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Abstract

With the decarbonisation of electricity generation, large scale heat pumps are becoming
increasingly viable for district heating combined with thermal energy storage, district heating
can provide flexibility to the electricity grid by decoupling demand from supply. This thesis
examines how district heating with heat pumps and thermal energy storage can integrate with
and provide a benefit to an electricity system with predominantly renewable generation. The
scope of work comprises three interlinked models underpinned by the same set of meteorology

data, fundamentally coupling supply and demand.

First, heat load data are surveyed, and an hourly demand profile is simulated. Disaggregation of
district heating loads from the national demand is accomplished via segmentation of the

building stock to model heat demand at high spatiotemporal resolution.

Second, a novel method of pricing hourly electricity in a zero carbon, capital-intensive renewable
system with electricity storage is developed and applied to a dispatch simulation to generate

hourly electricity prices.

Third, a dynamic model of district heating is constructed to simulate the meeting of heat loads
with different design configurations using electricity as the energy source. Model predictive
control is applied with varying forecast horizons so as to minimise the cost of electricity to meet
the heat demand given a time series of hourly prices and consequently optimising the capacity
of thermal energy storage. It was found that a thermal energy storage capacity equivalent to

1.3% of annual demand is sufficient to minimise operating costs.

Finally, the potential impact of district heating on balancing the electricity system is analysed
and an equivalence between thermal and electric storage is examined. While this is highly
dependent on annual conditions, it can be as much as 3.5 units of thermal storage for every unit
of electrical grid storage on the system. This could potentially reduce the investment in grid
storage by £36 billion, underlining the significant financial benefits of thermal storage to the
whole system. The research highlights the important potential of district heating to the UK’s

energy system strategy.



Impact Statement

The decarbonisation of the UK economy necessitates a transition away from fossil fuels. This
provides a challenge to managing the electricity grid which must balance the variability of
renewable generation with time varying demand. For space heating in buildings, electrification
is a promising method to achieve decarbonisation. However, the electricity requirements for
heat pumps will be substantial and may impact the security of the electricity grid. The central
premise of this work is the exploration of how heat pumps in district heating systems with
thermal energy storage can support the electricity grid and help to accommodate larger
fractions of renewable generation by allowing greater flexibility of operation via large scale
thermal energy storage. The results presented here should be of interest to policymakers,

highlighting the importance of district heating to the energy system.

The investigation was conducted by developing a set of models to simulate heat loads, the
electricity system, and district heating. The methods used and datasets produced in designing
these models will be of interest to the modelling research community. The study has produced
a dataset of national hourly heat loads, disaggregated by area, which can be utilised for early

feasibility work by city energy planners in various other applications as model inputs.

The electricity cost model introduces a novel method for calculating marginal electricity
generation costs for capital intensive systems that may aid other modelling studies. It was shown
that the marginal costs of electricity supply in a highly renewable system can be within a
manageable range and that they are largely driven by capital costs of both renewables and
storage. This has implications on policy and tariff design for bodies such as Ofgem who could

ensure that storage is adequately rewarded so that sufficient capacities are built.

For industry and district heating operators, the simulation of district heating has provided a
practical grasp of operating costs in a highly renewable electricity system. It was shown that
optimal thermal energy storage costs represent a small fraction of the capital investment. The
operational costs of electricity import amount to a tenth of the total cost of supplying heat from
district heating. For policy and public planners, this is comparable to current and future
counterfactual options and shows that district heating is a viable option for cost-effective heat
in urban areas. It is hoped that these results will feed into future economic analyses of district

heating deployment.

The conclusions show that the widespread deployment of district heating can have an important
function in the national energy system and that thermal energy storage is able to displace a
significant amount of grid storage, thereby reducing total system costs. This alone warrants that
it is investigated as part of an energy system strategy. The issues raised in this thesis directly
impact organisations such as the National Grid. They are also important for the district heating
industry as well as government policymakers and for the Climate Change Committee who advise

them, both of whom ultimately shape the direction of energy policy and research in the UK.
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1 INTRODUCTION

The Climate Change Act (2008) set a target for the UK to reduce greenhouse gas emissions by
80% from 1990 baseline levels. The government has since committed to a net-zero target or
100% reduction (UK Parliament, 2019). Nearly half of the energy demand in the UK is for the
provision of heat, with the majority of this coming from the combustion of fossil fuels and this
accounts for around a fifth of UK emissions (BEIS, 2017a; DECC, 2013). Hence, it is widely
recognised that to meet the emissions target, heating for buildings will need to be nearly fully
decarbonised as it is easier to reduce emissions from heat than other harder to decarbonise
sectors such as aviation.

