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Image-based classification techniques have historically been applied to identify different 
building materials in construction sites. However, it was only in recent years that researchers 
started to explore their applications in built assets’ portfolio-based strategic asset management 
(SAM). Some studies test the feasibility of the image-based technique for the inspection-repair 
process in a showroom setting with a small image category number. However, real-world 
healthcare or educational projects would contain more than twenty thousand different assets 
with over one hundred different asset categories that come from different project portfolios. 
Currently, there is no available portfolio-based large-scale inspection-repair dataset in 
operation and maintenance (O&M) phase that was built on images based on the real workflow 
of building and infrastructure projects. Furthermore, the current image classification 
application in the building and infrastructure projects’ O&M phase has only been applied for 
object type identification, and not the rest of portfolio-based SAM tasks. Five knowledge 
contributions are proposed by this study to address the above issues. Firstly, this study proposed 
a MobileNet-based image classification method for optimising and automating a series of 
portfolio-based SAM service processes, including: condition surveying process, portfolio-
based data validation process, and existing project data’s standardisation and integration 
process. Secondly, a large dataset based on on-site building surveying is collected and built for 
training and testing, consisting of 11,526 on-site photos (plus 137,530 images crawled from 
the Google search engine), 274 different built asset categories and twenty-one different projects 
from ten portfolios. Thirdly, the constructed MobileNet1.0 model achieved satisfactory built 
assets category classification results based on commercial surveying data, with 72.2% test 
accuracy with level-3 building cost information service (BCIS) code. Fourthly, it is 
demonstrated that the MobileNet1.0 model can further boost the on-site image classification 
performance (a 5.7% Test top 5 accuracy increase) with the enhancement of the online image 
training dataset. Finally, this study identifies the potential of the MobileNet1.0 model for 
predicting a series of different building data attributes (e.g., built assets’ condition, activity 
cycle, failure type, residual life, etc.), other than the built assets category. Theese contributions 
demonstrate the broader application of image-based technologies in portfolio-based SAM and 
other building and infrastructure projects’ O&M phase applications. 
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1 INTRODUCTION  

Strategic Asset Management (SAM) is defined as a series of services supplied during the 
building and infrastructure project’s operation and maintenance (O&M) phase that help 
organizations’ and stakeholders’ decision-making process related to costs, risks, opportunities 
of assets throughout the whole lifecycle (Standardization, 2014). Recently, the rising needs for 



portfolio-based project management have made intelligent asset management requirements 
even more complex and demanding (Fang et al., 2022). The extended requirement like the 
integration of different projects’ asset information into a centralised strategic “data pool” 
requires more automated solutions in both the innovation in process and technology. Despite 
the fact that the number of academic works related to SAM or portfolio-based SAM in the 
architecture, engineering, construction and facilities management (AEC/FM) sector is limited 
(Too and Too, 2010), its values and significance cannot be neglected in practices, especially 
for capital intensive industries, including infrastructure organizations (Gavrikova et al., 2020). 
The success of decision-making within the SAM is determined by whether the required data 
can be collected and integrated in an accurate and efficient manner. Moreover, managing the 
portfolio-based built assets in a strategic manner mitigates potential health and legal risks, and 
elevates the total asset value of projects from the portfolio level. As one of the pillars for 
supporting the portfolio-based SAM built asset lifecycle management service, the information 
required for condition-based maintenance and its major data collection method building 
condition survey plays a very important role in the portfolio-based SAM services.  

Condition-based maintenance has long been regarded as a maintenance strategy bringing 
efficiency improvement and cost-saving benefits (Prajapati et al., 2012), which is an essential 
component of the SAM. The built assets condition survey is currently the industry preferred 
way of collecting data that support the condition-based maintenance service. This is applied on 
a regular basis to evaluate whether the plant equipment and fabric installation can continually 
support the functional operation in the whole life cycle. Timely remedial actions can thereby 
be taken to meet their desired condition level, i.e., modifications, refurbishment, and 
replacements. Moreover, because building and infrastructure assets’ physical condition and 
operational performance constantly deteriorate with time and use, which results in the 
depreciation of the built assets’ monetary value, knowing the asset condition is important, from 
the financial perspective, in issuing a strategic asset management plan for stakeholders.  

Unfortunately, the conduct of built assets condition surveys is often hindered because of both 
the lack of technical personnel and financial resources support, which seems to be 
acknowledged as a worldwide issue in the industry (Maeda et al., 2018). These barriers lead to 
negative outcomes like low efficiency in the condition survey process and deficiency in data 
richness and accuracy. In addition, collecting condition survey data in a consistent and 
standardized manner has also remained a problem that has not been solved during the portfolio-
based SAM data collection and management processes. These limitations of current practice 
suggest the need for an effective technical method to improve the efficiency, accuracy, and 
standardization of built assets condition surveys, as well as the other portfolio-based SAM 
processes.  

Image classification shows great promise for improving the built asset condition survey and 
other portfolio-based SAM service processes. Unfortunately, few papers have been published 
in FM related image classification areas, and most cover onlya pilot stage. For instance, (Zhan 
et al., 2019) conducted a pilot study to use the image classification algorithm and quick 
response (QR) code technique to improve the BIM integrated inspection-repair process, but the 
dataset is limited to sixty images for six different home appliance classes regarding a bedroom 
and kitchen example space (Zhan et al., 2019). (Marzouk and Zaher, 2020) have developed an 
automated mechanical, electrical and plumbing (MEP) elements classification and localization 
system using the simple AlexNet, but the dataset contains only three object categories 



(Marzouk and Zaher, 2020). These pilot-level studies’ datasets are too small to validate the 
applicability of image classification for the real built assets’ O&M applications, and are often 
built based on a single project. Research works of applying the image-based algorithm in a 
larger scaled data set using the actual photos taken by practising surveyors are needed.  

These existing studies do not address how image-based classification can amend the enormous 
practical gap in built assets condition survey, where the efficiency of workflow, object 
classification accuracy, and standardization of collected data should also be focused and 
improved accordingly. Multiple problems of human interpretation exist in practice. Firstly, 
when surveyors enter the asset condition information of different objects, they need to choose 
from an over-long drop-down list containing over a hundred categories (e.g., “Ceiling”, 
“Floors”, “Furniture-fixed”, etc.). This rigid process lowers the efficiency of the condition 
survey greatly. Secondly, it is common in practice that different surveyors from junior to senior 
level label the same asset with different object categories (e.g., “Exterior-doors”, “External-
doors”, “Internal doors”). If an image-based classification can be adopted, an automated 
suggestion of category can then be offered to shorten and improve the accuracy of the selection 
process. The knowledge gap of surveyors with different experiences can be reduced, especially 
for some junior level surveyors. Moreover, stakeholders may wish to transfer the ‘knowledge’ 
and ‘wisdom’ from particular projects to the portfolio-level strategy (Mohammed, 2021). An 
image-based classification method which can generalise condition survey data across multiple 
projects at the portfolio level can do so to benefit each individual project. If a high level of 
efficiency, accuracy, and standardization of data collection can be achieved in the O&M phase 
(i.e. the built assets condition survey), by the adoption of image-based classification techniques, 
the performance of SAM can be optimized.  

To do so, an exploration of image-based classification in practical scenarios is urgently needed. 
Considering the abovementioned problems and gaps, in this study, we explore the applicability 
and potential of an automated deep learning-based image classification method for portfolio-
based strategic asset data collection and management. The contributions of this study are as 
follows.  

1. This study developed an automated convolutional neural network (CNN) based MobileNet 
image classification model solution for a series of portfolio-based SAM service processes 
regarding different built assets data attributes. This allows a series of portfolio-based SAM 
service processes, like the condition surveying process, portfolio-based data validation process, 
and existing project data’s standardisation and integration process to be further optimised and 
automated. 

2. The study collected and prepared a large size building surveying dataset with the real-world 
setting, containing 11,526 on-site photos and 137,530 images crawled from the Google search 
engine. 274 different built assets categories from ten portfolios’ twenty-one different projects 
were included. 

3. The study demonstrated that the MobileNet1.0 model can provide a satisfying on-site image 
classification performance (72.2% test accuracy with level-3 BCIS code) based on the 
commercial projects’ surveying image data. 



4. The study proved that the MobileNet1.0 model can further boost the on-site test photos’ 
image classification performance (with a 5.7% Test top 5 accuracy increase) given the help of 
collected strengthening online image training dataset. 

5. The study identified the potentials of the developed MobileNet1.0 model automation 
solution to predict built assets categories’ data attributes and the other relevant asset data 
attribute types. 

The rest of the paper is organized as follows. In Section 2, the FM-related image classification 
studies and datasets were first reviewed with summarised characteristics. Then a brief history 
of the convolutional deep neural networks for image classification is reviewed with a detailed 
explanation of why the MobileNet1.0 model is selected for this study and the characteristics of 
other candidate models. In Section 3, the experiment design is demonstrated. Firstly, the details 
of how portfolio-based SAM’s different services processes are automated and optimised by 
image classification are discussed. Then the methods and details of how the image dataset for 
this study is constructed are explained, containing characteristics and background information 
of on-site and online collected datasets. Section 4 starts with an explanation of detailed 
experiments and model settings, followed by the validation experiment results and the 
discussion of the major findings of this study. Finally, this paper is summarised in the 
concluding section 5.  

2 LITERATURE REVIEW 

2.1 The trend of image classification in AEC/FM  

Image classification is not a new topic in the AEC/FM industry. Many image-related studies 
have been carried out in recent years, focusing on damage detection (Maeda et al., 2018, Cha 
et al., 2017, Abeid Neto et al., 2002, Nishikawa et al., 2012, Zalama et al., 2014, Yeum and 
Dyke, 2015), progress monitoring (Han and Golparvar-Fard, 2015, Hui et al., 2015, Luo et al., 
2018), and material recognition (Zhu et al., 2010, Dimitrov and Golparvar-Fard, 2014, Rashidi 
et al., 2016, Han and Golparvar-Fard, 2015, Bell et al., 2015). However, only a few papers have 
been published in FM related image classification topics (Zhan et al., 2019, Marzouk and Zaher, 
2020) in the last few years. Most of them stayed only at the pilot stage and were tested over a 
demo-based single project. 

