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Abstract 
With the decarbonisation of electricity generation, large scale heat pumps are becoming 

increasingly viable for district heating combined with thermal energy storage, district heating 

can provide flexibility to the electricity grid by decoupling demand from supply. This thesis 

examines how district heating with heat pumps and thermal energy storage can integrate with 

and provide a benefit to an electricity system with predominantly renewable generation. The 

scope of work comprises three interlinked models underpinned by the same set of meteorology 

data, fundamentally coupling supply and demand.  

First, heat load data are surveyed, and an hourly demand profile is simulated. Disaggregation of 

district heating loads from the national demand is accomplished via segmentation of the 

building stock to model heat demand at high spatiotemporal resolution.   

Second, a novel method of pricing hourly electricity in a zero carbon, capital-intensive renewable 

system with electricity storage is developed and applied to a dispatch simulation to generate 

hourly electricity prices.  

Third, a dynamic model of district heating is constructed to simulate the meeting of heat loads 

with different design configurations using electricity as the energy source. Model predictive 

control is applied with varying forecast horizons so as to minimise the cost of electricity to meet 

the heat demand given a time series of hourly prices and consequently optimising the capacity 

of thermal energy storage. It was found that a thermal energy storage capacity equivalent to 

1.3% of annual demand is sufficient to minimise operating costs.   

Finally, the potential impact of district heating on balancing the electricity system is analysed 

and an equivalence between thermal and electric storage is examined. While this is highly 

dependent on annual conditions, it can be as much as 3.5 units of thermal storage for every unit 

of electrical grid storage on the system. This could potentially reduce the investment in grid 

storage by £36 billion, underlining the significant financial benefits of thermal storage to the 

whole system. The research highlights the important potential of district heating to the UK’s 

energy system strategy. 
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Impact Statement 
The decarbonisation of the UK economy necessitates a transition away from fossil fuels. This 

provides a challenge to managing the electricity grid which must balance the variability of 

renewable generation with time varying demand. For space heating in buildings, electrification 

is a promising method to achieve decarbonisation. However, the electricity requirements for 

heat pumps will be substantial and may impact the security of the electricity grid. The central 

premise of this work is the exploration of how heat pumps in district heating systems with 

thermal energy storage can support the electricity grid and help to accommodate larger 

fractions of renewable generation by allowing greater flexibility of operation via large scale 

thermal energy storage. The results presented here should be of interest to policymakers, 

highlighting the importance of district heating to the energy system. 

The investigation was conducted by developing a set of models to simulate heat loads, the 

electricity system, and district heating. The methods used and datasets produced in designing 

these models will be of interest to the modelling research community. The study has produced 

a dataset of national hourly heat loads, disaggregated by area, which can be utilised for early 

feasibility work by city energy planners in various other applications as model inputs. 

The electricity cost model introduces a novel method for calculating marginal electricity 

generation costs for capital intensive systems that may aid other modelling studies. It was shown 

that the marginal costs of electricity supply in a highly renewable system can be within a 

manageable range and that they are largely driven by capital costs of both renewables and 

storage. This has implications on policy and tariff design for bodies such as Ofgem who could 

ensure that storage is adequately rewarded so that sufficient capacities are built. 

For industry and district heating operators, the simulation of district heating has provided a 

practical grasp of operating costs in a highly renewable electricity system. It was shown that 

optimal thermal energy storage costs represent a small fraction of the capital investment. The 

operational costs of electricity import amount to a tenth of the total cost of supplying heat from 

district heating. For policy and public planners, this is comparable to current and future 

counterfactual options and shows that district heating is a viable option for cost-effective heat 

in urban areas. It is hoped that these results will feed into future economic analyses of district 

heating deployment. 

The conclusions show that the widespread deployment of district heating can have an important 

function in the national energy system and that thermal energy storage is able to displace a 

significant amount of grid storage, thereby reducing total system costs. This alone warrants that 

it is investigated as part of an energy system strategy. The issues raised in this thesis directly 

impact organisations such as the National Grid. They are also important for the district heating 

industry as well as government policymakers and for the Climate Change Committee who advise 

them, both of whom ultimately shape the direction of energy policy and research in the UK. 
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1 INTRODUCTION 

The Climate Change Act (2008) set a target for the UK to reduce greenhouse gas emissions by 
80% from 1990 baseline levels. The government has since committed to a net-zero target or 
100% reduction (UK Parliament, 2019). Nearly half of the energy demand in the UK is for the 
provision of heat, with the majority of this coming from the combustion of fossil fuels and this 
accounts for around a fifth of UK emissions (BEIS, 2017a; DECC, 2013). Hence, it is widely 
recognised that to meet the emissions target, heating for buildings will need to be nearly fully 
decarbonised as it is easier to reduce emissions from heat than other harder to decarbonise 
sectors such as aviation.  

The government has outlined several strategies towards decarbonising the UK economy. This 
includes a high degree of electrification of some sectors such as low temperature heat demand 
(BEIS, 2020a). The decarbonisation targets necessitate a large deployment of renewable power 
generation for the electricity grid. Some analysis has left room for natural gas as a transition 
fuel, but its long term viability is sensitive to the successful deployment of carbon capture and 
sequestration (CCS) (Hull and Kane, 2016; National Grid, 2017a). 

Renewable power generation is variable by nature. This variability provides a challenge to 
managing the grid which must be balanced at all times by matching supply to demand. Offshore 
wind is likely to prominently feature in the generation mix. With wind power being 
uncontrollable and hence inflexible, flexibility must be provided elsewhere. Provisions for 
flexibility can take many forms such as storage on the grid, or on the demand side (such as 
demand side response). There is currently a limited capacity to accommodate variable 
renewable electricity generation. This may cause an increase in the cost of power generation as 
it limits the ability to fully utilise all the available renewable generation (Strbac et al., 2016). 
Heating may provide an important vector for economically integrating variable renewable 
electricity.  

1.1 The Decarbonisation of Heating 
The predominant source of heating in the UK has been from natural gas. Although the vast 
majority of homes and buildings in the UK have a gas boiler, the transition away from gas boilers 
is underway and will not feature in a zero-carbon future for heating (BEIS, 2021a; McGlade et 
al., 2014). All decarbonisation pathways provide an infrastructure challenge. This includes the 
expansion of district heating (DH) networks in the UK (also widely referred to as ‘heat networks’ 
in the literature).  
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The government has kept its options open, pursuing the paths of least regret and its policy 
direction is yet to be settled (Climate Change Committee, 2016). Questions remain over the 
viability of switching to hydrogen. This concerns the infrastructure requirements and potential 
"lock-in" of hydrogen technology. To make hydrogen heating low carbon will require long term 
planning due to hydrogen production methods and this may also be contingent on the successful 
deployment of CCS (ERP, 2016).  

Electrification is a promising method to facilitate the decarbonisation of heating (Connolly, 
2017). However, the electricity requirement for heat, particularly peak load, could be 
substantial. This may impact the security of the electricity grid from a supply and transmission 
perspective (Quiggin and Buswell, 2016; Wilson et al., 2013). The successful integration of 
electrified heating into the grid will need both load reduction and demand side management 
(Eyre and Baruah, 2015). 

1.1.1 District heating and thermal energy storage 
Heat electrification opens the possibility of using variable renewable generation with thermal 
energy storage (TES). Electrification via efficient heat pumps can achieve load reductions and 
facilitate demand flexibility. Flexibility can be attained through thermal inertia of buildings and 
TES. This in effect decouples demand from supply, to a degree depending on store size and 
performs the role of demand side management.  

DH networks allow the distribution of centralised heat generation and enables the use of large-
scale TES. Centralised heat generation allows buildings to connect to multiple sources of heat 
such as reusing low exergy waste heat from industrial processes with economic, technical, 
efficiency and safety advantages. This diversity of sources can be advantageous in providing 
security of supply and eliminating reliance on a single energy source (Radov et al., 2010). Similar 
reasoning applies to large, centralised TES in DH networks. Additionally, economies of scale can 
result in higher efficiencies and lower costs (capital and operating) at a district level. 

TES can play a role in the energy system if there is a wider adoption of DH networks, due to its 
potential in grid balancing and managing demand. Currently, the most mature form of heat 
storage is sensible heat storage (as opposed to latent heat), commonly in the form of water 
stored in tanks, pits, or aquifers. TES can be sized to shift peak loads by several hours or to be 
very large inter-seasonal heat stores (BEIS, 2016a; Eames et al., 2014). The sizing of these heat 
stores is then an important factor and thus the control method, of how best to utilise and 
optimise heat stores would play a significant role.  
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Table 1.1 Advantages and disadvantages of three options for future UK heat delivery 

1.1.2 Current district heating 
Many of the DH networks in the UK are supplied from natural gas powered ‘CHP (combined heat 
and power) and recovered waste heat’ (DECC, 2013). CHP plants are commonly natural gas 
turbines or engines. In industrial application they provide electricity while recovering heat from 
combustion of fuel. Recovering heat from electricity generation in this way leads to a significant 
reduction in the carbon intensity of heat. CHP based DH systems are amongst the lowest cost 
per tonne of CO2 when compared to other heating technologies. But with the continuing 
decarbonisation of the electricity grid, any carbon abatement from fossil fuel based (e.g. gas) 
CHP will eventually diminish (Foster et al., 2015; Lowe, 2011), though CHP using low or zero 
carbon fuels such as biomass or hydrogen may continue to play an important role.  

With the current trend of high renewable deployment and government policies, indications are 
that electricity will continue to decarbonise (BEIS, 2020a). The use of CHP for the provision of 
power may be limited to in the short term to replace highly emitting peaking plants. DH allows 

 Centralised,  
District Heating 
Large - scale HP 

Decentralised, 
Individual Heat Pumps 

Decentralised, 
Individual Hydrogen 
(with Boilers/CHP) 

Infrastructure New New/upgraded electric 
distribution 

New/upgraded gas 
distribution pipes 

Heat source Multiple switchable, 
can use waste heat 
recovery 

Single delivered energy 
source 

Single delivered energy 
source 

Capital Costs Low individual cost 
High network cost 

High consumer cost 
High production and 
distribution cost 

Low consumer cost 
High production and 
distribution cost  

Heat storage Unrestricted low cost Consumer restricted 
high cost 

Consumer restricted 
high cost  

System efficiency High because of scale 
economies and basic 
heat pump & CHP 
efficiency. 

Medium because of 
small units and 
availability of 
environmental heat 
sources 

Low due to the need to 
make hydrogen  

Operational Flexibility High flexibility Low flexibility Low flexibility 

 

Consumer practicality Little space, noiseless Significant space, 
potentially noisy 

Significant space, 
potentially noisy 

Economies of scale Network and TES 
efficiency benefits 
from economies of 
scale 

No economies of scale Requires a scaled-up 
supply chain to be 
viable 

Integration with 
cooling 

Requires a cooling 
loop 

Can be reversible  No cooling 

Electricity 
Transmission 

High efficiency HV 
transmission – lower 
transmission costs 

LV transmission, higher 
losses 

HV losses if electrolytic 
H2 

Connection 
requirements 

Requires high 
percentage 
connection to be 
financially viable 

Can be installed 
progressively and 
upgraded later 

Requires high 
percentage connection 
to be financially viable 
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a flexibility of sources enabling ‘low regret’ measures. In the eventuality that gas CHPs are 
superseded, it is possible to incorporate other heat sources once the DH infrastructure is in place 
(Committee on Climate Change, 2015).  

While the current power capacity would be unable to meet peak electrical heating loads if all 
heating were electric, CHP is likely to play a central role in DH in the medium-term. The 
deployment of CHP will be dependent on the extent of electricity decarbonisation and fuel prices 
(Li, 2013). In Denmark where renewable deployment is high, it appears that CHP units are being 
phased out. The capacity of CHP in 2018 was lower than in 2013 and the remaining units are 
envisaged to serve as backup for the Danish power grid. In addition, the number of full-load 
hours for CHPs has been declining to less than half the hours than observed in 2010 although 
this is aided by the fact that it is connected to a wider international grid (Helin et al., 2018). 

DH as a technology means that CHP and heat pumps are not mutually exclusive. The sizing and 
control of TES in CHP and heat pump systems will not be the same. In CHP based systems, the 
goal is to minimise fuel consumption and maximise electricity revenue. Heat pump systems will 
aim to reduce the cost of electricity imports and reduce peak loads. At the consumer scale heat 
pumps installations are expected to rapidly increase (HM Government, 2020). The pairing of 
consumer heat pumps with consumer TES incurs high capital costs and space requirements. 
Additionally, a consumer heat store of 200-400 litres would store several hours of heat demand 
at best, as compared to days or weeks for a DH TES. 

Projections of widespread electrification of heat would provide “favourable” conditions for TES. 
It would facilitate the integration of electric heating. BEIS (2016a) identify the potential for larger 
inter-seasonal TES. They note the potential for coupling conventional (tank) TES with CHP and/or 
HP systems and that the exploitation of electricity prices provides financial incentives for the 
adoption of TES. The benefits of TES for the energy system and carbon emissions are uncertain. 
Knowledge gaps and lack of experience in the UK of TES and inter-seasonal TES have been cited 
as a limitation to further development of TES. This thesis aims to address these gaps. The BEIS 
(2016a) report states: 

“At a whole system level, it would require complex system-modelling to justify any 
statements about a unit of TES (a kWh or kW) equating to a quantity of saved 
carbon” 

In the present system, TES may lead to a small increase in emissions for the DH system as it is 
not 100% efficient. But the balance of emissions should also consider the fraction of low 
emission electricity generation facilitated by the TES. Given the predicted levels of renewable 
deployment and DH penetration, it should in principle, be possible to estimate the impact of 
TES. This is dependent on the operational methods to control heat dispatch and minimise costs. 
It should also be possible to optimise the level of TES, but this will depend on many variables. 
This includes not just the overall heat load, but on the profile of this load and how this 
harmonises with the variability of renewable generation. Strbac et al. (2012) identified that 
different storage types fulfil different functions in the energy system. They show that the value 
of electricity grid storage increases non-linearly with increased renewable deployment and that 
the marginal value diminishes rapidly beyond 6 hours of storage – enough to reduce peak loads. 
However, the cost of TES is far lower than conventional grid scale storage as demonstrated in 
Figure 1.1. As the round-trip conversion of power-heat-power is not feasible, TES is not suitable 
to replace all grid scale storage. But it will be able to displace conventional storage to a 
theoretical maximum of the electrical heating load. Physical TES volumes can become very large. 
Unless there are significant improvements in thermochemical or latent heat storage 
technologies, the capacities required to efficiently accommodate TES are only feasible in DH 
networks. 
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Figure 1.1 Comparison of energy storage costs with TES adapted from Luo et al. (2015) 

1.1.3 The potential of district heating 
Numerous recent studies have assessed the potential for DH in the UK. These studies have 
largely been techno-economic assessments for the viability of DH. An overview of these is 
presented in Table 1.2.  

Poyry (2009) conducted an economic analysis that concluded DH is currently economically 
uncompetitive. However, this was sensitive to the cost of carbon. The analysis consisted mainly 
of gas-CHP and their analysis finds that DH is economically competitive in areas with heat 
demand density (HDD) of 3 MW/km2 or higher. Using this metric, they show that DH currently 
has the potential to supply up to 14% of the national space heating demand.  

DECC’s (2013) ‘Future of Heating’ report, was more optimistic, estimating that “over 20%” of 
national demand or 50 TWh annually of heat could be provided by DH. They used Poyry’s (2009) 
demand density to determine the economic competitiveness cut-off for DH take up compared 
to individual heating technologies.  

Restricted to the domestic sector, Arran and Slowe (2012) conducted a scenario analysis for 
Delta-ee. They combined a building stock model with technology performance data to estimate 
the uptake of DH as an economic decision per household. DH was not the primary focus of the 
study; hence they cover a full range of heat generation and distribution technologies. In their 
most optimistic scenario for full electrification of heating, 34% of domestic heating is from DH 
networks.  

The ETI conducted a spatial analysis of heat demand in Britain to identify zones suitable for DH 
(Woods, 2012). They used a lower threshold for HDD of 2 MWh/km2 based on experience in 
other countries. The identification was used to determine the cost of DH based on the physical 
network and CHP technologies and concluded that as much as 43% of domestic demand could 
be from DH.  

Ricardo-AEA conducted a similar nationwide assessment of district heating potential in the UK 
(Abu-Ebid, 2015). Their scenario analysis leads to a maximum potential of 42% share of heat 
load. They undertook a geographic survey of heating and cooling density and potential sources 
of waste heat. This enabled them to vary the minimum HDD based on geographic conditions. 

Redpoint Energy analysed the potential for different heating technologies under various 
scenarios (Greenleaf and Sinclair, 2012). Using their RESOM model, they show that 11% of 
domestic and 9% of non-domestic heating can be provided by DH in a 2050 least cost scenario.  

BuroHappold have taken another approach to estimating DH development in the UK. Using 
National Grid's scenarios, they show up to 60% of heat delivered via DH (Grainger, 2016). The 
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geographic analysis, while being a cost benefit analysis also captured the transient evolution of 
DH networks. This included practical constraints such as limited construction speeds and the 
stage of infrastructure development. 

In a study commissioned by the Committee on Climate Change, Foster et al. (2015) conducted 
an in depth analysis of DH potentials and projections. This included an economic analysis of the 
heat and energy market, identifying barriers and externalities that affect the uptake of DH. The 
scenarios used reflect their economic analysis with differing levels of policy interventions to 
facilitate uptake. They also looked at the effect on uptake of DH with electricity grid capacity 
limitations. 

Table 1.2 Studies on district heating’s potential in the UK 

 

Institution/Author Method/Study 2050 Technical potential Technologies 

(DECC, 2013) 
DECC Future of heat 
 
 

Building stock Cost benefit 
analysis 

20% domestic Gas-CHP 

(Greenleaf and 
Sinclair, 2012)  
Redpoint 

Resom least cost 
optimisation 

11% domestic  

9% non-domestic 

 

Full technology 
range 

Macadam et al. 
(2009) 
Poyry 2009  
 

Building stock Cost benefit 
analysis 

14% of national Primarily gas CHP 

(Arran and Slowe, 
2012)  
Delta EE 
 
 

Building stock Cost benefit 
analysis 

34% domestic Full technology 
range 

(Woods, 2012) 
ETI 

Geographic HDD survey 43% of national Primarily gas CHP, 
HP, and waste 
heat recovery 
 

(Abu-Ebid, 2015) 
Ricardo 

Geographic HDD survey  
Cost benefit analysis  

 

42% of national Primarily gas and 
biomass CHP, HP, 
and waste heat 
recovery 
 

(Grainger, 2016) 
Buro Happold 

Geographic spatial 
optimisation capturing 
evolution  

60%  - Gone green 

50% - Slow Pro 

25% - Consumer Power 
 

Full range but 
Primarily HP 

(Foster et al., 2015) 
Element energy for 
the CCC 

 

Spatial cost benefit 
analysis and TIMES least 
cost optimisation 

25% - High scenario 

18% - Central scenario 
 

Full technology 
range 
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In summary, there have been two main approaches that have been used to analyse the potential 
uptake of DH in the UK. The majority of studies use a full geographic analysis of HDD and suitable 
locations for DH. Then use this as the basis of a cost benefit analysis with varied detail in the 
geographic survey and the economics of DH against counterfactual heat supply options. The 
geographic analysis is typically based on a highly disaggregated bottom-up model of the building 
stock such as Arran and Slowe (2012) or Woods (2012). The other main form of geographic 
analysis is a GIS survey of heat maps and waste heat locations, identifying suitable zones such 
as in Grainger (2016) or Foster et al. (2015). The cost benefit analysis here was largely based on 
the estimated levelised cost of DH compared to either existing or other low carbon technology 
options.  

While some of these studies recognise the benefits of TES, they are only able to, at best, estimate 
the cost reduction of heat supply that is enabled by the extra flexibility provided by storage. 
Similarly, the operating costs of DH are estimated based on prior experience and projections of 
fuel and electricity costs. These assumptions can be critical to a cost benefit analysis of DH. On 
the other hand, the integrated cost optimisation models that do look at system costs, such as 
Greenleaf and Sinclair (2012) or Foster et al. (2015) do not capture the benefits of TES to the 
electricity supply and thus may overestimate the required generation or grid storage capacity. 

To obtain a more accurate depiction of DH operating costs, a high temporal resolution analysis 
is needed. This enables the exploration of cost reduction benefits from increasing flexibility. Any 
such analysis with HP based DH must also be an integrated analysis covering the electricity 
sector. This is because the capacity requirements and generation mix will affect the resulting 
system's electricity costs. These costs in turn, are what would drive the operation of DH heat 
pumps in conjunction with TES. 

1.1.4 The future of district heating 
There has been much speculation as to why DH is not established in the UK. Kelly and Pollit 
(2010) posit that this has resulted from competition from other fuels and has suffered from 
privatisation of the electricity sector and the government’s failure to create a heat market. 
Another factor is said to be that the limited availability of capital for long term investments. In 
2015 the UK government made available £320 million of funding through the Heat Network 
Investment Programme (HNIP). The HNIP is expected to drive a further £2 billion in investment 
for the construction of new DH (BEIS, 2016b). The government’s clean growth strategy (BEIS, 
2017a) recognises the need for a complete decarbonisation of heating to meet its emissions 
targets. The report presents a number of scenarios where it envisages 1 in 5 domestic and non-
domestic buildings connected to low carbon DH. 

While the current DH infrastructure is limited, an electrified future for heating requires 
coordinated integration with the electricity system. A higher DH penetration will certainly have 
a significant impact on the national energy system. There is an urgent need to transition towards 
low carbon heat. The Committee on Climate Change (2016) recommends that low regret 
measures be taken now to meet the UK’s emission targets. DH are a low regret option in that 
can enable immediate gains through efficiencies of scale and do not cause long-term fuel lock-
in. 

Any route towards decarbonising heat will have to be preceded by planning for both the national 
and local infrastructure. Whether this is for expansion of power generation capacity and 
reinforcement of the grid, hydrogen production and storage facilities, or DH networks. This 
raises the question of how to approach the expansion of DH in the country. The current decade 
has been described as a period of experimentation before commitment to any single strategy 
(Climate Change Committee, 2016). Table 1.1 demonstrates that there are many advantages to 
the adoption of DH in the UK. Recent policy and incentives such as the HNIP are indicative of 
government support towards DH networks.  
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It is thus in this context that this study aims to explore and broaden the understanding of the 
potential for DH in the UK. This includes how to build out DH to minimise system costs, emissions 
and ensure long-term resilience of DH systems. With the increasing deployment of renewables, 
flexibility is becoming increasingly important. The integration of DH with the electricity system 
will need to be assessed to explore the role of DH in low carbon system. 

1.2 Integrated Energy Systems 
To determine the role of DH in a low carbon system, requires modelling the heating sector in 
conjunction with the wider energy system. If the provision of heat were to become dependent 
on the supply of electricity, it is crucial that they work in coordination to ensure security of 
supply. A central supposition of this research is that electrification of heating can provide 
valuable flexibility for the electricity grid to achieve this. This coordinated operation of an 
integrated energy system is often referred to as a ‘smart grid’ or ‘smart energy system’ (Lund et 
al., 2014). 

Much of the recent research into DH has been led by the Department of Planning at Aalborg 
University, Denmark. They have instigated a new paradigm in DH centric research, 4th 
generation DH, and host the largest annual conference on the subject. A key aspect of 4th 
generation DH includes the ability to aid in decarbonising energy systems and that they should 
be built to facilitate this (Lund et al., 2014). This is echoed by various other authors who identify 
that the direction of research should focus on integration with renewable sources and other 
supply grids (EKRC, 2014; Rezaie and Rosen, 2012). 

 
Figure 1.2 Overview of the evolution of district heating adapted from Lund et al. (2014) 

The Heat Roadmap for Europe argues the case for DH networks to feature significantly in a 
decarbonised system (Connolly et al., 2014). The authors emphasise the need for integration 
and harmonisation with the electrical network. To achieve high levels of system efficiency, it is 
necessary to manage peak loads on the electrical grid and harmonise it with DH. For large scale 
integration of DH, it is essential to meet the challenge of coordinating energy production. 
Whether that be from CHP or heat pumps as this will have an impact on the electric grid. 
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Improved forecasting now enables more accurate predictions of renewable generation. When 
paired with demand forecasting, such a system would operate through coordinated and 
intelligent control of resources. There has been a recent growth in published work and review 
papers on the development of DH (Galatoulas et al., 2018; Lake et al., 2017; Rezaie and Rosen, 
2012; Rismanchi, 2017; Sayegh et al., 2017; Tereshchenko and Nord, 2018). There has also been 
interest from many large city municipalities in the use of DH to decarbonise urban areas 
(Rismanchi, 2017). These reviews all present a variant on the idea of integrating DH for future 
energy systems.  

1.2.1 Integrated energy system studies 
The focus on integration of heating with the electricity system has grown alongside emissions 
targets. Renewable generation technologies provide a clear route to decarbonising electricity. 
Lund (2018) explores various renewable heating strategies and their significance for system 
flexibility. The study shows the superiority of a whole-system approach to decarbonise 
electricity. For example, the inherent storage capacity of the existing gas and DH networks is far 
larger than the electrical network.  

Sneum and Sandberg (2018) considered the financial incentives of integration with the 
electricity system in Nordic countries. The authors argue that DH operators should be 
economically incentivised (by the grid) to provide flexibility. They consider revenue from heat 
and electricity comparing plant configuration and flexibility. They find that TES is essential to 
reduce costs. In the context of this research, they show that this can be achieved via dynamic 
tariffs. This would incentive DH operators to provide flexibility.  

Electrified DH in Sweden was investigated by Schweiger et al. (2017). The authors stated that 
there is little analysis on the electrification of DH in Sweden. They identify that there is a 
difference in the theoretical potential to electrify - which amounts to the total heat load from 
DH, and the technical potential - which is the total of the negative residual load from renewable 
generation. The study simulated the operation and loads of the Swedish power and DH networks 
using fixed electricity costs. Their model prioritised TES charging when storage capacity was low. 
They found that access to TES substantially increased the technical potential and concluded that 
Sweden has favourable conditions for the electrification of DH. Another Swedish based study on 
DH used hourly electricity spot prices to determine the levelised cost of heat for DH. They 
consider several scenarios and investigate their economic feasibility (Hennessy et al., 2018). 

A study of DH in Germany looked at integrating DH with renewable electricity (Böttger et al., 
2014). They compare hourly heat demand to the negative residual loads from renewable 
generation. Looking at various scenarios, the investigation consisted of a synthesised heat load 
and they assumed a constant electricity demand. Where negative residual loads coincided with 
heat demand, this was used directly for heat. Further surplus generation is allocated to storage. 
The authors conclude that around 50% of the current DH load in Germany can be efficiently 
electrified. 

Gudmundsson et al. (2018) looked at the role of DH in integrating renewable generation in 
Denmark. They concluded that increased use of heat pumps would necessitate the better 
integration of the two sectors. 

1.2.2 Flexibility and thermal energy storage 
The subject of flexibility for the electricity system is under increased examination, particularly in 
places where renewable deployment is high. The key issues from an energy systems perspective 
are: determining a measure of flexibility, how much flexibility is required and how this flexibility 
can be provided? Kondziella and Bruckner (2016) state that identifying an accurate 
quantification of flexibility requirements is a complex problem. They classify flexibility options 
as falling within six broad categories: 
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1. Fast ramping power generators (supply side) 
2. Increasing the spatial range of the grid (supply side) 
3. Grid scale energy storage (supply side) 
4. Curtailing surplus renewable generation (supply side) 
5. Demand side management (demand side) 
6. Integration of other energy sectors (demand side) 

 

Table 1.3 Review of electricity grid flexibility studies 

 

Table 1.3 is an overview of some studies on achieving flexibility for renewable electricity. Each 
flexibility option has its own costs and technical limitation. Determining a hierarchy for flexibility 
options is not straightforward. To efficiently achieve high fractions of renewable generation will 
require a combination of these. Among the integration of other sectors, the provision for heat 
supply has a very large potential capacity. TES increases the flexibility of heat demand and has 
been studied as an option for providing flexibility in other mainly European countries. 

An analysis of the German electricity system identified that a higher level of integration between 
heat and power sectors is a ‘favourable’ solution (Gils, 2015). This was particularly the case with 
large amounts of wind generation. 

The use of TES with CHP as a method to increase flexibility has been the subject of many studies 
(Anna et al., 2018; Fang and Lahdelma, 2016; Hast et al., 2017; Noussan et al., 2014; Reynolds 
et al., 2018; Wang et al., 2015). Research that has looked at TES in the context of the energy 
system has demonstrated its ability to reduce system-wide emissions. In Denmark, it is shown 
that the flexible demands of heating can enable the country to reach very high levels of 

Study Location Flexibility type Key result 

Comaty (2013) Pan-European Spatial range Savings from distributed 
renewable generators. 

Connolly et al. (2012) Ireland Grid scale storage Pumped hydro can permit 
20% wind penetration at 
no increased operation 
cost. 

Denholm and Hand (2011) Texas, USA Grid scale storage Storage capacity 
equivalent to daily 
demand needed to limit 
curtailment below 10% 

Silva Monroy and Christie 
(2011) 

Model ‘Isolated 
island’ 

Grid scale storage Storage alone able to 
increase  wind 
penetration up to 1/3. 

Villavicencio (2017) France Grid scale storage Storage reduces costs of 
integrating renewable 
generation into system. 

Drysdale et al. (2015) UK Domestic demand 
side management 

DSM measures 
potentially 60 TWh of 
flexibility. 

Strbac et al. (2012) UK Grid scale storage Value of storage increases 
non-linearly with 
increased variable 
renewable generation. 

Sanders et al.(2016) UK Multiple flexibility 
options 

Flexibility reduces cost of 
balancing and improves 
utilisation of renewables 
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decarbonisation with the use of TES and has holistic benefits as a flexibility solution (Hedegaard 
et al., 2012; Lund et al., 2010). 

In the UK, it is recognised that it will become increasingly difficult to incorporate larger amount 
of renewable generation without sufficient flexibility and this may limit the growth of 
renewables (Cox, 2009). A report for the Carbon Trust assessed a range of flexibility options for 
the UK electricity system (Sanders et al., 2016). It factored the uncertainty of generation 
capacities and long-term demand. The main findings highlight that deployment of flexibility 
systems in the UK can have a significant cost saving. They reduce the cost of system balancing 
and improve the utilisation of renewable generation. The cost savings were estimated to be in 
the region of £2 billion per year in operational costs and the avoided costs of not having to 
increase generation capacity and network reinforcement. The authors highlight that faced with 
uncertainty; the safest strategy is to utilise a mixture of flexibility initiatives. This includes 
extension of the grid with extra interconnector capacity.  

Barrett and Spataru (2013) studied the storage requirements for the UK with a whole systems 
model. The authors described a high renewable scenario with a range of storage types and noted 
that their performance can be highly nonlinear. Storage from multiple sectors such as transport 
was included. They estimate that the building stock contains in its fabric 1 TWh of thermal 
energy storage per degree of temperature change. Altogether, the storage capacity was 
estimated to be around 6.8 TWh. It was concluded that thermal and chemical stores have a 
larger capacity potential than electrical storage. Finding the appropriate configuration of 
storage, accounting for power ratings, performance and timescales remains a key challenge. 
Other estimates show that if every dwelling in the UK had three hours provision of TES, this 
would be equivalent to 36 GWh of storage for the grid (Eames et al., 2014). Quiggin and Buswell 
(2016) modelled the electrification of space and water heating to investigate demand side 
management in the UK. They cite that existing studies to date had failed to capture the problem 
in sufficient resolution. They suggest that demand side management alone is not adequate to 
ensure security of supply and heat demand must be reduced to achieve this. 

Strbac et al. (2020) identified the challenges of a highly variable renewable system. They 
highlight the importance of flexibility and review the various options to achieve a low carbon 
system. The authors present findings from prior studies. They estimate the value of energy 
storage and suggest that 25 GWh of capacity could be worth £15 billion per year to the system 
by 2050. They also show that sector coupling such heat and power is imperative to achieve highly 
renewable systems. A complementary study by Pöyry demonstrated that under 2030 emissions 
targets, flexibility solutions could potentially be worth £4.7 billion per year (Shakoor et al., 2017). 
This was via a reduction in capacity requirements and lower operating costs. Another study for 
the Climate Change Committee (Strbac et al., 2018b) highlighted the importance of system 
flexibility. They show that 58 GWth of domestic TES reduces the electricity storage requirements 
from 55 to 10 GWe. 

1.2.3 Flexibility research gaps 
There is plenty of recent research on flexibility requirements for renewable systems in the UK. 
But research into TES has largely focused on individual DH systems or domestic storage. There 
exists a gap in the research with respect to using large scale TES as a provision for flexibility for 
the electricity system. This includes to what extent it could be integrated into the energy system. 

Researching the potential of TES requires the use of adequate tools and investigation 
techniques. This needs to combine heat and electricity sectors as well as adequately capturing 
the dynamics of storage. Many existing models that combine both sectors inadequately embody 
storage potential. This is largely due to their low temporal resolution or only focusing on one 
solution in isolation(Grünewald et al., 2012).  

TES with heat pumps, in addition to decarbonising heating can also increase flexibility for the 
electrical system. DH enables the connection of large, centralised capacities of both. However, 
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the use of TES as a means for providing flexibility as an energy storage mechanism requires more 
analysis. 

1.3 Energy System and District Heating Modelling 
Classifying models can help identify what kind of model is appropriate for a given purpose. Some 
models can fall into more than one category. A first such category can be assigned by identifying 
the purpose of the model. This normally relates to the questions they were created to answer 
such as forecasting or exploration. Forecasting models are essentially those models whose 
primary purpose is to make predictions of future outcomes based on observations and 
extrapolations of historical data. These models are generally suitable for short term predictions, 
using constant parameters (Van Beeck, 2000). Exploration models are typically used for scenario 
analysis. The effect of interventions or altering actions to the base case are measured. 
Assumptions or measures are required to determine the effect of interventions. Typically a 
sensitivity analysis is provided to quantify assumptions (Neshat et al., 2014).  