The government has outlined several strategies towards decarbonising the UK economy. This
includes a high degree of electrification of some sectors such as low temperature heat demand
(BEIS, 2020a). The decarbonisation targets necessitate a large deployment of renewable power
generation for the electricity grid. Some analysis has left room for natural gas as a transition
fuel, but its long term viability is sensitive to the successful deployment of carbon capture and
sequestration (CCS) (Hull and Kane, 2016; National Grid, 2017a).

Renewable power generation is variable by nature. This variability provides a challenge to
managing the grid which must be balanced at all times by matching supply to demand. Offshore
wind is likely to prominently feature in the generation mix. With wind power being
uncontrollable and hence inflexible, flexibility must be provided elsewhere. Provisions for
flexibility can take many forms such as storage on the grid, or on the demand side (such as
demand side response). There is currently a limited capacity to accommodate variable
renewable electricity generation. This may cause an increase in the cost of power generation as
it limits the ability to fully utilise all the available renewable generation (Strbac et al., 2016).
Heating may provide an important vector for economically integrating variable renewable
electricity.

1.1 The Decarbonisation of Heating

The predominant source of heating in the UK has been from natural gas. Although the vast
majority of homes and buildings in the UK have a gas boiler, the transition away from gas boilers
is underway and will not feature in a zero-carbon future for heating (BEIS, 2021a; McGlade et
al., 2014). All decarbonisation pathways provide an infrastructure challenge. This includes the
expansion of district heating (DH) networks in the UK (also widely referred to as ‘heat networks’
in the literature).
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The government has kept its options open, pursuing the paths of least regret and its policy
direction is yet to be settled (Climate Change Committee, 2016). Questions remain over the
viability of switching to hydrogen. This concerns the infrastructure requirements and potential
"lock-in" of hydrogen technology. To make hydrogen heating low carbon will require long term
planning due to hydrogen production methods and this may also be contingent on the successful
deployment of CCS (ERP, 2016).

Electrification is a promising method to facilitate the decarbonisation of heating (Connolly,
2017). However, the electricity requirement for heat, particularly peak load, could be
substantial. This may impact the security of the electricity grid from a supply and transmission
perspective (Quiggin and Buswell, 2016; Wilson et al., 2013). The successful integration of
electrified heating into the grid will need both load reduction and demand side management
(Eyre and Baruah, 2015).

1.1.1 District heating and thermal energy storage

Heat electrification opens the possibility of using variable renewable generation with thermal
energy storage (TES). Electrification via efficient heat pumps can achieve load reductions and
facilitate demand flexibility. Flexibility can be attained through thermal inertia of buildings and
TES. This in effect decouples demand from supply, to a degree depending on store size and
performs the role of demand side management.

DH networks allow the distribution of centralised heat generation and enables the use of large-
scale TES. Centralised heat generation allows buildings to connect to multiple sources of heat
such as reusing low exergy waste heat from industrial processes with economic, technical,
efficiency and safety advantages. This diversity of sources can be advantageous in providing
security of supply and eliminating reliance on a single energy source (Radov et al., 2010). Similar
reasoning applies to large, centralised TES in DH networks. Additionally, economies of scale can
result in higher efficiencies and lower costs (capital and operating) at a district level.

TES can play a role in the energy system if there is a wider adoption of DH networks, due to its
potential in grid balancing and managing demand. Currently, the most mature form of heat
storage is sensible heat storage (as opposed to latent heat), commonly in the form of water
stored in tanks, pits, or aquifers. TES can be sized to shift peak loads by several hours or to be
very large inter-seasonal heat stores (BEIS, 2016a; Eames et al., 2014). The sizing of these heat
stores is then an important factor and thus the control method, of how best to utilise and
optimise heat stores would play a significant role.
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Table 1.1 Advantages and disadvantages of three options for future UK heat delivery

Centralised,
District Heating
Large - scale HP

Decentralised,
Individual Heat Pumps

Decentralised,
Individual Hydrogen
(with Boilers/CHP)

Infrastructure

Heat source

Capital Costs

Heat storage

System efficiency

Operational Flexibility

Consumer practicality

Economies of scale

Integration with
cooling

Electricity
Transmission

Connection
requirements

New

Multiple switchable,
can use waste heat
recovery

Low individual cost
High network cost

Unrestricted low cost

High because of scale
economies and basic
heat pump & CHP
efficiency.