Image-based classification techniques have been proposed (Lu and Lee, 2017) as a possible 
remedy for previously raised issues regarding built assets condition surveys and other portfolio-
based SAM services. The number of papers published in FM’s O&M phase is limited. (Zhan 
et al., 2019) applied both the image classification algorithm and quick response (QR) code 
technique to improve the BIM integrated inspection-repair process information flow with a 
demo image dataset consisting of sixty images for six different home appliance classes 
regarding a bedroom and kitchen example space (Zhan et al., 2019). Although the use of QR 
code and image classification for improving BIM integrated inspection-repair process 
information flow is innovative, the limited number of built assets covered in the test room 
cannot effectively evaluate the real applicability of image classification when facing a few 
hundred different built assets. (Marzouk and Zaher, 2020) attempted to develop an automated 
mechanical, electrical and plumbing (MEP) elements classification and localization system 
using the simple AlexNet with a three classes element categories demonstration demo 
(Marzouk and Zaher, 2020). Again, the limited number of built assets category covered restrain 



the proving of image classification’s application validity in practice. A similar study conducted 
by (Pezzica et al., 2019) covered many library buildings. Unfortunately, only two were useable 
for the built assets classification of the four categories selected (including turret, tower, grille 
exterior, and grille interior). These studies all remained at the pilot stage, where only datasets 
of images with few categories were used or a single project-level demo scenario was testified. 
None apply an image-based algorithm in a larger scaled and multi-categorised data set using 
actual survey photos. 

2.2 Image classification datasets for AEC/FM built assets  

Overall, there is a lack of large-scale on-site surveying and built assets related datasets with a 
real-world setting. Privacy issues exist, as built assets elements are full of facility occupants’ 
lives and work, so their related pictures appear in not only the AECFM specific dataset but also 
the general-purpose dataset. Although many well set-up datasets are available, there is no 
existing dataset that can be used as the direct training dataset for the building-element-based 
facility management image classification. Although more and more general-purpose datasets 
contain fine-grained categories, they still cannot be directly used as the dataset for specialised 
FM image classification. Therefore, a customized image dataset is needed to enable the 
experiment required for this study.  

In CV fields, general purpose image-based datasets have been constructed to contain the 
common photos or scenes (Zhu et al., 2019, Zhou et al., 2017, Xiao et al., 2010); however, 
these were not specially designed for a specific field, such as the AEC industry. Many existing 
general-purpose datasets suffered from one of the common issues: the lack of FM or building-
related categories when utilising them for AECFM specific tasks further. Even for the very 
large general purposed datasets like “ImageNet” (Deng et al., 2009), which potentially leaded 
to more AECFM application scenarios and insights, unfortunately, still cannot be used directly 
as the training dataset for actual FM applications. Although some of the categories were already 
fine-grained in these giant datasets, they were still too general and not grained in the way that 
can be used in a real project. The currently available AEC/FM related categories are mainly 
concentrated on soft FF&E equipment. In addition, some general-purpose datasets have been 
specially designed and constructed to combine both object detection and semantic scene 
labelling. These datasets are potentially helpful for other FM related applications like auto-
recognition of survey location; however, because this research mainly focuses on the built 
assets’s classification, they do not fit the purpose of this research. 

Compared with the general-purpose datasets, AECFM specific datasets are much rarer. 
Unfortunately, there is no well-established FM related condition survey usable image dataset. 
For example, the Indoor Scene Recognition dataset (Quattoni and Torralba, 2009) with 67 
indoor categories and a total of 15,620 images only contained labels for scenes like bakery, 
library, gym, etc., which means it cannot be used as the training dataset for building elements’ 
classification. The other two datasets that were found specially designed for AECFM 
applications are the Construction material Library (CML) dataset (Han and Golparvar-Fard, 
2015) and the Materials in Context Dataset (MINC) dataset (Bell et al., 2015). From their 
names, it is not hard to recognize that they are both image datasets about the building materials. 
However, the category size of the MINC dataset was still limited (23 categories in total), and 
the material was not bound to the building element, which made it impossible to be used in the 
real FM application. The remaining two AECFM related datasets (BIM knowledge repository,  



Zhan et al., 2019; FM200, Marzouk and Zaher, 2020) only contained 60 and 81 images for the 
training, which was not sufficient. A new dataset needs to be created to support the FM-based 
ML applications further. In addition, a summary table (Appendix 1) has also been made to 
show the comparison between these different datasets, including their major characteristics and 
statistics related to built assets image classification applications. 

2.3 Building condition survey, assessment and management  

For any building or infrastructure, degradation is inevitable due to various reasons like day-to-
day usage, weather, and erosion resulting from inadequate maintenance (Faqih and Zayed, 
2021b). Building assessment is needed and performed by corresponding experts to visually 
inspect the different building systems (e.g., architectural, electrical, and mechanical) to 
estimate the current state and extent of deterioration (Bernat and Gil, 2013). The building or 
infrastructure condition survey is a detailed physical check over the health of a building or 
infrastructure conducted typically by a qualified building/mechanical surveyor (Chima et al., 
2021). Building condition assessment is important as the data collected through the building 
condition survey forms the basis of the portfolio-based SAM processes and will majorly impact 
the build assets’ lifecycle management decision (e.g., replacement or repair). If unnecessary or 
improper maintenance activities were carried out due to the insufficient or poor management 
of built assets information, it would cost up to one-third of all maintenance costs (Mobley, 
2002). The accurate identification of building defects through condition assessment or survey 
could help extend the service life of existing building elements to reduce the emission of 
greenhouse gas (Paulo et al., 2014). 

Unfortunately, many problems exist in the existing condition survey/assessment/management 
processes. The lack of objectivity and accuracy and time-consuming building condition 
assessment processes are three major obstacles for built assets managers (Faqih and Zayed, 
2021a, Ferraz et al., 2016, Faqih and Zayed, 2021b). There are two major reasons behind this: 
(1) the current condition assessment process is dependent on the experience and the training of 
the surveyors and inspectors and (2) a large portion of surveyors’ time has been spent on 
repetitive tasks, like writing notes, that do not demand an expert-level knowledge. The built 
assets surveying and assessing process needed a support mechanism and technology assistance, 
like image classification, to assist in achieving more efficient and subjective differentiation 
among different asset categorical information (i.e., asset condition information 
(good/fair/poor/critical)) (Mayo and Karanja, 2018). Similarly, the existing spreadsheet-based 
way of built assets data management is error-prone and tedious. An automated way of error 
checking was also needed to validate portfolio-based SAM data (Faqih and Zayed, 2021b). 
Furthermore, for the portfolio-based SAM, there are also needs to standardise the built assets 
to achieve better project data integration and avoid manual operation. 

2.2 Deep learning-based image classification networks  

Traditional machine learning algorithms like SIFT began to address the image classification 
task in the late 1990s. In 2012, Krizhevsky et al. (2012) published the first deep learning model, 
which set a superior performance benchmark for the task, after which researchers moved on to 
focus their research on creating deeper and more complex convolutional models. CNN models 
have outperformed the traditional models in many of the 2-D based CV tasks (e.g., image 
classification) (Russakovsky et al., 2015). CNN models had also been the basis for other 
computer vision tasks such as localization, detection, segmentation, and simultaneous 



localization and Mapping (SLAM) (Karpathy, 2016). The further introduction of transfer 
learning is proved to boost the classification accuracy of the CNN model algorithm to the next 
level (Shaha and Pawar, 2018). 

2.2.1 Inception Net 

Soon after the success of AlexNet (Krizhevsky et al., 2012), the crown of the ImageNet 
Challenge: ILSVRC (Russakovsky et al., 2015) was taken by its second major successor 
GoogLeNet (InceptionV1) (Szegedy et al., 2015), which used a new network organization form 
named “Inception module”, which significantly improved the model’s performance. Szegedy 
et al. (2016) further adapted the model to the V2 version to further improve the efficiency of 
the Inception Model V1. The GoogLeNet’s latest version – Inception V4, inspired by the 
ResNet He et al. (2016a)’s creative structure design, had also included the “Short-cut 
Connection” further to control the width and height of the grid module and model brunches to 
improve the network’s performance further. 

2.2.2 VGG 

The VGG model (Simonyan and Zisserman, 2014) also directly led to further improvement of 
many state-of-art networks (e.g. Inception V2 (Szegedy et al., 2016)). One of the primary aims 
of Simonyan’s research was to evaluate how convolutional network depth will impact its 
accuracy in the large-scale image recognition setting. Moreover, Simonyan’s study further 
suggested that the Local Response Normalization used in the AlexNet (Krizhevsky et al., 2012) 
doesn’t improve the performance of the convolutional network. 

2.2.3 ResNet & SENet 

Deeper neural networks are generally more difficult to train. When more layers were stacked, 
the problem of vanishing/exploding gradients occurs (Bengio et al., 1994, Glorot and Bengio, 
2010). Luckily, this difficulty has been addressed by using batch normalization (or normalized 
initialization) so that these “deep” networks can start converging for stochastic gradient descent 
(SGD) with backpropagation. Unfortunately, the degradation problem has then been exposed, 
which was not caused by the overfitting. In this case, adding more layers to the already deep 
network only causes a higher training error (He et al., 2016a). He addressed this problem by 
introducing a deep residual learning framework. The same year, He et al. (2016b) further 
improved the network (ResNet (V2)) by using the “pre-activation” (ReLU and BN (Ioffe and 
Szegedy, 2015)) of the weight layers, rather than the traditional “post-activation” to make 
further the information path cleaner. Furthermore, based on the ResNet, SENet Hu et al. (2018) 
came up with a new mechanism called channel-attention, which can continuously readjust the 
channel feature responses and provide competitive performance against the ResNet. 

2.2.4 DenseNet 

Before DenseNet, many different networks had attempted to train end-to-end networks with 
huge layer sizes. DenseNet innovated by connecting all layers (with the matched feature-map 
size) directly with each other (Huang et al., 2017). In each dense block, additional inputs from 
all proceeding layers obtained by each layer pass its feature maps to all subsequent layers. 
Where traditional convolutional networks have N connections for N layers, DenseNet has 



N(N+1)2 direct connections instead. In other words, there is one connection between each layer 
and its subsequent layer. 

