Bonnet, T;
Morrissey, MB;
de Villemereuil, P;
Alberts, SC;
Arcese, P;
Bailey, LD;
Boutin, S;
... Kruuk, LEB; + view all
(2022)
Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals.
Science
, 376
(6596)
pp. 1012-1016.
10.1126/science.abk0853.
Preview |
Text
Brekke_TBScience_manuscript_word_Feb2022.pdf Download (127kB) | Preview |
Abstract
The rate of adaptive evolution, the contribution of selection to genetic changes that increase mean fitness, is determined by the additive genetic variance in individual relative fitness. To date, there are few robust estimates of this parameter for natural populations, and it is therefore unclear whether adaptive evolution can play a meaningful role in short-term population dynamics. We developed and applied quantitative genetic methods to long-term datasets from 19 wild bird and mammal populations and found that, while estimates vary between populations, additive genetic variance in relative fitness is often substantial and, on average, twice that of previous estimates. We show that these rates of contemporary adaptive evolution can affect population dynamics and hence that natural selection has the potential to partly mitigate effects of current environmental change.
Type: | Article |
---|---|
Title: | Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1126/science.abk0853 |
Publisher version: | https://doi.org/10.1126/science.abk0853 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Adaptation, Biological, Animals, Animals, Wild, Biological Evolution, Birds, Datasets as Topic, Genetic Fitness, Genetic Variation, Mammals, Population Dynamics, Selection, Genetic |
UCL classification: | UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Genetics, Evolution and Environment UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences |
URI: | https://discovery.ucl.ac.uk/id/eprint/10153408 |
Archive Staff Only
View Item |