High flexibility

Little space, noiseless

Network and TES
efficiency benefits
from economies of
scale

Requires a cooling
loop

High efficiency HV
transmission — lower
transmission costs

Requires high
percentage
connection to be
financially viable

New/upgraded electric
distribution

Single delivered energy
source

High consumer cost
High production and
distribution cost

Consumer restricted
high cost

Medium because of
small units and
availability of
environmental heat
sources

Low flexibility

Significant space,
potentially noisy

No economies of scale

Can be reversible

LV transmission, higher
losses

Can be installed
progressively and
upgraded later

New/upgraded gas
distribution pipes

Single delivered energy
source

Low consumer cost
High production and
distribution cost

Consumer restricted
high cost

Low due to the need to
make hydrogen

Low flexibility

Significant space,
potentially noisy
Requires a scaled-up

supply chain to be
viable

No cooling

HV losses if electrolytic
H2

Requires high
percentage connection
to be financially viable

1.1.2 Current district heating

Many of the DH networks in the UK are supplied from natural gas powered ‘CHP (combined heat
and power) and recovered waste heat’ (DECC, 2013). CHP plants are commonly natural gas
turbines or engines. In industrial application they provide electricity while recovering heat from
combustion of fuel. Recovering heat from electricity generation in this way leads to a significant
reduction in the carbon intensity of heat. CHP based DH systems are amongst the lowest cost
per tonne of CO; when compared to other heating technologies. But with the continuing
decarbonisation of the electricity grid, any carbon abatement from fossil fuel based (e.g. gas)
CHP will eventually diminish (Foster et al., 2015; Lowe, 2011), though CHP using low or zero
carbon fuels such as biomass or hydrogen may continue to play an important role.

With the current trend of high renewable deployment and government policies, indications are
that electricity will continue to decarbonise (BEIS, 2020a). The use of CHP for the provision of
power may be limited to in the short term to replace highly emitting peaking plants. DH allows
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a flexibility of sources enabling ‘low regret’ measures. In the eventuality that gas CHPs are
superseded, it is possible to incorporate other heat sources once the DH infrastructure is in place
(Committee on Climate Change, 2015).

While the current power capacity would be unable to meet peak electrical heating loads if all
heating were electric, CHP is likely to play a central role in DH in the medium-term. The
deployment of CHP will be dependent on the extent of electricity decarbonisation and fuel prices
(Li, 2013). In Denmark where renewable deployment is high, it appears that CHP units are being
phased out. The capacity of CHP in 2018 was lower than in 2013 and the remaining units are
envisaged to serve as backup for the Danish power grid. In addition, the number of full-load
hours for CHPs has been declining to less than half the hours than observed in 2010 although
this is aided by the fact that it is connected to a wider international grid (Helin et al., 2018).

DH as a technology means that CHP and heat pumps are not mutually exclusive. The sizing and
control of TES in CHP and heat pump systems will not be the same. In CHP based systems, the
goal is to minimise fuel consumption and maximise electricity revenue. Heat pump systems will
aim to reduce the cost of electricity imports and reduce peak loads. At the consumer scale heat
pumps installations are expected to rapidly increase (HM Government, 2020). The pairing of
consumer heat pumps with consumer TES incurs high capital costs and space requirements.
Additionally, a consumer heat store of 200-400 litres would store several hours of heat demand
at best, as compared to days or weeks for a DH TES.

Projections of widespread electrification of heat would provide “favourable” conditions for TES.
It would facilitate the integration of electric heating. BEIS (2016a) identify the potential for larger
inter-seasonal TES. They note the potential for coupling conventional (tank) TES with CHP and/or
HP systems and that the exploitation of electricity prices provides financial incentives for the
adoption of TES. The benefits of TES for the energy system and carbon emissions are uncertain.
Knowledge gaps and lack of experience in the UK of TES and inter-seasonal TES have been cited
as a limitation to further development of TES. This thesis aims to address these gaps. The BEIS
(2016a) report states:

“At a whole system level, it would require complex system-modelling to justify any
statements about a unit of TES (a kWh or kW) equating to a quantity of saved
carbon”

In the present system, TES may lead to a small increase in emissions for the DH system as it is
not 100% efficient. But the balance of emissions should also consider the fraction of low
emission electricity generation facilitated by the TES. Given the predicted levels of renewable
deployment and DH penetration, it should in principle, be possible to estimate the impact of
TES. This is dependent on the operational methods to control heat dispatch and minimise costs.
It should also be possible to optimise the level of TES, but this will depend on many variables.
This includes not just the overall heat load, but on the profile of this load and how this
harmonises with the variability of renewable generation. Strbac et al. (2012) identified that
different storage types fulfil different functions in the energy system. They show that the value
of electricity grid storage increases non-linearly with increased renewable deployment and that
the marginal value diminishes rapidly beyond 6 hours of storage — enough to reduce peak loads.
However, the cost of TES is far lower than conventional grid scale storage as demonstrated in
Figure 1.1. As the round-trip conversion of power-heat-power is not feasible, TES is not suitable
to replace all grid scale storage. But it will be able to displace conventional storage to a
theoretical maximum of the electrical heating load. Physical TES volumes can become very large.
Unless there are significant improvements in thermochemical or latent heat storage
technologies, the capacities required to efficiently accommodate TES are only feasible in DH
networks.
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Figure 1.1 Comparison of energy storage costs with TES adapted from Luo et al. (2015)

1.1.3 The potential of district heating

Numerous recent studies have assessed the potential for DH in the UK. These studies have
largely been techno-economic assessments for the viability of DH. An overview of these is
presented in Table 1.2.