2.2.6 SqueezeNet 

Unlike some of the previous networks that focused on accuracy improvement (Szegedy et al., 
2016, He et al., 2016a). SqueezeNet (Iandola et al., 2016) was developed to achieve comparable 
accuracy with much fewer parameters. This small-sized model tended to have a faster training 
speed due to the less communication overhead proportional to the model’s parameter number 
(Iandola et al., 2016). The network used the Fire module consisting of a ‘squeeze’ 
convolutional layer (which has 1×1 filters only) and an ‘expand’ layer consisting of a mix of 
3×3 and 1×1 convolution filters to enlarge the activation maps so as to achieve a higher 
classification accuracy with the reduced input channels. 

2.2.5 MobileNet 

The success of the AlexNet (Krizhevsky et al., 2012) drove a trend of more complicated and 
more in-depth networks to push accuracy even further. However, this advancement in accuracy 
was not always efficient, especially regarding the networks’ size and speed. MobileNet 
(Howard et al., 2017) was developed to provide a timelier and more “portable” network for 
real-world applications like automatic car driving, robotics and augmented reality. For facility 
management, it means some original only desktop or stationary workstation operatable tasks 
can be carried off-line in a portable device like an iPad. The secret weapon used by the 
MobileNet is a technique called depthwise separable convolution, which factorises a standard 
shaped convolution into a depthwise convolution. 

2.2.6 The proposed model for this study - MobileNet 

After comparing the characteristics of different deep neural networks, MobileNet1.0 was 
chosen as the proposed model for this study. The image classification network needed to be 
embedded inside the tabular-based surveying apps (e.g., Asseticom and Kykloud) and usually 
operated off-line in the mechanical room or concealed places with no Wi-Fi signal. Therefore, 
it is important that the network is compact enough to be deployed given the limited tabular- or 
mobile- based devices’ memory and calculation power; MobileNet achieves this. It is built 
based on a streamlined architecture that uses depth-wise separable convolutions to enable a 
lightweight deep neural network structure (Howard et al., 2017). The two simple global hyper-
parameters that were introduced provide developers with more flexibility over choosing the 
right sized model for their applications based on the corresponding constraints. MobileNet’s 
small and low latency model makes it the perfect candidate for mobile and embedded vision 
applications (Howard et al., 2017). Given the similar level of object detection rate, the 
MobileNet structure only requires half of the number of parameters needed for the Inception 
V2 model (Szegedy et al., 2016) and one-fifth of the VGG model (Simonyan and Zisserman, 
2014). 

3 THE DEVELOPMENT OF THE AUTOMATED PORTFOLIO-BASED SAM 
APPROACH 

3.1 The portfolio-based SAM approach development 

3.1.1 Optimizing surveying processes by image classification  



In the current built assets condition survey 
process, tabular-based surveying (i.e., 
Asseticom (Asseticom, 2022) and Kykloud 
(Gordian, 2022)) through mobile devices is used 
partially to collect assets information. In 
addition to the text records of asset condition, 
image is an important part of the condition 
survey as it serves as the evidence of showing 
the building asset condition. While images bring 
positive feedback on providing valuable asset 
condition data, a potential efficiency 
improvement gap has been observed in a 
practical scenario of the condition survey 
process. Specifically, when data entries of built 
assets are input respectively, surveyors are 
responsible for selecting the corresponding 
object categories from a very long drop-down 
list consisting of over a hundred categories 
through the mobile device (shown in Figure 1). 
As a result, the surveyor needs to spend a lot of 
time struggling with the manual category 
labelling work. And the situation is even worse 
for junior surveyors due to the unfamiliarity with building asset categories. This manually 
conducted rigid process introduces side effects that either the time spent on the multiple built 
assets condition survey increases (which leads to over-budget) or the details of survey data 
collection are omitted. 

These side effects might be eased by image-based classification, by providing a shortlist of 
suggested object categories automatically after the survey image is taken. This change of 
condition survey workflow improves the efficiency of the entire surveying process while 
promoting data consistency by reducing the deviation range of manual selection, with positive 
impact on survey time and human resources costs in addition to input data consistency.   

3.1.2 Optimizing surveying data validation processes by image classification  

Image classification may also improve the built assets condition survey through data validation. 
The current management and maintenance process of collected built assets data is still heavily 
dependent on manual work, which introduces several errors and time-consuming problems 
(Fang et al., 2022). First, since the surveyors’ expertise and experience levels vary greatly, 
different surveyors seem to have different category labelling preferences. This causes data 
inconsistence and inaccuracy across the existing projects during the data management process, 
especially from a portfolio-level management perspective. Secondly, many necessary assets 
condition attributes were left blank during the condition survey process (e.g., “Condition”, 
“Activity Cycle”, “Unit”, “Health and Safety Issue”, “Maintenance Issue”, “Manufacturer”, 
“Lifetime Source”, etc.) by on-site surveyors, which necessitated additional subsequent labour 
in recategorizing, cleaning and querying data. These problems persist in data down-chain (e.g., 
COBie files (exported from BIM), CAFM system data, and room datasheet) : once the deficient 

Figure 1 The screen shot showing the object categories’ long 
drop-down list in a tabular-based surveying software 

(Gordian, 2022)  



data becomes integrated into the master portfolio-based SAM model, more serious errors can 
be made during the decision-making process.  

The authors suggest that image-based classification can provide the portfolio-level data with 
an automatic way of checking the overall quality by offering and filling asset condition 
information automatically without dependence on manual inputs by surveyors via mobile 
devices or excel spreadsheet. Furthermore, it validates and enriches the various types of project 
existing data and survey data collected during the condition survey process. 

3.1.3 Optimising existing (surveying) project-based data integration processes with image 
classification 

SAM capability has traditionally been limited by single-project-based management. To achieve 
the goals of the total-best performance of built assets, the portfolio-based innovative SAM has 
been recognised and adopted. Leveraging the knowledge and information gathered in the 
master portfolio-based SAM model, the procurement decisions can be compared across the 
different projects’ suppliers for an optimal option and enjoy a larger discount for bulk 
procurement for the entire portfolio. However, to provide various types of portfolio-based 
SAM enabled services, data must be standardised and cleaned before transitioning from the 
project-level to the portfolio-level data model. 

Given automated image classification, existing project data from either CAFM system, 
previous condition survey, or room datasheet can be categorised in the standardised format 
used for the portfolio-based SAM data model before integrating into the master portfolio-based 
SAM data model. This avoids the “language barrier” among each project in the same portfolio 
and ensures the following portfolio-based SAM services (e.g., strategic procurement) can be 
conducted effortlessly. 

3.1.4 A summary of image classification’s integration with SAM portfolio-based detailed 
services documentation flow structure  

The main idea for using image classification is to mitigate the “lack of information” issue 
currently faced by SAM and facility managers. In Figure 2, the specific processes are 
summarised for how image classification is used to help SAM project and portfolio managers 
to speed up and improve the accuracy of data collection surfing the surveying process, semi-
automatically validate the existing portfolio-based data entries’ data quality, and provide 
automated built asset categorisation and standardisation before the different types of existing 
project data are integrated to a master portfolio. 



 

Figure 2 The integration of portfolio-based SAM data model and image classification technology 

Image-based classification is the key technique that fastens survey data collection from a new 
building or infrastructure into the Master SAM Data Model since it guarantees data accuracy 
and standardization. It also helps with the data handover from the design and construction 
phases into the operation and maintenance phase in real-life cases, because there is usually a 
tremendous amount of image data for built assets in the handover datasets that are hard to 
document and manage manually, let alone integrate the data into the Master SAM Data Model. 
The image-based method offers a possibility to classify and reuse those data automatically as 
early-stage asset condition proof data. In general, without the assistance of the updated machine 
learning image method, the data validation and management at the portfolio level could be 
mission-impossible during the life-long SAM process, which affects the strategic decision-
making process irreversibly and irreparably. Furthermore, portfolio-based management 
enables the possibility of involving and concatenating a series of projects that share the same 
strategic goals and competing for the same resources, which helps portfolio and project 
managers achieve their goals to lower the cost and risks for their clients. 

3.2 Proposed dataset establishment 

3.2.1 Data collection  

3.2.1.1 Building element coding structure – customized New Rules of Measurement (NRM) 
(Data category)  

New Rules of Measurement (NRM) is a series of standardized measurement rules developed 
by RICS that stakeholders can easily understand (e.g., employers, project/design team, 
surveyors/ cost managers) inside a building and infrastructure construction projects. There are 
three sections: order of cost estimating and cost planning for capital building works, detailed 
measurement for building works, and order of cost estimating and cost planning for building 
maintenance works (RICS, 2012). The aims of NRM are aiding the communication among the 



stakeholders by eliminating the language barriers and providing reliable advice of cost for all 
the stakeholders (RICS, 2012).  

In this study, NRM plays an important role as the standard of attribute category labelling during 
the data collection process. The reasons for adopting NRM are (1) NRM series are intended for 
relevant activities and users (e.g., surveyors) in the O&M phase, which indicates a more 
targeting and accurate category classification (RICS, 2012); (2) it works as a mediator to break 
the data obstacle when SAM professionals try to aim for portfolio-based strategic asset 
management; and 3) although it is developed in the UK, it is applicable for worldwide projects. 
This allows for the spread of this proposed method worldwide (RICS, 2021).  

