63  <0.001 
WHR 0.9 ± 1.2 0.9 ± 0.16  0.136 
HbA1c (mmol/mol) 76 ± 0.8 61 ± 1.2  <0.001 
HbA1c (%) 9.1 ± 1.6 7.7 ± 1.2  <0.001 
SBP (mmHg) 127.5 ± 21.8 114.8 ± 13.5  <0.001 
DBP (mmHg) 76.0 ± 11.5 73.4 ± 10.7  <0.05 
Hypertension (%) 56.4% 13.1%  <0.001 
Total cholesterol (mmol/l) 5.5 ± 1.2 4.9 ± 1.1  <0.001 
LDL-cholesterol (mmol/l) 3.3 ± 1.1 2.8 ± 1.0  <0.001 
HDL-cholesterol (mmol/l) 1.6 ± 0.4 1.7 ± 0.4  <0.05 
Triglycerides (mmol/l) 1.2 (0.84–1.58) 0.8 (0.66–1.06)  <0.001 
Amadori albumin (U/ml) 47.0 ± 13.5 42.5 ± 12.6  <0.01 
eGFR (ml/min/1.73 m2) 90.2 ± 25.2 106.0 ± 14.0  <0.01 
Serum TGF-β1 (ng/ml) 6.3 (3.70–9.07) 5.6 (3.40–8.75)  <0.01 

Data are expressed as mean ± SD, percentage or geometric mean (25◦-75◦

percentile) for log-transformed data. BMI, body mass index; LDL, low-density 
lipoprotein; HDL, high-density lipoprotein; SBP, systolic blood pressure; DBP, 
diastolic blood pressure, eGFR, estimated glomerular filtration rate. 
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analyses by individual complications showed that miR-145-5p values 
were significantly lower in cases with nephropathy [1.99 (0.72–4.41) P 
= 0.007)] and retinopathy [1.98 (0.83–4.61) P = 0.005] compared to 
controls (Fig. 2C,D). Differences remained significant (nephropathy P =
0.02; retinopathy P = 0.002) after adjustment for age, sex, and diabetes 
duration. On the contrary, no difference in miR-145-5p levels was 
observed between cases with CVD [2.23 (0.93–5.39) P = 0.078] and 
controls. 

3.3. Logistic regression analyses 

Logistic regression analyses were carried out to assess the association 
between miR-145-5p levels and T1DM complications, independently of 
main risk factors and confounders. As shown in Table 3, miR-145-5p 

levels in the lowest tertile were associated with an increased OR of all 
complications [2.02 (1.12–3.64)], nephropathy [2.16 (1.11–4.21)], and 
retinopathy [2.35 (1.24–4.45)] independently of age, sex, and diabetes 
duration (Model 1). There was no association between miR-145 and 
CVD and exclusion of subjects treated with renin-Angiotensin system 
inhibitors (6 controls and 106 cases) did not modify the results adjusted 
for age, sex and diabetes duration [I◦tertile OR 1.46 (0.66–3.24), 
II◦tertile 0.92 (0.40–2.12), III◦ tertile 1.00]. 

After further adjustment for HbA1c, Amadori albumin, and TGF-β1 
(Model 2), the association with all complications and retinopathy was no 
longer significant. However, there was still a 3.22-fold increased risk of 
macroalbuminuria [3.22 (1.17–8.81)]. The independent and inverse 
association between miR-145-5p and macro-albuminuria was mediated 
by systemic hypertension as it was abolished by the inclusion of 