Poyry (2009) conducted an economic analysis that concluded DH is currently economically
uncompetitive. However, this was sensitive to the cost of carbon. The analysis consisted mainly
of gas-CHP and their analysis finds that DH is economically competitive in areas with heat
demand density (HDD) of 3 MW/km? or higher. Using this metric, they show that DH currently
has the potential to supply up to 14% of the national space heating demand.

DECC’s (2013) ‘Future of Heating’ report, was more optimistic, estimating that “over 20%” of
national demand or 50 TWh annually of heat could be provided by DH. They used Poyry’s (2009)
demand density to determine the economic competitiveness cut-off for DH take up compared
to individual heating technologies.

Restricted to the domestic sector, Arran and Slowe (2012) conducted a scenario analysis for
Delta-ee. They combined a building stock model with technology performance data to estimate
the uptake of DH as an economic decision per household. DH was not the primary focus of the
study; hence they cover a full range of heat generation and distribution technologies. In their
most optimistic scenario for full electrification of heating, 34% of domestic heating is from DH
networks.

The ETI conducted a spatial analysis of heat demand in Britain to identify zones suitable for DH
(Woods, 2012). They used a lower threshold for HDD of 2 MWh/km? based on experience in
other countries. The identification was used to determine the cost of DH based on the physical
network and CHP technologies and concluded that as much as 43% of domestic demand could
be from DH.

Ricardo-AEA conducted a similar nationwide assessment of district heating potential in the UK
(Abu-Ebid, 2015). Their scenario analysis leads to a maximum potential of 42% share of heat
load. They undertook a geographic survey of heating and cooling density and potential sources
of waste heat. This enabled them to vary the minimum HDD based on geographic conditions.

Redpoint Energy analysed the potential for different heating technologies under various
scenarios (Greenleaf and Sinclair, 2012). Using their RESOM model, they show that 11% of
domestic and 9% of non-domestic heating can be provided by DH in a 2050 least cost scenario.

BuroHappold have taken another approach to estimating DH development in the UK. Using
National Grid's scenarios, they show up to 60% of heat delivered via DH (Grainger, 2016). The
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geographic analysis, while being a cost benefit analysis also captured the transient evolution of
DH networks. This included practical constraints such as limited construction speeds and the
stage of infrastructure development.

In a study commissioned by the Committee on Climate Change, Foster et al. (2015) conducted
an in depth analysis of DH potentials and projections. This included an economic analysis of the
heat and energy market, identifying barriers and externalities that affect the uptake of DH. The
scenarios used reflect their economic analysis with differing levels of policy interventions to
facilitate uptake. They also looked at the effect on uptake of DH with electricity grid capacity
limitations.

Table 1.2 Studies on district heating’s potential in the UK

Institution/Author

Method/Study

2050 Technical potential

Technologies

(DECC, 2013)
DECC Future of heat

(Greenleaf and
Sinclair, 2012)
Redpoint

Macadam et al.
(2009)
Poyry 2009

(Arran and Slowe,
2012)
Delta EE

(Woods, 2012)
ETI

(Abu-Ebid, 2015)
Ricardo

(Grainger, 2016)
Buro Happold

(Foster et al., 2015)
Element energy for
the CCC

Building stock Cost benefit
analysis

Resom least cost
optimisation

Building stock Cost benefit
analysis

Building stock Cost benefit
analysis

Geographic HDD survey

Geographic HDD survey
Cost benefit analysis

Geographic spatial
optimisation capturing
evolution

Spatial cost benefit
analysis and TIMES least
cost optimisation

20% domestic

11% domestic

9% non-domestic

14% of national

34% domestic

43% of national

42% of national

60% - Gone green

50% - Slow Pro

25% - Consumer Power

25% - High scenario

18% - Central scenario

Gas-CHP

Full technology
range

Primarily gas CHP

Full technology
range

Primarily gas CHP,
HP, and waste
heat recovery

Primarily gas and
biomass CHP, HP,
and waste heat
recovery

Full range but
Primarily HP

Full technology
range
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In summary, there have been two main approaches that have been used to analyse the potential
uptake of DH in the UK. The majority of studies use a full geographic analysis of HDD and suitable
locations for DH. Then use this as the basis of a cost benefit analysis with varied detail in the
geographic survey and the economics of DH against counterfactual heat supply options. The
geographic analysis is typically based on a highly disaggregated bottom-up model of the building
stock such as Arran and Slowe (2012) or Woods (2012). The other main form of geographic
analysis is a GIS survey of heat maps and waste heat locations, identifying suitable zones such
as in Grainger (2016) or Foster et al. (2015). The cost benefit analysis here was largely based on
the estimated levelised cost of DH compared to either existing or other low carbon technology
options.