3.2.1.2 Image data quality analysis (on-site) 

3.2.1.2.1 Analysis of main built assets type category images profile (on-site) 

In this research, all the on-site image data collected belongs to Vercity UK Ltd’s Strategic 
Asset management Team’s project portfolios based in the United Kingdom, most located in 
England. In total, there are ten project portfolios and twenty-one sub-projects. Overall, the 
number of projects in the Greater London region and the South west region (both with seven 
projects) outweigh the rest of the regions. The rest of three regions, the Northwest, the West 
Midlands, and the South East, each have two projects. In terms of the Gross Internal Floor Area 
(GIFA), although this cannot be found in some of the portfolio document files, the sizes vary 
from 5,901 to 83,337 !". Within the targeted project portfolios, six are healthcare project 
portfolios, and three are educational project portfolios; only one project portfolio belongs to 
the social housing project type. The total lifecycle costs expected for targeted project portfolios’ 
Private Finance Initiative (PFI)/Public-Private Partnership (PPP) concession periods vary from 
£ 2,300,000 to £ 100,000,000. Not surprisingly, educational and housing projects have relative 
lower lifecycle expenditures, while the largest five lifecycle expenditure estimations are all 
come from Healthcare projects. All detailed project portfolio information is summarized in 
Appendix 2. During the cleaning process of the on-site image dataset, it is suggested that not 
all the on-site collected images are useable. As a result, a small portion of photos that miss the 
proper image labels and do not fulfil the basic technical requirement (e.g., a photo that was 
wrongly taken with the main object missed) are excluded from the final experiment, leaving 
11,526 on-site images for the final experiment. 

By default, RICS’s level-2 and level-3 NRM codes are available for some existing and previous 
contracted projects. The case study SAM team has developed a more detailed customized level-
4 coding structure to meet their projects’ demand. By comparing the image distribution profiles 
in level-2 and level-3 NRM code, it is clear that the largest image category comes to ‘Wall 



Finishes – 03.02’ (Figure 2). It is shown in Figure 3 the on-site image dataset’s distribution is 
uneven. In other words, more photos are taken within some specific categories. The unevenly 
distributed category list is due to the current way of surveying, wherein a typical condition 
survey, photos are only required when image evidence is needed to prove the occurrence of a 
defect and collected as supporting evidence for the approval of the maintenance budget request. 
As a result, it is suggested that if the training dataset is directly built based on the on-site images 
available, the model might not be robust enough and potentially have a high risk of overfitting 
the large-sized categories. Although this traditional way of surveying limited the number of 
photos taken during the surveying processes, it provides the collected photos with more 
chances to carry richer information (e.g., asset maintenance condition information) for the built 
assets than just the asset category information. 

3.2.1.2.2 Analysis of other built assets type category images profile (on-site) 

Figure 3 The On-site Images Counts in Level-4 Code Across Different Projects 

Figure 2 the Number of Different Images with Level-2 BCIS Code Available (Upper Left); the Number of Different Images with 
Level-3 BCIS Code Available (Upper Right); the Number of Different Images with Level-4 BCIS Code Available (Bottom) 



Unlike the previous O&M related AEC/FM related image dataset, the containing of different 
building asset data attributes is a unique characteristic of this dataset collected during the real-
world building condition/defect survey workflow. Unfortunately, some of the previously 
obtained images don’t have the corresponding data attributes that follow the same attribute 
structure required by tabular based surveying software (i.e., Kykloud). Therefore, these 
projects’ data is excluded from corresponding analysis and experiment. Finally, we have 
11,163 images with data attributes that fulfil the required format. In addition, during the data 
cleaning process, invalid or misleading data entries like ‘0’ and ‘N/A’ in some data attributes 
are amended with a default value – ‘null’. The detailed image distribution for some of the 
example data attributes is shown in Figure 4. 

3.2.1.3 Results and statistics of new FM dataset (online) 

The previous section demonstrates the statistics of various attached labels of the on-site image 
dataset’s category distribution. However, the size of this research’s on-site dataset is already 
larger than some of the previously mentioned small size datasets (e.g., CML dataset, Han and 
Golparvar-Fard, 2015) and close to some of the medium-size datasets (e.g., Indoor Scene 
Recognition, Quattoni and Torralba, 2009) that were designed for AECFM. Unfortunately, due 
to the on-site dataset’s unevenly distributed building asset categories (the SAM Unit’s 
customized BCIS NRM level-4 code, Figure 3), the training based on this dataset alone could 
potentially suffer from overfitting. Therefore, online images were used to enhance the on-site 
training dataset with a more evenly distributed training image category distribution.  

Construction of the online-based image dataset involved several processes. Firstly, some online 
downloaded image categories that were too small in quantity or dominated by ambiguous 
images were eliminated. On average, 43% of the downloaded images are eliminated as they 

Figure 4 The Number of Different Images with Different Condition Grade (Upper Left); Unit of Measure (Upper Middle); Activity 
Cycle (Upper Right); Failure Type (Middle); Residual Life (Bottom) 



don’t include the target built assets element. Secondly, some keywords for image queries which 
were not able to find the corresponding images for the building condition survey (especially 
for the categories that investigate the inside component of the HVAC system: e.g., “Heating & 
Cooling Coils”) were eliminated. Finally, after synchronizing both on-site and online image 
datasets’ asset categories, only the categories with identical or directly related asset 
descriptions were kept. As a result, a total of 274 asset categories (with 137,530 images in total) 
were chosen as the final categories (Figure 2). Compared with the relatively small image counts 
per category for the on-site images (29 images per category), the number of online images per 
category reaches 501 on average. The smallest category in the online image training dataset 
has more than 100 different images. 

3.2.2 Ethics and privacy 

To protect the privacy of the project portfolio’s involved stakeholders and participants, and to 
reach the required ethical standard for this research, all the project portfolios and portfolios’ 
individual project identity information was purposely anonymized and blurred (e.g., ‘ImageA’ 
for the first project portfolio & ‘ImageAA’ for the first project of the first portfolio, Appendix 
2). Furthermore, photos were deliberately taken and rechecked for the on-site photos collection 
process to avoid capturing humans. 

4 RESULTS 

4.1 Experiments and models settings 

A series of experiments have been conducted to validate the MobileNet’s applicability over 
built assets condition survey in a real-world scenario. The first experiment tests the 
performance of different CNN-based image classification networks over the on-site data 
against MobileNet1.0. The main objective of the first experiment is to compare the 
performance of different deep neural-based CNN networks upon the large-scale FM-oriented 
online collected image dataset, to confirm the suitability of MobileNet1.0 in further 
experiments. The second experiment tests the effect of different image augmentation methods 
over the on-site image dataset with the MobileNet1.0 model. The objective of the second 
experiment is to find out the level of improvements that can bring by different image 
augmentation methods upon the MobileNet1.0 model. The third experiment moves the target 
task of image classification one step further to predict different built assets data attributes. This 
experiment explores the potential and applicability of image classification over suggesting 
other built assets elements’ data attributes. The last experiment targets the measure of 
improvement over the online image enhanced training dataset over on-site image classification, 
which aims to identify the level of classification improvement that can be brought by the online 
enhancement image dataset and validate the MobileNet1.0’s performance against the rest of 
the two selected models over the real-world on-site testing image dataset. 

In this study, the small images diameter of around 225 × 225 (pixels) is chosen as the image 
size for the data mined images to improve the on-site classification performance. The entire 
dataset has been shuffled with random seed and segregated into training, validation, and testing 
datasets (with the ratio of 8:1:1). Due to the limitation of the working platform used in this 
experiment (in this experiment, an Alienware laptop with NVIDIA GeForce GTX 1080 and 
32.0 GB Memory), some models, unfortunately, need to compromise over its parameters (e.g., 



batch size), as otherwise the program cannot be executed usually due to the system out of 
memory. 

4.2 Image classification training and validation  

4.2.1 Validation image classification training results against MobileNet1.0 - upon large size 
online collected image dataset labelled with different CNN networks 

In this experiment, the results of different image classification networks are compared against 
MobileNet1.0 using the online dataset constructed. Different versions of network structures 
existed for some networks like DenseNet, which can be distinguished by network parameters 
size and hyper-parameter settings, were tested. As the major purposeof this experiment is to 
compare the different models’ performances against MobileNet1.0 under the similar condition, 
same parameter setting is used for most of the models if possible. 

In total, eight different model series’ fourteen different models are compared. Evaluated for 
both in both training time and accuracy, MobileNet1.0 offers the most all-round performance 
with a very competitive test accuracy rate (46.2%), test top 5 accuracy rate (76.4%), and much 
less training time (7 hours) compared with 20 hours for ResNet152_V1 model. Therefore, the 
result validates the hypothesis that the proposed MobileNet1.0 model is the most suitable 
model for this image classification task. The result also shows out of three selected compact 
network structure candidates (e.g., 1) MobileNet0.25; 2) ResNet18_V1; 3) SqueezeNet1.1), all 
of them are not computational costly to deploy (with less than 4 hours training time). While 
the ResNet18_V1 is suggested to be the best compact image classification model structure as 
it achieves the highest accuracy performance (42.8% test accuracy and 72.8% test top 5 
accuracy (Table 1)) among the candidate models with slightly longer training time. Moreover, 
the result also indicates the most accurate model out of fourteen different model structures is 
the ResNet152_V1 model, which has the highest accuracy ratings (46.7% test accuracy and 
77.6% test top 5 accuracy).  

Table 1 Experiment One Table: The Image Classification Result with Online Collected Dataset against Different Network 
Structures 

Model 
Test-
acc: 

Test-
top-2-
acc: 

Test-
top-3-
acc: 

Test-
top-5-
acc: 

Total Time 
Spent: 

Average 
Time Spent: 

AlexNet 36.6% 49.8% 56.8% 65.6% 00:01:44:58 00:00:03:30 
DenseNet121 42.8% 56.5% 63.8% 72.7% 00:13:55:39 00:00:27:51 
DenseNet161 43.2% 57.3% 64.7% 73.4% 01:06:23:40 00:01:00:47 
DenseNet201 34.6% 47.8% 54.8% 63.5% 00:23:45:53 00:00:47:32 
InceptionV3 46.0% 60.1% 67.8% 76.1% 00:12:55:02 00:00:25:50 

MobileNet0.25 38.6% 51.2% 58.7% 68.0% 00:02:39:01 00:00:05:18 
MobileNet1.0 46.2% 61.0% 68.3% 76.4% 00:07:22:40 00:00:14:45 
ResNet18_v1 42.8% 57.1% 64.5% 72.8% 00:03:29:22 00:00:06:59 
ResNet101_v1 45.5% 60.1% 67.6% 76.0% 00:16:17:35 00:00:32:35 
ResNet152_v1 46.7% 61.6% 69.5% 77.6% 00:20:37:47 00:00:41:16 

SENet_154 38.8% 52.4% 60.0% 69.1% 04:04:00:02 00:03:20:00 
SqueezeNet1.1 31.5% 43.7% 50.6% 60.0% 00:02:03:40 00:00:04:07 

VGG11 42.8% 57.3% 64.4% 73.1% 00:06:08:23 00:00:12:17 

VGG19 40.4% 54.3% 61.4% 70.0% 00:14:22:45 00:00:28:45 



 

4.2.2 Image classification training results over MobileNet1.0 - upon large size online 
collected dataset with different image augmentation 

In this experiment, different image augmentation methods’ effectivenesses are compared 
against the chosen most balanced model - MobileNet1.0. The result shows that the level of 
classification performance improvement provided by using different image augmentation 
techniques is relatively limited. For example, the classification result using random colour 
(45.3%) and random lighting condition (45.4%) for the training image did not bring significant 
benefits to the original benchmark result without any image data transformation (45.5%) (Table 
2). In comparison, the RandomFlip technique seems to be most effective in improving the test 
classification accuracy, although the relative improvement is still slightly limited (about 1.3%). 