Complementing these classifications, Pfenninger et al. (2014) identify the underlying 
methodology and paradigms used in these models. They state that simulation methods are best 
used in forecasting models to predict the evolution of a system from the current base case. 
Accounting methods are usually seen in exploration models. This is where the modelling 
accounts for the effect of interventions and does not necessarily produce optimisations. As a 
subcategory of exploration models, backcasting methods are usually used for more long-term 
analysis. This is where future scenarios or specific targets are constructed, such as an emissions 
level. The model then determines the steps or path required to achieve this state. This is an 
alternative method to forecasting and is typically used with economic optimisation models 
(Bibri, 2018). In backcasting, the optimisation methods are used to form normative scenarios 
and typically involve a large range of variables to find cost or energy optimal combinations to 
achieve a particular scenario. 

Another distinction is the analytical approach in constructing the model, bottom-up or top-
down. In the context of energy models this differs with the level of detail and data in the 
construction of the model. Top down approaches are typically less data intensive, with less detail 
in their construction. Functions are described as aggregates of variables such as the total energy 
demand of a sector. Bottom up approaches tend to require more data and are a more 
descriptive. They account for each variable in a function, such as a disaggregation of energy 
demand from each actor in a sector. Simplifications need to be made as the real world can never 
be fully simulated. There is always a trade off between speed and accuracy in computation. The 
distinction is important depending on the aim of the model such as prediction or exploration 
and models can include a combination of each approach (Vega, 2018). 

Another classification is the approach towards uncertainty in the model - deterministic or 
stochastic. Pfenninger et al. (2014) differentiate between aleatory uncertainty, i.e. random 
events and epistemic uncertainty, such as insufficient data. Aleatory uncertainty can be dealt 
with using deterministic methods and varying parameters to determine sensitivities. But 
another approach is to allow variables to take a distribution of ranges rather than fixed-
deterministic values and building probability into functions – the stochastic approach. 

There are many more classifications and categories of models that can be described. Some of 
the fundamental distinctions concerned with energy models are covered here. It is important to 
note that very rarely does a model fit neatly into one category with many large models 
incorporating methods that could fall into multiple categories. The choice of what approach to 
use is driven by the aim of the model, the data available and the epistemic approach to building 
the model. 
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1.3.1 Modelling approaches 
A review of modelling approaches is conducted prior to developing a custom research model. 
The review is limited to selected, major, current models that include heat and electricity sectors. 
They are assessed for both methods and viability in aiding the research.  This review can be 
approached in two ways; with respect to studies that have explored similar questions, and those 
which have used similar methods, but explore a different topic. 

The reviewed models are categorised into two main types; there are a group of exploration 
models that cover the whole energy system. These are typically designed bottom-up with a focus 
on long term analyses of technology uptake. As a result, these normally have low temporal 
resolution. They also usually focus on economics and are used as policy guidance tools such as 
UK Times, ESME, RESOM and Balmorel. These types of models compare the costs of various 
technologies and their trade-offs and can aid in system design. The representation of DH is 
normally basic and not used to make any inferences about the design of DH. The other group of 
models tend to be forecasting models, normally with a narrower sector focus. They require a 
higher temporal resolution. Examples include SIVAEL, Enneralt, GTMax and RAMSES, all of which 
simulate the electricity network. These models can aid in the design and configuration of DH 
from the perspective of the operator. Table 1.4 contains an overview of the functionality of 
relevant models covered in the review. 

The UK Times, RESOM and ESME models are all bottom-up exploration tools for the UK energy 
system. They consist of large databases of technologies and economically optimise variables 
based on given constraints. These models capture elements of DH and renewable electricity 
generation. But the detail and temporal resolution make them an unsuitable analysis tool for 
the research problem. A similar assessment can be made of OSeMoSYS. Even though it is open 
source, significant changes and adaptations would be needed. Balmorel is an economic analysis 
tool that covers the whole system. It has a detailed representation of DH as it has been used 
mostly in Baltic and Scandinavian countries. The temporal resolution is flexible depending on 
the type of analyses required. Variable renewable generation, however, is not represented 
endogenously. It is primarily an economic analysis tool and a UK localisation does not yet exist. 

DynEMo is a versatile model and has a high temporal resolution. It couples heating with 
renewable generation and captures storage dynamics. It has a whole system approach; hence it 
does not model DH in great detail. Enneralt a forecasting model, is primarily built for the Nordic 
electricity sector. It has a high temporal resolution, but DH representation is primarily for CHP 
based networks. Similar features and approaches are seen in other forecasting models - SIVAEL, 
GTMax and RAMSES. EnergyPRO is a commercial package but only suitable for single plant 
operation and analysis. 

EnergyPlan is a whole system model with localisations for many countries, including the UK 
available. It simulates the operation of the national system at hourly resolution and has a full 
representation of DH and TES. The operation and heat dispatch have been programmed based 
on heuristics. This keeps computation times to a minimum and is thus fully deterministic. 
EnergyPlan is suitable to address the wider research area. It could be an alternative to compare 
with, particularly to analyse integration of TES into the electricity system. Remod-D also has 
many desirable features for the context of this research project. It is a whole system forecasting 
model but simulates at high temporal resolution. Includes a detailed representation of DH, 
including TES. It is primarily used to find a cost optimal solution of the energy system 
(Fraunhofer, 2019). A strength of this model is the ability to capture the investment of building 
retrofit measures. 

Many of the models were not available for use. Some were commercially available or charged 
for licenses, while others were for internal use only. The only models that are publicly available 
or open source that were reviewed are Balmorel, Osemosys and EnergyPlan. The Balmorel and 
Osemosys are open-source models that could potentially be adapted for use, but significant 
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adaptation of the models is required. EnergyPlan and Remod-D should be studied to aid the 
development of this research. 

Table 1.4 Comparison of existing models’ functionality 

 

1.3.2 Modelling conclusions 
Table A-1 in Appendix A contains a detailed overview of all the models covered in the review, 
emphasis is given to the purpose of the models from the classifications described, the methods 
to model electricity generation, heat demand and DH allocation as well as the optimisation 
methods employed. The availability and suitability to address the research area was also 
scrutinised. The models are restricted to those covering the power and heat sectors, either on 
its own or representing DH as a subsector of the heat sector. None of the models explicitly 
couple heating demands and renewable electricity generation with meteorological data, nor do 
any models simulate the operation of heat pumps and thermal energy storage based on 
electricity spot prices, thus considering the configuration of the electricity system. 

This research addresses these gaps by developing a model that optimises DH configuration for 
electrified heat by operational costs from electricity network spot prices, therefore including the 
configuration of the electricity system. The inclusion of electricity spot for operation has been a 
feature of existing models, however the novelty here comes from the predicted spot prices for 

Model Focus DH 
Included 

Dispatch 
optimis-
ation 

Electric. 
spot 
prices 

Include 
TES 

High 
Temp 
Reso-
lution 

Can use 
historic 
time- 
series 

UK local-
isation 

Couples 
Heat & 
RenGen 

DynEMo 
  

Whole 
system 

Yes Yes No Yes Yes No Yes Yes 

Balmorel 
  

Whole 
system 

Yes Yes Yes Yes Yes No No No 

Enneralt 
  

Electricity Yes Yes Yes No Yes No No No 

UK Times 
  

Whole 
system 

Yes No No No No No Yes No 

SIVAEL 
  

Power Yes Yes No No Yes No No Yes 

RAMSES Electricity 
and DH 

Yes Yes Yes No Yes No No No 

EnergyPlan  Whole 
system 

Yes No No Yes Yes Yes Yes No 

EnergyPro 
  

Electricity Yes Yes No No Yes No Yes No 

REMod-D 
  

DH and 
electricity 

Yes Yes No Yes Yes Yes No No 

OSeMOSYS 
  

Whole 
system 

No No No No No No Yes No 

RESOM Whole 
system 

Yes No No Yes No No Yes No 

ESME Whole 
system 

Yes Yes No Yes No No Yes No 

GTMax 
  

Electricity 
and DH 

Yes Yes Yes No Yes No No No 
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a future energy system. As many of the whole system models have previously done, DH 
penetration will be modelled from a system perspective but with higher detail in the potential 
of TES to manage residual variable generation and reduce electricity generation costs. 
Moreover, the novelty introduced by this project will include a realistic coupling of renewable 
generation and heating loads via the use of hourly weather data. The hourly resolution has been 
used in existing models and is sufficient to capture the dynamics of storage. 

1.4 Research Design 
Research on the national potential for DH deployment has typically not analysed it from a 
systems perspective. The studies that have done so, do not fully capture the benefits of 
integrating heat with the electricity and the trade-offs for TES as a means of flexibility. Most of 
the cost-benefit analyses have not been able to fully account for the cost benefits of TES. 
Further, the current research has given little guidance on how these systems should be designed 
to ensure future proofing and harmonising with the wider system. The research that has given 
guidance on what kind of heating technologies to use, for similar reasons have not fully 
incorporated the effects of TES and renewable variability on operation. 

Flexibility has been shown to be vital in achieving high penetrations of renewable generation in 
the electricity system. Despite this, there has yet to be a full investigation into the effectiveness 
of TES to support this. Finally, the review of existing tools and models has shown their limitations 
to analyse the impact of large-scale TES incorporated into DH networks on the electricity grid. 

This thesis aims to address these knowledge gaps. It will fill a gap in research on the use of TES 
and DH to manage grid flexibility. Investigating the configuration of DH for a future low carbon 
system while maximising benefits and minimising operation costs to uncover their full potential. 
This will be achieved by developing a high-resolution DH and electricity network model for the 
UK that directly couples the variability of heat demand and renewable generation through the 
underlying weather patterns. 

1.4.1 Research aims 
The aim of this thesis is to investigate the role of electrified DH in a future low emission and high 
renewable energy system in Great Britain (GB – England, Scotland and Wales, excluding 
Northern Ireland which has  a separate grid). Highly renewable systems are likely to have 
variable electricity generation. This variability will lead to fluctuations in electricity prices. Under 
the assumption that DH networks will be designed and operated on a cost minimisation bases: 

To what extent can DH with heat pumps and TES exploit the variability in demand 
and electricity prices to minimise operating costs and how should they be designed 
to achieve this?  

To address this, a series of studies and models will be required with several sub-objectives: 

1. The Heat Load Model (HeLoM): 
a. Creates a representative time variable DH heat demand considering the areas suitable 

for DH deployment and the mix of demand this comprises 
b. Synthesises an hourly national (GB) heat demand profile to provide inputs for further 

modelling 
c. Determines how the DH load profile differs from the national profile. 

2. The Electricity Cost Model (ElCoM): 
a. Collates a suitable scenario to determine the demand characteristics and generation mix 

of a highly renewable, all-electric, net zero compatible scenario.  
b. Provides a storage or flexibility baseline to later contrast with the inclusion of DH. 
c. Devises a methodology to estimate the time varying cost of electricity supply and 

estimates the resulting cost of electricity supplied to DH and consumers. 
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3. The District Heating Model (DiHeM): 
a. Devises a suitable DH simulation with control algorithms using hourly heat demand and  

electricity costs as inputs to minimise operating costs.  
b. Determines the optimal DH configuration in terms of HP and TES capacity. 
c. Estimates the resulting levelised cost of heat from DH. 

An extension of this modelling will be to analyse how a significant DH presence may impact the 
electricity system. This can be used to assess the impact of DH and TES on the national electricity 
system to explore the value of flexibility provided by DH as described in the review: 

What is the impact of a significant DH deployment on the electricity system, how much 
flexibility can it provide and to what extent can it supplant grid storage? 

This will require using the outputs from DiHeM as input for ElCoM and the integration and 
coordinated operation of the two models. 

4. Model integration: 
a. Devise a suitable coordinated operating regime for the integrated system. 
b. Estimate the change in peak and total electricity demand for heat with increased DH 

deployment. 
c. Assess the change in the cost of heat provision with varying DH deployment. 
d. Estimate the impact of DH in reducing the renewable generation deficit and the ability 

of TES to replace grid electrical storage. 

1.4.2 Research design 
The design is driven by the need to investigate the potential of DH considering the effects of 
integration with the electricity system. As the variability of renewable generation, particularly 
wind, can occur at over the time period of hours, the full impact of operating DH with TES can 
only be realised at high resolutions. Figure 1.3 shows the system boundaries of the project and 
the detailed modelling requirement that is needed to simulate the impact of each sector on the 
other.  

 
Figure 1.3 Modelling system boundaries and energy flows 
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The three models are-soft linked with data flowing from HeLoM and ElCoM models into DiHeM. 
An integrated exploration of the impact of DiHeM on ElCoM system is later undertaken. 
Meteorological data is an exogenous input for both the heat loads and electricity module. Using 
meteorological data, couples the heat demand to renewable power generation. This coupling is 
a fundamental feature of this study that distinguishes it from other such studies. Another novel 
inclusion in this model is the operation of DH based on upstream cost signals from the electricity 
network. A summary of the modelling assumptions used in this study is provided in Table A-2. 

1.4.3 Heat Load Model - HeLoM 
The Heat Load Model – HeLoM, takes meteorology variables - hourly ambient temperature, wind 
speed and solar irradiation, combined with heat use activity patterns as an input and outputs 
heat load. This forms an input for the other modules. It will be constructed bottom-up, using 
building archetypes applied to a thermal simulation, which needs to capture a high temporal 
resolution. The development will draw on existing archetypes and building surveys. It needs to 
be disaggregated by area to split out urban-DH heat loads. 

 

1.4.4 Electricity Cost Model - ElCoM 
The Electricity Cost Model - ElCoM, inputs capacity factors that have been correlated to 
meteorology to simulate the grid and output marginal costs. It is defined using scenarios to set 
the generation and storage mix. The electricity market prices are assumed to reflect marginal 
costs. This work will be an original contribution of this project. The electricity market prices are 
intended to be used by the DH module to operate and control the dispatch of heat. 

 

1.4.5 District Heating Model - DiHeM 
The District Heating Model - DiHeM connects the supply and demand components from the 
other modules. It will take the data provided from the other modules and output costs based on 
the configuration of DH for which it has been designed to explore. The design of the operational 
control method will form an important aspect of this module. It is initially proposed that this be 
a standalone module. As an extension, integrating this with ElCoM would be necessary to 
analyse the impact on the electricity system.  
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Box 1.1 Economic terminology: the difference between Cost and Price 

 

1.5 Thesis Structure 
Chapter 1 has covered the rationale and defined the research problem for this thesis. Chapter 2 
covers the development of Heat Load Model - HeLoM which serves as the basis for demand in 
the following chapters. Chapter 3 is the Electricity Cost Model - ElCoM. This develops the 
dispatch and cost methodology for electricity prices which are used to operate DH. It also 
develops a zero-emission scenario in which the heat load forms the basis of consumer HP 
demand. Chapter 4 covers the District Heating Model - DiHeM. DH simulation and operational 
control of the HP-TES system is developed. Chapters 2, 3 and 4 are designed such that they can 
be read independently as standalone sections. An exploration of system integration is covered 
in Chapter 5 with a discussion of the work presented in this thesis with key conclusions and 
recommendations. 

 

The terms ‘cost’ and ‘price’ are used frequently in this thesis from Chapter 3 onwards. The 
distinction between them is significant in the context of this research. In common parlance, 
they are used interchangeably. The Oxford English Dictionary (2001) gives the following 
definition: 

“A Price is the amount of money required or given in payment for a commodity 
or service” and the “Cost is the expense incurred to attain a particular goal” 

Expanding upon this in the context of this research, a cost refers to the value of inputs to an 
enterprise and following from this, marginal costs represents the value of adding a unit of 
production to a system which might have multiple enterprises. 

The price refers to the value paid for an output of an enterprise. In theory, in an efficient 
market, this is equal to the marginal cost. For the marginal consumer (at the intersection of 
the supply and demand curves) this price is exactly what they are willing to pay for the good. 
All other consumers consuming would have been prepared to pay a higher price. The 
cumulative difference between these higher prices and the optimal price is known as the 
Consumer Surplus, a measure of the benefit to consumers collectively. 

Similarly, the optimal price is paid to all producers producing the good. For the marginal 
producer (at the intersection of the supply and demand curves) the price exactly equals their 
total cost of production. All other producers producing have lower production costs than 
this. The difference between such a lower cost and the optimal price is the profit made by 
the producer; the marginal producer makes no profit (and no loss). The cumulative profit is 
known as the Producer Surplus, a measure of the benefit to producers collectively. 
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2 HEAT LOAD MODEL 

Chapter Summary 
This chapter details the development of the Heat Load Model (HeLoM). Estimation of spatially 
disaggregated heat demand is needed for the development of local energy distribution 
infrastructure. A significant heat pump deployment would require the electricity distribution 
network to have sufficient capacity, and similarly in the event of hydrogen heating. It can also 
aid in identifying and planning areas suitable for district heating infrastructure. The temporal 
variation of heat demand is important when considering the operation of storage within district 
heating and the electrical grid. The difference between the national and urban heat demands 
profiles will vary due to the type and occupancy of buildings leading to temporal variations which 
have not been widely surveyed. A review of existing national and urban heat load modelling is 
first presented with a focus on the modelling methods and datasets used. This leads towards 
identifying the appropriate datasets, archetype segmentation and characterisation for the 
domestic and nondomestic building stock. The segmentations and archetypes for both domestic 
and nondomestic stock are described alongside the spatial disaggregation used. 20 domestic 
and 12 nondomestic archetypes in 11 GB weather regions are applied to a thermal model and 
calibrated on the local scale using gas consumption statistics. The annual national heat demand 
was closely aligned to other estimates and the peak demand was estimated at 219 GWth. The 
urban heat demand was found to have a lower peak to trough ratio than the national demand. 
This may have important implications for the uptake and design of district heating. 

2.1 Model Objectives 
Hourly space heat and hot water demand estimates are required as an input to the modelling in 
following chapters. This includes the electrified heat load for electricity scenarios and for district 
heating (DH) loads. These demand profiles will differ. The DH loads will primarily be composed 
of urban areas. The remaining load can be assumed representative of the national demand and 
extrapolated as such. These requirements can be summarised as: 

a. Capture the entire hourly national space heat and hot water load based on historic 
meteorological data 

b. Disaggregate the urban load as a proxy for DH demand  

The demand is to be derived from meteorology data, primarily external temperatures, and wind 
speeds. Urban loads are split out as these are typically the areas with the highest heat demand 
density (HDD). DH networks are generally more economically feasible in these high HDD areas 
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with lower costs per unit of heat. The disaggregation of urban heat loads will be achieved 
through a spatial disaggregation with the highest ranked HDD areas assumed as being urban. 

The temporal variation is crucial when considering the operation of energy storage. It is 
surmised that there will be differences in the shape of the daily load profile between the urban 
and non-urban areas. This is due to the differences in the type and occupancy of buildings. The 
differing use patterns will lead to temporal variations. This difference has not been widely 
surveyed. Thus, the requirement is for the model to encompass both a high spatial and 
temporal – ‘spatiotemporal’ – resolution. 

Industrial and (some high-temperature service sector) heat loads are omitted from this study. 
They are likely to fall outside of urban areas and the heat demand is usually of a higher 
temperature than that of space and water heat, or what would be appropriate to be supplied 
by DH. 

2.2 Literature Review of Heat Load Modelling 
Most recent national heat demand studies have focused on domestic heating. Space and hot 
water heating accounts for 40% of energy demand in the UK with the domestic sector making 
up just over two-thirds of this (BEIS, 2020b; Climate Change Committee, 2016). Building stock 
energy simulations range from highly detailed simulations of individual buildings which require 
detail in geometry, fabric, and usage, up to the scale of the entire building stock containing many 
built form types, ages, construction methods and uses in which limited data exist on the 
characteristics and spatiotemporal energy demand. 

In building energy modelling, top-down models normally explore the inter-relationship of 
demand with key factors such as construction age or demography, this can be described as a 
deductive method (Sousa et al., 2017). Bottom-up models tend to disaggregate the components 
of energy demand into its various components, often employing a building physics based 
approach (Kavgic et al., 2010). A notable example used for the UK is the BRE’s Domestic Energy 
Model (BREDEM) and has been extensively validated (Anderson, 2002; Henderson and Hart, 
2013). At higher spatial resolutions, the impact of an individual building is greater and thus the 
need for accuracy increases. The bottom-up approach is hence preferred by designers and 
planners. However, it can be difficult to calibrate and validate such models without large scale 
data collection, which can often be impractical on such a scale. For this reason, many building 
stock energy models use building archetypes as a representation of a statistically average form 
of a typology that can be multiplied to the national stock scale. Most building energy models 
aggregate energy demand from many buildings and can provide estimates of energy use if the 
ratio of built form types is altered. 

To highlight the growing importance of this field, there have been several reviews of building 
stock energy models conducting in recent years (Kavgic et al., 2010; Keirstead et al., 2012; 
Reinhart and Davila, 2016; Sousa et al., 2017). Reinhart and Davila (2016) review the design of 
existing bottom-up building stock energy models. They describe the steps required to construct 
such models as:  

1. Data input and organisation 
2. Thermal modelling 
3. Result validation 

They identify the information that is required to generate building energy models. This includes 
regional weather data, building form, construction and operation data and finally building 
occupancy or usage. To estimate future demand, inferences have to be made regarding the 
building stock and climate conditions. The authors state that the biggest challenge for such 
models is in the definition of the archetypes to recreate the simulated building stock 

In the review of Kavgic et al. (2010), the authors compared eight different bottom-up energy 
stock models, including five UK based models. All the UK models derived their calculation from 
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a version of the BREDEM. All the models reviewed output data at either an annual resolution or 
in two cases, a monthly resolution. They vary in the number of archetypes or dwelling types, 
ranging from just two age categories to over 8000 unique combinations of dwelling type 
including age, form, construction, and heating method. Of these, only the Community Domestic 
Energy Model (Firth et al., 2010) contained a spatial resolution higher than the national scale 
but only for the existing stock while most others were used for some form of scenario analysis. 

Sousa et al. (2017) comprehensively analysed 29 housing stock energy models. Their conclusions 
are critical of the current approaches noting that they are limited in scope due to a lack of 
transparency, a sentiment shared by Kavgic et al. (2010). Much of this is due to the scale of the 
challenge, with some 25 million homes in the UK and a limited number of cross-sectional surveys 
from which to base modelling assumption and data validation. There exists a large variation in 
their designs, both spatially and temporally (Keirstead et al., 2012). None of the UK based 
models however, disaggregated urban loads from the national at an hourly resolution. The 
authors conclude that improved data collection standards are needed as well as computational 
resources to capture detail at high spatial and temporal resolutions.  

Box 2.1 Output areas and geographic subdivisions 

 

2.2.1 National demand 
Prediction of peak demand with electrification is a key aim in many assessments of the national 
heat load. One of the few spatiotemporal studies has been conducted by Eggiman et al. (2019). 
They developed a high spatiotemporal resolution heat and electricity demand model to study 
the diffusion of heat pumps in the UK. The authors noted that the need to balance resolution 
with computing requirements and data availability is one of the main contributing factors 
towards the lack of spatiotemporal projections of UK heat demand. They use the LA subdivision 
and disaggregate between domestic, service, and industrial sectors. The temporal variation for 
electricity was calibrated via electricity transmission system data. Similar data is not available 
for gas transmission, and therefore it was not validated. They use a heating degree day method 
to estimate heat demand and like most studies of this kind, they used a combination of yearly 
and daily load profiles to decompose annual energy use data into hourly temporal demand. A 
strength of this study is the use of technology specific load profiles; they have differentiated 
between gas boiler demand profiles and heat pump profiles, notably using measured heat pump 
load profiles. 

Another recent contribution towards national spatiotemporal heat demand modelling was 
conducted by Clegg and Mancarella (2019). They also use the LA level and heat demand was 
simulated for a single year in EnergyPlus using four domestic archetypes and four nondomestic 
archetypes to derive load profiles. These were mapped to the building stock with statistical 
variations in occupancy and in thermal performance characteristics to recreate demand 

Output areas (OA) have been used for data collection in England and Wales since the 2001 
Census. They are the smallest geographical unit for which data is collected and designed to 
be largely homogenous. Small area statistics are reported at the Lower Super Output Area 
(LSOA), consisting of multiple adjacent OAs and Middle Super Output Area (MSOA), 
constructed from adjacent LSOAs. LSOAs are designed to have a population of 1000-3000 
and MSOAs 5000-15000.  

The Scottish equivalents of LSOA and MSOA are Data Zones (DZ) and Intermediate Zones 
(IZ). For convenience only the former terminology will be used. Scottish DZ are also smaller 
than LSOAs, each DZ contains approximately 500-1200 residents and IZs between 2500-
6000.  

Another common subdivision used is the local authority (LA) which are governmental 
subdivisions. There are 397 LAs in Great Britain of varied area and population. 
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diversity. It was found that regional half hourly peaks were 200% larger than the average daily 
demand. The authors use this to analyse the impact of the evolution of heating technologies on 
the gas and electricity network. A similar method using EnergyPlus generated profiles was 
applied at the postcode level and aggregated to city level demand (Wang and Mancarella, 2016). 

Taylor et al. (2014b) created a high resolution (1 km square) spatial mapping of heat and 
electricity demand to study the diffusion of heating technologies, particularly heat pumps. They 
used output area socio-economic census data combined with historic energy demand data 
(LSOA for domestic and MSOA for nondomestic). Assumptions were made to increase the spatial 
resolution of demand, but the analysis was static with no temporal simulation of demand, 
capturing only annual demand at high spatial resolutions. 2009 was used as the base year for 
demand modelling and the authors estimate future demands extrapolating from a base year 
using scenario factors. 

Quiggin and Buswell (2016) used historic weather data to analyse the impact of heat 
electrification. The authors note that hourly demand modelling is vital to investigate the impact 
of electrified heating. They combined a heating degree day with measured DH demand to 
generate domestic load profiles and flat constant nondomestic load. The authors concluded that 
peak electricity demand will be significant, and that demand side management can provide an 
important balancing function. 

Other notable contributions in estimating national heat demand includes the work of 
Sansom (2014). A regression analysis was conducted using 2010 weather and daily gas demand 
data to estimate national heat load. The daily heat demand was combined with load profiles 
obtained from boilers and CHP (combined heat and power) plants to create a half hourly 
demand profile for 2010. The synthesised demand data was used for analysis of heat 
decarbonisation pathways and the impact of electrification (Sansom and Strbac, 2012). 

Many studies focus exclusively on either the domestic or nondomestic building stock. It is 
estimated that there are over 2 million nondomestic buildings in the UK compared to over 27 
million dwellings but comprises around a fifth of the space and water heat demand (BEIS, 
2017a). The studies that primarily focus on the domestic sector in the UK outnumber the studies 
in nondomestic modelling. Reasons for this include the oft-cited complexity of the nondomestic 
building stock (Bruhns et al., 2000; Liddiard et al., 2008; Smith, 2009; Steadman, 1997).  

2.2.2 Domestic modelling 
There are a several commonly used bottom up domestic energy models for the national housing 
stock (Cheng and Steemers, 2011). Most are based on the English Housing Survey EHS (and prior 
to that the English House Condition Survey) which is an ongoing stratified random national 
survey covering the housing stock (DCLG, 2017). The segmentations used in the survey are 
commonly used in modelling assumptions. It provides the main input to the Cambridge Housing 
Model (CHM), a policy advice tool to estimate energy demand from the housing stock and also 
provides the basis for other studies (BEIS, 2010).  

Cheng and Steemers (2011) note that a common weakness of the current bottom up stock 
models is the use of generic occupant behaviour. Considering this, a large differentiating factor 
in their model—the Domestic Energy and Carbon Model (DECM), has been the use of multiple 
occupancy profiles based on employment status from socio-economic census data. DECM 
disaggregates output down to the LA level. The heat demand is estimated based on the SAP 
method from the BRE (2009), due to this, only yearly results are output from the model. They 
find that dwelling type and socio-economic factors can account for 85% of the variation in 
consumption between LAs. 

BREDEM is described as a methodology to calculate domestic building energy consumption for 
different end uses and has widely employed as the core of other domestic energy models due 
to its adaptability (Kavgic et al., 2010). It uses heat balances and simple empirical relationships 
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that can be expanded upon to estimate annual domestic energy consumption (Arababadi, 2012). 
Examples that use BREDEM include the Community Domestic Energy Model (CDEM) (Firth et al., 
2010). CDEM combines archetypes with the BREDEM method to investigate efficiency 
interventions. Another model utilised GIS tools to infer built form and orientation to model the 
energy consumption using BREDEM at the neighbourhood scale (Rylatt et al., 2003). The use of 
GIS based methods to analyse and gather data is becoming prevalent in building stock modelling. 
Oikonomou et al. (2012) looked at the urban heat island effect for London and the risk of 
overheating in dwellings. They use GIS data of building form and orientation to conduct 
simulations in EnergyPlus. Occupancy profiles were based on the work of Yao and Steemers 
(2005), incorporating socio-economic factors. Another GIS based approach applied polygon 
information, LIDAR, and thermal imaging to the Cambridge Housing Model to produce energy 
demand profiles at the neighbourhood level (Calderón et al., 2015). There is potential to use this 
methodology on a wider scale by city planners but the large computing requirements when 
scaled to larger areas remains a key challenge (Rosser et al., 2019).  

In contrast to the bottom-up models presented, Watson et al. (2019) use a top-down approach 
to determine a regression model using historical gas demand and weather data. This is combined 
with load profiles obtained from measured heat pump profiles and differentiated by mean 
outdoor temperature. The study modelled a high temporal resolution, and the results can 
provide a useful comparison for national heat demand. 

2.2.3 Nondomestic modelling 
The difficulties involved in modelling the nondomestic stock include the high degree of 
heterogeneity, both within and across use categories. Perhaps the biggest challenge involves 
the availability of quality data (Taylor et al., 2014b). The energy end use is more varied, meaning 
measurements of gas consumption cannot be reliably used as a proxy for heating. The most 
comprehensive resource available is the property taxation database collected by the Valuation 
Office Agency (VOA). However, this does not identify all floor area in nondomestic sites such as 
hospitals or libraries and omits certain use categories such as agricultural buildings or places of 
worship. A second important data source are Display Energy Certificates (DECs) for public access 
properties in England and Wales, but these can also be inaccurate for many of the same reasons 
(Evans et al., 2017). In 2014 DECC commissioned the Building Energy Efficiency Survey (BEES) 
(BEIS, 2016c) to assess and understand how energy is used in the nondomestic stock across the 
different use categories. A comprehensive review of nondomestic stock modelling in the UK has 
been covered in Steadman et al. (2020). These have typically been in the form of a building 
database containing activity class and floor areas. The energy demand has then typically been 
estimated by simple steady state equations, such as energy intensities per floor area for a given 
activity class. 

The CaRB2 model operates on this basic principle, using data from the above-mentioned 
sources, combined with a consumption data per activity type that was obtained from prior 
surveys (Liddiard, 2018). However, as it draws upon the VOA data, it only covers England and 
Wales. The Cambridge Nondomestic Energy Model (CNDM) has been developed with similar 
methods to the CHM (Armitage et al., 2015). This is achieved by segmenting the nondomestic 
stock into different building archetypes and applying a steady state energy model. The 
segmentation included built form, HVAC type, building age, location and use which resulted in 
some 35,000 combinations. The CNDM also uses the taxation database and output is 
disaggregated to a regional level but the energy model only produces annual demand with a 
breakdown of end use.  

GIS approaches are also being used in nondomestic stock modelling, albeit on a smaller scale. 
The approach taken by Taylor et al. (2014a) involves combining the existing nondomestic data 
sources with ordnance survey data to create polygons of buildings for Leicester city centre. The 
3DStock model is intended as a whole stock model but its treatment of the nondomestic stock 
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merits attention (Evans et al., 2017). It uses a GIS approach to combine a detailed representation 
of the urban building stock in select sub-city areas with taxation data, DECs and energy 
consumption data. A key feature of 3DStock is that the model differentiates between buildings 
and premises for nondomestic sites. A single premise can be part of a building, or multiple 
buildings, and the same building can have multiple premises. The energy consumption data in 
the form of annual gas and electricity readings for all premises modelled (a database few other 
models have access to) is then matched to the 3D representation of the buildings. It has so far 
only been applied to several sub-city areas and provides a high spatial resolution snapshot of 
urban energy consumption.  

2.2.4 District scale models 
There have been attempts at mapping the heat demand intensity for urban areas in the UK at a 
high spatial resolution such as the now defunct National Heat Map developed by the Centre for 
Sustainable Energy (2010) for DECC which was designed with an emphasis on the location of 
heat networks and waste heat potential. Internationally, other such tools exist at the city scale 
however these are only snapshots of heat demand intensity or annual consumption (Fremouw, 
2017; Prieto et al., 2018). Tools such as CitySim (Robinson et al., 2009) or Huber and Nytsch-
Geusen (2011) have been developed to aid urban planning and have been demonstrated with 
application to case studies, however these localised tools require extensive modelling data 
input. Numerous examples exist in the literature of localised studies to forecast heat load in DH 
systems that use a variety of methods from detailed network simulation to statistical and 
machine learning methods (Calikus et al., 2019; Dahl et al., 2017; Dalipi et al., 2016; Guelpa et 
al., 2019; Idowu et al., 2016). As these are localised for specific districts and existing networks, 
these models can’t be applied directly to modelling districts in the UK without extensive data 
input and large assumption. Methods of creating spatiotemporal energy demand for districts 
have been achieved by applying known spatial consumption to temporal profiles based on the 
distribution of building archetypes but the temporal profile can be difficult to validate 
particularly without comparative data at the same spatial resolution (Mikkola and Lund, 2014). 