While some of these studies recognise the benefits of TES, they are only able to, at best, estimate
the cost reduction of heat supply that is enabled by the extra flexibility provided by storage.
Similarly, the operating costs of DH are estimated based on prior experience and projections of
fuel and electricity costs. These assumptions can be critical to a cost benefit analysis of DH. On
the other hand, the integrated cost optimisation models that do look at system costs, such as
Greenleaf and Sinclair (2012) or Foster et al. (2015) do not capture the benefits of TES to the
electricity supply and thus may overestimate the required generation or grid storage capacity.

To obtain a more accurate depiction of DH operating costs, a high temporal resolution analysis
is needed. This enables the exploration of cost reduction benefits from increasing flexibility. Any
such analysis with HP based DH must also be an integrated analysis covering the electricity
sector. This is because the capacity requirements and generation mix will affect the resulting
system's electricity costs. These costs in turn, are what would drive the operation of DH heat
pumps in conjunction with TES.

1.1.4 The future of district heating

There has been much speculation as to why DH is not established in the UK. Kelly and Pollit
(2010) posit that this has resulted from competition from other fuels and has suffered from
privatisation of the electricity sector and the government’s failure to create a heat market.
Another factor is said to be that the limited availability of capital for long term investments. In
2015 the UK government made available £320 million of funding through the Heat Network
Investment Programme (HNIP). The HNIP is expected to drive a further £2 billion in investment
for the construction of new DH (BEIS, 2016b). The government’s clean growth strategy (BEIS,
2017a) recognises the need for a complete decarbonisation of heating to meet its emissions
targets. The report presents a number of scenarios where it envisages 1 in 5 domestic and non-
domestic buildings connected to low carbon DH.

While the current DH infrastructure is limited, an electrified future for heating requires
coordinated integration with the electricity system. A higher DH penetration will certainly have
a significantimpact on the national energy system. There is an urgent need to transition towards
low carbon heat. The Committee on Climate Change (2016) recommends that low regret
measures be taken now to meet the UK’s emission targets. DH are a low regret option in that
can enable immediate gains through efficiencies of scale and do not cause long-term fuel lock-
in.

Any route towards decarbonising heat will have to be preceded by planning for both the national
and local infrastructure. Whether this is for expansion of power generation capacity and
reinforcement of the grid, hydrogen production and storage facilities, or DH networks. This
raises the question of how to approach the expansion of DH in the country. The current decade
has been described as a period of experimentation before commitment to any single strategy
(Climate Change Committee, 2016). Table 1.1 demonstrates that there are many advantages to
the adoption of DH in the UK. Recent policy and incentives such as the HNIP are indicative of
government support towards DH networks.
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It is thus in this context that this study aims to explore and broaden the understanding of the
potential for DH in the UK. This includes how to build out DH to minimise system costs, emissions
and ensure long-term resilience of DH systems. With the increasing deployment of renewables,
flexibility is becoming increasingly important. The integration of DH with the electricity system
will need to be assessed to explore the role of DH in low carbon system.

1.2 Integrated Energy Systems

To determine the role of DH in a low carbon system, requires modelling the heating sector in
conjunction with the wider energy system. If the provision of heat were to become dependent
on the supply of electricity, it is crucial that they work in coordination to ensure security of
supply. A central supposition of this research is that electrification of heating can provide
valuable flexibility for the electricity grid to achieve this. This coordinated operation of an
integrated energy system is often referred to as a ‘smart grid’ or ‘smart energy system’ (Lund et
al., 2014).

Much of the recent research into DH has been led by the Department of Planning at Aalborg
University, Denmark. They have instigated a new paradigm in DH centric research, 4th
generation DH, and host the largest annual conference on the subject. A key aspect of 4th
generation DH includes the ability to aid in decarbonising energy systems and that they should
be built to facilitate this (Lund et al., 2014). This is echoed by various other authors who identify
that the direction of research should focus on integration with renewable sources and other
supply grids (EKRC, 2014; Rezaie and Rosen, 2012).
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Figure 1.2 Overview of the evolutlon of district heatlng adapted from Lund et al. (2014)

The Heat Roadmap for Europe argues the case for DH networks to feature significantly in a
decarbonised system (Connolly et al., 2014). The authors emphasise the need for integration
and harmonisation with the electrical network. To achieve high levels of system efficiency, it is
necessary to manage peak loads on the electrical grid and harmonise it with DH. For large scale
integration of DH, it is essential to meet the challenge of coordinating energy production.
Whether that be from CHP or heat pumps as this will have an impact on the electric grid.
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Improved forecasting now enables more accurate predictions of renewable generation. When
paired with demand forecasting, such a system would operate through coordinated and
intelligent control of resources. There has been a recent growth in published work and review
papers on the development of DH (Galatoulas et al., 2018; Lake et al., 2017; Rezaie and Rosen,
2012; Rismanchi, 2017; Sayegh et al., 2017; Tereshchenko and Nord, 2018). There has also been
interest from many large city municipalities in the use of DH to decarbonise urban areas
(Rismanchi, 2017). These reviews all present a variant on the idea of integrating DH for future
energy systems.