Table 2 Experiment Two Table: The Image Classification Result with Online Collected Dataset against Different Image 
Augmentation techniques 

Model Test-acc: 
Test-top-

2-acc: 
Test-top-

3-acc: 
Test-top-

5-acc: 
Total Time 

Spent: 
Average 

Time Spent: 

Without Data 
Transformation 45.5% 60.8% 68.3% 76.2% 00:07:31:13 00:00:15:02 

RandomCrop 46.2% 61.0% 68.3% 76.4% 00:07:22:40 00:00:14:45 

RandomColour 45.3% 60.9% 68.3% 76.3% 00:07:26:47 00:00:14:54 

RandomFlip 46.8% 62.3% 69.7% 77.4% 00:07:21:30 00:00:14:43 

RandomLightingCondition 45.4% 61.0% 68.6% 76.7% 00:08:35:32 00:00:17:11 

 

4.2.3 Image classification training results over MobileNet1.0 - upon real defect survey 
dataset labelled with other infrastructure building asset data attributes 

The result of the third experiment proves that the image classification cannot only be used for 
the classification of the built assets category but is also capable of making various types of 
predictions. Given the different data attributes provided by the on-site collected dataset, it is 
suggested that the image embedded information can offer a satisfying prediction over almost 
all of the selected built assets data attributes. This result is supported by referring to the 
improvements of different data attributes’ test classification accuracies against their No 
Information Rates (NIR), which are the percentage of the largest category, varies from 11.3% 
for “Percentage of Replacement” to 48.8% for “Activity Cycle” (Table 3). This indicates that 
the image classification algorithm (MobileNet1.0) can provide helpful built assets data attribute 
suggestions with the object feature identified within the on-site test photos. 

Table 3 Experiment Three Table: The Image Classification Result with On-site Collected Dataset against Different Image Data 
Attributes 

On-site Image 
Data Attributes 

NIR 
Test-
acc: 

Test-top-
2-acc: 

Test-top-
3-acc: 

Test-top-
5-acc: 

Total Time 
Spent: 

Average 
Time Spent: 

Activity Cycle 23.7% 72.5% 83.5% 87.5% 92.5% 00:00:49:21 00:00:01:39 

Condition 39.7% 56.3% 77.1% 91.7% 99.5% 00:00:37:23 00:00:01:15 
Failure Type 

Reference 30.3% 76.5% 86.6% 90.6% 95.3% 00:00:41:11 00:00:01:22 

Percentage of 
Parent 66.4% 77.7% 88.3% 92.0% 96.0% 00:00:53:07 00:00:01:46 

Residual Life 23.8% 54.4% 68.3% 76.9% 87.8% 00:00:52:40 00:00:01:45 



Unit of Measure 59.8% 91.2% 97.8% 99.8% 99.9% 00:00:53:29 00:00:01:47 

 

4.2.4 Validation image classification training results agaisnt MobileNet1.0 – upon combined 
image dataset or on-site image dataset along 

The last experiment results show a noticeable classification performance improvement given 
the utilisation of both the online image and the on-site image as the combined dataset for 
training. The classification performances of previously selected representative models 
(including ResNet18 v1 model, ResNet152 v1 model, and MobileNet1.0 models) have once 
again reaffirmed the result of the model comparison experiment using the online data (in the 
first experiment), with the same classification ranking order for different training settings. 
Although the classification accuracy of the MobileNet1.0 is again not the highest against the 
rest of the two models, its 60% classification accuracy is satisfied with one third (11 hours) of 
the total training time taken by the ResNet152 model. It is also indicated that the improvement 
in test classification accuracy is more significant when more suggestion options are considered 
(Table 4). 

Table 4 Experiment Four Table: The Image Classification Result with Both Online and On-site Collected Dataset against Different 
Representative Network Structures 

Parameter 
Test-
acc: 

Test-top-
2-acc: 

Test-top-
3-acc: 

Test-top-
5-acc: 

Total Time 
Spent: 

Average Time 
Spent: 

ResNet18_v1 On-site & 
Online 

58.5% 75.4% 83.0% 87.8% 00:04:34:00 00:00:09:08 

ResNet18_v1 On-site 57.2% 71.6% 77.9% 82.9% 00:00:57:19 00:00:01:55 

ResNet152_v1 On-site 
& Online 

62.3% 78.7% 85.9% 90.2% 01:05:27:34 00:00:58:55 

ResNet152_v1 On-site 61.4% 74.7% 80.2% 84.7% 00:02:02:12 00:00:04:04 

MobileNet1.0 On-site & 
Online 

60.0% 76.8% 84.3% 89.0% 00:11:25:32 00:00:22:51 

MobileNet1.0 On-site 57.7% 72.3% 77.9% 83.3% 00:01:10:56 00:00:02:22 

 

Furthermore, the result (Table 5) indicates that the final prediction using combined on-site and 
online datasets gives a superior classification performance over the test dataset’s NIR. An 
average of 40% prediction improvement is expected for the different levels of the built assets 
category. This finding has also been supported by the confusion matrix of the test dataset 
classification results (Figure 5 & 6), as a large number of the predictions fall into the right cells 
(the diagonal cells of the confusion matrix that are filled with blue colour). 

Table 5 The Image Classification Result with Both Online and On-site Collected Dataset over MobileNet1.0 against NIR 

Rate (Comparison with No 
Information Rate (NIR)) 

Level-1 
Category Test-

acc: 

Level-2 
Category Test-

acc: 

Level-3 
Category Test-

acc: 

Level-4 
Category Test-

acc: 

MobileNet1.0 On-site & Online 85.6% 74.4% 72.2% 57.5% 

NIR 42.9% 32.9% 32.9% 10.1% 



  

Figure 5 The Confusion Matrix of Built Assets (BCIS (NRM) Code) Level-1 Code Test Classification Result 

 

Figure 6 The Confusion Matrix of Built Assets (BCIS (NRM) Code) Level-2 Code Test Classification Result 

4.3 Evaulation of fourth experiment result with visualization of randomly selected items 

To further evaluate the classification results of the main experiment (the fourth experiment) of 
this study, the image classification results of five randomly selected test images are visualized 
in Appendix 3 using the most balanced MobileNet1.0 and the rest of two superior classification 
models (ResNet152 v1 and ResNet18 v1). The highest five-category recommendations are 
listed for each of these three models with their category names, customized BCIS codes, and 
relative probabilities. Firstly, using the combined training data offers a more generalized and 
logical sound prediction than only on-site photos. For instance, in the classification result of 
ResNet152 v1 model over the fifth image, more evenly distributed confidence probabilities 
among “Commercial Gas cooker units”, “Commercial Combi Oven units”, and “kitchen Hot 
Plate unit” make more sense than a 98% confident “Commercial Deep fat fryers”. The 
visualization of the classification result has again reaffirmed that the prediction of all these 
three models is logical sound, even for the wrongly predicted images from the categories like 
“CCTV Camera” and “Commercial 4-way hobs”. Taking the prediction of the fifth image 
(Appendix 3) (from “Commercial 4-way hobs”) as an example, the top-3 predictions of 
MobileNet1.0 for the fifth image are “Commercial Deep fat fryers”, “Commercial Hot 
cupboard units”, and “Commercial Gas cooker units”, which is logically sound. Although these 

Original Label Accuracy
02 03 04 05 08

02 Superstructure 305 43 6 13 4 82.2%
03 Internal Finishes 26 512 8 4 2 92.8%
04 Fittings, Furnishings and Equipment 4 8 25 0 0 67.6%
05 Services 24 24 3 229 2 81.2%
08 External Works 8 3 1 2 30 68.2%

Target Label

Original Label Accuracy
02.01 02.03 02.04 02.05 02.06 02.07 02.08 03.01 03.02 03.03 04.01 05.01 05.02 05.03 05.04 05.05 05.06 05.07 05.08 05.09 05.10 05.11 05.12 05.13 08.02 08.04 08.06 08.07