As already shown, GIS based methods to generate three-dimensional polygons to model districts 
and urban centres are prevalent in the literature. Nouvel et al. (2015) compared two methods, 
a thermal model applied to 3D reorientations and a statistical method using 2D GIS. They 
combined these methods to develop a framework to study heat loads at higher spatial 
resolutions, using the statistical method at the lower spatial resolution then applying a thermal 
model to 3D representations for higher spatial resolutions. Dogan and Reinhart (2017) applied 
GIS to a mixed used neighbourhood in Boston, USA. They generated 3D models that are then 
simulated in EnergyPlus to create hourly load profiles. Nageler et al. (2017) applied a GIS to open 
source mapping data of an Austrian district to generate polygonal representations of buildings. 
Demand profiles were assigned to building using a thermal model and a database of archetypes. 
The authors of this study noted that computational resources were the main limiting factors on 
enlarging the modelled area.  

2.2.5 Conclusion of review 
Building stock energy models in the UK are well established, particularly in the domestic sector. 
The segmentation of the building stock into archetypes is widely used in the analyses, except in 
cases where a regression has been applied to historical data. The main data sources that are 
drawn upon are census data, historical consumption and the EHS. Many studies and tools that 
map energy demand do so with a static state energy method or mapping historical annual 
consumption. Two recent studies have created a spatiotemporal analysis of energy demand 
(Clegg and Mancarella, 2019; Eggimann et al., 2019). The heat load modelling was achieved via 
either application of load profiles to heating degree day calculations or the generation of load 
profiles through building physics models with a reduced set of archetypes.  
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Achieving high accuracy is difficult due to the lack of data. In the case of buildings, data on 
occupancy and when heating systems are operated is essential. This is one of the primary 
reasons that nondomestic modelling is a harder than the well understood domestic sector. With 
(non-hourly metered) gas being the main heating vector in the UK, it has not been possible to 
use historical consumption alone to determine hourly loads, as is the case with electricity. With 
the increasing uptake in heat pumps however, this may be less of an issue in future. DH load 
profiles are available and have been drawn upon in the literature to provide urban heat load 
profiles. However, the composition of the local building stock varies between locations.  

The aim of HeLoM is to generate weather derived spatially disaggregated hourly national heat 
load profiles for domestic and nondomestic buildings. This provides the bases for national 
demand and the disaggregation enables the urban demand to be extracted as a proxy for DH 
demand. It is not possible to use or adapt the existing highly spatiotemporal models for the 
purposes of this study. Others that can be adapted are only national in scale, as is the case with 
the regression models. 

2.3 Archetype Development 
Each building is unique, not just in terms of the physical construction, orientation, exposure and 
location, but also in its occupancy and use. This model follows the approach of segmenting the 
stock into building archetypes. Once building archetypes are defined, a transient thermal 
simulation is developed. The purpose of the simulation to calculate the hourly heat demand 
using historical weather data. The advantages of using a custom a thermal model for simulating 
buildings is that it allows the efficacy of interventions such as altering insulation to be evaluated 
and enables the use of custom weather data to simulate heat demand. While individual building 
will be simulated, results will be stored at an aggregated level (LSOA or MSOA). Diversity is 
achieved by stochastically varying occupancy and application of known diversity factors. 

A fundamental challenge in modelling the building stock is in the level of detail and attention 
afforded towards grouping similar constructions into segments or archetypes. The archetype 
approach is a widely utilised framework in bottom-up building stock modelling. A building stock 
can be represented by a sample of building archetypes that represent a statistical average for 
the archetype within the stock (Mata et al., 2014). 

Table 2.1 Summary of data sources used for HeLoM 

 

Data Level Source 

Dwelling build period LSOA/DZ CTSOP4.1 (Valuation Office Agency, 2020)  
(Scottish Government Statistics, 2020) 

Dwelling type LSOA/DZ QS402EW (Office for National Statistics, 2020) QS402SC 
(Scottish Government Statistics, 2020) 

Domestic Heating type LSOA/DZ QS415EW (Office for National Statistics, 2020) QS415SC 
(Scottish Government Statistics, 2020) 

UK Domestic and 
Nondomestic Gas 
Consumption 

LSOA/DZ 
MSOA/IZ 

Sub-national gas consumption (BEIS, 2020c) 

Nondomestic floor areas Building CaRB2 from (Valuation Office Agency, 2020) (Scottish 
Government, 2018) 

Standard Area 
measurements 

MSOA/IZ (Office for National Statistics, 2020)  
(Scottish Government Statistics, 2020) 

Weather data Regional (Met Office, 2019) 
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To develop archetypes, appropriate segmentations need to be identified prior to 
characterisation of thermal properties and occupancy. The most fundamental segmentation is 
differentiating between domestic and nondomestic. The archetypes developed here will draw 
upon the work of a combination of previous studies. The open-source datasets drawn upon for 
this work are presented in Table 2.1.  

2.3.1 Domestic archetype segmentation 
Most domestic archetyping studies in England have drawn extensively on the English Housing 
Survey (MHCLG, 2016). As the largest component of Great Britain, this study also utilises it. The 
EHS splits domestic buildings into seven archetypes: 

1. End and mid terrace 
2. Semi-detached 
3. Detached 
4. Bungalow 
5. Converted flat 
6. Purpose built flat 

The ONS archetypes per LSOA do not directly correspond to all the EHS ones. They report on 
dwelling types as: 

1. Detached 
2. Semi-detached 
3. Terraced 
4. Purpose built flat  
5. Converted flat 
6. Others such as bungalow, caravan, etc. 

This study combines end terrace and mid terrace to correspond to the ONS data. While the ONS 
reports on purpose built and converted flats. Converted flats have wide variety in form and the 
construction information in the available literature is largely for purpose-built flats. Therefore, 
all flat varieties will be treated as purpose-built flats. The same archetype segmentation has also 
been used in previous studies (Oikonomou et al., 2012; Stamp, 2016). The observed distribution 
of the dwelling types used is shown in Figure 2.1. 

 
Figure 2.1 Dwelling types in the UK housing stock 
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Each dwelling category is further split according to construction period. The VOA reports 
dwelling age in 12 build periods, from pre-1900 to post-2010, corresponding roughly to a decade 
in length while the EHS splits this into five build periods from pre-1919 to post-1990. The 
proportion of dwellings per age range has been applied to each dwelling type present in the 
LSOA. While it is likely that different dwelling types are built in different periods, the age 
variation per dwelling type is estimated from the overall distribution per LSOA as the data is 
provided per LSOA without further breakdown of age per dwelling type. This may be an issue 
with LSOA’s that have a diverse range of dwelling types and construction periods but in many 
LSOA’s the construction type and age fall within a narrow range (Boswarva, 2017). The 
distribution of dwelling build-period is shown in Figure 2.2 adapted from Piddington et al. (2020). 

 
Figure 2.2 Dwelling built period in the UK housing stock 

The SAP assessment has 11 age bands that are often combined. Oikonomou et al. (2012) use 
five age bands with multiple variations, reducing these to the 15 most commonly found in their 
modelled area. Mata et al. (2014) combine six dwelling types with eight narrow and recent age 
bands, Cheng and Steemers (2011) use ten age bands that become progressively narrower while 
Buttita et al. (2019) use the EHS age bands but combine two of the periods. 

Table 2.2 Archetypes used in comparative studies 

 

Source Dwelling Types Age Categories Geographic zones 

Mata et al. (2014) 6 Dom  
3 Nondom 

8 pre-1985 to post-2010 4 – major cities 

Cheng and Steemers 
(2011) 

5 10 pre-1900 to post-
2000 

1 – using 30 year 
mean data 

Buttita et al. (2019) 5 with multiple 
variations 

5 pre-1918 to post-1991 4 – major cities 

Oikonomou et al. (2012) 5 with multiple 
variations 

6  1 – 52 sites in London 

Stamp (2016) 4 4 construction styles 3 weather files 
 

HeLoM 4 5 11 - GB regions 
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2.3.2 Domestic archetype characterisation 
The form and fabric data for each archetype is used to estimate a specific heat loss (SHL) and 
thermal mass (ThM) from construction and fabric assumption per archetype. Dwelling archetype 
geometry will be taken directly from the English Housing Survey (MHCLG, 2018). The specific 
heat loss will largely be derived from construction data from BRE’s SAP 2016 from which glazing 
ratio and performance data are also taken (BRE, 2016). The thermal mass represents the heat 
capacity of a building or its ability to store heat. Construction and fabric play a large role in the 
thermal mass as do the internals of a dwelling. SAP gives thermal mass with a thermal mass 
parameter (TMP) per unit floor area. It has three categories of light, medium and heavy 
construction ranging from 100 to 450 kJ/m2K. The TMP used are adapted from Stamp (2016) 
who provides estimates for the building archetypes used here and shows that older 
constructions tend to be heavier while newer constructions utilise modern lightweight 
construction methods and so have a lower TMP. Table B-1 in Appendix B contains all the 
estimates and parameters used for domestic archetype characterisation. 

Table 2.3 Domestic archetype data sources 

The power rating and efficiency of the heating system varies greatly between dwellings, and the 
power capacity determines to a large extent how it is operated. For the purposes of calibrating 
the heat load with gas consumption data, it is assumed that all buildings have a gas boiler with 
an average efficiency of 85% for heating and 75% for hot water (BRE, 2016; Palmer and Cooper, 
2013). The power ratings of the heating system per archetype are assumed from a conservative 
calculation of gas boiler power ratings using the domestic heating sizing method CE54 (Energy 
Saving Trust, 2010).  

2.3.3 Domestic occupancy 
Mean occupancy has been adapted from the SAP methodology based on floor area (BRE, 2016). 
Measured hourly gas consumption profiles have been used as a proxy for active occupancy 
profile and heating system operation for all dwelling archetypes. Average domestic heat load 
profiles in UK households exhibit a double peak pattern, with morning and evening peaks. From 
surveys on how dwellings are heated with various heating systems including gas boilers and heat 
pumps, it appears that dwellings are predominantly heating this way regardless of heating 
system and mixed work patterns (Hanmer et al., 2019; Love et al., 2017; Watson et al., 2019). 
Yao and Steemers (2005) showed that the load profile is same across dwelling types, with the 
magnitude of peaks corresponding to the size of dwelling archetype. A normalised domestic load 
profile has been adapted from Wang et al. (2020) to represent the probability of active 
occupancy and operation of heating as shown in Figure 2.3.  

 

Parameter Source 

Dwelling Geometry English Housing Survey (MHCLG, 2018) 

Construction U-values SAP 2016 (BRE, 2016) 

Thermal Mass Parameter  Stamp (2016) 

Boiler/Heating system size CE54 (Energy Saving Trust, 2010) 

Glazing transmittance SAP 2016 (BRE, 2016) 
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Figure 2.3 Normalised domestic occupancy profiles 

2.3.4 Nondomestic archetype segmentation 
The nondomestic archetypes are based on the CaRB2 activity classifications which expand on 
the four VOA bulk classes: retail, office, industry, warehouse (Evans et al., 2017; Valuation Office 
Agency, 2020). The primary source of data for nondomestic counts and floorspace as previously 
discussed is the VOA taxation database. The available data from CaRB2 contains activity 
classification and aggregated floor area per postcode which were combined to LSOA level by 
matching postcodes to output area. This did not include detail on activity type (due to data 
sensitivity). While floor area has made available, this data has been deemed inaccurate due to 
the method of taxation data collection where some classes (such as schools, hotels and 
hospitals) do not have floor area records (Liddiard, 2020). The CaRB2 activity classifications, 
count and floor areas are shown in Figure 2.4.  

 
Figure 2.4 Count and floor area per activity classification in the CaRB2 database 



Modelling District Heating In A Renewable Electricity System 

  30 

For the purpose of urban load modelling, the five most important categories are office and shops 
(retail), followed by factories, warehouse, and hospitality. It was not possible to obtain localised 
Scottish nondomestic figures as the CaRB2 data covered only England and Wales. Instead the 
overall count of each archetype in Scotland was scaled to each MSOA using annual gas 
consumption data, the share of each classification is shown in Figure 2.5 (Scottish Government, 
2018). After filtering for only those in urban area, several categories were omitted or combined. 
These categories and relative proportions in modelled urban areas are shown in Figure 2.6. 

 

 
Figure 2.5 Nondomestic classification share in Scotland (Scottish Government, 2018) 

 

 
Figure 2.6 Proportion of nondomestic archetypes in modelled urban areas 
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2.3.5 Nondomestic archetype characterisation 
The occupancy and use of nondomestic buildings exhibit a large variation. There can be many 
different sizes, and floor plans, even within the same classification (DCLG, 2011). For example, 
while classifications such as “offices” or “education” are generally occupied during normal 
working hours, the occupancy and usage times can often vary, with occupancy in the evenings 
and weekends not uncommon in these classifications. 

The archetypes were adapted from analysis of the CaRB2 data by Barrett (2020). The mean floor 
areas for each category were calculated from the total gross internal area and archetype form 
was inferred from prior surveys of the nondomestic building stock (Gakovic, 2000; Steadman et 
al., 2009, 2000). A medium-weight construction TMP of 250 kJ/m2K was applied to all archetypes 
to derive a thermal mass. Benchmark guidelines were followed for the sizing of the heating 
system and determining internal heat gains in the various archetype activity classifications 
(BSRIA, 2011; CIBSE, 2015a). Where data and benchmarks for the archetype were not found, the 
figures were estimated from other archetypes. 

Nondomestic internal gains are estimated using benchmark figures from CIBSE (2015a) Guide A. 
Offices and schools are well represented in other literature (Korolija et al., 2013; Tian and 
Choudhary, 2012). Where the archetype data is unavailable, such as the case for industrial 
buildings, this has been estimated based on CIBSE Guide A. A summary of the nondomestic 
archetype parameters is shown in Table B-2 in Appendix B. 

2.3.6 Nondomestic occupancy 
Building occupancy and use was determined mainly from analysis of hourly gas consumption 
data for 37 buildings provided by Sustainable Energy Limited (Challans, 2018). An overview of 
the provided data is shown in Table B-3. Normalised profiles were extracted for each activity 
class available in the dataset. These can be found in Figure B-1 and Figure B-2. This was further 
supplemented through secondary studies on occupancy in offices, shops, health and educational 
buildings but for non UK based buildings (Duarte et al., 2013; Lindberg et al., 2019). There are 
three categories where there is a lack of available data on occupancy: factory, warehouse, and 
transport. Factories and warehouses constitute 19% of the modelled stock and both are very 
diverse in their activity types. The factory classification can range from a food processing factory 
to newspaper print works, while it is unclear to what extent warehouses are heated due to the 
large floor area they occupy. Transport buildings are similarly diverse, from a train station to a 
petrol station. A 24-hour occupancy with higher daytime usage has been estimated for these 
categories as shown in Figure B-3 and Table B-4. 

2.3.7 Spatial disaggregation 
The highest level of spatial disaggregation analysed is the LSOA level. All the GB domestic stock 
has been mapped to this spatial resolution as shown in in Figure 2.7. The nondomestic activity 
classifications in the CaRB2 database were available per postcode in England and Wales, but 
these were mapped to the LSOA level. In Scotland, nondomestic stock counts were only available 
at the national aggregated scale, these were distributed per MSOA, weighted by MSOA 
nondomestic gas consumption. A summary per region is given in Table 2.4 

Due to computing capacity and storage limitations, only selected MSOAs have been modelled. 
The gas demand per square kilometre has been estimated per MSOA using Standard Area 
Measurements, then ranked by gas consumption density. The top 20% cumulatively were 
chosen as representative of urban heat demand. A further 10% of largest absolute gas 
consumption were included to comprise a more representative consumption profile to scale to 
national level. The results for each LSOA and MSOA are stored in table form within an SQL 
database. Each hour or row of data contains roughly 1600 bytes of data. Six years of results for 
10,226 individual LSOAs and MSOAs results in just over 40 GB of data.  
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Figure 2.7 Modelled GB MSOA locations 

Table 2.4 Summary of modelled regions 

Region LSOAs 
modelled / 
total LSOAs 

Modelled % 
of GB Gas 
consumption  

Modelled % 
of Dom Gas 
consumption 

Modelled % of 
nondom gas 
consumption 

Modelled % 
of GB 
Population 

London 3443 / 4835 9.7 9.3 10.3 10.3 

South East 906 / 5382 1.8 1.4 2.3 1.6 

South West 353 / 3281 0.9 0.8 1.1 1.0 

East of 
England 

405 / 3614 1.7 0.9 2.9 1.0 

East Midlands 449 / 3614 1.5 0.9 2.5 2.5 

West 
Midlands 

919 / 3487 2.4 1.8 3.5 1.0 

North West 1002 / 4497 3.8 2.4 5.8 2.0 

Yorkshire and 
the Humber 

723 / 3317 3.2 1.7 5.8 1.8 

North East 357 / 1657 1.4 1.0 2.2 0.9 

Wales 181 / 1909 0.9 0.3 1.3 1.6 

Scotland 1051 / 6976 2.7 1.8 4.2 6.7 

Total 9789 / 41792 30.0 22.4 41.9 23.8 
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2.3.8 Weather data 
Weather data is divided into GB regions (the highest tier of sub-national division). Weather 
stations were selected per region based on proximity to population centres and completeness 
of data, covering at least the period 2010-2016. Met office data was compiled ensuring that each 
station has been active since at least the beginning of 2010. Missing temperature (wet bulb) 
values were linearly interpolated unless large gaps of more than 12 hours were found. Missing 
wind speeds were forward filled for a maximum of 2 hours, otherwise they were interpolated to 
the next available wind value unless large gaps of more than 12 hours were found. Missing solar 
observation data was first linearly interpolated if less than three consecutive hours were 
missing, otherwise values were shifted from the previous 24 hours unless large gaps of more 
than 24 hours were found. In cases where large sections of data were missing, these were filled 
using data from the closest available weather station. Details on each regional station used for 
UK hourly weather observations is shown in Table 2.5 and the geographic distribution of each 
station is mapped in Figure 2.8.  

2.4 Thermal Model Development 
Thermal simulations of the building stock are conducted on a per LSOA basis. The compiled data 
on the numbers of each domestic and nondomestic archetype is applied to the LSOA. Each 
building is assigned a demand set-point temperature, Tset, which is normally distributed about a 
mean of 20 °C with limits of 15–25 °C. This is based on reported domestic set-point temperatures 
(Shipworth et al., 2010). There is also evidence that nondomestic archetypes such as offices and 
schools fall within this range albeit skewed to the higher limit (Korolija et al., 2013; Tian and 
Choudhary, 2012). 

The simulation procedure calculates the temperature change of the building thermal mass per 
hourly time step. The thermal model simplifies the representation of the buildings as cuboids 
with heat transfer through four walls. It assumes the temperature of the building thermal mass 
and internal wall surface to be same as the internal air temperature, Tint. The net heat flows from 
the buildings are the sum of gains and losses and calculated dynamically to update the 
temperature of the thermal mass. 

The ambient temperature, Tamb, is given by the hourly weather data. The first step is to estimate 
the external wall temperature from convective heat transfer to the air to calculate conduction 
through the wall. Calculating wind induced convection is complicated due to geometry, 
orientation, and other factors such as roughness and protection from surroundings such as trees 
or larger buildings. Heat transfer theory suggests a power law model for heat loss from an object 
but a linear form has been found to fit the data well in the ranges often experienced by dwellings 
(although this may not hold for very tall tower blocks) (Palyvos, 2008). A linear form equation to 
estimate the wind convection coefficient for each surface, hc,s, with wind speed, vw, has been 
suggested (CIBSE, 2007). With the assumption that wind forced convection acts on one side only, 
the convection transfer is given by (2.2), setting vw = 0 in (2.1) for the remaining surfaces: 

 hc,s = 5.8 + 4.1vw (2.1) 

 Qconv,s = hc,s As (Text,s − Tamb) (2.2) 

Conduction heat transfer through each surface, Qcond,s, can be calculated from: 

 Qcond,s = UAs (Text,s − Tint) (2.3) 

Under the assumption of steady-state, conduction through each wall is equal to the convection 
from the wall, Qconv,s = Qcond,s. Using (2.2) and (2.3) we can estimate Text for each wall and from 
this, Qcond,s through each wall. 
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Figure 2.8 Locations of regional weather stations used 

 

Table 2.5 UK hourly weather observations - Regional stations 

 

Region Station ID Station Name 

London 708 Heathrow 

South East 795/862 Shorham Airport/Hampshire (solar) 

South West 676 Filton 

East of England 461 Bedford 

East Midlands 554 Sutton Bonington 

West Midlands 19187 Coleshill 

North West 1119/1083 Stonyhurst/Shap (solar) 

Yorkshire and the Humber 534/370 Bramham/ Leconfield (Solar) 

North East 326 Durham 

Wales 19206 St Athan 

Scotland 24125 Glasgow Bishopton 
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Solar gains are dependent on the building envelope’s window area, Aw, the glazing 
transmittance, Gt, and irradiance. As windows are vertical, the incident irradiance, Ir, can be 
calculated from the horizontal irradiance using the Earth’s axial tilt angle on a given day and 
latitude of a given location. The building solar gains, Qsol, can then be estimated by: 

 Qsol = Aw Gt Ir (2.4) 

Building infiltration is impacted by factors such as wind speeds and the ambient temperature 
which drives the stack effect (particularly in taller buildings). However, factors such as the 
opening of windows have a large impact on the ventilation and infiltration rate. The Infiltration 
loss is simplified to just the air changes per hour, ach, and building volume, Vb, of the archetype: 

 Qinf = 1/3 ach × Vb(Tamb − Tint) (2.5) 

Domestic internal gains, Qgain, are estimated from the mean hourly occupancy, Ph, and floor area, 
Af assuming 54 W per person, 0.1 W/m2 for lighting and small appliances, 105 W per dwelling 
for large appliances (such as refrigerators) (Grant and Clarke, 2014). 

 Qgain = 54Ph + 0.1Af + 105 (2.6) 

Nondomestic internal gains are calculated from the intensity factors in Table B-2 multiplied by 
normalised occupancy from Figure B-1, Figure B-2 and Figure B-3. The sum of the heat transfers, 
Qtot, can now be calculated from: 

 Qtot = ∑Qcond,s + Qinf − Qgain (2.7) 

The internal temperature change, ∆Tint, is then updated by: 

 ∆Tint = Qtot ⁄ Mth (2.8) 

For a large set of buildings, the CIBSE (2015b) code of practice for heat networks suggests the 
use of an 80% diversity factor for peak space heat load. This diversity factor is multiplied by the 
normalised occupancy profile value to give the hourly probability of heating system operation 
and determined randomly for each building. 

If internal temperature is lower than setpoint temperature and the building is actively occupied, 
then the heat demand is the heat required to raise the temperature of the thermal mass to the 
setpoint temperature up to the power capacity of the heating system. If heat is supplied to the 
building, then internal temperature is updated using (2.8). 

 Qdem = Mth(Tset − Tint) (2.9) 

Box 2.2 Diversity factors and peak demand 

 

2.4.1 Hot water demand 
There have been a range of models produced to calculate hot water demand, mostly for 
domestic buildings (Fuentes et al., 2018). These have generally been compiled from high 
resolution sampling of water consumption and are suitable to apply in an individual building 

Although we cannot accurately predict energy demand of a single building or active 
occupants, many aggregated buildings can be well approximated. We are concerned with 
the local aggregation of buildings not a single dwelling. Diversity assumes that not all peak 
demand occurs at the same time and is important when sizing a power/heat plant that serves 
multiple customers. The capacity would not be the sum of the maximum demand from each, 
but a lower value as the maximum demands will occur at different times. The diversity factor 
then indicated the peak aggregated load as a percentage of the sum of the individual loads. 
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analysis such as the BREDEM estimation of hot water. The building model presented here does 
not have sufficient detail to calculate high resolution hot water demand per building. As we are 
not concerned with the heat performance of an individual building but a demand at an 
aggregated level, it is thus appropriate to simplify the approach to hot water demand.  

The average hot water consumption in UK dwellings is reported between 3-5 kWh per day (EST, 
2008; Knight et al., 2007). The heat network code of practice (CIBSE, 2015b) states that the 
Danish standard DS439 for peak domestic hot water demand is widely used in the design of DH 
in the UK. The peak hot water value (kW) for N number of domestic buildings has been estimated 
from the Danish standard DS439. 

 Qhw,max = 17.6 + 1.19Nb + 18.8N0.5
b   (2.10) 

The peak heat load is then applied to a daily load profile. The daily domestic water load profiles 
have been adapted from a study for DEFRA (EST, 2008) and a design guide for hot water in DH 
networks (Robinson, 2018). From the literature, a weekday, Saturday and Sunday load profile 
are given as well as a weekday/weekend variation factor. There were minor differences between 
the Saturday and Sunday load profile but an average of the two is used as a weekend load profile 
and the adjustment factor was applied to the weekend profile. A further adjustment, fm for the 
monthly or seasonal variation is applied as per Burzynski et al. (2012a) which is based on 
BREDEM. Aggregated hourly domestic hot water demand can then be estimated from (2.10). 

Table 2.6 Monthly factor for domestic hot water variation 

 
Figure 2.9 Normalised daily load profiles for domestic hot water  

 Qhw = 𝑓𝑓m 𝑓𝑓h Qhw,max (2.11) 

Nondomestic hot water (and other low temperature heat) demand is more challenging, 
especially given the lack of absolute consumption and measured demand profiles. Fuentes et al. 
(2018) reviewed hot water load profiles in various building uses which showed a pattern that 
largely corresponded to occupancy. 

BEIS (2018a) has published estimates of nondomestic hot water energy consumption based on 
their Building Energy Efficiency Survey (BEIS, 2016d). The nondomestic hot water energy 
consumption in the UK was estimated to be around 14,900 GWh in 2015 and comprises 8% of 
the national nondomestic gas consumption. Given that hot water demand accounts for 10% of 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

ƒm 1.10 1.06 1.02 0.98 0.94 0.90 0.90 0.94 0.98 1.02 1.06 1.10 
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nondomestic heat demand and around 3% of overall space and hot water heat demand in the 
UK and compared to heating, hot water consumption has less variation between years, the 2015 
numbers were assumed to be representative of all years. Further, it is unclear how each of the 
activity classifications produce hot water. In the case of larger hospitality buildings for example, 
it is possible that hot water is constantly produced and used in short term storage tanks. Given 
this, a simplified approach of assuming 8% of nondomestic gas consumption is for hot water, 
produced by gas boilers (at 75% efficiency) distributed evenly over all hours was assumed. The 
use of nondomestic gas consumption has its own issues concerning the number of nondomestic 
gas connections (see section 2.4.2), but it is assumed that large hot water production has been 
from gas. 

2.4.2 Model calibration 
The annual domestic heat demand is then compared and calibrated with domestic LSOA gas 
consumption from 2016 for LSOAs that had at least 50% of dwellings connected to the gas grid 
using an average boiler efficiency of 85% (Palmer and Cooper, 2013). An assumption is made 
that the dwellings connected to the gas grid are evenly distributed per dwelling type. This may 
not necessarily hold true in all areas, for example, all flats in a particular LSOA could be 
disconnected from the gas grid while all other dwelling have a connection, but this level of detail 
is currently unobtainable. For areas that had a lower percentage of gas connection, the average 
regional adjustment was applied across all years.  

Table 2.7 Average calibration factors per region 

 

Nondomestic modelled heat loads have been adjusted using the mean regional domestic 
adjustment factor. The number of nondomestic gas connections do not correspond to 
nondomestic premise count from CaRB2 as shown in Figure 2.10. Neither is there a dataset on 
the number of 'non-gas' nondomestic premises as exists for domestic buildings. In the 
nondomestic sector, multiple premises can share a single gas meter in one building, or across 
multiple buildings or may have an unconnected supply point. Analysis of the nondomestic gas 
consumption data shows that around 6% of this fall into the unallocated category. Also, the 
designation of a nondomestic gas meter is arbitrary and based on a 73,200 kWh cut-off applied 
by BEIS (2020c), therefore some smaller nondomestic premises fall incorrectly into domestic 
consumption and vice versa. In addition, it is possible that some industrial gas use may also be 

Region LSOAs modelled  Modelled LSOAs with 
above 50% domestic 
gas connection 

Mean calibration factor 
(modelled/measured) 

London 3443  2047 0.92 

South East 906  654 1.01 

South West 353  215 0.99 

East of England 405  337 1.10 

East Midlands 449  389 1.09 

West Midlands 919  829 1.15 

North West 1002  856 1.13 

Yorkshire and the 
Humber 

723  646 1.09 

North East 357  324 1.11 

Wales 181  146 1.07 

Scotland 1051  764 0.94 

Total 9789 7207 1.03 
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present and it is not possible to easily subtract this demand. However, it is assumed that 
industrial demand will be small percentage in urban areas with high heat demand density (but 
may be higher in the modelled MSOAs with highest gas demand in Figure 2.7). 

 
Figure 2.10 Comparison between CaRB2 count and nondomestic gas meters per MSOA 

  
Figure 2.11 Modelling steps for aggregating domestic and nondomestic demand 

2.4.3 Parameter sensitivity 
The sensitivity of the input parameters to the thermal model was tested. Each parameter in 
Figure 2.12 was tested one at a time by scaling the parameter and observing the percentage 
change in total heat load for the entire six-year period. The sensitivity was conducted on 1000 
domestic buildings, comprising of each domestic archetype in the ratios given in Figure 2.1 using 
London meteorology data.  
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The most sensitive parameters observed in advanced building simulation models are the wall U-
values, ventilation rate and setpoint temperature (Imam et al., 2017). Linear responses to the 
inputs are observed with window thermal transmittance and SHL. Increasing the transmissibility 
value results in larger thermal gains and thus reduced heat load. The SHL values encompasses 
both fabric U-values and air change losses. The most sensitive input parameter to the model is 
the internal setpoint temperature. Reducing the setpoint causes a rapid reduction in heat load, 
but a rapid increase is not observed with increasing setpoint. A limitation of this model is with 
the method in which the model infers occupancy and the power capacity of the heating system 
which both limit the maximum heat demand of a simulated building. As heating systems are 
normally sized according to the heat load requirements of a building, a constantly occupied and 
unlimited power heat source should result in larger response in heat load, mirroring the  
observation with decreasing SHL.  

 
Figure 2.12 Sensitivity of thermal model parameters 

2.5 Results 
The total domestic and nondomestic modelled areas represent 22% and 42% of the total 
national (GB) value. These were extrapolated to represent 100% of national demand. These 
values can be adjusted and extrapolated to future demand estimates specified as a percentage 
change from current heat demand, for example if the domestic stock were to grow by 10% then 
the domestic demand figure is scaled accordingly. The 2010 heat load profile is shown in Figure 
2.13. The results for 2010 weather data are presented as a comparison with previous estimates 
of 2010 GB heat demand in Table 2.8 and government estimates (DECC, 2015a) in Table 2.9. The 
modelled loads correspond well to the annual demand presented in other studies while the peak 
load has close agreement with Watson et al. (2019) estimate. Quiggin and Buswell (2016) used 
a restricted and unrestricted profile giving two peak values and the domestic annual figure was 
imputed from heating efficiency assumptions. Nondomestic annual consumption has been 
estimated at 124 TWh while the other studies estimated 144 and 105 respectively. The 
nondomestic peak (which does not coincide with the domestic) is substantially lower than 
Sansom’s. However, Watson et al. (2019) suggests that Sansom overestimated their peaks and 
their estimate is more robust due to their use of multiple load profiles.  
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Table 2.8 Comparison of 2010 heat demand with previous estimates 

Table 2.9 ECUK 2010 heating consumption estimates 

 
Figure 2.13 Modelled national hourly heat demand for 2010 

 
Figure 2.14 Comparison of national coldest day and mean December demand profile 

Model Domestic 
Annual TWh 

Domestic Peak 
GWth 

ND Annual TWh Total Peak 
GWth 

HeLoM 362 172 124 219 

Watson et al. (2019) 391 170  -  - 

Sansom (2014) 398 277 144 358 

Quiggin and Buswell (2016) 358 262/117 105  - 

2010 Domestic TWh Industrial  
TWh 

Service 
TWh 

Total Nondom 
TWh 

Total TWh 

Space Heating 392 35 114 149 550 

Hot Water 82  - 22 22 104 

Total  483 35 136 171 654 
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A comparison of the GB load profile for the December average and the peak demand day as 
modelled in HeLoM are shown in Figure 2.14. The average shows that morning peak is typically 
larger than the evening peak. However, the peak day has a larger evening peak occurring 
between 1700 and 1800. The peak to trough ratio is larger than that found by Watson et al. who 
have a flatter demand curve on the peak day, but it is less than Sansom’s. The load profile used 
in Watson et al. reflects the heating pattern of a heat pump while Sansom’s load is based on the 
equivalent gas consumption. If this is the case, the implications of a high peak for the operation 
of domestic heat pumps may have profound consequences for the electricity network. To 
prevent surges in demand, the consumption pattern would need to be altered to flatten the 
demand profile or some form of demand side flexibility may be required such as TES. 

The annual demand duration curve in Figure 2.15 shows that the nondomestic demand is 
generally consistent throughout the year. Both the domestic and nondomestic showing a steep 
increase of relatively few hours at peak load with those few hours combining to increase the 
peak load by around 35 GWth. The hourly national heat load results for all modelled years is 
shown in Figure 2.16. The heating season can be clearly observed in the darker areas as are the 
milder periods which punctuate periods of high demand mid-winter. 

 
Figure 2.15 Domestic and nondomestic national heat demand duration curves for 2010 

2.5.1 Urban heat load 
The distinction between overall GB heat load and the urban heat load is made as DH would likely 
be constructed in urban areas owing to the favourable economics. The ratio of domestic to 
nondomestic heat loads will make a difference to the daily load profile as will the proportion of 
each archetype, with urban areas having a higher share of flats for example.  