1.2.1 Integrated energy system studies

The focus on integration of heating with the electricity system has grown alongside emissions
targets. Renewable generation technologies provide a clear route to decarbonising electricity.
Lund (2018) explores various renewable heating strategies and their significance for system
flexibility. The study shows the superiority of a whole-system approach to decarbonise
electricity. For example, the inherent storage capacity of the existing gas and DH networks is far
larger than the electrical network.

Sneum and Sandberg (2018) considered the financial incentives of integration with the
electricity system in Nordic countries. The authors argue that DH operators should be
economically incentivised (by the grid) to provide flexibility. They consider revenue from heat
and electricity comparing plant configuration and flexibility. They find that TES is essential to
reduce costs. In the context of this research, they show that this can be achieved via dynamic
tariffs. This would incentive DH operators to provide flexibility.

Electrified DH in Sweden was investigated by Schweiger et al. (2017). The authors stated that
there is little analysis on the electrification of DH in Sweden. They identify that there is a
difference in the theoretical potential to electrify - which amounts to the total heat load from
DH, and the technical potential - which is the total of the negative residual load from renewable
generation. The study simulated the operation and loads of the Swedish power and DH networks
using fixed electricity costs. Their model prioritised TES charging when storage capacity was low.
They found that access to TES substantially increased the technical potential and concluded that
Sweden has favourable conditions for the electrification of DH. Another Swedish based study on
DH used hourly electricity spot prices to determine the levelised cost of heat for DH. They
consider several scenarios and investigate their economic feasibility (Hennessy et al., 2018).

A study of DH in Germany looked at integrating DH with renewable electricity (Bottger et al.,
2014). They compare hourly heat demand to the negative residual loads from renewable
generation. Looking at various scenarios, the investigation consisted of a synthesised heat load
and they assumed a constant electricity demand. Where negative residual loads coincided with
heat demand, this was used directly for heat. Further surplus generation is allocated to storage.
The authors conclude that around 50% of the current DH load in Germany can be efficiently
electrified.

Gudmundsson et al. (2018) looked at the role of DH in integrating renewable generation in
Denmark. They concluded that increased use of heat pumps would necessitate the better
integration of the two sectors.

1.2.2 Flexibility and thermal energy storage

The subject of flexibility for the electricity system is under increased examination, particularly in
places where renewable deployment is high. The key issues from an energy systems perspective
are: determining a measure of flexibility, how much flexibility is required and how this flexibility
can be provided? Kondziella and Bruckner (2016) state that identifying an accurate
guantification of flexibility requirements is a complex problem. They classify flexibility options
as falling within six broad categories:
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Fast ramping power generators (supply side)
Increasing the spatial range of the grid (supply side)
Grid scale energy storage (supply side)

Curtailing surplus renewable generation (supply side)
Demand side management (demand side)
Integration of other energy sectors (demand side)

ok wN e

Table 1.3 Review of electricity grid flexibility studies

Study Location Flexibility type Key result

Comaty (2013) Pan-European Spatial range Savings from distributed
renewable generators.

Connolly et al. (2012) Ireland Grid scale storage Pumped hydro can permit
20% wind penetration at
no increased operation
cost.

Denholm and Hand (2011)  Texas, USA Grid scale storage Storage capacity
equivalent to daily
demand needed to limit
curtailment below 10%

Silva Monroy and Christie Model ‘Isolated Grid scale storage Storage alone able to
(2011) island’ increase wind
penetration up to 1/3.

Villavicencio (2017) France Grid scale storage Storage reduces costs of
integrating renewable
generation into system.

Drysdale et al. (2015) UK Domestic demand DSM measures
side management potentially 60 TWh of
flexibility.
Strbac et al. (2012) UK Grid scale storage Value of storage increases

non-linearly with
increased variable
renewable generation.

Sanders et al.(2016) UK Multiple flexibility Flexibility reduces cost of
options balancing and improves
utilisation of renewables

Table 1.3 is an overview of some studies on achieving flexibility for renewable electricity. Each
flexibility option has its own costs and technical limitation. Determining a hierarchy for flexibility
options is not straightforward. To efficiently achieve high fractions of renewable generation will
require a combination of these. Among the integration of other sectors, the provision for heat
supply has a very large potential capacity. TES increases the flexibility of heat demand and has
been studied as an option for providing flexibility in other mainly European countries.

An analysis of the German electricity system identified that a higher level of integration between
heat and power sectors is a ‘favourable’ solution (Gils, 2015). This was particularly the case with
large amounts of wind generation.