02.01 Frame 3 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60.0%

02.03 Roof 0 9 1 2 2 0 0 1 0 1 0 0 0 0 1 1 2 0 0 0 0 0 1 1 1 1 0 0 37.5%

02.04 Stairs and Ramps 0 0 7 0 0 0 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53.8%

02.05 External Walls 0 1 0 15 2 0 2 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 53.6%

02.06 Windows and External Doors 0 1 0 0 26 1 7 2 2 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 61.9%

02.07 Internal Walls and Partitions 0 0 0 0 0 6 1 0 3 0 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 40.0%

02.08 Internal Doors 0 1 0 0 5 0 212 9 8 1 4 0 0 0 2 0 1 0 0 0 1 0 0 0 0 0 0 0 86.9%

03.01 Wall Finishes 0 0 0 3 2 1 11 380 11 3 4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 91.1%

03.02 Floor Finishes 0 0 1 1 0 0 6 9 76 0 3 0 0 0 0 1 1 0 0 0 0 0 0 0 2 0 0 0 76.0%

03.03 Ceiling Finishes 0 0 0 0 1 0 0 7 0 26 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 74.3%

04.01 Fittings, Furnishings and Equipment 0 0 0 0 1 0 3 5 3 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 67.6%

05.01 Sanitary Installations 0 0 0 1 0 0 1 5 3 1 1 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 63.6%

05.02 Services Equipment 0 0 0 0 0 0 0 1 0 0 1 1 19 0 2 2 3 2 2 0 1 0 1 0 0 0 0 0 54.3%

05.03 Disposal Installations 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0%

05.04 Water Installtions 0 0 2 0 0 0 4 1 1 1 0 2 1 0 22 3 3 1 2 0 0 1 1 1 0 0 0 0 47.8%

05.05 Heat Source 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 5 3 0 0 0 0 0 0 0 0 0 0 0 45.5%

05.06 Space heating and air conditioning 0 0 0 1 1 0 0 1 2 1 0 0 0 0 5 0 24 1 4 0 0 0 2 0 0 0 0 0 57.1%

05.07 Ventilation Systems 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 2 9 1 0 0 1 1 0 0 0 0 0 50.0%

05.08 Electrical Installations 0 0 0 0 2 1 1 4 0 0 1 0 0 0 1 0 5 1 18 0 0 0 3 0 0 1 0 0 47.4%

05.09 Fuel Installations and Systems 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.0%

05.10 Lift and Conveyor Installations 0 0 0 0 0 0 2 1 0 0 0 0 0 0 1 0 0 0 0 0 5 0 0 0 0 0 0 0 55.6%

05.11 Fire and Lightning Protection 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 5 0 0 0 0 1 0 45.5%

05.12
Communication,security and control 

systems
0 0 0 0 1 1 3 0 0 0 0 0 2 0 1 0 1 0 1 0 0 0 9 1 0 0 0 0 45.0%

05.13 Specialist Installations 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 1 0 0 0 0 10 0 0 0 0 62.5%

08.02 Roads, Paths, Paving's and Surfacings 0 4 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 71.4%

08.04 Fencing, Railings and Walls 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 4 4 0 0 33.3%

08.06 External Drainage 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0.0%

08.07 External Services 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 50.0%

Target Label



options did not include “Commercial 4-way hobs”, all of these four level-4 categories belong 
to the same level-3 group: 05.02.02. In many cases, the appearance of highly similar category 
groups that overlap each other is unavoidable. In this case, “Commercial Gas cooker units” 
could be viewed as the replaceable group for the “Commercial 4-way hobs”, because project 
AA’s “Commercial 4-way hobs” might be registered as “Commercial Gas Cooker Units” in 
project BA in the real world. The probabilities given for each classification suggestion can 
benefit junior surveyors by helping them choose the best asset category out of competitive 
candidates.  

These specific classifications (Appendix 3) confirm the results of section 4.2 in that, compared 
with the ResNet152 v1 model’s more probability concentration on the top suggestion, the 
MobileNet1.0 and ResNet18 v1 models seem to have the more evenly distributed confidence 
level. 

5 CONCLUSIONS 

This study developed a new large-scale built assets surveying dataset. With the help of search 
engines (i.e., Google) and real-world on-site asset surveying projects, 11,526 on-site photos 
and 137,530 web crawled images were collected and used as the training and testing datasets. 
This is currently one of the largest AECFM specific image datasets that has been built for the 
building and infrastructure project’s operation and maintenance phase. With its unique 
characteristics of providing various asset information attributes, we think this dataset opens a 
new research direction for the image-based technique used for the FM purpose. We also tested 
the performance of a proposed model, using MobileNet1.0, by comparing it with other state-
of-art image classification models over the built dataset to determine the best image 
classification solution for the corresponding tasks, and the current reasonable expectation of 
error. The result shows the MobileNet1.0 image classification model can provide satisfying 
(72.2% and 57.5% accuracy rating, compared with 32.9% and 10.1% NIR for customized level-
3 and level-4 BCIS NRM Code) building object category classification results in the real 
building defect and condition survey scenarios. This study provides the future directions of 
how machine learning techniques like image classification can benefit the portfolio-based SAM 
services through optimising and automating the condition surveying process, portfolio-based 
data validation process, and existing project data’s standardisation and integration process. This 
study demonstrates that machine learning-based techniques can be applied to both project and 
portfolio-based SAM and other O&M tasks under the building or infrastructure project’s 
operation and maintenance phase. 
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APPENDIX 

Appendix 1 The Summarization Table of Different General-purpose and AEC/FM Built Assets related Image Datasets 

Dataset 
Name 

Dataset 
Type Brief Description Sample Categories Preprocessing Instance

s 
Forma

t Default Task 
Created 

(or 
updated) 

Reference Creator 

Caltech-
101 

General-
purpose 

Pictures of objects belonging to 101 categories. 
About 40 to 800 images per category. Most 
categories have about 50 images. 

Pigeon, airplanes, helicopter, barrel, 
lobster, brain, etc. Image labelled 9,146  Images 

Classification, 
object 

recognition. 
2003 (Fei-Fei et al., 

2004) F. Li et al. 

Caltech-
256 

General-
purpose 

Consists of a large dataset of images for object 
classification. There are 30,607 images in this 
dataset spanning 257 object categories. Object 
categories are extremely diverse, ranging from 
grasshopper to tuning fork. 

Sports (e.g., golf-ball, soccer-ball, tennis-
ball, etc.), fun (e.g., superman, cartman, 
teddy bear, etc.), electronics (e.g., cd, 
iPod, washing-machine, etc.), structure 
(e.g., skyscraper, pyramid, lighthouse, 
etc.), etc. 

Images 
categorized and 

hand-sorted. 
30,607  Images Classification, 

object detection 2007 (Griffin et al., 
2007) 

G. Griffin et 
al. 

LabelMe General-
purpose 

Contains more than 1,000 fully annotated 
images and around 2,000 partially annotated 
images. Including partially annotated images 
allows algorithms to show if they are able to 
benefit from additional partially labelled 
images.  

Images, Objects, Cars, Person, Building 
(e.g., house, paper cup, chair, table, chair, 
etc.), Road (e.g. car), Sidewalk, Sky, Tree, 
etc. 

Image labelled, 
training set 
splits are 
created. 

96,115  Images Classification, 
object detection 2008 (Russell et al., 

2008) 
B. Russell et 

al. 

CIFAR-
10 Dataset 

General-
purpose 

Consists of 60,000 32×32 colour images in 10 
classes, with 6,000 images per class. There are 
50,000 training images and 10,000 test images. 

Airplane, automobile, bird, cat, deer, dog, 
frog, horse, ship, truck, etc. 

Image labelled, 
training set 

splits created. 
60,000  Images Classification 2009 

(Krizhevsky 
and Hinton, 

2009, 
Krizhevsky et 

al., 2012) 

A. 
Krizhevsky et 

al. 

CIFAR-
100 

Dataset 
General-
purpose 

Has 100 classes containing 600 images each. 
There are 500 training images and 100 testing 
images per class. The 100 classes in the 
CIFAR-100 are grouped into 20 superclasses. 
Each image comes with a “fine” label (the 
class to which it belongs) and a “coarse” label 
(the superclass to which it belongs). 

Aquatic mammals (e.g., beaver, dolphin, 
seal, etc.), fish (e.g., aquarium fish, ray, 
shark, etc.), household electrical devices 
(e.g., clock, computer keyboard, lamp, 
etc.), Household furniture (bed, chair, 
couch, table, etc.), etc. 

Image labelled, 
training set 

splits created. 
60,000  Images Classification 2009 

(Krizhevsky 
and Hinton, 

2009, 
Krizhevsky et 

al., 2012) 

A. 
Krizhevsky et 

al. 

PASCAL 
VOC 

Dataset 
General-
purpose 

Contains a large number of images for 
classification tasks. In the year 2012, it 
contains 20 classes. The train and validation 
datasets has 11,530 images containing 27,450 
regions of interest (ROI) annotated objects and 
6,929 segmentations. 

Person (person), animal (e.g., bird, cat, 
cow, etc.), vehicle (e.g., aeroplane, 
bicycle, boat, etc.), indoor (e.g., bottle, 
chair, dining table, etc.), etc. 

Image labelled, 
bounding box 

included 
500,000  Images Classification, 

object detection 2012 (Everingham et 
al., 2010) 

M. 
Everingham 

et al. 

SUN 
Database 

General-
purpose 

Consists of a very large sized scene and object 
recognition database, where UNderstanding 
(SUN) database contains 899 categories and 
130,519 images. 

Scene categories: abbey, badminton court 
indoor, cargo container interior, utility 
room, dining room, garage outdoor, jail 
indoor, etc. 
Object categories: ceiling, window, 

Places and 
objects are 
labelled. 

Objects are 
segmented. 

131,067  Images 
Object 

recognition, 
scene 

recognition 
2014 (Xiao et al., 

2010) J. Xiao et al. 



cabinet, sink, chair, bottle, circus, table, 
football, food platter, etc. 

ImageNet General-
purpose 

ImageNet is an image database organized 
according to the WordNet hierarchy (currently 
only the nouns), in which hundreds and 
thousands of images depict each node of the 
hierarchy. Currently, it has an average of over 
five hundred images per node. 

plant, flora, plant life; geological 
formation, formation; natural object; sport, 
athletics; artifact, artefact (e.g., 
instrumentality & instrumentation, 
structure & construction, paving & 
pavement, etc.); fungus; person, 
individual, someone; animal, animate 
being; Misc; etc. 

Image labelled, 
bounding boxes, 

descriptive 
words, SIFT 

features 

14,197,1
22  Images 

Object 
recognition, 

scene 
recognition 

2014 (Deng et al., 
2009) J. Deng et al. 

Microsoft 
Common 
Objects in 
Context 
(COCO) 

General-
purpose 

COCO is large-scale object detection, 
segmentation, and captioning dataset with 
more than 330,000 images, 1.5 million object 
instances, 80 object categories, 91 stuff 
categories, 5 captions per image. 

Person, airplane, bird, horse, skis, banana, 
apple, chair, couch, sink, hair drier, etc. 

Object 
highlighted, 
labelled, and 

classified. 