Fig. 2. Serum miR-145 expression. (A) miR-145-5p levels in T1DM patients with (n = 183 or without hypertension (n = 259) (P = 0.002). (B) miR-145-5p levels in 
T1DM patients with (cases; n = 289) and without (controls; n = 153) micro-macrovascular complications (*p < 0.01 cases vs. controls). (C) miR-145-5p levels in 
T1DM controls, T1DM cases with nephropathy (n = 178; P = 0.02) and T1DM cases with retinopathy (n = 253; P = 0.002). (D) miR-145-5p levels in T1DM patients 
with normo, micro or macroalbuminuria. 
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hypertension into the model (Model 3) [2.23 (0.75–6.65)]. 
Logistic regression analysis performed to assess the relationship be

tween hypertension and miR-145-5p levels showed that miR-145-5p 
levels were independently and inversely associated with hypertension. 
As shown in Table 4, lower miR-145-5p levels were associated with a 
more than 1.8-fold increase OR of hypertension independently of age, 
sex, and diabetes duration. After adjustment for HbA1c, total cholesterol 
and smoking, the strength of the association was even greater [1.96 
(1.08–3.56)]. 

4. Discussion 

The present study investigated the potential independent association 
between serum miR-145-5p levels and chronic complications of T1DM 
in the nested case-control study of the EURODIAB PCS, which is one of 
the largest European studies on diabetic complications. 

Levels of miR-145-5p in the lower tertile were associated with an 
increased OR for all complications that was predominantly driven by a 
significantly enhanced risk of both retinopathy and nephropathy. 
Similarly, we have previously reported that both miR-126 and miR-146- 
5p were associated with retinopathy and CVD in T1DM patients of the 
EURODIAB nested case-control study [36,46]. 

Hyperglycemia and advanced glycation end products play a key role 
in the pathogenesis of microvascular diabetic complications by inducing 
oxidative stress, inflammation, fibrosis both directly and indirectly 
through expression of deleterious cytokines, such as TGF-b1 and VEGF. 
In vitro studies in target cells of microvascular complications have 
shown that miR-145-5p is induced by both high glucose and TGF-b1 
[20] and that miR-145-5p can limit the deleterious effects of high 
glucose by suppressing TGF-b1 signalling [22], inflammation [23,26], 
oxidative stress [23,24], apoptosis [25], and VEGF expression [24]. 
Consistent with the hypothesis that miR-145-5p may have a vaso
protective effect in the context of diabetes, we found an inverse asso
ciation between serum miR-145 levels and microvascular complications 
that was mediated by HbA1c, Amadori Albumin, and TGF-β1. Lower 
circulating levels of miR-145-5p may identify the subgroup of patients 

Table 2 
Pearson correlation coefficient of clinical variables.   

Log miR-145 Age BMI DM Duration SBP DBP HbA1c T-Chol HDL-Chol LDL-Chol sCr Log TGF-β1 

Log miR-145 r 1 − 0.044 − 0.005 − 0.114 − 0.145 − 0.051 − 0.121 − 0.025 0.172 − 0.066 − 0.128 − 0.025 
P 0.360 0.017 0.002 0.920 0.281 0.011 0.598 0.000 0.000 0.078 0.007 0.593 

Age r − 0.044 1 0.666 0.192 0.405 − 0.012 0.014 0.278 0.085 0.216 0.067 − 0.009 
P 0.360  0.000 0.000 0.000 0.800 0.764 0.000 0.073 0.000 0.162 0.849 

BMI r ¡0.114 0.192 0.102 1 0.247 0.200 0.068 0.191 0.109 0.266 0.019 − 0.049 
P 0.017 0.000 0.033  0.000 0.000 0.156 0.000 0.022 0.000 0.687 0.310 

DM Duration r − 0.005 0.666 1 0.102 0.391 − 0.029 0.107 0.254 − 0.204 0.186 0.104 0.027 
P 0.920 0.000  0.033 0.000 0.542 0.026 0.000 0.000 0.002 0.029 0.570 

SBP r ¡0.145 0.405 0.391 0.247 1 0.578 0.074 0.288 − 0.038 0.314 0.350 0.077 
P 0.002 0.000 0.000 0.000  0.000 0.125 0.000 0.424 0.000 0.000 0.107 

DBP r − 0.051 − 0.012 − 0.029 0.200 0.578 1 0.005 0.208 − 0.033 0.259 0.256 0.071 
P 0.281 0.800 0.542 0.000 0.000  0.921 0.000 0.488 0.000 0.000 0.138 