The heat demand from the top 5% of HDD MSOAs has been used as a proxy for urban heat load. 
Figure 2.17 shows the heat demand duration as a proportion of peak for the GB demand 
compared to the urban demand. The demands were first normalised such that the annual 
demands were equivalent and the area below each curve is the same. 

The figure shows that the urban base load as a percentage of peak is higher than the overall GB 
load and remains higher for half the time. The GB load curve then begins to rise sharply, 
overtaking the urban demand with both curves exhibiting a sharp peak as in Figure 2.15. Figure 
2.18 shows that the average urban winter load profile has lower peaks and lower peak to trough 
ratio compared to the average GB load profile. It also has a much more pronounced morning 
peak and a quicker drop-off while the daytime loads from nondomestic building prolong the 
drop-off to the mid-day trough. 
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Figure 2.16 Modelled national hourly heat load 2010-2015 from HeLoM 
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Figure 2.17 Comparison of the national and urban heat demand duration curve for 2010 

 

 
Figure 2.18 Average winter load profile comparison 

 

The spatiotemporal load at the LSOA level is shown in Figure 2.19 (with MSOA boundaries 
marked in black) at four times (9 am to 6 pm). The annual values of domestic LSOA load have 
been calibrated to consumption data, but the intraday profile and nondomestic load at this level 
are estimated model outputs. Such a tool has potential for use by urban planners who may want 
to identify areas of synergy such as whether a residential area with morning and evening peaks 
is beside a commercial area with day-time load. 
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Figure 2.19 Spatiotemporal variation of modelled heat load for an area of London at various 
times of day 
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2.6 Discussion 
HeLoM has been developed to generate estimates of heat load for both urban sub-city areas 
and the national level. Previous studies using similar methods have provided an exploration of 
domestic loads. However, any future large-scale DH development is likely to include 
nondomestic buildings as well. This model builds on previous work in the segmentation and 
characterisation of archetypes. A thermal model using regional weather data has been 
developed to provide hourly heat loads. It too builds on previous work and can be used to test 
the efficacy of efficiency interventions in future work. 

Knowledge of localised peak loads is necessary when planning electricity infrastructure such as 
in the event of large-scale consumer HP uptake. It also has an impact on the design of DH such 
as pipe sizing and for energy centres which need to be adequately sized to meet peak loads. The 
results of the highest HDD areas have been aggregated here as a substitute for total DH load. 
The results show that there is a discernible difference in the average heat load profile between 
the national load profile and the urban subset which demonstrates the need to disaggregate the 
urban load. On the national scale, the impact of peak winter heating loads on the electrical 
system has been the subject of several other studies. This model suggests that the peak may be 
more likely to occur around the evening peak with the cumulative contribution of domestic and 
nondomestic loads. 

2.6.1 Development challenges 
This work draws on established building stock modelling methods and building thermal 
modelling such as BREDEM. The thermal model contains many simplifications. It is not suitable 
for a more detailed single building analysis where more information on the construction, 
orientation and occupancy would be available. The nondomestic archetypes used here were 
limited to 12 activity classes but could have benefited from data on activity types as well 
accurate floor area estimates and more monitored occupancy data. The novelty of the study in 
this chapter emerges from the synthesis of the methods and data sources used. It has produced 
high spatiotemporal resolution output using historic meteorological data as the main driver of 
demand. 

Modelling demand at high resolution necessitates high computing and data storage 
requirements. This is especially the case as the spatiotemporal resolution increases as more 
detail needs to be captured. The study has relied on historical consumptions data. A central 
challenge remains in the validation or calibration of results in the absence of reliable 
benchmarking data on building energy performance (Oreszczyn and Lowe, 2010). Calibration of 
the output has been done at an aggregated level against total and peak heat load. Using this 
method, the accuracy of calibration decreases with increasing spatial resolution. At higher 
resolutions, the impact of any outlier or anomalous building has a larger impact on the total heat 
load. This may become less of a challenge in future with smart meter monitoring. 

The translation of the modelled heat loads to HP electricity load profiles (see section 3.7.3) may 
also be dubious. HPs are unlikely to be operated as gas boilers are. Adapting these heat loads to 
HP electrical load profile may be inaccurate. A similar argument could be applied to the use of 
low temperature DH demand which is likely to have a flatter load profile.  

Such a tool however, has potential for use by urban planners. It can be used to identify areas of 
temporal synergy such as whether a residential area with morning and evening peaks is beside 
a commercial area with daytime load. The results cannot be used for local DH design. DH design 
typically requires a more localised analysis of heat loads, identifying large heat loads, heat sinks 
and the loads that differ from the standard occupancies modelled here. 



Modelling District Heating In A Renewable Electricity System 

  46 

2.6.2 Uncertainties in demand 
A central assumption underlying the modelling here is that any future DH expansion will occur 
in areas of high HDD. The spatial distribution of heat loads is unlikely to differ much. However, 
there are large uncertainties in future demands from factors such as population growth, 
efficiency improvements and climate change effects. While population growth and efficiency 
improvements can be accounted for in the presented modelling, climate change may have the 
biggest impact. The Met Office UK climate projections envisage a range of 0.7 - 4.2˚C warmer 
winters by 2070 (Lowe et al., 2018). Additionally, there may be more erratic weather patterns 
whose impacts cannot be easily measured or recreated using past weather data. Building 
efficiency improvements may counteract increases in population growth but more recently we 
have experienced an upheaval in working patterns and building occupancy. How this might 
affect absolute demand, day to day temporal variations from weather patterns and seasonal 
variation from climate change is still unclear. These uncertainties do not invalidate any such 
analysis. Combined with the many other uncertainties, the modelling will provide an 
understanding of the causalities in the system and enable better system design. 
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3 ELECTRICITY COST MODEL 

Chapter Summary 
This chapter details the development of the Electricity Cost Model (ElCoM). To accommodate 
the variability of renewable generation, flexibility in the network is vital. A primary flexibility 
option is grid scale electricity storage. The goal of ElCoM is to model the effect of storage on 
electricity costs for highly renewable scenarios. A simulation is made of the electricity system 
using capacity factors based on measured meteorology to drive renewable output and the 
consequent operation of grid storage to balance differences between demand and generation. 
A marginal costing method is devised to calculate the operational costs incurred in each hour. 
These cost structures can form a transparent economic base for informing market design and 
setting prices for use in energy system models. After validating the output against historic data, 
ElCoM is then applied to a modified net-zero scenario. The scenario is high-renewable and highly 
electrified, utilising the heat demand modelled in chapter 2. Results show that while costs for 
renewable generation are relatively low, reliance on battery storage for backup particularly 
during peak periods can result in high electricity supply costs. The variability and long runs of 
low-cost electricity favours the use of storage. Thermal energy storage in district heating is a 
low-cost option that can take advantage of this variation. The output from ElCoM provides the 
basis to compare storage options, analyse the impact of electrified heating and to develop the 
operational control strategy for district heating. 

3.1 Renewable Energy and Grid Balancing 
The UK already has a large amount of variable renewable energy (VRE) on the electricity grid. 
With the predicted mass electrification of other sectors such as heating and transport, the 
demand on the grid is also projected to grow. Managing this demand with VRE will require a 
change in the way in which the grid is operated, possibly requiring significant amounts of 
electricity and other storage operated in a smart energy system.  

The increase in VRE on the grid is creating challenges with grid balancing and meeting peak 
electricity demand. This issue is currently solved largely through the use of dispatchable, fossil 
fuel operated plants such as gas turbines. Grid electricity storage such as batteries is an option 
to provide flexibility and reduce curtailment of renewable resources. A secondary objective of 
this work is to provide an analysis of their economic viability and impact on electricity prices. 

Historically, electricity prices have followed a predictable pattern of daily cycles of peak and off-
peak prices with seasonal variability and a strong link with fluctuations in fuel prices (Grubb and 
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Drummond, 2018). This predictability enables planning of smart grid infrastructure 
requirements as well as the electrification of other sectors by making informed investment 
decisions. However, with VRE composing a larger share of the electricity system’s generating 
capacity, electricity prices are becoming less predictable as exemplified by a recent record run 
of negative prices following by a sharp spike in balancing costs on the grid (Elexon, 2019; Ofgem, 
2018). 

As VRE increases, imbalances between supply and demand at daily, seasonal and annual 
timescales are expected to increase (Joos and Staffell, 2018). To avoid curtailment of VRE and to 
ensure that low carbon electricity is supplied during periods of low VRE, some forms of electricity 
storage will be required on the grid. With capital costs declining, lithium-ion batteries are 
experiencing a rapid uptake at the utility scale. As recently as 2016 a deployment of 15 GWh of 
battery storage by 2030 was considered ambitious (Strbac et al., 2016). More recent studies 
have revised this figure to over 100 GWh by 2035 to achieve a high renewable deployment 
(Aunedi et al., 2021). 

The present system has a low but growing VRE penetration with thermal fossil fuel plants 
composing the largest share of generation. Flexibility is largely achieved by dispatchable plant 
using stored fuels such as fossil and biomass. These fuels provide a large provision of the 
balancing requirements in the current system and complemented by storage such as pumped 
hydro. VRE generators have been rapidly reducing in capital costs and have very low operational 
costs (BEIS, 2016e). But they are inflexible, and the subsequent costs of integrating VRE must 
then be considered. As the penetration of VRE on the system increases, the flexibility costs 
associated with them are projected to rise (Strbac et al., 2015). The impact a larger storage 
capacity will have on electricity cost patterns is uncertain. This is compounded by the 
uncertainty surrounding future demand and supply profiles. While studies show that VRE could 
reduce costs, there has been less analysis on the impact of the cost of energy storage on 
electricity supply costs. 

This chapter develops a methodology used to derive a time-series of electricity generation costs 
for scenarios with high renewable deployment and with large capacities of grid storage. This is 
followed by the development of a net-zero scenario, with the translation of generation costs to 
electricity prices for the scenario. 

Box 3.1 Definitions of Cost and Price in context 

 
  

The definitions of cost and price were discussed in Box 1.1. A cost refers to the value of inputs 
to an enterprise and marginal costs represents the value of adding a unit of production to a 
system while price is the value paid for an output of an enterprise and is in theory, equal to 
the marginal cost for an efficient market. 

ElCoM calculates the hourly marginal cost of generating electricity for the grid. It then adds 
on to this, transmission and distribution costs which equals the total cost of producing and 
supplying electricity to end users. Assuming an efficient market, this is then the hourly 
electricity price to consumers of grid supplied electricity. 

The electricity price then forms part of the cost of supplying heat for a DH network in the 
subsequent chapter. The other costs incurred by DH network operators include the capital, 
operating and maintenance costs. This will be explored further in Chapter 4. Extending this, 
(although not discussed in this thesis), the cost of heat supply (and the DH operator’s profit 
margin) then forms (among other factors) the price of heat to consumers. 
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3.2 Review of Renewable Electricity Price Variance 
Forecasting of electricity prices has been well explored. Various approaches such as 
econometric, statistical, or multi-agent models are used to assist in estimating spot prices over 
various time horizons. Weron has provided a detailed review on the state of the art in electricity 
price forecasting techniques (Weron, 2014). 

There have been numerous studies analysing the effect of VRE on spot prices. Many of these 
show a rise in volatility of prices. Much of this analysis has been performed on historical data of 
northern European electricity markets. 

Dong et al. (2019) showed using historic data on the Nordpool market that price volatility 
increases with a higher penetration of renewables. This increase in volatility is more pronounced 
in regions where wind generation was dominant. Wozabal et al. (2016) performed a statistical 
analysis of spot price variance in Germany, challenging the assumption that higher VRE increases 
price variance. They found that small fractions of VRE actually decreased price volatility, but 
higher fractions resulted in larger increases in price variance. They highlight the importance of 
price variance as a revenue stream for smart grid infrastructure such as storage. Dillig et al. 
(2016) use historic spot prices in Germany to create counterfactual prices in the absence of VRE. 
They found increased hourly volatility in prices and show that prices in a higher VRE system are 
lower on average than a system without VRE. They also find that increasing VRE in the system 
results in a higher cost of dispatchable generation, potentially due to lower capacity factors. 
Comparing the German system with high solar capacity and the Danish system with high wind 
over various timescales, Rintamaki et al. (2017) studied volatility of prices during high VRE 
periods. They observed that daily volatility of prices in the wind dominated system is reduced in 
high wind areas. This is attributed to stable wind speeds over daily timescales. They also found 
that volatility increased in a high solar system due to the daily fluctuation in solar power. Price 
volatility on a weekly scale was shown to increases in both cases. This is supported by Wozabal 
et al. who found that small fractions of wind power leads to a reduction in price volatility. 

There have recently been some attempts to quantify the effects of largescale VRE in future 
scenarios in various markets. Pikk and Viiding (2013) analyse the Nordpool market spot price 
and predict a higher volatility in a high VRE scenarios. Similarly in Germany, Ketterer found that 
an increase in wind generation capacity will lead to a more volatile spot price but with reduced 
average prices (Ketterer, 2014). Sorknæs et al. (2019) Investigated the effect of VRE on 
wholesale prices using a market economic simulation in EnergyPLAN. They calibrated their 
economic model with 2015 Nordpool spot prices then simulated future VRE capacity effects on 
prices. The authors determined that any increase in VRE generation reduces wholesale prices. 

Badyda and Dylik (2017) studied historical market and renewable generation data for several 
European countries. Extrapolating their observations, they predict a pronounced seasonality in 
the price variance with up to three times higher average prices in high demand periods. 
Maxwell et al. (2015) used a similar method to investigate the role of renewable subsidies in 
Denmark. They state that future work would benefit from a better understanding of how VRE 
effects electricity prices. 

3.2.1 Marginal cost methods 
The previous authors have studied price variance using statistical or econometric analysis to 
model and describe prices in high VRE scenarios. Another class of models described by Weron 
(2014) falls into the “fundamental model” category, so called as it attempts to describe the 
important physical and economic factors that give rise to generation costs. The use of marginal 
generating costs falls into this latter class. These models typically use defined marginal cost 
curves for generators and determine cost by the point at which it intersects with demand curves. 

The use of marginal costs in predicting electricity prices is a standard method to predict system 
prices and is a useful price estimator (Müsgens, 2006). Electricity markets consist of many 
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generators bidding to supply electricity, each with differing costs. Economic theory predicts that 
in a market with perfect competition and sufficient capacity, the market auction price should 
clear at the cost of supplying a marginal increase of demand in the system. Further, the price of 
electricity should be equal to the marginal cost of the most expensive generator active on the 
system. Even though cheaper generators may be active on the system, market price is set at the 
highest auction clearing price and all electricity generators obtain the same remuneration. 

However, the actual wholesale price of electricity is rarely at the marginal cost due to market 
imperfections and secondary costs. Marginal costs can provide a reference point about which 
wholesale prices deviate. Marginal costs have been shown to be the largest component of day-
ahead wholesale electricity prices in the UK. This includes the added costs of transmission, 
distribution and mark-ups from utility companies, composing about 40% of end electricity prices 
(Gissey et al., 2018). 

Haas et al. (2013) study the impact of solar power in European electricity markets using a 
marginal cost method. Like other studies, they predict higher volatility at both hourly and daily 
timescales which will in turn result in higher operating costs for dispatchable generators in the 
long term. They highlight the growing importance of balancing markets going forward in Europe. 
Morales et al. (2011) used locational marginal costs to study the impact of regional wind power 
generation on a simulated electricity market to obtain statistical characterisation of wind prices 
with wind power and Müsgens (2006) has used marginal costs with a dispatch model to study 
market power in Germany and the effect of integration with other markets. A study of the merit 
order effect due to the cost of wind generation found depressed electricity prices and lower 
returns to other generators in the Spanish market (Figueiredo and da Silva Pereira, 2017). The 
authors used this to highlight the inadequacy of the Iberian power market to incentivise further 
investment. 

Marginal costs have been used by Lamont to assess the system value of VRE and to optimise 
generator capacity on the GB system (Lamont, 2008). They use a simplified dispatch model of 
‘always-on’ baseload, then a selection of VRE or dispatchable plant based on marginal costs. 
They assumed that the cost of constraining wind power is at the price set by the renewable 
obligation certificate rather than marginal run costs. Green and Vasilakos (2011, 2010) used a 
market equilibrium model with marginal generator costs to study market behaviour and the 
impact of wind power on long-term prices. They find that yearly variations of wind output can 
affect intra-year revenue for wind generators by up to 20%, but this is lower than the present 
impact of fluctuating fuel costs. In addition, they find that that the revenue wind generators 
receive for constraining output has significant consequences on the resulting capacity mix. Seel 
et al. (2018) have used marginal costs to analyse wholesale price patterns in the four grid regions 
of the USA. Using a capacity expansion model to derive high VRE scenarios, they found a 
reduction in average annual prices throughout but differing average price patterns based on VRE 
mix and region. 

Notably, in the literature presented, there has been a lack of analysis on the effect of large-scale 
grid storage on electricity supply costs. The method presented in the following sections presents 
a contribution to this literature. 

3.3 Modelling Methodology 
This section first develops a simplified representation of the electricity system with large 
fractions of VRE and grid storage. It is a simplified representation where each generator type is 
treated as an aggregate, while spatial and transmission constraints are not explicitly modelled. 
Generation capacity is split into flexible and inflexible generation. Flexible generators are 
assumed to be Combined Cycle Gas Turbines (CCGT) that are able to adjust output to follow 
demand. VRE output varies uncontrollably with the wind resource but can be spilled or 
constrained. Baseload is assumed to be nuclear generation with constant output but could 
equally be a thermal generator with carbon capture and storage (CCS). The approach assumes 
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flexibility is first achieved with grid storage, then via dispatchable CCGT. The supply of electricity 
from storage is essentially treated as another generator 

Note that the costs initially calculated are at the point where generator and storage supply 
electricity to the high voltage grid, and do not include transmission and distribution losses. These 
costs might be simple constant additional costs per kWh, or more complex reflecting hourly 
demand variations which determine network capacity and losses. These additional costs will be 
smaller for high voltage supply, such as to industrial or DH HPs for example, compared to the 
majority of consumers on the distribution grid. 

3.4 Dispatch Model 
Renewable generation is defined via hourly capacity factors (the percentage of installed capacity 
generating power), from historical meteorological data and projected installed capacity. 
Dispatchable generation capacity is assumed to be sufficient to meet any residual deficit in 
demand. The maximum required dispatchable generation occurring in a year is then one input 
to the capital cost of the system used in the calculation of marginal costs. 

Demand data is an exogenous input to the model and assumed inelastic i.e., demand is always 
met regardless of the cost of electricity. Hourly demand is scaled for each scenario from a 
historical demand timeseries such that it corresponds to the same time period to maintain the 
weather linkage. This initial scaling assumes that historic demand profiles are preserved in future 
scenarios and will be revisited later. 

The capacity factor or Availability, A, for each renewable generator (onshore wind - ONS, 
offshore wind - OFS, solar – SOL) is multiplied by the installed capacity, C, to obtain hourly 
renewable generation. This is added onto a baseload generation capacity, CBSL, defined in the 
scenario. Baseload generation is assumed constant throughout the simulated period and is 
always less than or equal to the minimum demand. Consequently, the baseload never sets the 
marginal price in this model. 

Total low carbon electricity generation, GLCB, for each hour, i, is then the sum of baseload and all 
VRE generators:  

 𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖  = 𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵  + 𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂,𝑖𝑖 + 𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂,𝑖𝑖  + 𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖  (3.1) 

If there is a surplus of electricity generation over demand Di, GLCB,i – Di > 0, then GLCB,i – Di is 
allocated to the available storage if charge capacity is available otherwise the renewable power 
is constrained. If the demand exceeds the available generation GLCB,i – Di < 0, then the electricity 
storage is discharged by the amount Di – GLCB,i. If the discharge is insufficient, the dispatchable 
power generators, CCGT is then activated and the dispatchable generation is GDSP = Di – GLCB,i – 
GDCH,i .  

Here it is assumed that storage operates in coordination with VRE to meet residual demand 
deficit or absorb the residual surplus. An implicit assumption in the modelling is that all stores 
charge and discharge simultaneously by the same fraction of their capacity. High carbon 
dispatchable generation is treated as a last resort in order to minimise the associated emissions. 
The choice is made to contrast with a conventional market in which generators bid to supply 
electricity. The aim of the smart grid infrastructure is to prioritise emissions reductions. This may 
well arise in a conventional market structure with the inclusion of carbon costs. Initially, no 
constraints are placed on the charging and discharging power of storage. This assumption 
becomes reasonable as the number of individual stores increases but will be verified in the 
results. 
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3.5 Marginal Cost Method Development 
Upon completing a simulation of the electricity system, each hour is classified as one of four 
basic hour types, some of which have further subdivisions. For each hour type there is a different 
algebraic expression used to calculate the marginal electricity generation cost, MC. 

• Type 1 SRP: Hours with surplus renewable generation, “Surplus Generation hours”. 
These are hours where supply exceeds demand and remaining storage capacity.  

• Type 2 CHR: Hours in which electricity storage is charged “Charge hours”  
• Type 3 DCH: Hours in which electricity storage is discharged “Discharge hours” 

subdivided into: 
­ Full cycle discharge (DCHf) hours where storage capacity is full prior to 

discharging 
­ Part cycle discharge (DCHp) hours in which storage is partly charged prior to 

discharging 
• Type 4 DSP: Hours in which backup dispatchable generation is required “Dispatch hours” 

subdivided into: 
­ Peak dispatchable hours DSPp where the difference between electricity 

demand and low carbon generation is at its highest which determines its 
capacity (GW) 

­ Off-peak dispatchable hour DSPo which are all other dispatchable hours 

The procedure must be carried out in a particular order. After simulating the electricity system 
for a period of a year (or number of years), the marginal costs for Surplus hours, CSRP, are 
calculated followed by the cost for Dispatch hours, CDSP, both peak and off-peak. Charge hours 
costs, CCHR, are then calculated which finally enable the Discharge hour costs CDCH, to be 
calculated. 

 
Figure 3.1: Order of operation to calculate marginal costs for each hour type 

3.5.1 Surplus generation hours 
When baseload and renewable generation exceeds demand and electricity storage charging 
capacity, curtailment of renewable generation will be required. It would be economic to curtail 
the renewable technology with the highest variable cost (however these are small for renewable 
generators). This is analogous to creating a merit order of net variable cost and identifying where 
Demand intersects the resulting merit-order stack. This indicates the particular renewable 
technology that sets the market price during that hour and may vary hour by hour. This 
technology is the “marginal technology,” denoted by the subscript m. 

The marginal costs for Surplus Generation hours, MCSRP, is then given by the variable costs of 
the marginal generator, Vm, minus the cost of constraining output from the marginal generator, 
Mm: 

 𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖 = 𝑉𝑉𝑚𝑚,𝑖𝑖 − 𝑀𝑀𝑚𝑚,𝑖𝑖 (3.2) 

3.5.2 Off-peak dispatch hours 
When electricity demand exceeds the available low-carbon power including stored electricity, 
demand must be met by dispatchable plant, this is assumed to be CCGT but could be one of 
several plant types. To minimise carbon emissions, it is assumed that this plant only operates 
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during the hours required to make up the generation shortfall. Therefore, all the year-on-year 
costs of the dispatchable plant must be met by this operation; but it is assumed these are legacy 
plant with sunk costs, so they do not incur capital costs. Hence, for off-peak dispatchable hours, 
the marginal generation costs, MCDSPo, in £/MWh is given by the variable operating costs of the 
dispatchable plant: 

 𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖 = 𝑉𝑉𝑐𝑐  (3.3) 

The variable operating costs include fuel and carbon costs, and variable O&M costs. The O&M 
costs in this case will need to be a conservative estimate due to the impact on efficiency and 
O&M of frequent ramping, part load and cold start. 

3.5.3 Peak dispatch hours 
The annual fixed operating costs of the dispatchable plant are recovered during the peak 
dispatch hours. These costs are often called Fixed Other-Works Costs (FOWC) which are a close 
approximation of the Net Avoidable Cost (NAC), the net cost of keeping the plant open for 
another year. 

In a system with VRE, there is uncertainty over the operation of dispatchable capacity and 
therefore of the revenue it will obtain from the hourly market. Therefore, the UK has had a 
Capacity Market auction whereby the generator or store receives a guaranteed annual payment 
regardless of the amount generated. This market is currently under investigation but is assumed 
to apply in the costing methodology (Carbon Brief, 2018). Battery storage was permitted to 
participate in the capacity market; however, the costs of providing peak demand from storage 
remains high. The National Grid recovers the cost of the capacity market auctions during peak 
weekday demand periods, November-February 4-7pm or around 240 hours or 2.7% of hours in 
the year (though this means of allocation is somewhat arbitrary) (Inenco Energy, 2016).  

Following this means of recouping marginal capacity costs, 2.7% of the Dispatch hours with the 
highest difference between Demand and Low Carbon Generation, Di – GLCB,i, are allocated as 
Peak Dispatch hours. The marginal cost for peak dispatch hours, MCDSPp,i, is then calculated by 
the product of annual fixed costs of the dispatchable generator FD, and the peak dispatchable 
generation, GD,i, divided by the the forced outage rate of dispatchable plant, RCD, and total 
dispatchable generation in all peak dispatch hours, plus the variable costs: 

 𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖 =
𝐹𝐹𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷

�𝐺𝐺𝐷𝐷,𝑖𝑖�

�1− 𝑅𝑅𝐷𝐷
100�∑ �𝐺𝐺𝐷𝐷,𝑖𝑖�𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

+ 𝑉𝑉𝐷𝐷  (3.4) 

3.5.4 Charge hours 
A projection of the incremental renewable generator is made which is the renewable generator 
that sets the cost of charging storage. The incremental technology in the UK would likely be 
offshore wind. This is based on the constraints on the building of further onshore wind, its higher 
output in winter when demand is high and the higher cost of solar generators. The incremental 
technology is distinct from the marginal generator which can be any VRE (including incremental), 
storage or dispatchable, during an hour. 

The marginal generation cost during charge hours is set by the incremental technology, denoted 
by subscript n, for a given scenario. The variable cost of the incremental technology, Vn, during 
surplus hours in which it is less than that of the marginal technology must also be recovered. 
These ‘energy credits’ can be calculated by the difference in variable costs minus the cost of 
constraining output between the marginal and incremental generator: 
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 �𝐺𝐺𝑛𝑛,𝑖𝑖��𝑉𝑉𝑚𝑚,𝑖𝑖 − 𝑀𝑀𝑚𝑚,𝑖𝑖� − (𝑉𝑉𝑛𝑛 − 𝑀𝑀𝑛𝑛)�
𝑆𝑆𝑆𝑆𝑆𝑆

 (3.5) 

The fixed costs of the incremental renewable generator, Fn, across the year (or the chosen time 
period for calculation) must be recovered. This fixed cost is given by the expression: 

 

𝐹𝐹𝑛𝑛 = ��𝐴𝐴𝑛𝑛,𝑖𝑖𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑖𝑖�
𝐶𝐶𝐶𝐶𝐶𝐶

+ ��𝐴𝐴𝑛𝑛,𝑖𝑖𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖�
𝐷𝐷𝐷𝐷𝐷𝐷

+ ��𝐴𝐴𝑛𝑛,𝑖𝑖𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖�
𝐷𝐷𝐷𝐷𝐷𝐷

− � 𝐴𝐴𝑛𝑛,𝑖𝑖(𝑉𝑉𝑛𝑛 − 𝑀𝑀𝑛𝑛)
𝐶𝐶𝐶𝐶𝐶𝐶

+  
1
𝐶𝐶𝑛𝑛,𝑖𝑖

�𝐺𝐺𝑛𝑛,𝑖𝑖��𝑉𝑉𝑚𝑚,𝑖𝑖 − 𝑀𝑀𝑚𝑚,𝑖𝑖� − (𝑉𝑉𝑛𝑛 −𝑀𝑀𝑛𝑛)�
𝑆𝑆𝑆𝑆𝑆𝑆

 

(3.6) 

Substituting for MCDCH (3.12) and using the following approximation: 

 

��𝐴𝐴𝑛𝑛,𝑖𝑖 �
∑ �𝐴𝐴𝑛𝑛,𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

∑ �𝐴𝐴𝑛𝑛,𝑖𝑖�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
� ��

𝐷𝐷𝐷𝐷𝐷𝐷

 

≈  �� 𝐴𝐴𝑛𝑛,𝑖𝑖
𝐷𝐷𝐷𝐷𝐷𝐷

��
∑ �𝐴𝐴𝑛𝑛,𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖�𝐶𝐶𝐶𝐶𝐶𝐶

∑ �𝐴𝐴𝑛𝑛,𝑖𝑖�𝐶𝐶𝐶𝐶𝐶𝐶
� � 

(3.7) 

The marginal cost during charge hours is given, from (3.6), (3.7) and from (3.12) below, by: 

 

𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑖𝑖

=
𝐹𝐹𝑛𝑛 −

1
𝐸𝐸𝑠𝑠
∑ 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷 ,𝑖𝑖𝐴𝐴𝑛𝑛,𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 − ∑ �𝐴𝐴𝑛𝑛,𝑖𝑖𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖�𝐷𝐷𝐷𝐷𝐷𝐷 − 1

𝐶𝐶𝑛𝑛
∑ 𝐺𝐺𝑛𝑛,𝑖𝑖(𝑉𝑉𝑚𝑚 −𝑀𝑀𝑚𝑚)𝑆𝑆𝑆𝑆𝑆𝑆

𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝑛𝑛,𝑖𝑖 �1 + 1
𝐸𝐸𝑠𝑠
∑ 𝐴𝐴𝑛𝑛,𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷
∑ 𝐴𝐴𝑛𝑛,𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶

�
 

+
� 1
𝐶𝐶𝑛𝑛
∑ 𝐺𝐺𝑛𝑛,𝑖𝑖 +𝑆𝑆𝑆𝑆𝑆𝑆 ∑ 𝐴𝐴𝑛𝑛,𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶 � (𝑉𝑉𝑛𝑛 − 𝑀𝑀𝑛𝑛)

1
𝐸𝐸𝑠𝑠
∑ 𝐴𝐴𝑛𝑛,𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 + ∑ 𝐴𝐴𝑛𝑛,𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶

 

(3.8) 

3.5.5 Discharge hours 
Assuming the storage has a constant efficiency Es with no standing loss assumed then for every 
unit of power discharged, 1/Es units of power must be charged. The cost of charging the storage 
must be recouped from discharging. The assumption is made that all the individual batteries are 
charged and discharged evenly across each individual unit in the capacity as if one single 
aggregate battery. The cost incurred from this charging is dependent on the cumulative charge 
hour costs preceding the discharge, back to when the store was last empty, denoted with CHRc. 
The average cost of charging during charge hours in the period preceding the discharge, 
weighted by the availability of the incremental renewable generator is given by: 

 
∑ �𝐴𝐴𝑛𝑛,𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

∑ �𝐴𝐴𝑛𝑛,𝑖𝑖�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
�  (3.9) 

The fixed cost of storage capacity must also be recovered during discharging. Here it is assumed 
that the marginal cost of supplying power from discharging storage is driven by the incremental 
storage cost to meet incremental demand and the cost of charging the storage from renewable 
generators. 

The recovery of the fixed cost of storage during discharge hours in this method is recovered 
through full charge-discharge cycles. A full discharge cycle is defined as each time the storage 
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capacity is full preceding the discharging cycle which can run for multiple hours. Part discharging 
cycle are other hours when storage is not full prior to the discharge cycle. The cost of grid storage 
during part and full discharge hours KDCH, is defined by the storage capacity, Cs, the fixed and 
variable running costs of storage, Fs and Vs, the storage efficiency (defined as effective energy 
output per input), Es, and the discharged amount QDCH: 

 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖 =  𝑉𝑉𝑠𝑠 (3.10) 

 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖 =  
𝐹𝐹𝑠𝑠𝐶𝐶𝑠𝑠

∑ 𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
+ 𝑉𝑉𝑠𝑠 (3.11) 

The marginal cost during a discharge hour is then given by: 

 𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷 ,𝑖𝑖 =  𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷 ,𝑖𝑖 +
∑ �𝐴𝐴𝑛𝑛,𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝐸𝐸𝑠𝑠 ∑ �𝐴𝐴𝑛𝑛,𝑖𝑖�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
 (3.12) 

3.5.6 Data sources 
The capacity factor data to construct hourly renewable generation profiles have been obtained 
from the work of Pfenninger and Staffell (2016) published on the ‘Renewables Ninja’ website. 
The capacity factors are derived from a combination of historical meteorological data and known 
or planned renewable generator locations.  

Electricity demand data is obtained from the National Grid’s historic demand data archive which 
contains the demand on the transmission network and a breakdown of each power source 
meeting the demand per half hour (National Grid ESO, 2019). Hourly demand is calculated from 
the sum of two half hourly periods. This data however is not fully representative of the true GB 
electricity demand as it does not include any power generation embedded in the distribution 
network. 

Cost assumptions where possible were obtained from government projections. The cost of 
dispatchable generation (CCGT) was obtained from Leigh Fisher and Jacobs (2016) report 
commissioned for DECC. Similarly, the cost of renewable generation was taken from a review 
undertaken by ARUP (2016) for DECC. Other assumptions were sourced from the Department 
for Business, Energy and Industrial Strategy Electricity Generation Costs report (BEIS, 2016e). An 
electricity storage cost review by IRENA (2017) was used for battery storage (Li-ion) assumptions 
supplemented by Lazard’s (2019) levelised cost of storage analysis. Where applicable, all costs 
in this thesis have been adjusted for inflation to 2020 figures. An overview of these can be found 
in Table C-1 of Appendix C. 

3.6 Model Validation 
The model output is first compared to historic generation data for the year 2016 before the 
results from two high VRE scenarios are presented. These scenarios are adapted from the 
National Grid’s Future Energy Scenarios (2017a), using the projected generation capacity mix 
from the two scenarios that conform to the 2050 decarbonisation targets. 