1,500,00
0  Images Object 

recognition 2015 (Lin et al., 
2013) T. Lin et al. 

LSUN General-
purpose 

Contains around one million labelled images 
for each of 10 scene categories and 20 object 
categories. 

Airplane, bicycle, bird, bus, sofa, train, 
etc. Image labelled 10,000,0

00  Images Classification 2016 (Yu et al., 
2015) 

Fisher Yu et 
al. 

Linnaeus 5 
dataset 

General-
purpose 

Contains images from 5 object classes. Images 
are 256×256 pixels. 1,200 training images, 400 
test images per class. 

Berry, bird, dog, flower, Other, etc. 
Image labelled, 

training set 
splits are 
created. 

8,000  Images Classification 2017 
(Chaladze and 
Kalatozishvili, 

2017) 

Chaladze, G. 
Kalatozishvili 

L 

ADE20K General-
purpose 

Contains more than 20K scene-centric images 
exhaustively annotated with objects and object 
parts. In addition, there are a total of 150 
semantic categories included for evaluation. 

Sky, road, grass, person, card, bed. 
Object 

highlighted, 
labelled, and 

classified. 

                    
22,210  Images 

Classification, 
object 

recognition, 
scene 

recognition 

2017 (Zhou et al., 
2017) B. Zhou et al. 

CINIC-10 
Dataset 

General-
purpose 

A unified contribution of CIFAR-10 and 
Imagenet with 10 classes, and 3 splits. CINIC-
10 is a drop-in replacement for CIFAR-10. It is 
compiled as a benchmarking dataset because 
CIFAR-10 can be too small/too easy, and 
ImageNet is often too large/difficult. 
ImageNet32 and ImageNet64 are smaller than 
ImageNet but even more difficult. CINIC-10 
fills this benchmarking gap. 

The subcategories of CIFAR-10 and 
ImageNet 

Image labelled, 
training set 

splits created. 
270,000  Images Classification 2018 (Darlow et al., 

2018) 
Luke N. 

Darlow et al. 

Open 
Images 

General-
purpose 

The images included are very diverse and often 
contain complex scenes with several objects 
(8.4 per image on average). It contains image-
level labels annotations, object bounding 
boxes, object segmentation, visual 
relationships, and localized narratives. 

Building (e.g., sports equipment, music 
equipment, camera, billard table, bottle 
opener), food, vehicle, animal, furniture, 
tool, etc. 

Image labelled, 
Bounding boxes 

9,178,27
5  Images 

Classification, 
Object 

recognition 
2020 (Kuznetsova et 

al., 2020) 
A. 

Kuznetsova 
et al. 

Indoor 
Scene 

Recognitio
n 

AECFM 
related 

Contains 67 Indoor categories with a total of 
15620 images. The number of images varies 
across categories, but there are at least 100 
images per category. All images are in jpg 

Store (e.g., bakery, grocery store, clothing 
store, bookstore, etc.), Home (bedroom, 
nursery, closet, pantry, bathroom, etc.), 
public spaces (e.g., prison cell, library, 
church, museum, etc.), leisure (buffet, fast 
food, restaurant, bar, gym, etc.), working 

Image labelled 15,620  Images Classification 2009 (Quattoni and 
Torralba, 2009) 

A. Quattoni, 
A.Torralba 



format. The images provided here are for 
research purposes only. 

place (e.g., hospital room, restaurant 
kitchen, classroom, laboratory, etc.), etc. 

CML AECFM 
related 

CML is a new database containing 22 typical 
construction materials with more than 150 
images per category is assembled 

asphalt, brick, cement-granular, cement-
smooth, concrete-cast, concrete-precast, 
foliage, formwork, grass, gravel, marble, 
metal-grills, paving, soil-compact, soil-
vegetation, soil-loose, soil-mulch, stone-
granular, stone-limestone, wood. 

Image labelled 4,400  Images Classification 2015 
(Han and 

Golparvar-Fard, 
2015) 

K. Han, M. 
Golparvar-

Fard 

MINC AECFM 
related 

MINC is a 3-million-images diverse dataset 
that has 23 different material related categories 
with more examples in less common 
categories. MINC draws data from both Flickr 
images, which includes many “regular” scenes 
and Houzz images from professional 
photographers of staged interiors.  

Brick, carpet, ceramic, fabric, foliage, 
food, glass, hair, leather, metal, mirror, 
other, painted, paper, plastic, pol. stone, 
skin, sky, stone, tile, wallpaper, water, 
wood. 

Object 
highlighted, 
labelled, and 
classified into 

23 object types. 

3,000,00
0  Images 

Classification, 
Object 

detection 
2015 (Bell et al., 

2015) S. Bell et al. 

MCIndoor
20000 

AECFM 
related 

MCIndoor20000 is a 20,000-image dataset 
contains digital images from three different 
indoor object categories. 

Doors, stairs, and hospital signs. Image labelled 20,000 Images Classification 2018 (Bashiri et al., 
2018) Bashiri et al. 

Carnegie 
library 
dataset 

AECFM 
related 

Carnegie library dataset is a 13,000-image 
dataset contain image record of Carnegie 
library building stock in the UK, 

Turret, tower, grille exterior, grille 
interior. Image labelled 13,000 Images 

Classification, 
Object 

detection 
2019 (Pezzica et al., 

2019) Pezzica et al. 

BIM 
knowledge 
repository 

AECFM 
related 

BIM knowledge repository contains 3D model, 
object information and activity histories (for 
the inspection, assignment and repair) are 
saved in a Navisworks file. Other information, 
including images taken by inspectors or 
repairmen and user comments on activities, are 
stored in image files (.jpg or .png) or plain text 
files (.txt).  

Objects (e.g., refrigerator, microwave, 
coffee machine, sink, chair and monitor) 
in the physical environment 

Image labelled 60 Images Classification, 
object detection 2019 (Zhan et al., 

2019) J. Zhan et al. 

FM200 AECFM 
related 

A set of images for fire protection systems, 
with 3 Classes, in the proposed classification, 
namely, FM200, fire extinguisher and fire hose 
cabinet has been downloaded. The downloaded 
images are having different sizes. 

Fire extinguisher and fire hose cabinet 
Image labelled, 

training set 
splits created. 

81 Images 
Classification, 

Object 
recognition 

2020 (Marzouk and 
Zaher, 2020) 

Mohamed 
Marzouk et 

al. 

 

  



Appendix 2 The Summarization Table of the Detailed Project Portfolio Information 

Project 
Portfolio 

Name 

Project 
Name 

GIFA - 
Portfolio Location Region Project 

Type 
Description of 

Works 
Lifecycle expenditure 

- Portfolio Total 
Delivery 
Method 

Number 
of Images 

Start 
Year - 

Portfoli
o 

Number of 
Image 

Categories 

ImageA ImageAA 45,210 Birmingham
, UK 

West 
Midlands 

England, UK 
Education Defect Survey £               4,200,000.00 Subcontracted 130 2017 10 

ImageB ImageBA 5,901 Cumbria 
Lift, UK 

North West 
England, UK Health Condition 

Survey £               2,300,000.00 Subcontracted 465 2016 51 

ImageC ImageCA 83,337 Blackburn, 
UK 

North West 
England, UK Health Defect Survey £            72,000,000.00 Subcontracted 1,836 2016 108 

ImageD ImageDA 71,708 London, UK London 
Region, UK Health Condition 

Survey £            35,000,000.00 Subcontracted 254 2016 36 

ImageE ImageEA - London, UK London 
Region, UK Housing Condition 

Survey £               2,400,000.00 Subcontracted 206 2015 26 

ImageE ImageEB - London, UK London 
Region, UK Housing Condition 

Survey £               2,400,000.00 Subcontracted 11 2015 2 

ImageF ImageFA 35,671 Swindon, 
UK 

South West 
England, UK Education Condition 

Survey £            17,000,000.00 Subcontracted 175 2016 33 

ImageF ImageFB 35,671 Swindon, 
UK 

South West 
England, UK Education Condition 

Survey £            17,000,000.00 Subcontracted 348 2016 101 

ImageF ImageFC 35,671 Swindon, 
UK 

South West 
England, UK Education Condition 

Survey £            17,000,000.00 Subcontracted 431 2016 89 

ImageF ImageFD 35,671 Swindon, 
UK 

South West 
England, UK Education Condition 

Survey £            17,000,000.00 Subcontracted 64 2016 41 

ImageF ImageFE 35,671 Swindon, 
UK 

South West 
England, UK Education Condition 

Survey £            17,000,000.00 Subcontracted 133 2016 72 

ImageF ImageFF 35,671 Swindon, 
UK 

South West 
England, UK Education Condition 

Survey £            17,000,000.00 Subcontracted 51 2016 30 

ImageF ImageFG 35,671 Swindon, 
UK 

South West 
England, UK Education Condition 

Survey £            17,000,000.00 Subcontracted 30 2016 16 



ImageG ImageGA -  London, 
UK  

 London 
Region, UK  Education Condition 

Survey 
 

£               3,500,000.00  Subcontracted 1,088 2011 83 

ImageG ImageGB -  London, 
UK  

 London 
Region, UK  Education Condition 

Survey 
 

£               3,500,000.00  Subcontracted 876 2011 96 

ImageG ImageGC -  London, 
UK  

 London 
Region, UK  Education Condition 

Survey 
 

£               3,500,000.00  Subcontracted 216 2011 62 

ImageG ImageGD -  London, 
UK  

 London 
Region, UK  Education Condition 

Survey 
 

£               3,500,000.00  Subcontracted 118 2011 48 

ImageH ImageHA 8,615  Kingston, 
UK  

 London 
Region, UK  Health Condition 

Survey 
 

£               7,900,000.00  Subcontracted 469 2017 92 

ImageI ImageIA 35,912 North Staffs, 
UK 

West 
Midlands 

England, UK 
Health Condition 

Survey £          100,000,000.00 Subcontracted 195 2017 58 

ImageJ ImageJA - Pembury, 
UK 

South East 
England, UK Health Condition 

Survey £            41,000,000.00 Subcontracted 1,977 2018 319 

ImageJ ImageJB - Pembury, 
UK 

South East 
England, UK Health Condition 

Survey £            41,000,000.00 Subcontracted 3,557 2018 123 

 

