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Abstract. Agent-based models frequently make use of scaling tech-
niques to render the simulated samples of population more tractable.
The degree to which this scaling has implications for model forecasts,
however, has yet to be explored; in particular, no research on the spatial
implications of this has been done. This work presents a simulation of
the spread of Covid-19 among districts in Zimbabwe and assesses the
extent to which results vary relative to the samples upon which they are
based. It is determined that in particular, different geographical dynam-
ics of the spread of disease are associated with varying population sizes,
with implications for others seeking to use scaled populations in their
research.
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1 Introduction

Agent Based Models (ABMs) are often designed and built to model complex
behaviours among large populations. However, the combination of complex be-
havior and a large population can require extensive memory or CPU usage and
quickly become too computationally intensive to run efficiently in terms of speed
or memory use. Thus, different methodologies have arisen to deal with the chal-
lenge of large-scale simulations in ABM literature (see Bithell and Parry [9] for
a few of the most common). This is a point of particular interest as researchers
have sought to lend a hand to the time-sensitive problem of disease forecasting
(see for example [6], [4], or [5]).

Briefly, some models approach this problem by reducing the level of com-
plexity of the model or the number of agents in order to enable it to run [10].
Others revert to equation-based modelling or hybrid approaches to reduce some
of the burden in terms of computational intensity [5]. Still others have the option
to simply increase computational power through either computer hardware or
parallelisation (see, for example, [8]). Some researchers restructure their model
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to enable each ”super individual” to represent multiple agents, which risks the
dynamics of a larger population not being reflected beyond a certain point - both
spatially and temporally. [1]

None of these approaches are without drawbacks, and it is important to
understand the trade-off decisions researchers are making. This work provides an
illustrative example of the impact of using different sizes of population samples in
an ABM simulating the spread of SARS-CoV-2. The model explores the spread
of disease through a representative sampled population in Zimbabwe during the
first wave of the pandemic, which began in March 2020.

(a) Daily New Cases (b) Ratio of 5% to 25% (c) Daily New Deaths

(d) Daily New Cases (e) Ratio of 5% to 25% (f) Daily New Deaths

Fig. 1: Comparison of 5% (orange dotted) and 25% (green solid) Sample for
New Symptomatic Cases and Deaths Across Two Models. Note: Panels a-c use
a model where individuals all live in one administrative unit. Panels d-f use a
model where individuals can move between the different districts in Zimbabwe.

2 Methodology

In this paper we use the example of an agent based model simulating the spread
of the COVID-19 pandemic in Zimbabwe to illustrate the role of sample size in
the model outputs. We will present a very brief overview of the model and its
functioning using the ODD Protocol [3].

2.1 Overview

The purpose of the model is to forecast the spread of an infectious disease
throughout a population of spatially distributed humans.
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The entities in the model are either individual humans or infections. The
human agents, called Persons, are characterised by their age and sex. Persons
are assigned to households - physical locations where a consistent, designated
group of Persons gather in the evenings. They move around their communities,
sometimes travelling to other nearby districts, interacting with other people and
potentially transmitting infections to one another. Infections represent a case
of the given disease. An Infection must be assigned with a host Person, and may
progress over time based on the age of the host.

The model environment represents space. Persons can be located within
either household or community locations, both of which are situated within
districts (larger spatial units which together make up the country of Zimbabwe).
A Person who is visiting a district outside of their own home district must be
out in the ”community” - in their own home district, they may either be out in
the community or else in their own household. Persons make decisions every 4
hours and interact with others based on their location.

The processes represented in this model include movement and infectious
behaviours. Individual Persons choose whether to go out into the community
every day; they may visit the community of their own district or may travel to
another district and visit the community there. If they have an Infection, they
will potentially prompt the Persons with which they interact to generate their
own Infections. Infections develop over time, developing from being exposed all
the way to either the recovery or death of the host. In advanced stages, the
Infection may render the host immobile, disallowing them from moving.

2.2 Design

The design of the model allows for the emergence of local outbreaks and hotspots
within target districts. Interactions between agents give rise to the spread of
disease, and the movement of Persons between districts allows for the disease to
spread between otherwise relatively closed communities.

2.3 Details

The initialisation of the model is significant because after the populations have
been generated in their target households and districts, a set number of Infections
are generated in hosts in the target districts. The hosts are randomly chosen for
each instantiation of the simulation.

The input data, being of particular interest in this paper, has been specified
in its own section, Section 3. The submodels are simply the movement module
and the infection module. In the former, Persons choose whether to leave the
house with some probability; if they choose to leave, they will select a target
destination based on the movement matrix described in Section . If they move
to a community, they will interact with some set number of individuals present
in the same community, potentially prompting an Infection in them. At the end
of 8 hours in the community, they will return home and interact with those in
their household.
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The infection behaviour sees the Infection transitioning from the state of
being exposed to, potentially, either symptomatic or asymptomatic. In the latter
case, after a stochastic period of time, the Infection will resolve into recovery; in
the former case, the Infection may either resolve into recovery or transition to
a mild case. It may continue along this path, at each stage either recovering or
worsening into a severe case, a critical case, and ultimately death. An individual
Person who has recovered becomes susceptible to new Infections. If the Infection
progresses beyond the stage of being mild, the Person is set to be immobile and
restricted to their household.

3 Data

The model makes use of a number of different forms of data to motivate and
contextualise the simulation, including:

– Census The Zimbabwe Census data from 2012 was taken from IPUMS
International. The data that is available is a 5% sample of the original census
of 15 million individuals. This data contains information on the age, sex,
economic status, household ID, and district of origin of every agent in the
model.