HbA1c r ¡0.121 0.014 0.107 0.068 0.074 0.005 1 0.136 − 0.107 0.127 − 0.012 0.171 
P 0.011 0.764 0.026 0.156 0.125 0.921  0.005 0.025 0.041 0.809 0.000 

T-Chol r − 0.025 0.278 0.254 0.191 0.288 0.208 0.136 1 0.165 0.945 0.172 0.089 
P 0.598 0.000 0.000 0.000 0.000 0.000 0.005  0.000 0.000 0.000 0.062 

HDL-Chol r 0.172 0.085 0.109 − 0.204 − 0.038 − 0.033 − 0.107 0.165 1 − 0.112 − 0.123 0.093 
P 0.000 0.073 0.022 0.000 0.424 0.488 0.025 0.000  0.068 0.010 0.052 

LDL-Chol r − 0.066 0.216 0.186 0.266 0.314 0.259 0.127 0.945 − 0.112 1 0.296 0.055 
P 0.282 0.000 0.002 0.000 0.000 0.000 0.041 0.000 0.068  0.000 0.368 

sCr r ¡0.128 0.067 0.104 0.019 0.350 0.256 − 0.012 0.172 − 0.123 0.296 1 0.064 
P 0.007 0.162 0.029 0.687 0.000 0.000 0.809 0.000 0.010 0.000  0.182 

logTGF-β1 r − 0.025 − 0.009 0.027 − 0.049 0.077 0.071 0.171 0.089 0.093 0.055 0.064 1 
P 0.593 0.849 0.570 0.310 0.107 0.138 0.000 0.062 0.052 0.368 0.182  

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL, low-density lipoprotein; HDL, high-density lipoprotein; sCr, serum creatinine. 

Table 3 
Odds ratio values for diabetes complications by miRNA-145-5p values in the 
nested case-control study of the EURODIAB PCS study.   

MODEL 1 
OR (95% IC) 

MODEL 2 
OR (95% IC) 

MODEL 3 
OR (95% IC) 

All complications 
logMir-145 ≤ 1.671 2.02 (1.12–3.64) 1.70 (0.89–3.24) 1.47 (0.75–2.86) 
1.671–5.065 1.28 (0.71–2.33) 1.10 (0.57–2.12) 0.97 (0.76–2.86) 
≥ 5.065 1.00 1.00 1.00 
CVD 
≤ 1.671 1.76 (0.85–3.65) 1.49 (0.67–3.29) 1.45 (0.65–3.26) 
1.671–5.065 1.12 (0.53–2.39) 1.08 (0.48–2.43) 1.11 (0.49–2.53) 
≥ 5.065 1.00 1.00 1.00 
Nephropathy 
≤ 1.671 2.16 (1.11–4.21) 1.75 (0.81–3.79) 1.44 (0.63–3.30) 
1.671–5.065 1.32 (0.67–2.62) 0.95 (0.43–2.09) 0.77 (0.34–1.78) 
≥ 5.065 1.00 1.00 1.00 
Microalbuminuria 
≤ 1.671 1.77 (0.81–3.87) 1.31 (0.52–3.31) 1.32 (0.50–3.47) 
1.671–5.065 1.08 (0.48–2.43) 0.84 (0.33–2.15) 0.85 (0.32–2.24) 
≥ 5.065 1.00 1.00 1.00 
Macroalbuminuria 
≤ 1.671 3.64 (1.51–8.80) 3.22 (1.17–8.81) 2.23 (0.75–6.65) 
1.671–5.065 1.74 (0.71–4.26) 1.23 (0.44–3.42) 0.93 (0.31–2.79) 
≥ 5.065 1.00 1.00 1.00 
Retinopathy 
≤ 1.671 2.35 (1.24–4.45) 2.00 (0.99–4.06) 1.82 (0.87–3.81) 
1.671–5.065 1.61 (0.84–3.09) 1.39 (0.68–2.85) 1.32 (0.62–2.78) 
≥ 5.065 1.00 1.00 1.00 

Model 1: adjusted for age, sex, diabetes duration. 
Model 2: Model 1 + HbA1c, Amadori Albumin, log-serum TGF-β levels. 
Model 3: Model 2 + hypertension. 
Likelihood ratio chi-square test and Wald test were used. 