3.6.1 Dispatch model 
The model output using 2016 renewable capacities is compared to historic generation data for 
the year in Table 3.1 (BEIS, 2017b). This method is designed for a renewable and storage 
dominated system thus an exact match for electricity generation and prices with a present-day 
system should not be expected. However, it is useful to compare the low carbon generation 
output from the model with the data. In the model, all other generation is assumed to be 
dispatchable whereas this is not the case in the present-day system. 
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Baseload nuclear generation is overestimated as the model assumes a 100% availability. The 
data shows an 83% annual capacity factor for nuclear generators which would be due to 
maintenance or faults affecting availability. Comparison for the output of the renewable 
generation data from Stafell and Pfenninger (2016) shows that it has been calibrated accurately. 
Solar PV and offshore wind outputs are very close to historic output data while onshore wind 
has been slightly overestimated.  

Table 3.1 Comparison of 2016 low carbon generation with modelled generation 

3.6.2 Scenario Analysis 
The scenarios “Two degrees” and “Community Renewables” from the National Grid’s Future 
Energy Scenarios 2017 are designated here as ‘Scenario A’ and ‘Scenario B.’ The details of these 
scenarios are presented in Table 3.2. The renewable generation and grid storage capacity from 
the two scenarios was used as input for the scenario analysis and 5% interest on all capital costs 
has been applied for initial analysis. 

Table 3.2 National Grid FES Scenarios comparison 

A comparison of the modelled marginal electricity generation costs for each scenario with 
wholesale prices from 2016 in Table 3.3 shows that the average daily cost of electricity 
generation is lower than the 2016 average price in both high VRE scenarios modelled here. The 
maximum average daily cost is higher however due to the fixed annual costs of dispatchable 
generation (assumed here as CCGT) being recouped over fewer hours of the year. Additionally, 
these would also be the days that have the highest difference (residual) between electricity 
demand and renewable generation, requiring dispatchable plant to fulfil the remaining demand. 

Table 3.3 Cost comparison with renewable capacity and storage 

 
The scenarios were modelled using demand and renewable data from 2006-2016. The results 
for individual years can be found in Appendix. A. detailed look at Scenario A in Figure 3.2 shows 
a winter month period in 2016 with the residual renewable generation (above) and storage 
levels and electricity costs (below). It shows that costs frequently spike corresponding to cycling 
of electricity storage levels in the system. When storage levels are full, surplus generation hours 
result in low costs. However, as a result of renewable fluctuation the storage level varies rapidly 
requiring discharge then dispatch periods, which result in higher costs. Two peak dispatch hour 
are observable near the beginning of December when residual generation is most negative. It 

 
Onshore Wind 
TWh 

Offshore Wind 
TWh 

Solar PV  
TWh 

Nuclear  
TWh 

2016 Data 21.1 16.4 10.3 65 

Modelled 24.3 16.0 10.7 78 

Scenario Name Demand 
(relative 
to 2017) 

Offshore 
Wind GW 

Onshore 
Wind GW 

Solar PV 
GW 

Nuclear 
GW 

Total 
Capacity 
GW 

Grid 
Storage 
GWh 

A (Two 
Degrees) 

+25% 43.4 22.3 43.7 20.0 224.3 17.3 

B (Community 
Renewables) 

+48% 32.5 50.7 66.2 18.6 267.6 29.0 

Scenario Renewable 
Capacity GW 

Wind Share of 
total capacity  

Solar Share of 
total capacity  

Average 
£/MWh 

A (Two Degrees) 109.4 29% 19% 34.1 

B (Community Renewables) 149.4 31% 25% 35.1 

2016 actual 26.79 16% 11% 41.12 
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suggests that the storage capacity in Scenario A is insufficient for the renewable capacity in the 
absence of other flexibility options. 

Explicit constraints on charging and discharging rates have not been applied. However, the peak 
power to energy ratio in the simulations of the scenarios was 0.66 MW/MWh. This is within the 
limits of grid scale lithium-ion storage where typical power to energy ratios are 1.0 (Hesse et al., 
2017). 

 
Figure 3.2: Residual renewable generation (above) and resulting cycling of storage and costs 
(below) for Scenario A 2016 

Off-peak dispatch hours are cheaper than discharge hours under the current cost projections 
used. This is the case with the current assumptions of short run variable costs of dispatchable 
hours being less than that of discharge (fuel £35/MWh, carbon £70/MWh, O&M £1.5/MWh). 
For the storage capacity defined in Scenario A, a total short run variable cost for dispatchable 
generation would need to be at least that of the highest discharge cost, £251/MWh. From the 
perspective of limiting carbon emissions, it would be desirable to have DSP hours cost higher 
than DCH hours. Adjusting DSP hour costs to be higher than DCH hours meant that the average 
in Scenario A increased from £36.34 to £49.83, almost a 40% increase in average annual costs.  

Within the current market framework, unless fuel or carbon costs increase above projected 
values, dispatchable/thermal generation would be higher in the merit order than less carbon 
intensive electricity from discharging electrical storage, owing to their lower marginal costs, 
Figure 3.3. Figure 3.4 shows adjusted dispatch hour costs to reflect an ideal scenario where 
dispatch costs are higher than discharge costs. 
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Figure 3.3: Scenario A and B cost duration curves 2013 

 

 
Figure 3.4: Scenario A 2013 price duration curve with adjusted DSP hour costs 

 

For both scenarios, the positive residual generation from renewables is far higher than the 
negative residual, Figure 3.5, which suggests an overcapacity of renewables in both scenarios. 
Analysis of the residual duration curves as well as the absolute maximum of negative residual 
generation can allow better estimates of storage requirements and the corresponding effect on 
prices, but an optimisation of scenario storage levels is beyond the scope of this study.  

Figure 3.6 shows a 24-hour rolling average of the mean modelled generation costs for scenario 
A from the 2006-2016 data, scenario B exhibited a very similar distribution. A clear seasonality 
can be observed in the costs, with higher cost periods being concentrated in the winter where 
despite wind generation in these scenarios being higher, there are periods of low generation 
coinciding with high demand often leading to higher costs. 
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Figure 3.5: Residual renewable generation for scenario A and B 2013 

 
Figure 3.6: Scenario A 24-hour rolling average of modelled costs and trendline 2006-2016 

Another observation is that an increase in the share of renewables does not directly lead to 
lower average electricity generation costs. This can be seen in the average cost difference 
between scenario A and B. These are similar despite B having a significantly higher renewable 
capacity to meet a significant difference in demand. Scenario A has higher average costs in some 
year compared to B. 

The fewer dispatch hours that occur within a year, the higher the maximum costs become as 
there are fewer hours where dispatchable plant operates. The fixed annual costs of the 
dispatchable plant per MWh of electricity grows as there are fewer peak dispatch hours against 
which to recover fixed costs of the capacity. The cost of electricity from peak dispatch hours 
would decline if dispatchable plant capacity decreased, in other words, if the highest negative 
residual decreases. 

This peaking function at high demand times is normally performed by open cycle gas turbines 
(OCGT) that are able to ramp output, consequently they have high O&M and variable costs but 
low fixed costs. Cost for DSP hours are based on CCGT due to their higher efficiency and 
predicted improvement in technology and ramping ability. Also, as renewable generation grows, 
dispatchable generation will be gradually retired; by about 2050, the remaining dispatchable 
plant may likely be already-existing CCGTs. 
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3.6.3 Sensitivity Analysis 
Scenario B is presented alongside high and low-cost projections to display the sensitivity of 
prices to capital cost projections. In this case, the interest rate on capital costs for renewables 
and storage has been adjusted from the base case of 5% to a low case of 2.5% and high case of 
10%. The variable operational costs of dispatchable generation have been adjusted to ±20%. 

It is observable in Figure 3.7 that surplus hours are the same for each case as these are only 
dependent on the variable operating costs of renewables. Peak DSP hours (not shown) are 
affected in the same way as off-peak DSP hours as it is assumed that no new dispatchable plant 
is built and thus no new capital is required. DCH hours are affected as expected due to the 
changed annuitised capital costs of storage capacity. In this particular scenario, the costs for 
charge hours in the high costs case is below the base case (Table 3.4). This is due the increased 
revenue to the incremental renewable from higher costs in both DSP hours and DCH hours. If 
dispatchable generation costs were left unchanged, then it is expected that CHR hour costs 
would be changed in line with the change in annuitised capital costs of the incremental 
renewable generator. 

Table 3.4 Average price comparison for high and low-cost cases 

 
Figure 3.7: Scenario B with high and low-cost projections (clipped for detail) 

3.7 Scenario Development 
The scenarios presented thus far from FES 2017 have since been superseded. UK policy makers 
have since introduced more ambitious net zero targets (BEIS, 2020a; Committee on Climate 
Change, 2019). A scenario from the revised FES (2020) is adapted for use in the following 
chapters. 

An overview of these scenarios adapted from the FES 2020 data tables is given in Table C-2 and 
Table C-3. The revised scenarios all have ambitious renewable generation targets. Of these 

  
Scenario B 

£/MWh  
Scenario B High 

 
Scenario B Low 

Average Annual Price 36.40 40.51 31.05 

Average Discharge Price 156.97 181.65 134.95 

Average Charge Price 62.88 58.02 53.79 
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‘Consumer Transformation’ (CT) and ‘Leading the Way’ have a high battery storage capacity, 
with most of the other storage capacity comprised of short term pumped hydro. The CT has a 
larger baseload, comprised of Nuclear and thermal generators with CCS, higher annual demand, 
and lower fossil fuel capacity. It also has the largest electrified heating projections of all the 
scenarios with the most ambitious district heating development targets. This makes it a suitable 
Net Zero (NZ) scenario to adapt for this study which will be used for analysis of electrified DH. 

3.7.1 Electricity demand 
Electricity demand is composed of the existing demand data as per the previous scenarios but 
with the addition of electric vehicle (EV) demand and HP demand. The largest departures from 
the CT scenario will be the assumption of 100% electric heating as opposed to around 70% in 
the original scenario. The increased fraction of electric heat demand increases the total annual 
demand in this scenario to 520 TWh. Hourly electricity demand is composed of scaled historical 
electricity demand profile (as described in section 3.4) and new HP and EV demand. 

3.7.2 Electric vehicles demand 
The daily EV charging load profile shown in Figure 3.8 was derived from the inverse of daily traffic 
flow statistics (Barrett, 2020). The profile is then multiplied such that the annual demand is 
consistent with the scenario demand of 87 TWh in Table C-2. This results in the same daily EV 
load whereas in reality there are variations across the week and year. There are further 
complexities such as EVs contributing to ancillary services and balancing (vehicle to grid), which 
have not been modelled.  

 

 
Figure 3.8 Daily Electric Vehicle demand profile for the NZ scenario 

 

3.7.3 Heat pump demand 
The national GB heat demand, DH, from the HeLoM model are used to estimate the demand for 
electric heating from HPs, DE,HP. The FES 2020 CT scenario has around 70% electrical heat with 
the remainder from hydrogen and biofuels. For the NZ scenario we assume 100% of the heat 
demand is met by HPs, increasing the electric heat load by 30%. The annual electricity demand 
then increases from 450 TWh to 520 TWh. Using the ambient temperature, Tamb, a separate COP 
is calculated for domestic heat pumps using a Carnot efficiency based on absolute temperatures 
in K, ECAR, of 0.4 and 0.45 for nondomestic heat pumps according to (3.13) assuming an output 
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temperature of 50°C  (323 K). The heat demand can then be converted to a heat pump electrical 
demand from (3.14). 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻 =
𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶(273 + 50)
273 + 50 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

 (3.13) 

 𝐷𝐷𝐸𝐸,𝐻𝐻𝐻𝐻 =
𝐷𝐷𝐻𝐻

𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻
 (3.14) 

Most of these heat pumps are likely to be connected to the local electrical distribution network 
so appropriate distribution losses must be applied. UK Power Networks estimate that overall 
distribution losses across the country are in the region of 6% (Strbac et al., 2018a). Distribution 
losses, LDST, are first estimated from (3.15) with a constant loss factor and variable power law 
losses, and factors z0 and z1 from (Barrett, 2014). In contrast to applying a constant loss factor, 
this results in larger losses when HP demand, Di,HP, on the distribution network is high. 

 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑧𝑧0 + 𝑧𝑧1𝐷𝐷𝑖𝑖,𝐻𝐻𝐻𝐻2  (3.15) 

This provides the hourly variation of losses in accordance with the demand level. National Grid 
(2017b) published seasonal average transmission system losses for the London region as: Spring 
1.3%, Summer 1.3%, Autumn 2.1%, Winter 2.9%. Assuming distribution losses follow the same 
seasonal pattern as transmission losses, seasonally losses are then: Spring 5.0%, Summer 5.0%, 
Autumn 8.1%, Winter 11.1%. Distribution  losses are then normalised seasonally to these 
percentages and the heat pump demand, Di,HP, is suitable inflated. 

The reference load consists of all existing time varying demands from historic demand data but 
suitably scaled as per the demand in the CT scenario. The historic demand is scaled such that 
the total CT scenario demand in Table C-2 is the sum of electric heating demand, EV demand 
and the scaled historic demand. The modelled daily demand from 2012 for the NZ scenario is 
shown in Figure 3.9. 

 
Figure 3.9 Modelled 2012 daily Electricity Demand for the NZ Scenario 

3.7.4 Electricity generation 
As described in the dispatch methodology, electricity generation comprises renewable 
generators – composed of onshore wind, offshore wind, and solar PV, dispatchable generators 
and grid storage (batteries). However, several further adjustments and assumptions are made 
for the NZ scenario. Firstly, offshore wind technology has improved in recent years and average 
capacity factors are projected to increase. Second, the increase in demand for the adapted NZ 
scenario necessitates an increase in generation and storage capacities. 
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The baseload generation as described in section 3.4 is assumed constant throughout the 
simulated periods and is set less than the minimum demand. As it is always less than the 
demand, consequently it never sets the marginal cost of electricity generation and its 
composition is not an important factor in this study. However, it is assumed to be nuclear 
generation with constant hourly output but could equally be a thermal generator with carbon 
capture and storage (CCS). 

3.7.5 Offshore wind turbine technology 
The projected wind capacity factors from the Renewable Ninja dataset have an average below 
40%. This is in line with UK aggregate offshore capacity factors which have increased from 30% 
to 40% (IRENA, 2019; The Crown Estate, 2019). In 2020 the average offshore UK installed wind 
turbine is around 3-5 MW capacity, however the largest wind turbines being installed in the 
North Sea in 2020 have a 12 MW capacity for which the capacity factor is projected to be 63% 
annually (GE, 2018). A report commissioned by BEIS projects aggregate offshore capacity factors 
to rise by up to 60% by 2035 (BEIS and DNV GL, 2019) and design for offshore turbines of up to 
50 MW are currently under development (Gerdes, 2018) which may make capacity factors 
higher than 60% feasible. Offshore capacity factors are transformed for the NZ scenario by 
raising the original factor to a power of 0.565 to produce a mean capacity factor of 55%. The 
transformed capacity factors are shown in Figure 3.10 where the factors are more evenly 
distributed whereas the original factors had a large concentration in the lower quartile (before 
transformation; μ =0.38, σ² =0.042 and after; μ =0.55, σ² =0.048). Higher capacity factors may 
reduce storage requirements, but this also depends on how the generation is distributed across 
the year relative to demands.  

 
Figure 3.10 Offshore capacity factors before (top) and after (bottom) transformation 
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3.7.6 Generation and storage capacity 
The Consumer Transformation scenario is simplified to create an all-renewable scenario. Core 
aspects of the electricity system are retained from the CT scenario while sufficiently simplifying 
it to work with ElCoM. Other capacity such as hydrogen, other renewables, as well as flexibility 
aspects such as interconnectors are omitted, this needs to be compensated for by increasing the 
renewable generators. 

As minimum demand has increased in the NZ scenario, the baseload generation is raised from 
17 to 25 GW, the new minimum system demand. The renewable and storage capacities are also 
scaled up, maintaining the relativity between the renewable generators and with storage. The 
2010 weather year was used as the design year, representing a stress test with the highest 
electricity costs and most DSP hours from all the simulated years.  

An acceptable level of dispatchable generation, which we assume as the security of supply for 
the scenario, was designated as 2% of annual demand. As per Figure 3.11, it was found that a 
scenario multiplier of 1.25 is sufficient to reduce dispatchable generation to 2% of annual 
demand without significantly altering DSP and DCH prices. The resulting NZ scenario generation 
and storage capacities are shown in Table 3.5 and the modelled total daily demand and 
generation for 2010 is shown in Figure 3.13. There was a substantial difference between storage 
requirements to attain this security of supply in 2010 compared to other years. 

 
Figure 3.11 Base scenario adjustment factors experimentation 

 
The remaining 2% of dispatchable generation (less than 1% of hours in a year) is assumed to be 
entirely covered by system flexibility which includes industrial demand side response and 
interconnectors. To compensate for the omission of dispatchable generation in the NZ scenario, 
DSP hour costs are instead assumed to replaced by a ‘flexibility cost’ a value equal to the highest 
DCHf cost. As the costs of DSP hours have reduced, the cost model is re-run for CHR and DCH 
hours to ensure that the revenue earned by the incremental renewable generator (i.e. offshore 
wind) is adjusted and consistent with the new DSP costs. This results in a small reduction 
(£2/MWe) in CHR and hence DCH costs as there are very few DSP hours in the year and account 
for a small amount of revenue to the incremental generator. 
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Table 3.5 CT base scenario and adjusted NZ generation and storage capacity 

 CT NZ 

Solar GW 75.36 94.20 

Offshore wind GW 82.72 103.4 

Onshore wind GW 47.74 59.67 

Baseload GW 17.92 25.41 

Total Storage GWh 194.1 242.62 

 
Figure 3.12 Cumulative Demand and Generation for NZ 2010 

Figure 3.12 shows the cumulative demand and generation for 2010 with the NZ scenario. 
Cumulative generation is always higher than cumulative demand creating a large surplus. 
However, the fraction that can be stored depends on storage power and energy capacities. The 
cumulative generation minus demand line shows the surplus generation that can be absorbed 
by storage. This is not the same as the actual operation generation minus demand curve which 
becomes negative when demand is higher than generation. 

 
Figure 3.13 Daily total Demand and Generation for NZ 2010 
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3.7.7 Electricity consumer price 
DH HPs are assumed to be connected to the high voltage (HV) transmission and measured half-
hourly for industrial consumers. The final price is also inclusive of transmission (TNUoS) and 
distribution (DUoS) charges. Transmission losses are included as per the method with consumer 
HP demand, but low voltage (LV) distribution losses do not apply to HV industrial HPs. 

Transmission charges are calculated based on the average power demand over three Triad half-
hours in the year (National Grid, 2017b). These are the half-hours of highest demand on the 
system. These charges are normally very high with National Grid forecasting that for London the 
charge will reach £60 per kW by 2025. The Triad half-hours are not known in advance but are 
only identified at the end of the year. However, National Grid do provide warnings in advance 
of half-hours which run the risk of being Triad half-hours. To deal with this, the ten hours of 
highest electricity demand are identified and set to the maximum cost in that year if they already 
aren’t the most expensive. 

Distribution charges for half-hourly metered HV customer according to UK Power Networks 
(2020) consist of a unit charge of 2.403 p/kWh, which applies between 11:00 and 14:00, and 
between 16:00 and 19:00, on Mondays to Fridays across the whole year. A capacity charge of 
7.79p per kW for every day of the year, and a fixed fee of 75p for every day of the year. 

The cost of electricity supply for the NZ scenario in 2010 is shown in Figure 3.14 inclusive of the 
extra charges. While we assume that this would be the price paid by consumers in a perfect 
market, there are many factors that influence the price such as environmental and social 
obligations, supplier operating costs and margin, and VAT where applicable. Further, different 
consumers will have different tariffs and it is unlikely that domestic consumers will be exposed 
to the modelled costs spikes. Tariff design is important for  energy companies so that they are 
able to absorb these high-cost periods and provide competitive prices for consumers. 

 
Figure 3.14 NZ Scenario daily mean electricity costs 

 

There are a further cost of supply and supply margin that industrial half-hourly customers 
experience such as supplier costs and profits, and system balancing costs (Grubb and 
Drummond, 2018). These costs are estimated to increase the final price by £10.26 per MWh. 
Assuming an efficient market, the final charges to an industrial consumer compared to the cost 
of generation for 2010 weather data are shown in Figure 3.15. These costs and prices are 
assumed to apply in the future. 
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Figure 3.15 Duration curve of electricity prices and generation costs for NZ 2010 

3.8 Discussion 
A simplified electricity dispatch model has been described along with the details of a marginal 
cost-based pricing method. This has produced a time-series of generation costs corresponding 
to high VRE and storage scenarios. Forecasting precise electricity prices is infeasible. Rather, the 
method presented here allows an exploration of future cost patterns and magnitudes that can 
provide some insight into how electricity purchasing and pricing decisions can be made. The 
output can then be used in energy system models to assess options such as DH storage, and to 
help define markets for investment and dynamic operation. 

Higher VRE capacities in the future will increase the need for investment in flexibility options. 
The GB system currently has a lot of flexible dispatchable generation using stored fossil fuels. To 
reduce carbon emissions from power generation, the reliance on fossil fuel dispatchable 
generation will need to be virtually eliminated. Flexibility can be provided with electricity storage 
of some form, but also by storage such as with DH heat (as explored later), bioenergy or 
synthetic fuels such as hydrogen. Transmission links with other countries can aid in balancing 
and thereby reduce storage needs. 

VRE, particularly wind, has rapidly reduced total generation cost and low marginal short run 
avoidable costs but requires other technologies to balance demand and supply. The cost 
patterns of future electricity generation will become more uncertain and unpredictable, which 
translates to uncertainty in wholesale electricity spot prices. Better knowledge of these price 
patterns enables better decision making and encourages investment in smart grid infrastructure 
and electrification of other sectors as well as being important for electricity utility and industrial 
consumers. 

3.8.1 The impact of costs 
Previous studies that have quantified the distribution and variance of future electricity 
generation prices have been based on detailed simulations of the electricity market. These are 
difficult to replicate without access to custom tools or software. Most have also lacked an 
analysis of the effect of integrating electricity storage into a system with renewables. 

Electricity prices arising from markets should reflect the costs of building and operating 
electricity assets. This includes storage, such that economic optimality arises to the degree 
possible given market imperfections. Markets should be sufficiently competitive regardless of 
who owns and controls storage operation: The operational market might be managed by, for 
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example, National Grid, even if owning no storage. The costing method presented here can 
inform the design of efficient, cost reflective markets that also meet other criteria such as the 
avoidance of penalising the poorer consumers with extreme price spikes.  

The modelling here assumes perfect foresight. In practice, real-time indicative marginal costs 
could be estimated ex-ante using forecasts of social activity and weather, and hence demand, 
and wind and solar generation. Using modelling taken forward as the rolling year develops, it 
can take advantage of past data and forecasts of demand as well as of generation availability. At 
the end of the accounting year, adjustments could be made to settlements so that they conform 
to accurate marginal costs calculated ex-post. 

The method has made several key assumptions, one of which is that the carbon intensity of 
electricity generation should take precedence in the merit order of supply. The analysis of two 
high VRE and storage scenarios shows that that the capacity cost of storage results in the cost 
of battery discharge being higher than the marginal costs of dispatchable plant. The merit order 
would be the same as a cost-based order if the short run cost of dispatchable generation was 
more expensive than electricity discharged from storage. This would however require carbon or 
fuel costs to be significantly higher than is assumed. 

The high VRE scenarios show prolonged low marginal cost periods that last for several days 
followed by spikes usually occurring at high demand periods where peaking plants are required. 
This confirms the observation from previous work that short term variability of costs is reduced 
in high wind scenarios, but intra-day variance is increased. These spikes may be predictable in 
advance through projections of demand and advanced forecasts of VRE generation. Another 
trend observed from these high wind scenarios is the seasonality in mean prices that are 
observed in both scenarios for each modelled year. That is, the frequency of prices from 
discharge and dispatch hours is higher in winter periods and suggests that there might be a role 
for seasonal energy storage to reduce this seasonality effect. 

3.8.2 The net zero scenario and district heating 
Scenario development was not a primary aim of this study. The generation and storage 
capacities presented in the NZ scenario are large and echo the messages coming from other 
studies. A recent study into the lowest cost generation mix required to achieve net-zero found 
that the required offshore wind capacity is more than double the existing 2030 targets at over 
100 GW. Additionally, the study finds that a large expansion in the current energy storage 
capacity is needed to accommodate renewable generation at between 187-312 GWh (Aunedi et 
al., 2021). This goes to highlight the scale of transformation required to achieve net-zero for the 
electricity sector.  

The NZ Scenario is a modification of an existing National Grid scenario which is in line with the 
UK’s net zero targets for the electricity sector. The scenario is modified such that heating is fully 
electric with consumer heat pumps replacing the fractions of hydrogen and biofuel-based 
heating prescribed in the original CT scenario. The heat pump demand is taken from the HeLoM 
model with the addition of variable distribution and transmission losses. The increase in 
electricity demand necessitated a larger grid generation and storage capacity such that the 
relativity between total and peak demand is retained in the NZ scenario. The remaining fraction 
of DSP hours were eliminated by assuming they can be covered by other flexibility measures 
such as demand side response.  

Once costs are generated by ElCoM, various network charges are added to convert these into 
final electricity prices. These prices are intended to represent the variability that would be 
experienced by a DH operator in such a scenario. The magnitude of prices is expected to provide 
an estimate for the operating costs of DH in the subsequent chapter. Electrified DH systems will 
need to be designed to the patterns of a future electrical grid to achieve net-zero. The flexibility 
they provide through TES capacity will in-part be dependent on these price patterns. 
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4 DISTRICT HEATING MODEL 

Chapter Summary 
This chapter details the development of the District Heating Model (DiHeM). Academic and 
commercial modelling of district heating is a developed field. However, the impact of 
electrification and the consequences of a highly renewable grid on district heating are less well 
explored. The operating strategy for cost minimising in district heating system models is 
dependent on the size of thermal plant and storage capacity as well as its operational conditions. 
Physics-based representations of a district heating network and thermal energy storage are 
developed. DiHeM assumes a 70°C flow and variable return temperature modelling dynamic 
COPs and thermal losses. Using the urban heat load from chapter 2 and hourly electricity prices 
from Chapter 3 as a basis for operation, heuristic control strategies are first explored. A model 
predictive control optimisation is then applied to DiHeM to find low-cost combinations of heat 
pump and thermal energy storage sizes. The minimum electricity operating costs were found to 
vary by year, dependent on annual conditions. Results show that thermal energy storage 
equivalent to around 1% of annual demand is sufficient to minimise operating costs and enables 
operational flexibility beyond 4 days. Access to this extra storage capacity could provide benefits 
for the electricity system. The cost of delivered heat is found to be financially competitive with 
other options, at around £88 per MWhth but this is largely dependent on the capital costs of the 
network. 

4.1 Review of District Heating Modelling 
Many tools and models have been developed to analyse and simulate DH. The modelling of DH 
overlaps with the field of urban energy modelling, often including local electricity systems due 
to the prevalence of Combined Heat and Power (CHP) based DH. There are several ways to 
segment these models; based on purpose, such as simulation, optimisation, analysis type; or the 
modelling methods used and approach of the model.  

Modelling methods in the literature are split as physical models and black box or energy models 
(Guelpa, 2020; Talebi et al., 2016). Physical models, sometimes also referred to as network 
models as they explicitly model the network features, include the primary network, plant layouts 
and configuration of the network. Energy models, so called because they omit direct 
representation of many network features, are normally simplified representations that model 
the energy transfers in the system via relationships between components. The calculations in 
these can also be categorised as steady state or dynamic. DH networks are inherently transient 
systems that are in constant imbalance, and steady state is rarely achieved. Most models employ 
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steady state calculations for the hydraulic network components as dynamic fluid simulations are 
computationally demanding and requires a large amount of input data. For example, a branch 
of piping is rarely ever at a single temperature, rather temperatures propagate and details of 
the losses change depending on what part of the flow is being analysed. Steady state simplifies 
this to a single temperature and loss in the branch. There are cases when a detailed simulation 
of the inner workings is needed; such as when measuring pressure waves which can propagate 
faster than temperatures in the system (Kallio, 2020). These details are generally not required 
in many forms of analysis. This review segments the literature as network design aids, simulation 
models and energy models. 

4.1.1 Design aid models  
Design aid models are normally network models and typically aim to refine and optimise aspects 
of the system including pipe size and routing; flow characteristics such flow temperature and 
flow rates; and plant configuration and capacity. The network topology and pipeline modelling 
can have a substantial impact on results (Guelpa, 2020). Fluid flow modelling in pipes is 
computationally expensive. This is usually simplified to characteristics of flow and estimated 
pressure losses for each branch between ‘nodes’ of a network. The pipe types and diameters 
can then be selected based on required flow rates and modelled heat losses. 

Ahmed and Mancarella (2014) developed such a model to assess the performance and 
economics of DH designs. It intended to give strategic overview on the feasibility of DH given 
specific inputs parameters. The model sized pipes based on flow characteristics and used 
exogenous heat loads which they calculated via building simulation software (EnergyPlus). They 
tested several configurations, finding that the network cost of pipework installation is the most 
influential factor. The authors cite the lack of tools to evaluate techno-economic performance 
of DH systems as their motivation. Barone et al. (2020) built a dynamic model to compare DH 
and cooling networks to both asses feasibility and optimisation. Using an implementation in 
Matlab, they calculate heat loads for every branch of the network. The model optimises flow 
parameters and selects standard pipe sizes given inputs such as load topology and weather data 
to calculate losses. Dominković et al. (2017) used similar methods to assess the interconnection 
of several DH grids and optimise the connection points. Thermal characteristics of different 
network layouts were compared by Kuosa et al. (2013). They used a static analysis built with 
excel-visual basic that compared flow conditions and losses. They demonstrated a method that 
allows adjustment of heat demand at the building level. 

Modelica is a widely used language for dynamic DH modelling. It has been used to assess the 
coupling of DH with distributed energy generation (Leitner et al., 2019; Simonsson et al., 2021). 
Leitner et al. model the flow with a 1D wave equation, capturing the thermal inertia within the 
pipe network. The authors have made their modelling library opensource. Another Modelica 
based dynamic model used a combination of topology input in the form of CAD drawing and 
data pre-processing in Matlab to simulate heat propagation in pipes (Hermansson et al., 2018). 
Like many other studies, the model has been validated with data from an operational DH system. 

4.1.2 Simulation and digital twins 
Simulations of DH systems are usually ‘digital twin’ physical models created as an operational 
aid and to assess improvements. This means that there is no clear distinction between 
simulation or design tools. These models contain high temporal resolution dynamic simulations, 
fully capturing the hydraulic network. One of the prominently used commercial simulation tools 
is Netsim (2017). Netsim allows the detailed reconstruction of a DH including pipes details and 
locations of loads. It can perform both static and dynamic calculations. Network layout is 
modelled as a set of interconnected nodes and the level of detail can be adjusted to include only 
primary pipelines or the entire secondary pipework. The flexibility of the software makes it 
useful for analysing changes in the network. For example, Brandt et al. (2014) used Netsim to 
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analyse distributed generation to conclude that differential temperature fronts lead to pipe 
fatigue. Termis is another simulation tool modelling the hydraulic network and can use live data 
to improve operational efficiency (Aveva, 2018). Other advanced features available in Termis 
include the addition of forecast data and maintenance scheduling via analysis of flow conditions. 
Other full simulations of DH network and plant include PSS Sincal which also allows testing of 
operating strategies (Pirouti et al., 2013). 

In simulation models, accurate pipe simulation allows for the estimation of pressure drops and 
thermal losses in the network. The topology of the network is also vital to the simulation, and 
the tools have various ways of inputting and modelling the network. Ancona et al. (2014) use a 
graphical user interface to input network layout. The geometry is input as a series of nodes with 
components attached such as heat exchangers. They validate their model against Termis. 

The commercial tool Apros (2021) is used for the simulation of DH systems. It can model both 
the thermal plant and the hydraulic network. Kallio (2020) created a digital twin of an entire 
network down to substation components. Despite validation with historic data, errors were still 
present in the simulation with the author citing the difficulty of simulating a high level of detail. 
This was also the issue with needing to refine the calculation of pressure drops across junctions. 

The spHeat tool was developed for simulation and used to assess operational strategies (Ben 
Hassine and Eicker, 2013). SpHeat simulates dynamically in Matlab and includes features such 
as the impact of spatial heat load distribution. The authors determined that network efficiency 
can be improved by 10% if large loads were located closer to the thermal plant. 

Jing et al. (2014) use a bespoke energy simulation in Matlab for a DH and cooling system with 
renewable generation. They statistically optimised plant components to devise a control 
strategy to minimise fuel consumption. Simulink is a graphical environment for Matlab and is 
widely used for simulation and control modelling. Li et al. (2016) use it to simulate the primary 
network components and connections to improve flow characteristics and selection of 
appropriate pipe dimensions. 

4.1.3 Energy models and system analysis 
Energy models omit a direct representation of the distribution network and only model the 
energy flows from the central plant. Commercial models that aid in the design and selection of 
energy centre plant such as EnergyPro are available, this form of analysis in the literature has 
frequently used bespoke modelling tools. Typical applications of these models look to configure 
plant size or analyse the operation of the DH plant in the context of a wider system. One such 
model, EnergyPLAN is used for planning of national and local energy systems (Lund et al., 2015). 
Given the prominence of DH in Scandinavia, the simulation of DH and its interaction with the 
wider energy system, particularly with variable renewable energy is a main feature of the model. 
It has been widely used in academic research to study to study the impact of DH on national 
energy systems and has localised input files for many regions and countries including the UK. 