The use of TES with CHP as a method to increase flexibility has been the subject of many studies
(Anna et al., 2018; Fang and Lahdelma, 2016; Hast et al., 2017; Noussan et al., 2014; Reynolds
et al., 2018; Wang et al., 2015). Research that has looked at TES in the context of the energy
system has demonstrated its ability to reduce system-wide emissions. In Denmark, it is shown
that the flexible demands of heating can enable the country to reach very high levels of
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decarbonisation with the use of TES and has holistic benefits as a flexibility solution (Hedegaard
et al., 2012; Lund et al., 2010).

In the UK, it is recognised that it will become increasingly difficult to incorporate larger amount
of renewable generation without sufficient flexibility and this may limit the growth of
renewables (Cox, 2009). A report for the Carbon Trust assessed a range of flexibility options for
the UK electricity system (Sanders et al., 2016). It factored the uncertainty of generation
capacities and long-term demand. The main findings highlight that deployment of flexibility
systems in the UK can have a significant cost saving. They reduce the cost of system balancing
and improve the utilisation of renewable generation. The cost savings were estimated to be in
the region of £2 billion per year in operational costs and the avoided costs of not having to
increase generation capacity and network reinforcement. The authors highlight that faced with
uncertainty; the safest strategy is to utilise a mixture of flexibility initiatives. This includes
extension of the grid with extra interconnector capacity.

Barrett and Spataru (2013) studied the storage requirements for the UK with a whole systems
model. The authors described a high renewable scenario with a range of storage types and noted
that their performance can be highly nonlinear. Storage from multiple sectors such as transport
was included. They estimate that the building stock contains in its fabric 1 TWh of thermal
energy storage per degree of temperature change. Altogether, the storage capacity was
estimated to be around 6.8 TWh. It was concluded that thermal and chemical stores have a
larger capacity potential than electrical storage. Finding the appropriate configuration of
storage, accounting for power ratings, performance and timescales remains a key challenge.
Other estimates show that if every dwelling in the UK had three hours provision of TES, this
would be equivalent to 36 GWh of storage for the grid (Eames et al., 2014). Quiggin and Buswell
(2016) modelled the electrification of space and water heating to investigate demand side
management in the UK. They cite that existing studies to date had failed to capture the problem
in sufficient resolution. They suggest that demand side management alone is not adequate to
ensure security of supply and heat demand must be reduced to achieve this.

Strbac et al. (2020) identified the challenges of a highly variable renewable system. They
highlight the importance of flexibility and review the various options to achieve a low carbon
system. The authors present findings from prior studies. They estimate the value of energy
storage and suggest that 25 GWh of capacity could be worth £15 billion per year to the system
by 2050. They also show that sector coupling such heat and power is imperative to achieve highly
renewable systems. A complementary study by Pyry demonstrated that under 2030 emissions
targets, flexibility solutions could potentially be worth £4.7 billion per year (Shakoor et al., 2017).
This was via a reduction in capacity requirements and lower operating costs. Another study for
the Climate Change Committee (Strbac et al., 2018b) highlighted the importance of system
flexibility. They show that 58 GW:, of domestic TES reduces the electricity storage requirements
from 55 to 10 GW..

1.2.3 Flexibility research gaps

There is plenty of recent research on flexibility requirements for renewable systems in the UK.
But research into TES has largely focused on individual DH systems or domestic storage. There
exists a gap in the research with respect to using large scale TES as a provision for flexibility for
the electricity system. This includes to what extent it could be integrated into the energy system.

Researching the potential of TES requires the use of adequate tools and investigation
techniques. This needs to combine heat and electricity sectors as well as adequately capturing
the dynamics of storage. Many existing models that combine both sectors inadequately embody
storage potential. This is largely due to their low temporal resolution or only focusing on one
solution in isolation(Griinewald et al., 2012).

TES with heat pumps, in addition to decarbonising heating can also increase flexibility for the
electrical system. DH enables the connection of large, centralised capacities of both. However,
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the use of TES as a means for providing flexibility as an energy storage mechanism requires more
analysis.

1.3 Energy System and District Heating Modelling

Classifying models can help identify what kind of model is appropriate for a given purpose. Some
models can fall into more than one category. A first such category can be assigned by identifying
the purpose of the model. This normally relates to the questions they were created to answer
such as forecasting or exploration. Forecasting models are essentially those models whose
primary purpose is to make predictions of future outcomes based on observations and
extrapolations of historical data. These models are generally suitable for short term predictions,
using constant parameters (Van Beeck, 2000). Exploration models are typically used for scenario
analysis. The effect of interventions or altering actions to the base case are measured.
Assumptions or measures are required to determine the effect of interventions. Typically a
sensitivity analysis is provided to quantify assumptions (Neshat et al., 2014).