Table 4 
Odds ratios for arterial hypertension by miR-145-5p values in the nested case- 
control study of the EURODIAB PCS.   

MODEL 1 
OR (95% CI) 

MODEL 2 
OR (95% CI) 

MODEL 3 
OR (95% CI) 

Hypertension 
≤ 1.671 1.91 (1.09–3.37) 1.82 (1.02–3.27) 1.96 (1.08–3.56) 
1.671–5.065 1.76 (0.97–3.20) 1.76 (0.95–3.27) 1.77 (0.94–3.32) 
≥ 5.065 1.00 1.00 1.00 

Model 1: adjusted for age, sex, diabetes duration, HbA1c. 
Model 2: Model 1 + BMI, total cholesterol. 
Model 3: Model 2 + smoking. 
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with an insufficient compensatory miR-145-5p response to hyperglyce
mia and thus more prone to vascular complications. 

After adjustment for diabetes-related factors, miR-145-5p levels in 
the lowest tertile were still inversely associated with an over three-fold 
increased OR of overt nephropathy. We previously reported an increase 
in miR-145-5p content in the urinary exosomes from T1DM patients 
with persistent microalbuminuria and normal renal function [18]. The 
reason why miR-145-5p is increased in the urinary exosomes of micro- 
albuminuric T1DM patients and reduced in sera from macro- 
albuminuric T1DM subjects is unknown; however, a different cellular 
origin of miR-145-5p is a possible explanation. Serum miR-145-5p likely 
derives from EC, monocytes, and VSMC, while urinary exosomal miR- 
145-5p may derive from renal cells. Accordingly, exposure of mesan
gial cells to high glucose enhances miR-145-5p expression and induces 
the release of exosomes enriched in miR-145-5p [18]. Moreover, our 
previous study was performed in T1DM patients with microalbuminuria 
and we cannot exclude that urine exosomal miR-145-5p content drops 
when overt nephropathy develops. 

Given the key role of arterial hypertension in the pathogenesis of 
diabetic nephropathy, we explored the potential role of hypertension in 
the association between albuminuria and miR-145-5p. We found an 
inverse association between miR-145-5p and arterial hypertension that 
was independent of age, sex, diabetes duration, total cholesterol, HbA1c, 
and smoking. Moreover, the association between miR-145-5p and 
macroalbuminuria was no longer significant after inclusion of arterial 
hypertension into the model. This is the first evidence of an independent 
relationship between arterial hypertension and serum miR-145-5p in a 
large cohort of T1DM patients, though a previous study showed that 
miR-145-5p content is reduced in blood mononuclear cells from a small 
sample of non-diabetic hypertensive subjects [47]. 

The relationship between miR-145-5p and systemic hypertension is 
complex and given the cross-sectional design of our study, we cannot 
establish if reduced serum miR-145-5p levels were either a cause or a 
consequence of systemic hypertension. Both in vitro and in vivo studies 
have shown that miR-145-5p plays a crucial role in regulating both 
vascular tone and contractility and that mice knockout for miR-145-5p 
have reduced vascular tone and blood pressure levels [11,48]. On the 
other hand, exposure of VSMC to either stretching or angiotensin II to 
mimic hypertension in vivo lowers miR-145-5p expression [49,50]. 
However, whether circulating miR-145-5p levels in humans mirror miR- 
145-5p expression in VSMC is unknown. 