Saletti et al. (2020) simulated the energy transfers from plant to substation to optimise layout 
for conditions where extensive network data is not available. Noussan et al. (2014) analysed the 
upgrade of the thermal plant of an existing DH system. They used an energy modelling method 
with ten years of high resolution (360 seconds) heat load data from the central plant. The 
analysed various configurations for the central plant to find optimal TES levels. 

Nuytenn et al. (2013) developed an energy model to analyse operational flexibility of a CHP with 
either centralised or distributed TES. They simulate heat loads and generation as energy fluxes 
using historic demand data to test various operational strategies and find that centralised TES 
offers superior flexibility. Noussan et al. (2014) perform a similar analysis with a combination of 
biomass boilers, CHP and TES, using high resolution demand data. They determined that TES 
improves their system's efficiency by 8.6%. 
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A study with similar goals as this project used an energy model with operational optimisation to 
analyse the performance of a DH energy centre (Reynolds et al., 2018). They used an hourly 
demand as input with operational optimisation of a CHP and boiler in conjunction with TES. 
Similar methods have been used by Verilli et al. (2017) and Gambino et al. (2016) who study 
flexible loads as do Wang et al. (2015) who simulate a thermal plant with the addition of solar 
thermal generation and Wernstedt et al. (2003) who use this approach with operational 
optimisation to evaluate control strategies with various plant configurations.  

4.1.4 Control and optimisation methods 
Models of DH systems require a method to dispatch heating and control the use of TES. The 
operating strategy chosen can have a profound impact on the outcome. Operational control and 
management is important for DH systems in practical use. Operational management of a DH 
system focuses on improving the efficiency of the system and minimising operational costs or 
maximising revenue such as with the generation of electricity from a CHP. Much of the literature 
on operation and control has focused on the optimisation of CHP in DH, often in conjunction 
with TES. This is as CHP-DH systems are the most predominantly installed DH systems. There is 
a comparative lack of analysis on the operation of HPs in DH, particularly for future scenarios, 
despite CHP being more complex than HP based DH. The implementation would require an 
energy model. Common inputs would include constraints, demand and prices with the 
operational objective typically being cost, efficiency or emissions optimisation. 

Operation control often employs model predictive control (MPC) algorithms with dynamic 
process models, optimising over a finite time horizon. MPC are a set of techniques that 
computes the current optimal control sequence based on information of future conditions, 
implementing the first step of this sequence, and progressing forward in time recalculating for 
the evolved systems. It can therefore be applied to real time operation with the use of feedback 
loops to adjust processes and predict how a system is likely to respond. 

MPC is suitable for processes with continuous variables such as the control of flow rates and 
temperatures. MPC differs from other control methods such as proportional–integral–derivative 
(PID) control in that it utilises data on future operating conditions to predict the behaviour of 
the system. MPC employs an algorithmic optimisation and may use linear programming, mixed 
integer linear programming (MILP), mixed integer nonlinear programming (MINLP), genetic 
algorithms and dynamic programming (DP) and typically computed with commercially available 
solvers such as GAMS and CPLEX. 

The choice of algorithm depends on the system functions and processes being modelled as these 
can often be nonlinear. While nonlinear algorithms allow complex interactions to be modelled, 
linear algorithms are often faster and scale better. But they can be limited in applications and 
care must be used with the formulation as global optimum solutions are not always attainable 
or indeed known. Nonlinear processes and constraints can be linearised or approximated when 
used with linear algorithms. This can however, adversely impact the accuracy of results (Atabay 
et al., 2018). These methods normally require high computational effort which is made worse 
with larger network sizes and more variables (Vandermeulen et al., 2018). The alternative is to 
use deterministic or heuristic methods that employ ‘rule of thumb’ decision trees or function 
gradients, thus avoiding the higher computational effort. These algorithms can perform well 
when applied to a narrow operating range (Sarbu, 2021). 

Comprehensive reviews on the use of MPC for DH modelling have been covered by Sameti and 
Haghighat (2017) and Vandermeulen et al. (2018). The literature features many examples of 
single objective MILP optimisation for a variety of configurations. It has been applied to the 
scheduling of CHP with TES and boilers by Verrilli et al. (2017). The authors account for the 
quality of forecast and included constraints such as plant layout in their formulation. Similarly 
Gambino et al. (2016) present a control strategy that minimised costs of heat production with 
boilers and TES, with a particular focus on the physical modelling of boiler operating constraints. 
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The use of TES was compared to the thermal inertia of the DHN and building using CHP with the 
objective of minimising costs. The formulation involved an iterative approach to approximate 
nonlinear interaction (Leśko et al., 2018). Moustakidis et al. (2019) propose an innovative multi-
level MPC formulation. Each level computed over different time scales, from long-term forecasts 
for strategic decisions to immediate operating conditions enabling fast response for hydraulic 
control and refinement. The long-term forecasts are supported by machine learning from 
weather data and smart meter monitoring. The authors applied their optimisation to a 
simulation of a real network to minimise operating costs. They found that the optimal control 
strategy regularly keeps TES levels low during periods of low demand. The use of TES with CHP 
and solar power was simulated with a monthly forecasting horizon to minimise global costs 
(Wang et al., 2015). They found that TES is used frequently, and CHP output fluctuates more. 
Other formulations have looked at CHP-TES in different configuration to maximise electricity 
export revenue. The price volatility of a future spot market could encourage the use of CHP to 
generate revenue (Romanchenko et al., 2017; Vanhoudt et al., 2018).  

Comparatively few studies have used nonlinear programming (NLP) methods to control 
operation. The thermal inertia of a DH system and buildings was used in conjunction with CHP 
to improve the utilisation of renewable electricity and to minimise operational costs using a 
MINLP (Gu et al., 2017). Powell et al. (2016) present a MINLP to find optimal charge rates for 
TES with the objective of minimising costs when participating in the wholesale electricity market 
over a 24-hr time horizon. Other NLP formulations have considered thermal comfort in building 
while minimising operating costs in the DH system (Fanti et al., 2015). 

Genetic algorithms have been used by Pirkandi et al. (2016) with a multi-objective optimisation 
of a CHP paired with gas turbine. Evins (2016) employs multi-objective optimisations to optimise 
CHP plant layout and control. Other novel techniques have been employed by Hohmann et al. 
(2019) who achieved the simultaneous control of flow rate and temperature via a two-stage 
stochastic optimisation and Claessens et al. (2017) who optimised the control of DH power 
production using learning algorithms. 

Despite the design problem being similar, there has been little analysis of HPs in a DH context, 
with control studies focusing on building systems (Fischer and Madani, 2017). The use of MPC 
with HPs in tandem with batteries has been considered , with a focus on dynamic pricing and 
grid ancillary services (Fischer, 2017; Fischer et al., 2014; Georges et al., 2017; Nielsen et al., 
2013). The optimal operation of a HP with TES and batteries under variable electricity prices was 
studied, achieving a 25% reduction in annual costs using DP (Salpakari and Lund, 2016). 

Despite DiHeM not including detailed modelling of the hydraulic network, an appropriate 
formulation with MPC and LP could control flow rates. However, the goal with this analysis is to 
control the use of HP and TES, controls that are essentially binary decision variables and suited 
to the use of a Dynamic Programming (DP) algorithm. Moreover, the operating conditions have 
highly intermittent signals from the supply costs and LP formulations have been shown to not 
be good at responding to these. DP is a method that allows a high degree of expression with the 
system formulation and has been shown to perform better than other NLP and LP when applied 
to an energy storage system with variable electricity costs (Atabay et al., 2018). 
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Box 4.1 Dynamic Programming - DP 

 

4.1.5 Summary of review 
The review of DH modelling has provided an overview of the types of models and tools for DH 
in contemporary use. The energy model approach, where the simulation of DH requires only 
details of the energy transfers in the system, is widely used in the literature and is a suitable 
means of analysing the HP-TES energy centre. The method of controlling heat dispatch and 
allocation of TES heat is an essential feature of dynamic DH modelling. There are a variety of 
control and optimisation techniques ranging from heuristic based control to MPC methods. The 
use of a MPC utilising DP has been selected as a suitable method for application in this project. 

4.2 Modelling Methodology 
The objective of DiHeM is to simulate the operation of DH with an exogenous input of heat loads 
and a series of electricity prices. This will be used to explore configurations of the DH system 
and how this in turn influences the operation of the system. HP and TES capacities are defined 
as input parameters and amongst the outputs are the electrical input E, to the HP and the cost 
of this power. 

The TES is considered as a pressure connected, stratified water tank. The tank hot water 
temperature, Th, is assumed the same as the flow temperature and stratified into two layers, 
with the cold layer temperature, Tc, variable depending on the DH return temperature. In reality 
Th is often slightly higher than Tf to compensate for losses and dilution upon discharge (Sarwar, 
2020). We assume pressure connection as opposed to hydraulic separation. Separation is 
achieved via heat exchangers and is beneficial in several circumstances such as for systems that 
have high pressure variation due to terrain or if the quality of return water cannot be trusted. 
This is sometimes the case if heat interface units (HIU) are not used in the primary circuit. The 
advantages of pressure connection are that temperature differentials across the heat exchanger 
are eliminated as this would require a higher Th and thus higher HP output temperatures 
resulting in a lower coefficient of performance (COP). 

  

The Python optimisation library Prodyn uses an MPC optimisation method known as dynamic 
programming (DP) and has been applied to the operation of energy storage with dynamic 
pricing (Atabay et al., 2018). It is based on Bellman’s principle of optimality (Bellman, 1952).  

The method is suitable for multistage decision problems where each step is dependent on 
previous steps. It breaks the problem into a finite number of subproblems and drops paths 
that are not possible. The algorithm can be applied backwards or forwards in time. The 
forward implementation requires a starting state to be selecting, from which the optimal 
control route to each possible endstate is given.  

The method allows a high degree of freedom of expression when defining the model 
function. It can permit complex interaction between variables but the need to discretise 
continuous variables can lead to suboptimal solutions and the degree of discretisation can 
lead to scaling issues leading to high computational costs. This can be time consuming as the 
computational requirements scale with the number of possible state values, control 
decisions and timesteps. A full overview of the theory and implementation of dynamic 
programming is given in Bertsekas (1995). 
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Figure 4.1 Modelling of DH network operating modes 
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The distribution network transports hot water from the energy centre to buildings and returns 
cooler water. It is to be modelled as a closed loop network where the return flow is reheated to 
the desired flow temperature. Typical UK DH systems are designed at a flow and return 
temperature of 80/60°C, but rarely achieve this temperature difference due to inadequate 
design and commissioning (Crane, 2016). Surveys of operating schemes in the UK has found an 
average flow temperature of 88°C while the corresponding survey numbers in Denmark are 
78/43°C (Averfalk and Werner, 2017; DECC, 2015b). The move towards the fourth generation of 
DH systems envisions flow temperatures of 70°C and below with average return temperatures 
circa 20°C (Lund et al., 2014).  

Acceptable flow temperatures are limited by the sizing of the heating systems installed in 
buildings. This puts a constraint on the flow and return temperatures. It has been shown that 
with efficiently designed buildings and heating systems, supply temperatures can be as low as 
45°C. Low-temperature DH systems been demonstrated in small scale test cases in the UK and 
abroad (Burzynski et al., 2012b; Celsius, 2020; Lund et al., 2018). While the modern DH paradigm 
aims for lower supply and return temperatures, the housing stock in the UK may be a limiting 
factor in what flow temperatures can be achieved in future DH systems (Millar et al., 2019). If 
future DH development is limited to purpose-built buildings, then those systems could quite 
possibly achieve low flow temperatures. However, a large-scale uptake of DH would likely 
include many existing buildings and the UK historically has a low replacement rate. 

This model assumes a flow-supply temperature, Tf, of 70°C, which is considered on the upper 
limit of what can be considered ‘low temperature DH’ (Best, 2018). A peak return temperature 
of 50°C is set, giving a minimum temperature differential of 20°C. 

4.2.1 Operating modes 
The possible operating state of the DHN’s components over an hour is defined as one of three 
discrete modes: 

1. The HP is off, there is no electrical input, and the heat load is met entirely by discharge 
from the TES. This can only occur when there is sufficient hot water in the TES. 

2. The HP is on and covers the entire heat load (or its maximum capacity). The electrical 
input to the heat pump corresponds to the contemporaneous COP. 

3. The HP is at full capacity and covers the entire heat load using the residual spare capacity 
to charge the TES.  

A combination of modes in the same hour may also be possible. Such as in the case of an 
undersized HP and insufficient TES which is unable to cover the heat load. In that case the HP 
provides its full capacity followed by a discharge from the TES, mode 1 followed by mode 2. A 
schematic of the operating modes is shown in Figure 4.1.  

4.2.2 Distribution network 
Return temperature should decrease at part heat load to reduce pumping costs and heat losses. 
The relationship between return temperature and heat load is complex, depending on the heat 
interface units (HIU), characteristics of the space-heating emitters and of the hot water service 
heat exchangers as well as many other case specific factors. Achieving low return temperatures, 
Tr, is generally a good indicator of DH efficiency and allows smaller pipes and pumps. This 
reduces thermal losses and enables more energy storage in the TES due to a larger temperature 
difference (Crane, 2016). Historically, some DH systems were designed with fixed flow rates 
using bypasses around the heat emitters/exchangers. This results in higher than necessary flow 
rates and high return temperatures leading to inflated pumping costs and heat losses. For these 
reasons, variable volume-fixed flow temperature schemes are now the standard with all modern 
DH systems.  
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As a simplified approximation, a linear relationship with the DH load is used. Starting from a 
maximum of 50°C at times of peak heat load, as the heat load tends towards zero, so will the 
flow rate. The return temperature therefore tends towards the ambient temperatures for space-
heating, around 15°C.  

Return temperature at timestep i is given by (4.2), where L is load:  

 T𝑟𝑟,𝑖𝑖 = 15 + 35(𝐿𝐿𝑖𝑖 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)⁄   (4.1) 

The mass flow rate, ṀDH, in the DH system can then be calculated using the return temperature 
from (4.2), by the specific heat of water cw: 

 𝑀̇𝑀𝐷𝐷𝐷𝐷,𝑖𝑖 = 𝐿𝐿𝑖𝑖 𝑐𝑐𝑤𝑤(𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑟𝑟,𝑖𝑖)⁄   (4.2) 

In mode 1, there will be no electrical input to the HP and mass flow rate of discharge from the 
TES is equal to the mass flow rate of the DH. In mode 2, there is no mass flow through the TES 
and the mass flow rate from the HP is the same as the DH mass flow rate. Mode 3 is more 
complex due to the flows through the TES. We assume that the HP heat output QHP, is at the 
maximum HP capacity. The mass flow rate through the TES, ṀTES, is taken in the negative 
direction, with inflow charging the TES. ṀHP, is the mass flow rate through the HP’s output heat 
exchanger and Tm is the temperature of the mixture of the return flow and TES cold discharge 
at temperature Tc. The state of the DH system can then be calculated from the following 
equations (4.3)-(4.6): 

 𝑀̇𝑀𝑇𝑇𝑇𝑇𝑆𝑆,𝑖𝑖 =  𝑀̇𝑀𝐻𝐻𝐻𝐻,𝑖𝑖 −  𝑀̇𝑀𝐷𝐷𝐷𝐷,𝑖𝑖   (4.3) 

 𝑄𝑄𝐻𝐻𝐻𝐻,𝑖𝑖 =  𝑀̇𝑀𝐻𝐻𝐻𝐻,𝑖𝑖𝑐𝑐𝑤𝑤(𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑚𝑚 ,𝑖𝑖) (4.4) 

 𝑇𝑇𝑚𝑚,𝑖𝑖 =
(𝑀̇𝑀𝐷𝐷𝐷𝐷,𝑖𝑖𝑇𝑇𝑟𝑟,𝑖𝑖) + (𝑀̇𝑀𝑇𝑇𝑇𝑇𝑇𝑇,𝑖𝑖𝑇𝑇𝑟𝑟,𝑖𝑖)

𝑀̇𝑀𝐻𝐻𝐻𝐻,𝑖𝑖
 (4.5) 

 𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇,𝑖𝑖 =

𝑄𝑄𝐻𝐻𝐻𝐻,𝑖𝑖
𝑐𝑐𝑤𝑤

+ 𝑀̇𝑀𝐷𝐷𝐷𝐷,𝑖𝑖(𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑟𝑟,𝑖𝑖)

(𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑐𝑐,𝑖𝑖)
 (4.6) 

4.2.3 Distribution losses 
Reported distribution losses among current schemes vary greatly and losses above 40% for older 
DH schemes are not uncommon. Modelling distribution losses is complex even when a DH with 
a known topology is simulated. An inexhaustive list of factors that contribute towards these 
losses include piping length, material and insulation level as well as trench depth, ground 
temperatures, connection into buildings etc. as well as of course, flow temperatures (Vesterlund 
et al., 2013). Without explicitly including pipe sizes and making assumptions on insulation levels, 
distribution losses cannot be directly calculated. A reasonable assumption here would be to 
assume distribution losses in line with projections for 4GDH systems and current best cases. 

Making comparisons between losses is complicated by the fact that there is no standard method 
of measuring or reporting losses (Masatin et al., 2016). A Nordic Council report estimates that 
distribution losses accounted for 10%, 11% and 12% of total energy produces in Finland, Norway 
and Sweden respectively with no indication of methodology (Patronen et al., 2017). Surveys in 
the UK have found average distribution losses for bulk schemes where the operator delivers 
heat to distribution points at 6% and non-bulk schemes where the operator delivers directly to 
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end customers at 28% (DECC, 2015b). It can be inferred from this that a large amount of losses 
are incurred at the connection points into buildings and internal distribution pipework. The DECC 
study also reported parasitic electrical losses of 1-4%. 

A reasonable assumption to make is that future DH systems, with lower operating temperatures 
and flow rates appropriately designed and commissioned with optimal routing algorithms, and 
with a milder climate in general, would have losses in line with the best Scandinavian systems. 
This model will then apply a constant 12% distribution loss factor. 

4.2.4 Thermal energy storage 
Thermal Energy Storage has been a main component in DH systems for many decades. It has 
primarily been used as a short term/diurnal storage device in conjunction with CHP based heat 
generation. The construction and modelling concepts for TES as a mature technology are well 
established.  

Tank TES (TTES) are normally insulated steel cylindrical constructions. They achieve stratification 
of water temperatures through the use of diffusers to avoid mixing of the layers with a small 
transition zone between them. Hot water can then be siphoned from the top, with a cold-water 
connection at the bottom of tank. Stratification makes calculating heat losses from the TES more 
complicated and CFD based simulations are often employed to model the losses (Kong et al., 
2016; Ochs et al., 2021). The tanks maintain a constant mass of water with cold water being 
discharged simultaneously as hot water is delivered to the tank and vice-versa (Thomsen and 
Overbye, 2016).  

Smaller tanks are typically constructed with a height/diameter (h/d) ratio of higher than one to 
increase stratification in the store. Larger stores however, tend to have larger diameters with a 
h/d ratio between 0.4 and 0.7. This is largely due to the engineering limits of the steel 
construction to limit the stresses from water pressure. The extra cost of construction and 
maintenance for thicker tank walls effectively limits the practical sizes of TTES. While the tanks 
are normally clad in a layer of insulation, heat losses also benefit from an economy of scale due 
to the geometry of a tank. Doubling tank diameter increases volume by a factor of 8 and surface 
area by a factor of 4 which effectively halves the percentage heat loss. 

Estimates for the cost of TTES also show economies of scale. As the energy capacity depends on 
the temperature range with which the store is operated, numbers are generally presented as a 
cost per unit volume. Eames et al. (2014) show that smaller stores can cost upward of £390/m3 
while the DECC (2015b) evidence gathering on TES report suggests that this can fall to less than 
£100/m3. The Danish Energy Agency (2018) shows that the upper limit for these economies of 
scales with TTES takes effect in the 10,000 – 15,000 m3 range, beyond which it is more efficient 
to use alternative forms of large scale TES such as pit TES (PTES). They recommend the use of a 
power-law relationship with the volume, VTES, to estimate capital costs where the cost per m3 is 
6705V-0.47

TES  , as shown in Figure 4.2, but add that this is highly sensitive to the cost of steel which 
may also fluctuate with energy prices. 

With the increased use of renewable sources for heat production, larger or multiple TES are 
becoming more common. The larger tanks can be found fully or partially buried or replaced by 
pit PTES that use similar operation principles (Ochs et al., 2009). Schematics of this are shown in 
Figure 4.3.  
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Figure 4.2 Costs per unit volume for TTES and PTES 

PTES are essentially plastic lined reservoirs and have been demonstrated in several commercial 
projects such as the Vojens in Denmark, which at 200,000 m3, operating at 80°C, holds over 12 
GWh of thermal energy. Evidence from these projects shows unit costs of around £25/m3 or 
£500,000/GWhth (Danish Energy Agency, 2018; Eames et al., 2014). While PTES thermal losses 
appear comparable to those of well insulated tanks (Sørensen and Schmidt, 2018), the round 
trip efficiency is lower at 70% (compared to 98%). This is likely to improve with increased 
standardisation and commercial development. It should be noted however, that the costs shown 
in Figure 4.2 do not include the cost of land and 15% of these costs are dependent on local 
ground conditions. Construction costs per unit volume PTES is cheaper, with the cost per m3 
being 97359VTES

-0.74, and more practical than large scale TTES at larger sizes but the land 
requirements and ground conditions can be limiting factors and may not always be available 
near urban areas which can increase costs (Hesaraki et al., 2015). 

 
Figure 4.3 Schematics of partially buried TTES (left) and PTES (right) adapted from (Sørensen 
and Schmidt (2018) 

4.2.5 TES implementation 
The mass of hot water, Mh,i, in the tank at any time determines the state of charge and the flow 
rate, ṀTES,i, measured in magnitude and direction, charge or discharge, enables the state of 
charge to be calculated in the next hour, Mh,i+1. Tc,0 is initialised at 32.5°C and updated upon 
mixing with water at Tr entering the bottom of the TES while discharging during mode one. 
During mode 3, ṀTES,i is taken in the negative direction and ΔMh = ṀTES,i increases accordingly at 
Th while Mc = -ṀTES,i. 

Thermal losses, QTES, via conduction are estimated based on a cylindrical steel tank with hTES/dTES 
ratio of 0.5. Wall thickness, τS, is estimated using (4.7) assuming construction from steel (304) 
commonly used in such applications with a modulus YS of 207 MPa and a safety factor, SF, of 1.5 
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under ambient pressure, Pamb (Engineering ToolBox, 2005). The tank walls are clad with 300 mm 
of insulation, τn, (Danish Energy Agency, 2018) with thermal conductivity, kn, of 0.05 W/mK, 
using stainless steel’s thermal conductivity, ks, of 20 W/mK. Heat losses are then computed as 
per (4.8) with conduction across the surface area, ATES, using the mean average water 
temperature in the thermal store, T�TES,i, as the internal temperature. 

 𝑡𝑡𝑇𝑇  =  
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆

2𝑌𝑌𝑆𝑆
 (4.7) 

 𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇,𝑖𝑖 =  
𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇�𝑇𝑇�𝑇𝑇𝑇𝑇𝑇𝑇,𝑖𝑖 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖�

�𝜏𝜏𝑆𝑆𝑘𝑘𝑆𝑆
+ 𝜏𝜏𝑛𝑛
𝑘𝑘𝑛𝑛
�

 (4.8) 

 ∆𝑀𝑀ℎ,𝑖𝑖+1 =
𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇,𝑖𝑖

𝑐𝑐𝑤𝑤(𝑇𝑇ℎ − 𝑇𝑇𝑐𝑐)
 (4.9) 

 ∆𝑇𝑇𝑐𝑐 ,𝑖𝑖+1 =
𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇,𝑖𝑖

𝑐𝑐𝑤𝑤𝑀𝑀𝑐𝑐 ,𝑖𝑖
 (4.10) 

In the absence of a more sophisticated model for the TES, losses are applied to the TES by 
subtracting the equivalent mass of hot water and increasing the cold-water mass according to 
(4.9). In the event where there is no hot water remaining, losses are applied by reducing tc 
according to (4.10). Losses from the mixing of the hot and cold layers are neglected as this 
requires a more sophisticated model of the TES and fluid mechanics taking account of effects 
such as buoyancy. 

 
Figure 4.4 Specific heat losses from modelled TES 

4.2.6 Heat Pump 
The use of large-scale heat pumps in DH is not new but future high renewable scenarios may 
favour their use due to the decarbonisation of the electrical grid. Vapour compression cycle heat 
pumps have commonly been used in DH applications. Absorption cycle heat pumps are now 
becoming popular for use, in part due to their ability to provide cooling (Averfalk et al., 2017). 
Large heat pump installations often include multiple HPs in parallel that have multi-stage 
compressors, using a variety of refrigerants and heat sources (EHPA, 2019). Without needing to 
infer too much about the precise set-up, we assume a single stage HP defined by a maximum 
heat output capacity and a generic source temperature.  
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The COP of a HP is dependent on the operating conditions. The difference between the sink and 
source temperatures limits the maximum theoretical COP, termed the Carnot efficiency. The 
actual operational COP can then be estimated by applying an efficiency factor, ηHP, that accounts 
for losses from various factors of machine design. This efficiency factor can vary depending on 
operating temperatures and manufacturers often produce COP curves on a case by case basis 
for specific operating conditions and setups, applying quadratic regressions to obtain precise HP 
COPs (Ruhnau et al., 2019). If the operating conditions are relatively constant, then a constant 
ηHP can be applied. A range between 60-70% of the theoretical performance has been suggested 
as providing realistic HP COPs by an industrial heat pump manufacturer (Eckett, 2020).  

4.2.7 HP implementation 
Large HP installations can use industrial waste heat or other environmental heat sources. These 
are however dependent on local availability and may have a large regional variances with 
individual systems having higher COPs that are not reproduceable at all locations. Alternatively, 
sources could be some mix of borehole, water (sea/river/sewage) source, air, waste heat etc. 
but detailing designs for different resources at different locations is beyond the scope of this 
research. 

The choice has been made to model a generic source temperature assuming it is reflected by 
the seasonal variation in ground temperatures. Ground temperatures provide a reasonable 
estimate of the seasonally varying input to the HP. Beardsmore and Cull (2001) have given the 
calculation of temperatures at depth from period surface heating as per (4.11). Source 
temperatures, TS, were calculated at an assumed depth of z=3m and thermal properties of soil 
ε were estimated as per the data in Busby (2015).  

 𝑇𝑇𝑆𝑆,𝑖𝑖 =  𝑇𝑇0𝑒𝑒−𝜀𝜀𝜀𝜀 sin(2𝜋𝜋𝑡𝑡𝑖𝑖 − 𝜀𝜀𝜀𝜀) (4.11) 

We model the COP as a fraction ηHP = 65% of the Carnot cycle efficiency. A heat exchanger 
between the HP condenser and the heat sink (the DH flow) is required to raise its temperature 
from the HP heat exchanger inlet (either the return or mixture temperature, Tr or Tm) to the flow 
temperature, Tf. The HP condenser at temperature Tcond, must then be higher than Tf to allow 
for losses across the heat exchanger which we assume is a counterflow heat exchanger. Most 
common refrigerants used in heat pumps have critical temperatures well above 70°C (and 
boiling point well below 0°C) therefore 75°C is selected as a constant Tcond (Zehnder, 2005). The 
log-mean temperature, ΔTLM, across the heat exchanger is then used to calculate the COP from 
(4.12) and (4.13) where Tr = Tm in Mode 3. The electrical input Ei to the HP during hour i required 
to output heat Hi is then simply Ei = Hi / COPi. 

 ∆𝑇𝑇𝐿𝐿𝐿𝐿,𝑖𝑖 =  
�𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑇𝑇𝑟𝑟,𝑖𝑖� − �𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑇𝑇𝑓𝑓 ,𝑖𝑖�

ln �
𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑇𝑇𝑟𝑟,𝑖𝑖
𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑇𝑇𝑓𝑓 ,𝑖𝑖

�
 

(4.12) 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻,𝑖𝑖 =  𝜂𝜂𝐻𝐻𝐻𝐻
𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − ∆𝑇𝑇𝐿𝐿𝐿𝐿,𝑖𝑖 + 273
𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − ∆𝑇𝑇𝐿𝐿𝐿𝐿,𝑖𝑖 − 𝑇𝑇𝑆𝑆,𝑖𝑖

 (4.13) 

In reality, there would also be a heat exchanger between the ground and the HP evaporator but 
as a generic source temperature is being modelled and an appropriate Carnot efficiency is being 
applied, this may be simplified. Figure 4.5 shows modelled COPs alongside daily mean ambient 
temperatures and modelled ground temperatures using 2015 weather data. The COPs show 
seasonal variance as well as hourly variance according to Tr which is determined by DH load. The 
mean modelled COP across all weather and all years is 4.3 and corresponds to surveyed 
operational and modelled HPs in this temperature range (David et al., 2017; Pieper et al., 2019; 
Ruhnau et al., 2019). 
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Figure 4.5 Modelled daily mean COPs compared to ambient and ground temperatures 2015 

Previous designs of large heat pumps were not suitable for fast load changes and modulation, 
not least because frequency-controlled heat pumps have a more complex design. Modern 
industrial heat pumps are able to ramp up at 20% per minute and a minimum output 25% of 
capacity (Eckett, 2020). Over an hour this is negligible, hence no ramp limits are applied to the 
output. 

4.3 Operating Algorithm Development 
To assess the performance of the DH network and TES, it is necessary to evaluate how it will be 
operated. This section covers the development of operating algorithms that can be used to 
simulate operation based on the electricity costs from ElCoM and the heat loads from HeLoM. 
The operating algorithm selects one of the three operating modes to minimise operating costs 
while meeting the heat load at all times. In the event where heat load is partially met, a penalty 
cost is applied. This may occur if the HP has insufficient capacity or the TES has insufficient 
charge. A penalty is applied that is equivalent to the use of electric resistance heaters (i.e. COP 
= 1). The cost of electricity, CE, to operate the HP is: 

 𝐶𝐶𝐸𝐸,𝑖𝑖 =  �𝑄𝑄𝐻𝐻𝐻𝐻,𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻,𝑖𝑖⁄ �𝑃𝑃𝐸𝐸,𝑖𝑖 (4.14) 

DiHeM assumes that the DH operator has knowledge of the heat demand and the electricity 
cost during each timestep hour. The issue of lookahead and accuracy of forecasts will be 
addressed later. The costs shown in this section concerned with algorithm development are 
(unless otherwise stated) derived from the annuitised capital and operating costs of TES and HP 
(which includes electricity costs). A discount rate of 3.5% is applied to DH infrastructure capex 
(HM Treasury, 2018). The DH costs used and the sources from which they are derives are shown 
in Table D-1 in Appendix D. The initial exploration excludes the cost of the network for clarity as 
this remains unchanged. 

4.3.1 Analysis of operating conditions 
Electricity costs and heat loads have been modelled for the period 2010-2015. For simulation 
purposes and data presentation, it is useful to simulate from midyear to midyear to avoid having 
to begin in midwinter. Ambient temperatures and offshore wind capacity factors are the main 
drivers of heat demand and electricity costs in the NZ scenario. Thirty years of meteorological 
data for winter total offshore wind capacity factors (see chapter 2) and average winter ambient 
temperatures show a large degree of correlation Figure 4.6. Of the modelled years, 2010 has 
both the lowest total capacity factors and lowest average temperature (only 1985 was lower). 
The 2014-2015 period is the closest to an ‘average’ year in terms of temperature and capacity 
factors. 

For economic operation, the worst circumstances are a prolonged run of high electricity costs 
coinciding with a period of high heat demand. For this analysis, the urban heat load (see chapter 
2) has been scaled to a load averaging 1 TWh per year. 
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Figure 4.6 Comparison of winter season wind capacity factors and mean temperature 

Figure 4.7 shows the five-day rolling average of the electricity costs and heat loads from ElCoM 
and HeLoM. For the period 2010-2011, the long run of above average heat loads coinciding with 
high electricity costs suggests this will be a challenging period and the DH must reliably meet 
the heat load in this time. A large TES and/or a well-designed operational control algorithm will 
be needed to minimise costs, and this represents the worst-case conditions in the simulated 
period. In contrast, 2012-2013 which also has high electricity costs and above average heat 
loads, there are long periods of sustained low costs that can allow TES to recharge for the 
following high-cost period. The success of such a strategy would again be dependent on the 
design of the control algorithm. 2013-2014 has both above average winter temperatures and 
capacity factors with no sustained period of high costs, lower peak costs, and below average 
heat loads. It represents the best-case year in the modelled periods. 
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Figure 4.7 Five day rolling average of electricity costs and heat demand 
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To design an operating strategy, it is useful to consider the main parameters that influence its 
results. Figure 4.8 shows 12 hour rolling mean costs and demand for selected periods, 
highlighting the challenge with designing an operating algorithm. It is reasonable at this stage to 
assume that the operator has knowledge of demand and grid conditions or cost. Charging is 
most economical during hours with the lowest electricity costs (neglecting losses). A sufficiently 
sized TES and HP combination should be able to cycle the TES (blue and green arrows) from the 
beginning of December 2010 until the third discharge period which sees a long run of 
consistently high prices.  

  
Figure 4.8 12 hour rolling demand and prices for selected periods 

Basic algorithm (BSC): The simplest strategy would empty the TES and must then use the HP 
during expensive hours (red arrow). During the beginning of February 2013, there is a long 
period of low costs which can only be fully taken advantage of with a sufficiently large store. 
There are short periods between the peaks which may be enough to recharge the TES given a 
sufficiently sized HP. Towards the end of the month, there is a long stretch of high prices which 
would deplete the TES with a basic operating strategy. 

Trigger algorithm (TRG): A more advanced strategy would charge and discharge during the local 
price peaks and troughs (blue and green dashed arrow).  