– Mobility Data Mobility data was calculated from approximately 8.1 billion
Call Detail Records (CDR) and reflect the levels of mobility as monitored
from and to each of Zimbabwe’s 60 districts. The detailed data were aggre-
gated by a telecom operator into daily origin and destination matrices using
code developed by the research team (see [7]. Only the aggregated, fully
anonymised output was shared by the telecom company with the research
team. The Origin Destination Matrix shows trips between two districts, rel-
ative to day of week.

– Epidemiological Data A series of parameters to define the characteristics
of infection were input into the model to establish the infection dynam-
ics. These include age-specific susceptibility to transmission, hospitalisation,
critical cases, and death. The characteristics of SARS-CoV-2 such as the
incubation period, infectious period, and recovery times were also included
and taken from the Covasim model which in turn were taken from Ferguson
et al (2020)[2] and Verity et al (2020)[11] [6].

– Case data The aggregate district level case numbers from March 2020 pro-
vided by the Ministry of Health of Zimbabwe to the World Bank representing
the number of cases. These are used to inform seeding of cases in the districts
in model version 3 (V3) presented here.

3.1 Synthetic populations

In order to assess how the complexity of the model interacts with the size of the
sample, we generate two synthetic populations for the model:



Scaling ABMs: A COVID-19 model in Zimbabwe 5

– V1 - a sample of the population in which individuals have representative
ages and live in households of an appropriate size. Everyone is in the same
geographic location, so when in the community, every person in the sample
can interact with every other person.

– V3 - as in V1, individuals have ages and household sizes drawn from real
data. In V3, households are further assigned to individual districts to create
a spatially reasonable distribution of population across the country.

For each version, we create a 5% sample and a 25% sample. For the 5%
sample we simply use the 5% census sample we have for the population, using
the characteristics provided. To get the 25% sample, we expand the original 5%
sample by generating identical replicas of each household. Therefore, differences
that arise between the two versions can be more easily attributed to the increased
size of the sample. Obviously, it generates a somewhat contrived population - it
should be understood as a mechanism for testing rather than a realistic census
distribution.

4 Results

Each of the two model versions is run with the each of the synthetic populations
ten times. The outputs are scaled up directly to the full population (for the 5%
sample we use a factor of 20 and for the 25% sample we use a factor of 4) to
facilitate comparison.

Looking across the trajectory of the disease, the numbers of new cases track
fairly closely between samples (Figure 1a and d). However, it seems that adding
geographic variation and mobility across districts leads to larger differences be-
tween the scaled 5% and 25% samples when it comes to other metrics (see Figure
1d-f). Note the death rates - while deaths are rarer events and their curves less
smooth, the inclusion of mobility sees the number of new deaths drop consis-
tently lower in the 25% sample than in the 5% sample.

In considering the difference between the scaled district cases across the two
samples as a proportion of the scaled cases in the 25 percent sample, the dif-
ferences are clear (2a). In the map, the areas in blue and green demonstrate
districts where there are more cases registered in the 25% sample, as compared
to orange areas where more cases were generated in the 5% sample. The 25%
sample shows obvious cases where an individual has arrived in remote districts
which are not reached by anyone in the 5% scenario (blue districts on the west
side of the country and blue district in the north of Zimbabwe). These districts,
which might be judged to be not at risk by the smaller sample, show up clearly
in the 25% version of the simulation.

Additionally, if we focus on when districts have their initial case, we see that
this happens much more quickly in the 25% sample, with many districts getting
their first case before the 5% sample would predict (Figure 2b). In particular,
while we seed initial cases in the same four districts for both the 5% and the 25%
samples, we see that in the 5% sample, the disease does not spread beyond these
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Fig. 2: Spatial differences when using different initial samples
(a) Difference between 25% and 5% median daily symptomatic case counts normalized by district
cases for the second month of the V3 case (beta 0.3). (b) Number of districts with at least one
cumulative case by day of outbreak. (c) Districts with at least one cumulative case by days 1,5,10
15, and 20 of the pandemic.

four districts until day 14. In contrast, with the 25% sample, the disease spreads
to two new districts by day 6. This is visualized in Figure 2, which also illustrates
that some of the first districts to which the disease spreads are different across
the two samples.

5 Discussion and Conclusion

We demonstrate that researchers must take care in selecting the scale of the pop-
ulation sample in their models, particularly if there is interest in understanding
the initial phases of a pandemic when case counts and death numbers are low.
Importantly, when there is a spatial component to the model, the bias generated
when using a small sample becomes much larger. The smaller sample leads to
an overestimate of deaths across the entire time period.

Small samples also obviously lead to higher uncertainty in these models.
This is not only in the early stages, but for the entire curve. Given that there
is already a high level of uncertainty in these epidemiological models due to the
large number of assumptions that are made, the added uncertainty from a small
sample size may reduce the reliability of such a model for policy planning.
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From a policy perspective, there is interest in understanding when a disease
might spread to a new geographic area. This geographic analysis can be one of the
important advantages of an agent based model, which allows for the simulation
of how different agents might move between areas. Yet, we see that if the sample
used is very small, it may not accurately portray the timing of when a disease
will spread to a new area. This is important from a policy perspective since
identifying when a disease might first enter an area is important for mitigation
strategies and planning.

Overall, these trade-offs are increasingly relevant to researchers and we hope
this work can contribute to both discussion and awareness of them.
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