In our study miR-145-5p levels were similar in CVD cases and con
trols and there was no association between miR-145-5p and CVD in 
logistic regression analysis. Therefore, our results do not support the 
hypothesis that miR-145-5p is a potential biomarker of CVD in patients 
with T1DM [31–34]. MiR-145-5p can increase the activity of the renin- 
angiotensin system by reducing both angiotensin-converting enzyme 
(ACE) expression and ACE2 shedding [51]. However, exclusion of pa
tients treated with RAS inhibitors did not modify the results, suggesting 
that treatment with RAS inhibitors was not a confounder. The lack of 
changes in circulating levels of miR-145-5p in T1DM patients with CVD 
may be the net result of opposite effects on miR-145-5p expression in 
conditions of diabetes-induced chronic vascular stress. In keeping with 
this hypothesis, in vitro studies have shown that shear stress, high 
glucose, TGF-β1, and inflammatory cytokines induce miR-145-5p 
expression in EC, VSMC, monocytes [15,16,20]. while vascular injury 
[12] and mechanical stretch [50] downregulates miR-145-5p in VSMC. 

Previous studies reported a reduction in circulating miR-145-5p 
levels in non-diabetic subjects with CAD [31–35], possibly reflecting a 
deficiency of protective miR-145-5p expression in the vascular bed. On 
the other hand, there are reports of enhanced circulating miR-145-5p 
levels in unstable angina and myocardial infarction [29,30]. Likely, in 
these acute conditions miR-145 is released into the circulation by 
apoptotic/necrotic cells and is a marker of vessel/heart injury. In 
addition, miR-145 reduces myocardial infarction size in experimental 
animals by accelerating cardiomyocyte autophagy [52], suggesting that 

miR-145 overexpression may represent a mechanism of repair. 
In conclusion the study shows an inverse association between serum 

miR-145-5p levels and microvascular diabetes complications that is in
dependent of demographic confounders, such as age, sex and diabetes 
duration. The association with retinopathy is mediated by hyperglyce
mia and its direct consequences. On the contrary, the association with 
albuminuria is independent of diabetes-related factors and due to the 
strong inverse association between miR-145-5p and hypertension that is 
a well-known determinant of diabetic nephropathy. 

Our study has several limitations. Although the EURODIAB study 
had a prospective design, samples were not collected at baseline; 
therefore, miR-145-5p levels could only be measured at follow-up. The 
cross-sectional design of the study makes it impossible to establish 
causal and temporal relationships. The power of the analyses was 
reduced by the lower number of controls compared to cases. The pos
sibility of miR-145-5p degradation during storage cannot be excluded, 
though miRNAs are very stable in biofluids. Data on statin use were not 
collected in the EURODIAB study. Finally, cases and controls were not 
matched for clinical variables and cases had a more adverse risk factor 
profile than controls; however, adjustments for age, diabetes duration, 
and HbA1c were made at the analysis stage. A key strength of our work is 
the large sample size and the possibility to correct for the confounding 
effect of other risk factors and complications; however, a significant and 
independent association was only found in subgroup analyses including 
a smaller sample of patients. Moreover, multiple comparisons within the 
same case-control study base might have caused significant results due 
to chance. 

There is increasing interest in miRNAs as potential biomarkers of 
diabetes complications; however, most of the studies were performed on 
very small numbers of patients [53]. Moreover, the majority of the 
studies on diabetic nephropathy and miRNAs in T1DM were carried out 
on urinary samples and there is little information on serum levels of 
miRNAs [18,53]. Pezzolesi et al. found that let-7c-5p and miR-29a-3p 
were associated with an over 50% reduction of the risk of rapid pro
gression to ESRD, while let-7b-5p andmiR-21-5p were associated with a 
2.5-fold increase in ESRD risk [54]; however, this study was performed 
in patients with advanced nephropathy. Our study was performed on 
serum samples from a relatively large and representative group of T1DM 
patients and investigated the relevance of a yet unexplored miRNA. Our 
findings show an inverse and independent relationship between miR- 
145-5p and overt diabetic nephropathy that was mediated by arterial 
hypertension. In the view of potential future clinical application, it 
would be of interest to establish in prospective studies if miR-145 has a 
predictive value and its addition to currently available clinical markers 
and scores improves identification of subgroups of patients at high risk. 
Finally, the evidence of a strong and independent association between 
hypertension and serum miR-145-5p deserves further investigation in 
subjects with and without diabetes to clarify if it may be exploited for 
clinical purposes. 
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