Dynamic optimisation algorithm (DOA): A more complex strategy involves foresight of prices and 
heat load (see RDOA section 4.3.5) which enables charging at moderate prices to avoid very high 
prices and unnecessary charging in a later period. The matter is further complicated by TES 
losses. An optimum operating strategy is then highly dependent on the configuration of HP and 
TES. This determines both how long heat demand can be met by the TES and how quickly the 
TES can be recharged. 

A look at the correlation between hourly electricity costs and demand in Figure 4.9 shows no 
clear relationship between the two. This highlights a significant challenge in devising a heuristic 
based operating strategy that is based on the present operating conditions alone. There is a 
large concentration of low prices across the range of heat demand but especially at lower 
demand which corresponds to the large amount of surplus hours in the summer. 
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Figure 4.9 Correlation between heat demand and electricity cost  

4.3.2 BSC algorithm 
The first exploratory approach is the BSC algorithm. The BSC is a heuristic algorithm that 
operates based on present grid conditions with the assumption that grid can provide signals on 
the status of the grid: for example, if there is a generation residual surplus or deficit. This would 
be beneficial from the viewpoint of the electricity system operator encouraging shifting 
electricity consumption to surplus generation periods. 

The BSC uses hour type as the operating decision whether to charge TES. The HP is operated 
based on unrestricted TES charging limited to surplus hours (up to HP power limit). The use of 
the HP is avoided during all other hours unless the TES has insufficient capacity to cover the heat 
demand. 

The conversion between TES percentage of annual demand and number of peak hours for this 
DH heat load is shown in Table 4.1. All analyses from this point on were conducted assuming a 
network of 50 GWh per annum average demand. Figure 4.10 shows the effect of varying HP and 
TES using BSC. For the worst-case scenario period 2010-2011 the lowest cost range starts at 
around 1.5% of annual demand and a HP sized to 100% of peak demand (which occurs in 2010-
2011) in comparison to the average period of 2014-2015 where the minimum occurs at a smaller 
HP. 

Table 4.1 TES percentage and peak hours equivalence for modelled DHN 

Looking at the hourly operation shows that the TES discharges during non-surplus hours before 
the higher peak prices are reached. The BSC has limited use and a more sophisticated method 
that utilises electricity or a lookahead is required.  

TES % of Annual Demand TES number of Peak Hours storage 

0.1 1 

0.2 2 

0.5 10 

1.0 20 

2.0 40 
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Figure 4.10 The effect of relative TES and HP size on cost (HP+TES annuitised capital) 2010-
2011 (top) and 2014-2015 (bottom) 

4.3.3 TRG algorithm 
The TRG algorithm concept is an extension of the BSC in which it is assumed that the operator 
has knowledge of the current electricity cost. Another heuristic algorithm, it operates by a set 
trigger price below which the HP will try to maximise utilisation to charge TES and discharge the 
TES above this price. Electricity costs and hour type are linked but the trigger price method 
provides a greater control over when to charge and discharge as an intermediate value of trigger 
price can be set. 

Figure 4.11 shows the effect of varying trigger price on the cost of electricity (a) and the total 
cost (b) with relative HP and TES sizes at the best trigger price found for each combination. The 
figure demonstrates that the optimal trigger price varies depending on the combination of HP 
and TES. Lower trigger prices are found for larger HP and TES as these give access to more hours 
and hence charging opportunity. The actual optimal trigger price was also found to vary 
depending on the period and season simulated with the lowest trigger prices found in the 
summer season. This indicates that the TRG can be extended through an adaptive trigger that 
can vary, based on operating conditions. Some form of lookahead could also be paired with this 
method. 
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These exploratory simulations reveal that larger HP, beyond 100% of peak capacity have little 
effect on the cost of electricity (Figure 4.11b) and as HPs do not exhibit economies of scale with 
size, this leads to higher total costs overall (Figure 4.11a). The electricity costs plateaus near a 
100% HP size in the average 2014-2015 period. This can also be seen using the BSC where 
minimum costs are reached at around a 100% HP for the worst-case period and around 75-80% 
for the best-case period. Despite the cases where an undersized HP is economically beneficial, 
there is a strong case to use HP sized to peak capacity to ensure security of supply for the DH 
network. Further, larger HPs may have an adverse effect on the electricity network and may lead 
to higher connection charges. Therefore, the simulations presented in this chapter will proceed 
with a HP sized to 100% of peak heat demand. 

  
Figure 4.11 The impact of varying HP and TES with optimal Trigger prices on total cost (a) and 
electricity costs only (b) for the period 2014-2015 
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4.3.4 Dynamic optimisation algorithm 
To assess how well the designed heuristic algorithms (BSC and TRG) work, we compare their 
results to the theoretical minimum costs using the Dynamic Optimisation Algorithm (DOA). The 
DOA utilises an open source operational optimisation library called Prodyn (Atabay, 2016) which 
utilises dynamic programming techniques to determine the optimal sequence of control modes 
to minimise total cost. The DOA is initially applied with perfect foresight over all defined hours 
with defined start and end states for a discretised system. Prodyn utilises dynamic programming 
(DP) techniques to determine the optimal sequence of control modes to minimise total cost. The 
DOA is applied with perfect foresight of demand and prices over all defined hours (in the year 
or period simulated), with defined start and end states for a discretised system. 

Atabay (2018) explains how a model function such as the DH system must be discretised when 
using the DOA. The DOA is applied to the DH system model with discrete decision variables, Ui, 
used in the three operating modes for each time step.  

The TES must also be divided into discrete levels, X, and the inputs and outputs to the TES, which 
are continuous variables, must also be discretised. A compromise must be made between 
accuracy and speed. Larger step sizes speed up the DOA at the expense of accuracy. The TES is 
divided into discrete levels, X, of size 1 MWh for all store sizes, so the number of levels depends 
on the size of TES. To avoid having to select a start and end state for the TES during midwinter, 
which would impact the operation, the simulations are started and ended midsummer from 
empty-to-empty charge state (X0 = XN=0) as this has the least impact on the final result. The DOA 
applies the model function, ƒ, to calculate the state of the TES, Xi, at the next timestep. 

 𝑋𝑋𝑖𝑖+1 =  𝑓𝑓(𝑋𝑋𝑖𝑖 ,𝑈𝑈𝑖𝑖) (4.15) 

The algorithm computes the cost Ci of going from Xi to Xi+1 when a decision Ui is made at a 
timestep for each possible decision and TES state (for example only those states that can be 
attained in a single timestep with the HP combination are computed). 

 𝐶𝐶𝑖𝑖 =  𝑔𝑔(𝑋𝑋𝑖𝑖 ,𝑈𝑈𝑖𝑖) (4.16) 

The algorithm then works forward from the defined state X0, over N timesteps to finds the 
sequence, φ, which minimises total costs, J, over all timestep. 

 𝐽𝐽𝜙𝜙 =  �𝑔𝑔�Xt,  Ut
φ�

N

t=0

 (4.17) 

 

A comparison of the hourly operation of the algorithms highlights the simplicity of the heuristic 
algorithms. Figure 4.12 shows the operation of the algorithms for the same period with a 0.1% 
TES - this is shorthand for a TES capacity of 0.1% of annual demand (GWh). The DOA regularly 
cycles on a daily basis, charging during the night and discharging mostly during the daily peaks 
even during a long run of high prices. This is what would be expected of a diurnally sized TES. In 
comparison, the BSC and TRG approaches cycle far less often. 
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Figure 4.12 Hourly operation of 0.1% TES for BSC (top), TRG (middle), DOA (bottom) 
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Figure 4.14 shows the hourly operations of the algorithms with a large TES - 1% of annual 
demand. It is observable that the cycling of TES with the TRG roughly mirrors the DOA. These 
cycles correspond to the timings between prolonged high price periods which triggers the TRG 
algorithm. The BSC is less successful in recreating this behaviour. The DOA however, utilises the 
TES far more in each cycle, charging and discharge small amounts to avoid short-term price 
spikes. A diversion in the algorithm behaviour is observable from around the 6000 hour point 
onward. Here the DOA keeps the charge state of the TES low, charging only later in the low-price 
period while the BSC and TRG both immediately recharge to capacity. This can only be achieved 
with foresight of conditions while the BSC and TRG only uses present operating conditions. 
Another factor not considered by these is the hourly variation in COP. The COP varies based on 
seasonal variation and hourly operating conditions. Higher COPs normally occur during lower 
demand periods where the return temperatures are lower. This favours charging overnight 
where not only is demand lower and prices tend to be lower, but the COP is higher. 

The effect of using large-scale TES on electricity costs during the best and worst-case periods 
using the DOA algorithm is shown in Figure 4.13. In the best-case simulated period 2013-2014, 
2% TES eliminates all cost spikes and TES larger than this would be redundant in the modelled 
prices of the assumed high renewable system. But in the 2010-2011 period, 2% TES is unable to 
flatten the costs and they can only be reduced with larger TES capacities. Although the costs 
during a given hour aren’t eliminated, Figure 4.15 shows how these costs are progressively 
reduced with increasing TES. 

  
Figure 4.13 Comparison of five-day rolling average of electricity costs with various TES sizes 
using DOA for 2010-2011 (top) and 2013-2014 (bottom) 
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Figure 4.14 Hourly operation of 1% TES for BSC (top), TRG (middle), DOA (bottom) 
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Figure 4.15 Comparison of 24-hour rolling average of electricity costs with various TES sizes 
using DOA for select periods 

The DOA shows the optimum operating procedure for any size TES and operating conditions. It 
highlights the complexities involved with designing a rule-based heuristic algorithm. The 
operating rules and concepts differ depending on the size of storage to demand ratio. 
Development of a heuristic algorithm may have limited practical use except for efficiency of 
modelling. The practicality would also depend on that future data is actually available to DH 
operators and techniques such as machine learning could provide powerful tools to refine such 
heurisitic algorithms. The DOA provides a useful measure as to how well the BSC and TRG 
algorithms perform compared to a theoretical optimum. The DOA so far has perfect knowledge 
of the operating conditions, with foresight over all hours and hourly COPs. To ascertain a realistic 
indication of DH operation in real operating conditions, it is necessary to limit the information 
available to the DOA. 

4.3.5 Rolling Dynamic Optimisation Algorithm 
With the DOA, a specific starting and ending charge state must be set. If the ending charge state 
is left undefined, the algorithm will always empty the storage at the end as the minimal solution. 
In theory, a DH operator with perfect foresight of operating conditions of the entire year or 
winter period could perform the optimal combination of operating modes to minimise the 
annual operating cost. In practice this will never be achieved as beyond the immediate future, 
the accuracy of forecasts diminishes, and instead seasonal statistics will need to be relied upon. 
The DOA can be applied on a rolling basis with a limited lookahead time but a final charge state 
at the end of the optimisation must be defined. Here it is necessary to introduce the concept of 
lookahead time and forecast accuracy. 

The National Grid currently bases their own generation and demand forecasts on Met Office 
data which they receive 4 times per day at hourly resolution for 14 days ahead (Caplin, 2017). 
From this data they can project wind and solar generation as well hourly demand from demand 
forecast models. Electricity cost projections using the method from ElCoM are dependent on 
supply and demand forecasting. National Grid produces, 2 day ahead and 7 day ahead hourly 
forecasts as well as 2-52 week ahead weekly peak forecasts. These are published via Elexon and 
indicative day ahead prices are also available on short term energy trading platforms. The Met 
Office describes its own forecasts in the 1-2 day range as a “detailed forecast”; 3-5 days as a 
“general picture”; 6-15 days as a “broad description”; and 16-30 days as an indication of 
probable weather conditions (e.g. warmer or wetter). They have found a 92% forecast accuracy 



Modelling District Heating In A Renewable Electricity System 

  94 

in temperatures within ±2°C in their week ahead forecasts and these will generally improve by 
the time DH would be scaled up (Met Office, 2017). 

It is then reasonable to assume that a short term (up to seven day) look ahead is possible with 
high accuracy to forecast DH load. Beyond this there would be a good indication of relative 
conditions. Similarly, with the demand and generation forecasts, short term electricity cost 
projections can be made. The hourly operation over which the DOA lookahead is applied is then 
be restricted to 5 days (120 hours). Information from 7 day (168 hours) ahead hourly forecasts 
can be used to inform the endstate (at 120 hours). Beyond 7 days projections will need to be 
made. 

The rolling DOA algorithm (RDOA) is an application of the DOA on a rolling basis with a limited 
time horizon lookahead period. As demonstrated by the DOA, the operating strategies of a small 
TES is different to a large TES. With a small TES, that is sized for diurnal demand, the operating 
strategy is normally to charge overnight during low prices and discharge at peak times or when 
both demand and prices are higher during the day. In this case knowledge of future operating 
conditions beyond a few days is of little use. With large TES, projections of conditions a week or 
further in advance are desirable to optimally utilise the capacity. For the aforementioned 
reasons above, the time horizon on which the RDOA is operated, lookahead is restricted to a 
maximum of 120 hours (5 days). Running the RDOA over this full lookahead period for small TES 
becomes redundant and experimentation has shown that beyond a point it gives the same 
results at the expense of computation times. The required lookahead duration is estimated 
based on the HP and TES capacity as well the mean winter DH load. The duration of storage in 
the TES, DTES, can be estimated from the mean winter load L�DH 

 𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

𝐿𝐿�𝐷𝐷𝐷𝐷
 (4.18) 

An endstate for the RDOA lookahead must be defined, a TES level after a given number of hours 
cannot be more than the HP is able to attain in that time. The average time to recharge the TES 
from empty during the winter season, DCHR, can be estimated in relation to the HP capacity minus 
L�DH. 

 𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶 =  
𝑇𝑇𝑇𝑇𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐿𝐿�𝐷𝐷𝐷𝐷
 (4.19) 

As the HP size to TES size ratio decreases, DCHR will become larger than DTES. In this case, DTES 
must be set equal to DCHR with a minimum operation over 24 hours and a maximum of 120 hours. 
The selection of the rolling final charge state is based on analysis of the DOA operation. We 
assume that the final charge state must be sufficient to cover demand in a projected period 
equal to DTES beyond the RDOA lookahead, from all hours where the electricity price is higher 
than the trigger prices found in section 4.3.3.  

Where the projected period is beyond the 7-day horizon of hourly forecasts, then the demand 
is extrapolated from the demand during the ‘known’ lookahead period. As this endstate is 
always in a future horizon it is never reached, but during intermediate time steps, the RDOA may 
indeed find it optimal to completely charge or discharge the TES. Where the projected period is 
beyond the 7-day horizon of hourly forecasts, then the demand is extrapolated from the demand 
during the ‘known’ lookahead period. After running the RDOA, the optimal control for the 
lookahead period is returned and applied only to the first 24 hours. The RDOA then moves 
forward by one day to re-calculate. The RDOA sequence and interaction of Prodyn with HeLoM 
is shown in Figure 4.16. 

The TES levels over the period 2014-2015 for various TES capacities using the RDOA are shown 
in Figure 4.17. The smallest TES size shown, 0.1% annual demand or 2 peak hours shows constant 
cycling throughout the year similar to the DOA in Figure 4.12. The regular charge/discharge 



District Heating Model 

95   

frequency is maintained at 1% TES and the full capacity of the TES is regularly utilised in the 
heating season while the utilisation of full capacity reduces at 2% TES.  

 
Figure 4.16 Implementation of Prodyn optimisation algorithm with HeLoM 

Box 4.2 Challenges of developing the RDOA  

 

Creating the RDOA procedure required much experimentation. This was mainly regarding the 
length of the period in which to run the DOA, lookahead period and endstate selection. Where 
possible, it was desirable to reduce the DOA run length to avoid unnecessarily lengthening 
computation times; though in practice this would not be an issue for DH operators. 

The endstate is selected such that it is sufficient to cover the demand in the costlier hours 
during the lookahead period. The lookahead period must be adjusted based on the size of the 
TES. A long lookahead period for a small TES may lead to assignment of a constantly full TES 
and conversely a short lookahead period for a larger TES may underutilise the TES capacity. 
Another factor to consider was the size of HP. The endstate selected must be attainable with 
the HP size while also being able to meet demand. Defining the endstate incorrectly could lead 
to suboptimal operation 

Through trialling several methods, the given definitions of charge and discharge duration were 
settled upon as this was found to give the best results for all HP and TES combinations. 
Variations of endstate such as a seasonally defined end state were considered, but this loses 
the strength of the lookahead ability. This was particularly in the case of unseasonal weather. 
Varying endstate and lookahead based on (the known) projected demand gave best results. 
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The full charge/discharge cycles of the TES at larger sizes correspond directly to periods of high 
electricity prices. With a HP capacity equal to peak demand, and a 1% TES, charging of the TES 
from empty to full takes between 1 and 2 days. With a 2% TES, this increases to 2 to 4 days. The 
doubling of TES capacity from 1% to 2% has little effect on the broader operating patterns in 
comparison to the operating pattern at smaller sizes. With a high forecast accuracy in the sub-
2-day period, the RDOA operation of a 1% TES can be practically recreated in ‘real world’ 
conditions with a high level of confidence.  

The TES operation can be split into sub daily cycles and multi day cycles. Figure 4.18 
demonstrates the smallest cycle length with a 0.1% TES is a single diurnal cycle. It has a stronger 
twice daily cycle and less intense shorter cycles on the order of a few hours (lower frequency 
equates to longer cycle lengths). This shows that the small duration TES never holds a full charge 
for longer than a day with a small TES, often cycling multiple times per day, in response to daily 
loads variation. The 1% TES also demonstrates these sub-diurnal cycles, but also has longer 
multi-day cycles shown in the inset on a logarithmic scale with a 3-day and 7-day cycle showing 
strong signals. 

  
Figure 4.17 TES operation at various TES sizes using the RDOA for the period 2014-2015 
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Figure 4.18 Frequency analysis of TES cycles using a 0.1% TES (top) and 1% (bottom) with 
super-diurnal cycles inset for the 2014-2015 period 

4.4 Algorithm Comparison 
Comparing the results of each algorithm in Figure 4.19 for the best-case and worst-case periods 
shows that the RDOA as expected outperforms the other BSC and TRG algorithms. While the 
trigger price compares well, it requires experimentation to find the appropriate trigger price. 
However, this shows that the TRG is useful for efficiently exploring DH configurations. It can 
generate results relatively quickly, with simple heuristics and known performance limits. 

The RDOA is 18% higher than the minimum electricity costs given by the DOA. The absolute cost 
difference between the RDOA and DOA in the worst-case period is almost three times more than 
the best case. All the algorithms plateau at a level beyond which extra TES capacity provides 
little benefit except for in the worst-case period where the plateau is not reached with any 
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algorithm even with 5% TES size. However, there is a gradual rate of reduction and the costs at 
1% TES is within 25% of the 2% TES size. 

For the 2013-2014 period, the RDOA plateaus at over 80% higher than the DOA value with a 
difference of around £27,000 compared to 2010-2011 where the RDOA plateaus at just under 
20% higher than the DOA value but with a difference of nearly £60,000. This highlights the 
difference in potential operating costs between a best-case year and worst-case year. Figure 
4.20 shows the graph for RDOA in all modelled periods. It demonstrates that costs plateau 
around 1% TES for all periods except the worst-case period 2010-2011. The RDOA shows that 
for every measured year, the operating electricity costs for 1% TES were within 1.25 times the 
costs of a TES of double the size, suggesting that the best TES to annual demand ratio is in the 1 
- 2% range. 

 
Figure 4.19 Comparison of electricity costs of all algorithm from the periods 2010-2011 (top) 
and 2013-2014 (bottom) 
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Figure 4.20 Operating electricity costs for each period using the RDOA 

4.5 District Heating Network Configuration 
The total annual DH operating costs inclusive of annuitised capital network, TES, HP, and 
electricity costs are shown in Figure 4.21. The medium range costs from Table D-1 have been 
used assuming a network of 50 GWh per annum average demand and a 22 MWth heat pump 
sized to peak demand. The TES costs assumes economies of scale for all sizes and the electricity 
costs are the mean annual electricity operating costs for each TES value from all modelled 
periods. The minimum operating costs are at a TES value of 1.3% of annual demand. This 
corresponds to a levelised cost of heat (LCOH) of £88 per MWhth and is around 11% saving in 
operating costs per year. The low and high-cost ranges were £50 and £128 per MWhth of 
delivered heat. Using TES costs that are within the economies of scale range, the cost curve will 
remain the same at larger DH sizes and the LCOH will be preserved. 

  
Figure 4.21 Total annuitised capital, O&M, and electricity annual costs per MWh of delivered 
heat for varying TES capacities 



Modelling District Heating In A Renewable Electricity System 

  100 

 
Figure 4.22 Comparison of annual component cost per MWh of delivered heat for Low, 
Medium and High cost sensitivity ranges 

The component cost ranges are illustrated in Figure 4.22 where it can be seen that a large share 
of the costs come from the network itself. Previous estimates have shown that network costs 
amount to over 70% of total costs (ETI, 2018). The cost breakdown for the medium range in 
Figure 4.23 suggests that this is closer to 60% owing to the higher capital costs of HPs. Of the 
network costs, the majority of this comes from the cost of the heat connections, including the 
HIUs and heat meters. This has been found to be a key area of sensitivity with a wide cost range 
and the figures have been based on a limited number of UK installations. This is seen as a major 
barrier to deployment (DECC, 2015b). Other studies have shown the possibility for significant 
network cost reduction in the UK in comparison with Scandinavian DH systems. A report from 
Poyry proposes a possible 50% reduction (Macadam et al., 2009) while an ETI study shows up to 
40% reduction through a combination of financing, experiential learning and supply chain 
management (ETI, 2018) and industry experts suggest a network capital cost reduction of at 
least 30% is a distinct possibility (BEIS, 2018b). With a 30% decrease in network costs in the 
medium cost range projections, the LCOH falls to £74 per MWh of delivered heat. By 
comparison, this is similar to a survey of heat prices from existing UK DH schemes where the 
average price charged for heat was £73 per MWh (DECC, 2015b). 

 
Figure 4.23 Medium case annual operating costs distribution 
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4.6 Discussion 
This chapter documented the development of the District Heating Model – DiHeM, a DH energy 
model which enabled experimentation and optimisation of DH plant components. Various 
control strategies were trialled to operate the dispatch of heat from the HP and TES, ultimately 
settling on the implementation of a Model Predictive Control (MPC) operating algorithm. 
Existing DH studies were reviewed to identify appropriate methods and built upon in the 
modelling used for this study.  

The modelling approach reduced the DH network to its fundamental components: a single heat 
load with fixed supply and variable return temperatures and physics-based representations of 
HPs and TES. This included thermal losses and dynamic COPs, both dependent on operating 
conditions. The DH model was designed to operate in three discrete modes per hourly timestep. 
While individual DH systems may indeed have higher source temperatures such as from sewage 
or waste heat, ground source temperatures have been used as a generic source temperature. 
These temperatures are less locationally dependent than other heat sources and are assumed 
to be representative of the average COP that may be achieved in the event of widespread DH 
deployment. 

The flow and return temperatures have been modelled linearly assuming a variation between 
50°C at peak and 15°C at no load, but rarely dropped below 30°C during the simulations. In 
reality, this relationship is never linear and there are many factors that are case specific, such as 
building internals, radiators, heat exchangers and the action of bypasses. Bypasses are used to 
maintain flow temperatures and normally result in heat losses being higher than assumed at low 
demand. This would result in higher return temperatures and would reduce the storage capacity 
of the TES. It also means that losses are a higher percentage of demand at low demand periods.  

Distribution network losses were modelled as 12% multiplier of hourly demand. However, these 
losses should have been an additional constant loss to equal 12% annually rather than 12% of 
hourly demand. The impact of this would be negligible during the summer low demand periods 
as electricity prices are low and the TES does not operate but would lead to pessimistic results 
during high demand as it overestimates peak losses and therefore electricity consumption of 
HPs (when COP is typically lowest). Ultimately, further research is needed to model the dynamic 
network heat losses.  

The inclusion of other sources such as geothermal or industrial waste heat in the modelling 
would result in superior COPs, reducing the electricity costs. The economics of other heat 
generators such as solar thermal have not been studied nor has the inclusion of cooling which 
was deemed outside the scope of this project. 

4.6.1 Operation algorithm 
Operational algorithms were explored for the control of TES and dispatch of heat. Heuristic 
based algorithms were first considered; the BSC algorithm which operated based on electricity 
grid conditions, and an improvement upon this was the TRG algorithm that uses electricity prices 
as the basis for control. The strength of these algorithms is the speed of simulation for modelling 
purposes. However, from analysis of hourly charging, the lack of any foresight used in these 
algorithms limited their performance. 

Existing methods have been built upon to implement an MPC. This was used to both optimise 
dispatch with perfect foresight- DOA, and over a limited time horizon - RDOA. These algorithms 
used a type of MPC algorithm known as dynamic programming. Although it has several drawback 
including discretisation and computing requirements, it is particularly suited to the formulation 
used in DiHeM and could be easily adapted to operate the discrete modes of the model. The 
minimum achievable electricity cost is difficult to determine; however, a good indication of the 
theoretical minimum electricity costs can be estimated from the lowest hourly electricity costs 
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(during surplus hours, see Chapter 3.5) and average COPs attained by the system. In practice, 
this is difficult to achieve due to storage and HP limitations.  

The RDOA provides a realistic assessment of the operating costs using a limited time horizon. It 
can be seen how close this is to the DOA costs and dependent on the weather year being 
simulated. Knowing the relative performance of the TRG compared to the RDOA can make it a 
useful algorithm to employ for quick results. The heuristic based algorithms can be improved 
upon extending it to use variable trigger price curves and including forecasting. This could easily 
extend to machine learning levels of sophistication where the algorithm continues to be refined 
based on continuing use data. With the use of the MPC algorithm, it was not worth pursuing 
such complexity and could easily be a doctoral research project itself. Meta-optimisation of the 
RDOA, both in terms of efficiency and accuracy, would also be a useful exercise. These 
limitations are relevant only to the modeller. DH operators will operate in real time and have 
access to greater computational power.  

The results show that electricity costs rapidly fall with increasing TES capacity, up to around 1% 
of annual demand. Above 1%, costs continue to decline depending on the period measured but 
the reductions are diminished. TES capacities above 1% may be useful in bad weather years, 
where it was found that costs continue to diminish above 2% TES. If as a result of climate change, 
bad weather years and extreme winter weather were to become more common in the British 
Isles, then there may be a stronger case for larger capacities. This would require a better 
understanding of the local impacts of climate change and perhaps a complex statistical analysis 
of weather and costs. There are of course other options for storage with DH, such as biomass or 
hydrogen. With CHP, these have the wider benefit of producing electricity, but such an analysis 
was outside the scope of this project. 

The electricity costs used are based on the assumptions of the marginal cost model – ElCoM for 
the NZ scenario. The reality of future costs and energy system are almost certainly going to differ 
from those presented here. The electricity costs do however simulate highly varying electricity 
costs. The modelling here shows that the majority of costs are concentrated in specific periods 
during the intersection of high costs and prolonged high demand. Larger TES capacities will help 
reduce these concentrated costs. This is also very dependent on the dynamic market structure, 
whether it operates on spot prices, day ahead prices and how far in advance contracting will be. 
DH operators may have separate contracts for electricity and there is the possibility that 
operators of smaller schemes with limited flexibility or TES may agree a Contracts for Difference 
(CfD) with electricity providers, protecting them from volatile electricity prices, but this would 
largely negate the benefits of flexibility gained via TES.  

4.6.2 District heating cost and policy implications 
The results have provided an indication for the range of LCOH that could be expected from DH 
in highly renewable scenarios as well as the expected operating costs for electricity import, 
which has rarely been accounted for in contemporary analysis. These figures could be used as 
input data to provide the basis for further analysis on the potential for DH along the lines of the 
studies presented in Table 1.2. 

The current and projected capital costs of DH infrastructure show that TES costs account for a 
small fraction of this. There is some range in the annual electricity costs to achieve cost 
reductions but by far the largest determining factor are the network costs at around 60% of the 
LCOH. Various stakeholders suggest that this can be reduced by around 40% of current network 
costs. Depending on whether network costs decrease as projected, heat delivered by DH can 
still be financially competitive with consumer HPs and with current gas boiler heating assuming 
medium cost projections (Wang, 2018), although the latter is subject to the future cost of gas 
and associated emissions. 
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4.6.3 Practical Implications 
Tank construction has a practical limit to due material properties and engineering constraints. 
Tank walls have to be built to withstand the pressure of a large volume of water. This pressure 
can be reduced by altering the ratio of height to diameter at the expense of land area. One way 
to avoid this is by partially burying the tanks, but this increase construction costs. With this 
method hybrid pit-tank TES with very large volumes on the order of 100,000 m3 have been 
proposed (Ochs et al., 2020); but the largest tanks connected to DH remains around 15,000 m3 
while the largest PTES is 200,000 m3. Underground TES may offer a route to larger storage 
capacities, albeit with high capital costs, and there has been shown to be substantial availability 
of underground stores in the UK, the locations of which, would have to be matched to areas of 
DH deployment (Gluyas et al., 2020).  

The UK has historically used large gas holders built close to urban populations to store ‘town 
gas’ for use in buildings and the local gas distribution grid. They have become obsolete since the 
UK gas network transformed to use North Sea gas, but many still exist unused near town centres. 
At their peak, National Grid owned “over 500”, SGN owned 110 and several other companies 
owned and operated gas cylinders around the UK with an estimated 750-1000 gas holders at 
their peak (Ram, 2015; SGN, 2021).  

The UK now has many unused gas holders. The typical cylinder at full capacity was around 50,000 
m3. Assuming a DH network flow temperature difference of 55°C, a 15,000 m3 TES stores just 
under 1 GWh and combined with an energy centre, could serve a DH with a 100 GWh annual 
demand. The large gas holder in Kennington, London (pictured in Figure 4.24) is 60m diameter 
with a minimum land area requirement of 2827 m2. A TES of 1:2 ratio occupying the same land 
area would hold a TES of over 80,000 m3. This would have a capacity of over 5 GWh (at 55°C 
temperature difference). The area occupied by 750 gas holders would allow construction of 
around 3.75 TWh worth of TES which can serve DH with aggregated heat demand of 375 TWh, 
which is over half of the low temperature annual space and hot water demand for buildings in 
Britain.  

While it is highly unlikely that this level of DH will be constructed in the UK, and of course this 
needs to be spatially distributed and co-located with areas of high demand, it is an indication 
that the potential for low-cost DH networks is not limited by area for TES. The largest 
uncertainties arise from the cost of land to construct large TES. The costs of land in urban areas 
will not be trivial and these costs, including the cost of the building which house the energy 
centre have not been entirely factored in as these are highly location specific and may greatly 
impact the capital expenditure. 

 
Figure 4.24 Aerial view of the Kennington gas holders (Google Maps, 2021) 
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4.6.4 Chapter conclusions 
While TES capacity of around 1% of annual demand (corresponding to roughly 20 hours of peak 
demand) is found to minimise annual costs, the reality is that these costs represent a small 
fraction of the overall costs of heat from a DH system. The TES and associated electricity costs 
form around 12% of the final cost of delivered heat. As has been emphasised in the literature 
and by key stakeholders, there are far greater gains to be made by focusing on reducing network 
costs. This may be through better design and construction methods, supply chains or financing 
methods. 

Minimum costs being achieved at 1% TES suggests that if this capacity is implemented and DH 
is widely deployed, then there is significant operational flexibility to be gained for the electricity 
system. This figure is also dependent on the fractions of wind and solar power deployment and 
the capacity factors they may be able to achieve in future. With the ability to shift demand by 
over 4 days at this TES capacity in the modelled NZ scenario, electricity peak loads can be 
reduced, and DH can facilitate the integration of variable renewable electricity.  

The DH design and operation in this chapter has reflected the case of DH-HP operation being 
non-marginal upon the electricity system. If DH deployment is going to increase and become a 
major component of the GB energy system, then the operation of DH will at some stage become 
marginal on the electricity system, altering electricity costs and in turn, the operation of DH. 
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5 CONCLUSIONS: A SYSTEM 
PERSPECTIVE 

5.1 Thesis Summary 
The motivation of this research began with identifying the need to decarbonise heat supply in 
the UK. As a result of the electricity grid decarbonising, electrification of heat is a promising 
method of achieving this. With heat pumps, district heating can potentially deliver a 
considerable amount of electrified heat to urban areas. It can also provide a beneficial role in 
the electricity system by providing greater flexibility and COPs compared with individual heat 
pumps. To understand this role, we first needed to identify how DH may be designed and 
operated according to the requirements of a future system. With reference to the research aim 
and questions in section 1.4.1: 

To what extent can DH with heat pumps and TES exploit the variability in demand 
and electricity prices to minimise operating costs and how should they be designed 
to achieve this?  

This has necessitated the development of a series of models where this thesis has: 

1. Developed HeLoM to model the projected urban heat load for DH 
• Where the modelling comprised of building stock data and areas of highest heat demand 

density to provide an estimate of an urban DH demand load profile. 
• Similarly estimated the national (GB) heat load profile, contrasting the output to similar 

modelling of the 2010 total and peak demand. 
• Differences between the normalised urban and national demand duration profile were 

found and more significantly, the peak to trough ratio of the urban demand profile was 
lower than the national, indicating that the urban demand has a flatter demand curve.  

2. Created ElCoM to simulate the electricity system 
• Utilising an existing net zero compatible scenario from National Grid which included a 

high fraction of electrified heat and DH deployment.  
• This was modified to 100% electrified heat and the generation and storage capacities 

were suitably adjusted to maintain the peak demand to renewable generation and 
storage capacity ratio such that it provided a security of supply where 98% of demand is 
met directly with renewable generation or via storage. 
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• A novel methodology was devised to simulate the variability in electricity prices based 
on marginal generation costs with distribution and transmission losses, finding strong 
seasonality in a highly renewable system. 