  



Appendix 3 The Visualization Table of Five Randomly Selected Test Images with Their 
Prediction for Three Selected Models against Different Training Dataset Settings 

Internal Doors Frames & architraves Internal Doors Frames & architraves Distribution Boards Roads Paths and Paving Concrete Commercial Deep fat fryers

Internal Door's Ironmongery Internal Timber Single Door Fire Suppression Systems Sprinkler Pump Controls panels inverter drivesExternal Doors Aluminium Commercial Hot cupboard units

Internal Timber Double door Internal Door's Ironmongery Electric Mains and Sub mains Distribution Incoming Electrical SupplyWalls and Screens Brick Commercial Gas cooker units

Internal Timber Single Door Internal Timber Double door Motor Control Cubicles Natural stone External Walls Commercial Main Dishwasher

Window's Ironmongery External Doors Aluminium Low Voltage Main Switchboard Tarmacadam Paving Commercial Kitchen Worktops

Access Control Headend Internal Doors Frames & architraves Fire Suppression Systems Sprinkler Pump Controls panels inverter drivesRoads Paths and Paving Concrete Commercial Deep fat fryers

Fire fighting Systems Dry Risers Internal Timber Single Door Distribution Boards Walls and Screens Brick Commercial Fridge freezer units Combined separate

Vandal proof Sealed Fluorescent luminaire Internal Door's Ironmongery Pump Control panels Natural stone External Walls Commercial Gas cooker units

Communication Systems Telecoms Data EquipmentInternal Timber Double door Wiring and cables from local distribution boardsRoads Paths and Paving Cobbles Commercial Cold fridge counters

Passenger Goods Lift Electric Traction Leaf and half Timber door Commercial Photovoltaic Electricity Generation SystemsBlock wall Commercial Hot cupboard units

Internal Doors Sliding concertina Internal Doors Frames & architraves Distribution Boards Tarmacadam Paving Commercial Gas cooker units

Hot water storage cylinder Internal Timber Single Door Pump Control panels Roads Paths and Paving Concrete Commercial Combi Oven units

lightning protection down conductors Internal Door's Ironmongery Fire Suppression Systems Sprinkler Pump Controls panels inverter drivesRoads Paths and Paving Concrete kerbs kitchen Hot Plate unit

Internal Doors Frames & architraves Internal Doors Paint to timber Fire Alarm Control Panel External Doors Aluminium Commercial Griddle units

Cold water distribution Steel Storage Tank Internal Timber Double door Fire Alarm Wiring system Walls and Screens Brick Commercial Main Dishwasher

Access Control Headend Internal Doors Frames & architraves Fire Suppression Systems Sprinkler Pump Controls panels inverter drivesRoads Paths and Paving Concrete Commercial Deep fat fryers

BMS Local Control Panels Internal Timber Single Door Distribution Boards External Doors Aluminium Commercial Gas cooker units

Fire fighting Systems Dry Risers Internal Door's Ironmongery Pump Control panels Roads Paths and Paving Concrete kerbs Commercial Hot cupboard units

Communication Systems Telecoms Data EquipmentInternal Timber Double door Motor Control Cubicles Timber edging Waste disposal units

Vandal proof Sealed Fluorescent luminaire Paint plaster wall Auto Transfer Switch Natural stone External Walls Commercial Cold fridge counters

Internal Door's Ironmongery Internal Doors Frames & architraves Distribution Boards Roads Paths and Paving Concrete Commercial Gas cooker units

Internal Doors Frames & architraves Internal Timber Single Door Pump Control panels Natural stone External Walls Commercial Deep fat fryers

lightning protection down conductors Internal Door's Ironmongery Fire Suppression Systems Sprinkler Pump Controls panels inverter drivesExternal Doors Aluminium Commercial Griddle units

Metal post and rail Internal Timber Double door Fire fighting Systems Dry Risers Tarmacadam Paving Commercial Hot cupboard units

Grab rails Internal Doors Paint to timber Low Voltage Main Switchboard Walls and Screens Brick Commercial Grills

Internal Timber Double door Internal Doors Frames & architraves Fire Suppression Systems Sprinkler Pump Controls panels inverter drivesRoads Paths and Paving Concrete Commercial Main Dishwasher

BMS Local Control Panels Internal Timber Single Door Distribution Boards External Doors Aluminium Commercial Gas cooker units

Communication Systems Telecoms Data EquipmentInternal Door's Ironmongery UPS System Roof stone coated Commercial Griddle units

Internal Timber Single Door Boiler Plant Gas condensing Cold water supply Booster Pump set Roads Paths and Paving Cobbles Commercial Deep fat fryers

Medical gas Pipe Installation Internal Timber Double door Pump Control panels Roads Paths and Paving Concrete kerbs Waste disposal units

05.02.02.06

Demo Images

MobileNet1.0

Both On-site and Online Photos

02.08.01.25 02.08.01.25 05.08.02.02 08.02.01.06 05.02.02.04
24.9%

Category Name:
CCTV Camera Internal Doors Frames & architraves Fire Suppression Systems Sprinkler 

Pump Controls panels inverter drives Roads Paths and Paving Concrete Commercial 4 way hobs

05.12.02.20 02.08.01.25 05.11.02.03 08.02.01.06

89.3% 85.0% 62.5% 23.5%

02.08.01.02 02.08.01.11 05.11.02.03 02.06.02.01 05.02.02.15
24.2% 10.1% 4.5% 9.6% 18.4%

02.08.01.13 02.08.01.02 05.08.01.01 08.04.02.01 05.02.02.01

14.5%

02.06.01.16 02.06.02.01 05.08.01.11 08.02.01.26 05.02.02.25

21.7% 0.5% 2.0% 6.2% 16.1%

02.08.01.11 02.08.01.13 05.08.01.12 02.05.01.01 05.02.02.05

On-site Photos Only

05.12.02.03 02.08.01.25 05.11.02.03 08.02.01.06

9.4% 0.1% 1.5% 2.7%

05.11.01.01 02.08.01.11 05.08.02.02 08.04.02.01

5.4% 0.0% 10.4% 0.8%

05.10.01.01 02.08.01.12 05.08.05.04 02.05.01.08

05.02.02.04
68.6% 99.9% 63.4% 96.3% 68.9%

1.8% 0.0% 1.4% 2.2% 14.0%

05.02.02.11
6.2% 0.1% 12.7% 1.0% 11.5%

05.08.03.05 02.08.01.02 05.04.02.13 02.05.01.01 05.02.02.01
7.7%

05.12.01.02 02.08.01.13 05.08.03.15 08.02.01.29 05.02.02.13
5.0% 0.0% 4.7% 0.2% 3.9%

05.02.02.15
1.9% 0.0% 2.6% 0.2% 3.5%

05.02.02.16
21.9% 4.9% 18.3% 32.9% 17.6%

05.02.02.01
49.1% 94.2% 51.0% 63.1% 32.0%
02.08.01.08 02.08.01.25 05.08.02.02 08.02.01.26

05.04.03.03 02.08.01.11 05.04.02.13 08.02.01.06

05.11.03.01 02.08.01.02 05.11.02.03 08.02.01.08 05.02.02.30
6.3% 0.8% 18.3% 2.2% 14.6%

02.08.01.25 02.08.01.05 05.12.01.03 02.06.02.01 05.02.02.07
3.8% 0.0% 3.3% 0.8% 12.7%

05.04.02.01 02.08.01.13 05.12.01.07 08.04.02.01 05.02.02.05
3.3% 0.0% 2.1% 0.2% 7.3%

98.0%

05.12.03.04 02.08.01.11 05.08.02.02 02.06.02.01 05.02.02.01

On-site Photos Only

05.12.02.03 02.08.01.25 05.11.02.03 08.02.01.06 05.02.02.04
93.2% 100.0% 66.9% 37.0%

3.9% 0.0% 26.6% 21.8% 1.0%

05.11.01.01 02.08.01.02 05.04.02.13 08.02.01.08 05.02.02.15

0.2%

05.08.03.05 03.01.01.06 05.08.01.08 02.05.01.01 05.02.02.13

1.2% 0.0% 1.7% 7.8% 0.2%

05.12.01.02 02.08.01.13 05.08.01.12 08.02.01.27 05.02.02.09

ResNet18 v1

Both On-site and Online Photos

02.08.01.02 02.08.01.25 05.08.02.02

0.5% 0.0% 1.4% 7.3%

ResNet152 v1

Both On-site and Online Photos

08.02.01.06

02.08.01.25 02.08.01.11 05.04.02.13 02.05.01.01

2.5% 1.8% 4.6% 6.2%

04.01.03.21 02.08.01.05 05.08.01.11 08.04.02.01

05.02.02.01
56.8% 81.9% 78.9% 45.5% 17.4%

0.3% 0.0% 1.0% 5.9% 0.2%

05.02.02.04
23.8% 16.2% 6.1% 30.4% 16.7%

05.11.03.01 02.08.01.02 05.11.02.03 02.06.02.01 05.02.02.07
16.0%

08.04.01.12 02.08.01.13 05.11.01.01 08.02.01.26 05.02.02.15
2.0% 0.0% 3.2% 4.6% 12.9%

05.02.02.08
1.6% 0.0% 1.7% 2.8% 12.6%

23.4%

05.12.03.04 02.08.01.11 05.08.02.02 02.06.02.01 05.02.02.01

On-site Photos Only

02.08.01.13 02.08.01.25 05.11.02.03 08.02.01.06 05.02.02.05
62.4% 99.5% 78.7% 36.4%

8.7% 0.3% 12.9% 15.4% 17.2%

05.12.01.02 02.08.01.02 05.08.02.04 02.03.02.34 05.02.02.07
2.0% 0.1% 2.6% 7.3% 13.7%

02.08.01.11 05.05.01.03 05.04.02.12 08.02.01.29 05.02.02.04

1.6% 0.0% 0.8% 4.1% 4.8%

1.8% 0.1% 1.4% 4.4% 12.2%

05.13.01.01 02.08.01.13 05.04.02.13 08.02.01.08 05.02.02.09



 