3. Combined the outputs of HeLoM and ElCoM in DiHeM 
• And implemented an optimisation algorithm to control the dispatch of heat from the HP 

and TES with a finite time horizon. The finite time horizon resulted in costs 20% higher 
than a perfect foresight algorithm. 

• It was found that a TES capacity equivalent to around 1% of annual heat demand is 
sufficient to minimise operating costs with a HP sized to peak demand.  

5.2 District Heating and the Electricity System 
This thesis has achieved a modelling system that allows further exploration of DH for given 
scenarios. A question remains concerning how DH can fit into the wider system and what role it 
can play in it. We can explore the effects of large-scale DH deployment in several ways: 

1. Replace Consumer heat pump electricity demand with an equivalent fraction of DH 
electricity demand. With this we can observe the impact on annual electricity consumption 
and peak electricity demand via: 
a. The effect of COP difference 
b. The effect of load shifting via TES 

2. Integration of ElCoM and DiHeM to observe the impact on renewable generation surplus 
and deficits from: 
a. The co-operation of TES and grid storage  
b. Varying grid storage capacity on the system 

5.2.1 Substitution of demand loads 
By simply replacing a fraction of consumer HP electricity demand with the equivalent DH 
demand, we can begin to explore trends associated with the growth of DH. The ability to shift 
demand with TES means that the DH hourly load profile will not be a simple translation of the 
existing consumer HP profile attained through enhanced COPs. Figure 5.1 shows the impact of 
replacing 10% of consumer HP demand with DH. This results in a 3% decrease in annual demand 
of electricity for heating, due to a combination of enhanced COPs and lower transmission losses 
and 10% reduction of peak demand due to TES shifting the entire DH load away from the peak. 

 
Figure 5.1 Peak and total electricity demand with DH deployment 
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5.2.2 System electricity costs 
The resulting change in marginal electricity costs are shown in Figure 5.2 for each simulated year 
as DH expands to 10%. The annual mean marginal costs remain largely unchanged, but peak 
costs rise by varying amounts depending on the year as there are fewer dispatchable hours to 
recoup fixed operating costs (we can see in 2010, the year with most dispatchable hours, has 
the lowest peak generation costs). Around 80% of hours actually remained unchanged, these 
were almost exclusively surplus hours. Around 6% of hours reduced in costs and 14% increased. 
The average charge and discharge hour costs increased, as do the peak costs (maximum 
discharge hour costs). This is due to the reduced revenue from dispatch (flexibility) hours which 
constitute around 12% of all the hours. The increase of these costs is offset by the large decrease 
in costs during the extra surplus hours where the marginal generation costs are very low. Given 
most hours remain unchanged in cost and only the previously high-cost hours increase in cost, 
it may be that hourly DH operation, based on electricity price signals from the grid, would not 
be significantly altered given mass deployment other than during a minority of specific hours. 

 
Figure 5.2 Change in the mean (solid) and maximum (dashed) marginal generation costs 

5.2.3 Electrified heating costs 
Both the average unit and total annual cost of electricity for heating falls with increasing DH 
deployment as shown in Figure 5.3. Using the modelled heat loads from Chapter 2, this 
corresponds to a total cost of between £10 billion and £18 billion per year for electric heating. 
As this is modelled from substituting demand loads, the difference in distribution costs is not 
taken into account here, and neither is the impact of TES on the need for battery storage. In 
Section 4.5 it was shown that the average annual cost of electricity for a non-marginal DH system 
was just under £9/MWhth. As the fraction of DH deployment increases, the average cost would 
tend towards this number, this average will itself change as DH becomes marginal on the system. 
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Figure 5.3 Change in the average unit (top) and total annual (bottom) cost of electric heating 

5.2.4 Integrating ElCoM and DiHeM 
An examination of how the flexibility of DH can be exploited by the electricity grid and utilise 
the extra storage capacity is more complex. The modelling methods used do not permit a robust 
hard integration of DiHeM and ElCoM without a fundamental redesign of the models. While the 
dispatch algorithm in ElCoM functions on an hourly basis, the evaluation of costs only occurs 
retrospectively on an annual basis. This presents an issue as the RDOA in DiHeM operates on the 
basis of known hourly electricity prices. When DH is significant on the system, the electricity 
demand will change and affect the marginal generation costs and hence the electricity price to 
the DH operator and in turn impact the operation of the DH. The resulting operation sequence 
could then be run again in ElCoM but there is no guarantee that this iteration will converge.  

Furthermore, DH would impact on the optimal capacities of electricity generators and storage 
and so affect system costs and hourly prices. Properly then, the operation and system design 
would be optimised using an integrated model. Full integration of the models and optimisation 
would require a further research programme. One option to explore the coordinated operation 
of DH is on the basis of a centralised dispatch system. This effectively removes agency from the 
DH operator. By allowing the decisions in DiHeM to be controlled by the state of ElCoM, the 
dispatch model in ElCoM is set to treat DH TES as a secondary store after the grid’s electrical 
storage has been fully utilised. This maximises the flexibility of the grid as electricity can be used 
for any purpose and minimises the use of dispatchable generators. The central dispatch is such 
that: 

• When there is surplus power, priority is given to charging grid storage first, followed by 
the DH HPs, to first meet the DH load, and then to charge TES with the remaining excess 
HP capacity  

• When there is a deficit of power, priority is given to switching off the DH HPs and the 
DH load is met from the TES, followed by discharging grid storage. 
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Figure 5.4 shows the comparison of DH to a counterfactual of full consumer HP based heating 
in the NZ Scenario. Surplus renewable generation slightly increases. However, the benefits of 
DH can be seen with a 60% reduction in the deficit at 10% DH deployment. The deficit would 
otherwise need to be made up from either dispatchable plant or other flexibility/storage in the 
system. 

 
Figure 5.4 Change in renewable surplus and deficit after integration 

5.2.5 Equating thermal and electrical storage 
In Section 3.7 it was determined that 242 GWhe of grid storage was necessary in 2010, the design 
year, to attain a security of supply where 2% of all demand was achieved via either dispatchable 
plant or other flexibility. For other weather years, the requirement was less than this.  

The grid residual (generation minus demand) curve in Figure 5.5 shows the effect of grid storage 
and DH on the generation surplus and deficits using 2010 weather data. An ideal system should 
be perfectly balanced, the next best would be to eliminate the deficits. The orange curve 
represents hourly generation minus demand before the action of any grid storage. The addition 
of grid storage eliminates over 750 deficit hours (shown by the solid blue line). The dashed 
yellow line shows the addition of 10% DH on the system which further reduces the deficit. This 
level of DH deployment, assuming TES sized at 1.3% annual demand (as per results the findings 
in chapter 4), would have just under 550 GWhth of connected TES (assuming a DH system 
temperature difference of 55°C) . The value of this extra storage on the system can be estimated 
by the cost of grid storage displaced without altering the deficit (dashed blue line). 

For the 2010 weather year, this displacement is around 107 GWhe of grid storage. 2010 was an 
exceptionally cold year which enhances the DH-TES system’s ability to provide virtual storage 
for the grid (i.e. if heat demand were zero there would be no HP electricity demand to interrupt 
and the storage ability would be zero). Other years had a lower overall storage requirement than 
2010 to attain the same security of supply (and hence a smaller displacement), despite DH being 
able to provide a greater level of virtual storage due to the higher heat demand in 2010.  
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Figure 5.5 Grid residual duration curves for NZ scenario and integration of DH (2010) 

For a 10% DH deployment, TES capacity and the corresponding capital costs were assumed with 
a reference DH temperature difference of 55°C. With a fixed volumetric capacity of TES, the 
actual stored energy varies with the temperature differential. The average winter DH 
temperature difference was 38°C which gives an effective winter TES capacity of around 380 
GWhth. The thermal storage electrical equivalence can then be estimated by the ratio of the 
effective winter capacity and maximum displacement (380/107). This is in the region of 3.5, that 
is 1 GWhe of grid storage can be displaced by 3.5 GWhth of TES (depending on the level of heat 
demand). This figure is essentially the average winter COP of the DH system, suggesting that the 
TES can be operated like grid storage provided that there is DH load on the system. 

As per the capex assumptions from Chapter 3, 107 GWhe of electrical storage represents a £36 
billion capital investment. Using the medium range assumptions from Chapter 4, a 10% DH 
deployment would require an estimated £52 billion capital expenditure (network + HP + TES). 
The cost of the DH infrastructure needs to be factored in as a pre-requisite to be able to connect 
such quantities of TES to the system. TES represents less than 4% of the total capital of a DH 
network. Once the infrastructure is in place, the addition of further TES would require little 
further investment. Every 1 GWhth of TES at a cost of £4.45 million  potentially displaces up to 
0.2 GWhe of electrical storage, at a cost of £67.4 million (this is a 1:5 ratio at 55°C temperature 
difference as opposed to a 1:3.5 ratio at a 38°C difference). 

The integration described here effectively assumes joint operation of the system and operates 
according to a surplus/deficit merit order which tries to maximally conserves exergy, but it is not 
price driven, though it may well minimise total system avoidable costs. However, the output 
from DH is assumed to be unavoidable as it is driven by demand, whereas grid storage output is 
optional. The level of displacement of grid storage presumably arises because of the inability of 
grid storage to meet demand in worst-case conditions due to insufficient charge. It is difficult to 
cover the extreme worst-case condition with the modelled decarbonised electricity system due 
the many variables involved. These include the state of charge of both grid storage and TES, the 
heat load and the electricity demand on the grid, and also the conditions and renewable output 
leading up to this. Because of these many uncertainties, small changes within the system could 
lead to large changes in the ability of TES to displace grid storage. While this result is a starting 
point, further analysis needs to be conducted with a more robustly integrated model. 
Experimentation on varying levels of TES and DH deployment levels is also needed to determine 
the minimum DH investment required to achieve grid benefits and how much TES can be 
supported at each level of DH deployment. The answers to all these questions are highly 
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dependent on the scenario, operating algorithm, and system design assumptions that any future 
analysis should consider. 

5.2.6 Summary of model integration 
This section has addressed the second main research aim which was to analyse how a significant 
DH presence may impact the electricity system. This was stated in section 1.4.1 as: 

What is the impact of a significant DH deployment on the electricity system, how 
much flexibility can it provide and to what extent can it supplant grid storage? 

This required integrating ElCoM and DiHeM and coordinating the operation of the two models 
assuming a centralised dispatch. The results from this analysis at 10% DH deployment can be 
summarised as: 

• A simple substitution of electricity demand loads shows that electricity demand for 
heating is reduced by 3% and peak demand is reduced by 10%. 

• Annual mean electricity costs remain consistent and the costs in around 80% of hours 
in a year remain unchanged. However, peak marginal generation costs increase with 
fewer hours of dispatchable generation or other forms of flexibility. 

• The total cost of electric heating for both individual HPs and DH was found to vary 
between £10 billion to £18 billion. 

• The deficit in renewable generation is reduced by 60% while there is a slight increase in 
the surplus of renewable generation. 

• DH can displace around 107 GWhe of grid storage with every 1 GWhth of TES able to 
displace 3.5 GWhe of electrical battery storage (at a 38°C temperature difference). 

5.3 Key Findings and Contributions  
Each of the main chapters of this thesis has provided contributions to knowledge in their 
respective areas. Chapter 2 has drawn upon many existing sources to develop a method to 
model high spatiotemporal resolution heat loads on a large geographical scale. While various 
heat maps with high spatial resolution are in existence, the temporal dimension in HeLoM is 
novel. The modelling enabled disaggregation of urban loads at selected heat demand density 
thresholds as a proxy for DH load. The urban heat loads were shown to have a different temporal 
profile to the modelled national profile demonstrating that these cannot be simply 
interchanged. The output, both national and local urban load, can be used in various other 
research applications and model inputs. 

Chapter 3 developed ElCoM which introduced a novel method for calculating marginal electricity 
generation costs from capital intensive systems. The modelling revealed that while intra-day 
variation of costs increases, the short-term variability decreases in high wind scenarios. The 
costs also show a strong seasonality, which was reinforced in the NZ scenario with the addition 
of fully electric heat loads. The NZ scenario itself was an adaptation of an existing national 
scenario where it was assumed that dispatchable generation can be eliminated through 
flexibility measures such as demand side response, interconnection and vehicle-to-grid (V2G). 
These flexibility measures amounted to 2% of annual demand in the stress case period, and 
represents a security of supply for the electricity system. The resulting generation mix shows 
ambitious renewable deployment capacities. This ambition, however, is in line with 
contemporary analysis in the field. Significantly, it was shown that the marginal cost of electricity 
supply in a highly renewable system with grid storage can be within a manageable range. 

In Chapter 4, output from HeLoM and ElCoM are combined in DiHeM. The operational control 
of the HP – TES system was implemented with a novel application of an MPC algorithm, the 
RDOA. The RDOA has a finite time horizon corresponding to the accuracy of weather forecasts. 
This enables a practical grasp of the operating costs and can approximate within 20% of a perfect 
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foresight simulation. It was estimated that the levelised cost of heat from bulk DH systems would 
be in the region of £88 per MWhth, of which around £9 per MWhth are from fuel (electricity) 
costs. The model was used to determine the optimal TES capacities for the NZ scenario. It was 
determined that a TES capacity of 1.3% annual demand is sufficient to minimise electricity costs 
(with a heat pump sized to peak load). However, with the costs of current DH infrastructure, TES 
represents a small fraction of the capital investment.  

This final section has shown that significant quantities of DH can be deployed with the result 
that electricity demand for heating and peak loads on the grid are reduced, as is the deficit in 
renewable generation without greatly impacting electricity costs. An attempt at integrating 
ElCoM and DiHeM reveals that the amount of grid storage that is displaced by TES is highly 
dependent on yearly weather conditions. This can be as much as 3.5 GWhth of TES for every 1 
GWhe of grid storage on the system at significant cost savings. 

5.3.1 Policy implications 
DH costs are still very dependent on large capital investments and financing is a central issue. 
Reducing the cost of DH infrastructure is the subject of intense scrutiny among stakeholders. A 
reduction in DH capital costs of over 40% has been suggested (ETI, 2018), thereby increasing the 
areas in which deployment of DH is economical. There is uncertainty regarding the cost of land 
and space for TES, but the value to the grid that DH could provide merits further attention.  

The modelling in this thesis has shown that the capacity requirements and therefore system 
capital costs are set by the worst-case period. In this research, this was the winter of 2010 which 
had a prolonged cold period with low renewable output. In Chapter 2, the peak simulated heat 
loads were seen during this period. The capacities in the NZ scenario in Chapter 3 were set by 
2010 which was the year with the highest number of DSP hours. Chapter 4 also showed that the 
DH capacity requirements are determined by this period. If the 2010 meteorology year were not 
simulated, then the results here may look quite different. A fundamental question is whether a 
future system be designed according to this worst-case? How often will this worst case occur, 
particularly considering a changing climate with predicted milder winters? The NZ scenario was 
designed around a security of supply constraint but this may not be the grid operator’s only 
constraint. It might also be to minimise the total cost of electricity to consumers. The marginal 
generation costs of electricity modelled here are largely driven by capital costs of both 
renewables and storage. Storage has a big impact on prices, and so this tends to favour 
prioritising its reduction over renewables. The whole system must be secure in worst-case 
conditions and the options are not limited to those discussed here.  

It has also been shown that TES provides the highest benefits to the electricity system in the 
worst-case year. DH TES thereby offers the opportunity of greatly reducing system storage and 
dispatchable generator costs. This alone merits further investigation and any policy analysis or 
future scenario modelling should acknowledge this. Should DH then be designed and deployed 
according to this worst-case period at the expense of heating costs? If so, what incentives would 
be provided to DH owners and operators to provide this valuable flexibility? And importantly, 
who would be responsible for coordinating this? 

The benefits of DH could be maximised with a co-ordinated system as the integrated modelling 
has illustrated. The design of such a system is a challenge of high complexity and raises further 
questions and challenges such as what signals are involved and who manages the system. The 
modelling here simulated a single large TES, effectively assuming that all stores are charged and 
discharged in unison. This is unlikely to be the case and something that could only be achieved 
via a centralised coordinated system operator. Alternatively, if the system is decentralised with 
competing agents, how is chaotic hunting avoided? We can only speculate on the configuration 
of the future energy system, and what the role of the National Grid or other operators may 
become. But in the absence of a central dispatch agent, would dynamic markets be able to 
recreate this behaviour? These are questions unanswered here.  
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The investment, ownership and operation of grid infrastructure is entirely separate from that of 
DH. A whole system cost minimisation would strengthen the case for DH. If a 10% DH 
deployment with a capital cost of £52 billion saved £36 billion in grid electricity storage, the 
effective spend on 10% DH deployment would be only £16 billion. Assuming that this level of 
deployment covers 3.5 million dwellings, this represents a spend of around £4,600 per dwelling 
(a conservative estimate considering that nondomestic buildings would form a large component 
of urban DH schemes). By comparison the typical cost of installing a domestic air source HP is 
around £10,000 (Vaughan, 2021). A £5,400 saving for 3.5m dwellings is £18.9billion and further 
savings could be achieved by considering the counterfactual costs of needing to reinforce the 
local electrical distribution network. 

While observing these cost savings, it is important to remain cognizant of the declining costs of 
utility scale lithium-ion batteries and other form of grid storage. Some projections estimate a 
2050 cost reduction of over 50% compared to the values used in this study (Cole et al., 2021). 
Though this reduces the impact of the cost savings from TES compared with lithium-ion 
batteries, TES is still significantly cheaper and of course these projections are based partly on 
historical trends and the continued availability of the required raw materials and associated 
supply chains. 

The modelling of marginal generation costs shows that high levels of renewable deployment 
should not necessarily lead to high electricity prices in an efficient market. Average electricity 
generation costs remain in line with present costs, but these costs are seasonal. Increasing 
renewable deployment does however increase the costs of the few remaining dispatch or 
flexibility hours where there is a generation deficit, but this modelling has not reduced system 
capacities to avoid this. Tariff design will be vital to protect owners of consumer HPs from being 
exposed to the highest costs in winter, particularly as they are unlikely to have the load shifting 
abilities of TES. Large purchasers of electricity (electricity retailers and large consumers) may 
well enter into contracts-for-differences (CfDs) with wholesalers to fix their prices going 
forwards, and hence shield themselves from volatile and high short-run prices. The economics 
of storage however, depends on price volatility. Short-run prices need to be visible and 
accessible in the market, in order for storage to be properly rewarded. If they are not, then 
insufficient storage will be built, increasing volatility and threatening security of supply. 
Similarly, electricity retailers could offer a range of tariffs to small consumers - with a premium 
reflecting the extent to which the consumer is insulated from high and volatile prices. 

5.3.2 Strengths and limitations 
A strength and novel feature of the analysis in this thesis is that real weather underlines the 
primary data feeding into the simulated supply and demand. Weather data from the eleven GB 
regions provided by the Met Office (2019) directly fed into the heat load modelling in HeLoM. 
The renewable capacity factors from Staffell and Pfenninger (2016) were based on NASA Merra 
reanalysis data. This fundamentally linked the patterns of supply and demand, a link that is 
reinforced with higher renewable capacities. However, future weather and climate conditions 
will not be the same as the modelled past; in particular increased average ambient temperatures 
will reduce space heat loads and increase cooling demand, but episodes of extreme weather 
may impact on peak demands (Met Office, 2021). 

The DH modelling rests on a single scenario. This scenario was based on a recent National Grid 
net zero scenario with a significant fraction of DH. Real world outcomes do not always follow 
the planned or most economic investments pathways. The purpose of this modelling is not to 
make a prediction, rather it is an exploration of future outcomes and a key challenge is to 
understand the uncertainties in these outcomes. How would these results change with lower 
renewable deployment or in a hydrogen dominated scenario? Compared to the National Grid 
scenarios, the NZ scenario adapted for this thesis had the highest level of heat electrification 
and DH deployment which made it most suitable for analysis. The largest departure from it was 
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the elimination of dispatchable hydrogen, this hydrogen is also a storage mechanism for the 
energy system.  

The analysis of significant DH deployment in this concluding chapter effectively models a single 
large DH system with a single TES. In reality there would be many individual systems with 
different demand load profiles, HP COPs, etc. A rudimentary integration of ElCoM and DiHeM 
was attempted with an assumed merit order. But given that we know little about the 
composition of other storage and flexibility measures on the system, it is difficult to make any 
firm conclusions on this basis, but rather to create new avenues of exploration. 

5.4 Future Work 
A natural progression of this work is to extend the integration of ElCoM and DiHeM. This includes 
a co-optimisation of both electricity dispatch and storage in conjunction with TES. The challenge 
will come in the design of the optimisation and definition of the objective function which is being 
optimised. While a cost comparison between DH and grid storage has been attempted, a further 
addition is a comparison with consumer HPs. This would involve a comparison of not only the 
capital costs of installation but also the cost difference of the electricity consumption (inclusive 
of transmission losses). This would then tend towards a total system optimisation. 

The heat loads from HeLoM are assumed to be inflexible in DiHeM. While attempts have been 
made to capture the effects of diversity and thermal inertia in the heat load modelling, there is 
no option in DiHeM to pre-heat or adjust temperature set-points. This increases the flexibility of 
the DH system. However, this would have required each building to be dynamically modelled, 
increasing computing demands. 

Now that the modelling system is in place, further scenarios can be readily simulated. While a 
full system optimisation is beyond the capabilities of the modelling, an economic optimisation 
of DH deployment may be possible. Following from this, a central discussion point has been the 
matter of system design according to the worst-case period. This may require a full statistical 
analysis of the likely performance of the RDOA operational optimisation algorithm compared 
with perfect foresight in the face of an uncertain future. A statistical analysis of meteorology 
may be useful, but this may also require further climate modelling.  

Including climate scenarios could enable a more robust analysis of heat loads as well as possible 
cooling loads. Cooling loads have only been captured indirectly through extrapolation of current 
electricity demands. Summer temperatures are projected to rise, and the frequency of heat 
waves may also increase. This cannot be simulated with the use of historical meteorological data 
and cooling loads may need to be explicitly derived. The question of cooling demand is certain 
to increase in importance in the coming years. The summer periods typically have high surpluses 
of electricity generation. Electric cooling loads could readily use this surplus and are unlikely to 
be as critical to system design as heating is. HPs and DH networks can also be used to provide 
cooling and the modelling can be extended to a district heating and cooling network. 
Substituting air-conditioning with district cooling is akin to replacing consumer HP with DH-HP 
resulting in lower electricity consumption. The provision of heating and cooling with HP could 
allow for the storage of both. An interseasonal TES could be used to store excess cold in the 
winter and heat in the summer. Indeed, concepts such as 'fifth generation district heating and 
cooling' systems are beginning to emerge that consider this proposition (Lund et al., 2021).  

The results presented here show that the widespread deployment of DH can have an important 
function in the national energy system and warrants that it is thoroughly investigated as part of 
an energy system strategy. The issues directly impact organisations such as the electricity 
network operator, National Grid ESO, who should certainly examine these outcomes as well as 
being scrutinised by the appropriate government department and the Climate Change 
Committee who advise them and ultimately shape the direction of energy policy and research. 
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To summarise the scope of future work and extensions of the research presented in this thesis, 
this includes but is not limited to: 

• Fully integrated electricity system and DH simulation including co-optimisation of 
dispatch, electrical and thermal storage, and a total system optimisation to contrast DH 
with consumer HPs. 

• Inclusion of dynamic heat demand to capture the effect of varying temperature 
setpoints, pre-heating and thermal inertia. 

• Addition of further national energy scenarios and economic optimisation of national DH 
deployment for each. 

• Inclusion of summer cooling loads and potentially district cooling and cold stores 

5.5 Epilogue 
Since writing this thesis, the UK (and indeed the international) energy system has gone through 
a period of crisis. A perfect storm of low renewable generation coinciding with a nuclear power 
plant and interconnector outage and a period of volatility in the natural gas market has resulted 
in the collapse of several energy suppliers participating in the electricity retail market and 
threatened several more. Their losses will inevitably be passed onto consumers who could face 
higher electricity prices while the sustained high level of gas prices will likely lead to increased 
domestic heating costs. A further consequence of this is a possible increase in electricity 
generation from coal, thereby resulting in increased emissions. 

This highlights the importance of some of the themes discussed in this thesis, particularly the 
need for long-term energy storage to provide system resilience and reduce exposure to an 
international commodity market. System design to ensure security of supply will be crucial as 
both the deployment of renewable generation and electrified demands such as heating 
increases. The need for appropriate market design is as vital as ever, to reduce the exposure of 
energy companies and consumers to high energy prices and volatility in the market while 
simultaneously allowing owners of storage access to this volatility to promote investment in 
storage and security of supply. 

In this time, the UK government has published their Net Zero Strategy (2021b) and the Heating 
and Buildings Strategy (2021a) papers. While these are somewhat lacking in substance, they do 
signal support for domestic heat pumps via a (limited) capital grant scheme, with a role for 
hydrogen in industry and transport. For the power sector, the strategy confirms the intention 
for a mass deployment of offshore wind, with little comment however, on the storage and 
flexibility needed to accommodate this. Meanwhile, district heating continues to move up the 
agenda, with the completion of a recent consultation on zoning to support the development of 
new district heating networks (BEIS, 2021c) and a response to a consultation on regulatory 
frameworks for district heating markets (BEIS, 2021d). This illustrates the pace of development 
in this area and demonstrates that the topics covered in this thesis are going to remain relevant 
for the foreseeable future.  
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Table A-2 Summary of main modeling assumption  

Section Assumption 

2.1 District heating loads are entirely consisted of urban heat demand which have the highest heat 
demand density as these are likely the most economic areas for DH deployment. 

2.5 The national heat load profile can be extrapolated from the consumption profile of the top 
10% gas consumption areas. 

2.3 All buildings of the same archetype exhibit the same physical characteristics. 

2.3.2 HeLoM models all building with a (gas boiler) heating power input efficiency of 85%. 

2.3.3 All domestic archetypes exhibit the same occupancy pattern. 

2.3.7 Nondomestic MSOA gas data for urban areas is predominantly service and commercial sector 
rather than industrial use. 

2.4 The temperature of the building thermal mass and internal wall surface are equal to the 
internal air temperature 

2.4 Wind forced convection acts only on one side of a building. 

2.4 The building thermal model assumes steady state heat transfer. 

2.4.1 Nondomestic hot water demand has a constant flat hourly distribution. 

2.4.2 Age distributions of domestic buildings is evenly spread across archetypes. 

3.3 The GB electricity network is an isolated island with no interconnection. Baseload generation is 
constant and dispatchable would be lower in the merit order than renewable generation. 

3.4 A dispatch merit order would include a carbon emission tax as well as direct cost. 

3.5 Electricity prices reflect marginal costs with additional transmission and distribution costs. 

3.5.4 Grid batteries all charge and discharge in unison, effectively a single large store. 

3.5.6 Lithium-ion batteries are assumed for grid electrical storage. 

3.7 Non heating and transport demand variations can be estimated by extrapolating existing 
demand. EV charging demand is the inverse of traffic flows with no vehicle to grid service. 

3.7.3 Individual domestic and nondomestic heat pumps operate with a fraction of Carnot efficiency 
of 0.40 and 0.45 respectively. 

3.7.3 UKPN electricity losses for London and South East are representative of the country. 

3.7.5 2050 offshore wind capacity factors will average 0.55, higher than the present average. 

4.2.2 The DH operates with a fixed 70°C flow temperature and a return varying linearly between 
50°C at peak load and 20°C at zero load.4.2.3Hourly distribution losses are 12% of the hourly 
load on the DH network. 

4.2.6 DH HPs are connected at high voltage and therefore avoid LV distribution losses. 

4.2.6 Generic HP source temperatures vary seasonally as ground temperatures at 3m depth. 

4.2.5 TES are pressure connected with the DH network and stratified in two layers and designed 
with a height/diameter ratio of 0.5. Thermal losses are simplified by using the average tank 
temperature as representative of the surface temperature. 

4.2.6 DH has a single stage heat pump with a Carnot efficiency of 65% and negligible ramp limits. A 
generic source temperature is used based on ground temperature variations. 

4.3 A back up electrical resistance boiler is able to provide any unmet thermal load. 

4.3.5 The rolling dynamic optimisation algorithm has perfect foresight in the finite time horizon 
periods specified. 

5.2.5 A centralised dispatch agent or market controls the storage on the electrical system and TES in 
DH. The model implicitly has a single large DH system with HP and TES which act upon the 
electrical system rather than smaller DH systems with unique load profiles and multiple 
smaller TES. 
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Table B-3 Details of hourly nondomestic gas consumption from data provided by Sustainable 
Energy Ltd (Challans, 2018) 

 

 
Figure B-3 Hourly estimated nondomestic occupancy factors 

 

Table B-4 Estimated activity classifications 

 

CaRB2 Class Building 
sources 

Data 
Length 

Further Information Estimated Active Occupancy 

Offices 5  2011-2015 5 office  7-5 weekday, 8-15 weekend 

Hospitality 2 2015-2017 2 hotels 6-23 

Arts Leisure 3 2013-2014 3 theatres 8-21 

Sports 5 2010-2015 5 leisure centres 7-20 

Education 16 2011-2015 10 primary, 5 secondary,  
1 college 

6-17 weekday, 6-15 weekend 

Health 2 2011-2015 1 hospital, 2 care homes 24hr 

Community 2 2013-2015 1 Library, 1 day centre 7-18 

Emergency 1 2013-2014 Fire station 24hr weekday, 12hr weekend 

CaRB2 Class Estimated Active 
Occupancy 

Further information 

Shop (retail) 9-20 (Duarte et al., 2013) 

Factory 24hr Reduced overnight 

Warehouse 24hr Reduced overnight 

Transport 24hr Reduced weekend 
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 - Chapter 3 
Table C-1 Input cost assumptions used in cost modelling* 

* All costs have been adjusted for inflation to 2020 figures 

**Calculated assuming a carbon price of £300/tCO2e (Burke et al., 2019) 

 

Table C-2 National Grid FES 2020 Scenarios 

 

 

 

Generator CAPEX 
£/kW 

Fixed 
O&M 
£/MW/a 

Var 
O&M 
£/MWh 

Efficiency 
% 

Fuel 
cost 
£/MWh 

Carbon 
cost 
£/MWh 

Lifetime 
years 

Source 

CCGT Class H 526.8 15,520 1.5 0.6 35 19** 25 (BEIS, 2016e; Leigh 
Fisher and Jacobs, 
2016) 

Offshore. 
Wind  

1860 45,715 3.5 0 0 0 25 (ARUP, 2016; BEIS, 
2016e) 

Onshore. 
Wind 

1395 22,100 5 0 0 0 23 (ARUP, 2016; BEIS, 
2016e) 

Solar PV 
 

652 4,792 0.1 0 0 0 25 (ARUP, 2016; BEIS, 
2016e) 

Li-Ion  337 
(£/kWh) 

2,120 
(£/MWh/
a) 

2 0.9 0 0 15 (IRENA, 2017; 
Wilson, 2019) 

Generation / Demand CT ST LW SP 

Baseload - GW 24.32 22.52 15.05 8.79 

Offshore Wind - GW 82.72 87.87 83.97 64.73 

Onshore Wind - GW 47.74 28.82 41.52 25.28 

Solar PV - GW 75.36 56.17 71.13 30.77 

Other Renewables - GW 15.77 15.69 7.32 8.02 

Other capacity - GW 33.02 45.32 23.05 10.09 

Fossil fuel - GW 0.07 0.24 0.5 43.19 

Battery - GWh 51.9 21.1 56.2 23.9 

Other storage - GWh 142.2 125.2 146.7 91.5 

Total Annual demand TWh 451 374 386 394 

Electric Vehicle Annual demand - TWh 87 82.5 81.1 82.2 

Domestic Electrified Heat - TWh 83 44 74 47 
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Table C-3 National Grid FES 2020 Heating Scenarios 

 

 

Heating method 2019 CT ST LW SP 

ASHP 0% 57% 13% 42% 8% 

Electric storage heaters 5% 5% 5% 5% 6% 

GSHP 0% 7% 1% 6% 0% 

Direct Electric Heating 2% 2% 2% 3% 3% 

Gas boilers 85% 0% 0% 0% 68% 

Hybrid boilers (Natural gas) 0% 0% 0% 0% 6% 

Hybrid boilers (Hydrogen) 0% 10% 13% 26% 0% 

Oil, LPG, & solid fuel boilers 5% 0% 0% 0% 3% 

Hydrogen boilers 0% 0% 53% 0% 0% 

Biomass boilers [Biofuels] 0% 0% 0% 1% 0% 

District Heat 2% 16% 10% 13% 5% 

Biofuels (Off gas Grid) 0% 3% 2% 3% 1% 

Others 0% 0% 0% 2% 0% 
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 - Chapter 4 
 

Table D-1 Assumptions and sources used for DHN costs* 

* All costs have been adjusted for inflation to 2020 figures 

 

 Low Medium High Source 

Network Capital non-
bulk £/ MWh 

456 1043 1699 (DECC, 2015b) 

(Wang, 2018) Network Fixed OM 
£/ MWhth/yr 

 
13.1 

 

Network Lifetime  
Years 

 50  

HP Capital 
£ /MWth 

435,000 652,500 870,000 (Danish Energy 
Agency, 2016) 

(Marina et al., 
2021) 

 

HP Fixed OM 
£/ MWth/yr 

900 1750 2600 

HP Var OM (exc elec) 
£/MWhth 

1.3 1.52 1.74 

HP Lifetime  
Years 

 25  

TES Capital 
£/MWh 

1900 4450 or 
107,198(TES)-0.47 

7000 (Danish Energy 
Agency, 2018) 

(BEIS, 2016a) 

 

TES Fixed OM 
£/MWh/yr 

4.35 16.52 28.7 

TES Lifetime  
Years 

 40  
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