Complementing these classifications, Pfenninger et al. (2014) identify the underlying
methodology and paradigms used in these models. They state that simulation methods are best
used in forecasting models to predict the evolution of a system from the current base case.
Accounting methods are usually seen in exploration models. This is where the modelling
accounts for the effect of interventions and does not necessarily produce optimisations. As a
subcategory of exploration models, backcasting methods are usually used for more long-term
analysis. This is where future scenarios or specific targets are constructed, such as an emissions
level. The model then determines the steps or path required to achieve this state. This is an
alternative method to forecasting and is typically used with economic optimisation models
(Bibri, 2018). In backcasting, the optimisation methods are used to form normative scenarios
and typically involve a large range of variables to find cost or energy optimal combinations to
achieve a particular scenario.

Another distinction is the analytical approach in constructing the model, bottom-up or top-
down. In the context of energy models this differs with the level of detail and data in the
construction of the model. Top down approaches are typically less data intensive, with less detail
in their construction. Functions are described as aggregates of variables such as the total energy
demand of a sector. Bottom up approaches tend to require more data and are a more
descriptive. They account for each variable in a function, such as a disaggregation of energy
demand from each actor in a sector. Simplifications need to be made as the real world can never
be fully simulated. There is always a trade off between speed and accuracy in computation. The
distinction is important depending on the aim of the model such as prediction or exploration
and models can include a combination of each approach (Vega, 2018).

Another classification is the approach towards uncertainty in the model - deterministic or
stochastic. Pfenninger et al. (2014) differentiate between aleatory uncertainty, i.e. random
events and epistemic uncertainty, such as insufficient data. Aleatory uncertainty can be dealt
with using deterministic methods and varying parameters to determine sensitivities. But
another approach is to allow variables to take a distribution of ranges rather than fixed-
deterministic values and building probability into functions — the stochastic approach.

There are many more classifications and categories of models that can be described. Some of
the fundamental distinctions concerned with energy models are covered here. It is important to
note that very rarely does a model fit neatly into one category with many large models
incorporating methods that could fall into multiple categories. The choice of what approach to
use is driven by the aim of the model, the data available and the epistemic approach to building
the model.
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1.3.1 Modelling approaches

A review of modelling approaches is conducted prior to developing a custom research model.
The review is limited to selected, major, current models that include heat and electricity sectors.
They are assessed for both methods and viability in aiding the research. This review can be
approached in two ways; with respect to studies that have explored similar questions, and those
which have used similar methods, but explore a different topic.

The reviewed models are categorised into two main types; there are a group of exploration
models that cover the whole energy system. These are typically designed bottom-up with a focus
on long term analyses of technology uptake. As a result, these normally have low temporal
resolution. They also usually focus on economics and are used as policy guidance tools such as
UK Times, ESME, RESOM and Balmorel. These types of models compare the costs of various
technologies and their trade-offs and can aid in system design. The representation of DH is
normally basic and not used to make any inferences about the design of DH. The other group of
models tend to be forecasting models, normally with a narrower sector focus. They require a
higher temporal resolution. Examples include SIVAEL, Enneralt, GTMax and RAMSES, all of which
simulate the electricity network. These models can aid in the design and configuration of DH
from the perspective of the operator. Table 1.4 contains an overview of the functionality of
relevant models covered in the review.

The UK Times, RESOM and ESME models are all bottom-up exploration tools for the UK energy
system. They consist of large databases of technologies and economically optimise variables
based on given constraints. These models capture elements of DH and renewable electricity
generation. But the detail and temporal resolution make them an unsuitable analysis tool for
the research problem. A similar assessment can be made of 0SeMoSYS. Even though it is open
source, significant changes and adaptations would be needed. Balmorel is an economic analysis
tool that covers the whole system. It has a detailed representation of DH as it has been used
mostly in Baltic and Scandinavian countries. The temporal resolution is flexible depending on
the type of analyses required. Variable renewable generation, however, is not represented
endogenously. It is primarily an economic analysis tool and a UK localisation does not yet exist.

DynEMo is a versatile model and has a high temporal resolution. It couples heating with
renewable generation and captures storage dynamics. It has a whole system approach; hence it
does not model DH in great detail. Enneralt a forecasting model, is primarily built for the Nordic
electricity sector. It has a high temporal resolution, but DH representation is primarily for CHP
based networks. Similar features and approaches are seen in other forecasting models - SIVAEL,
GTMax and RAMSES. EnergyPRO is a commercial package but only suitable for single plant
operation and analysis.

EnergyPlan is a whole system model with localisations for many countries, including the UK
available. It simulates the operation of the national system at hourly resolution and has a full
representation of DH and TES. The operation and heat dispatch have been programmed based
on heuristics. This keeps computation times to a minimum and is thus fully deterministic.
EnergyPlan is suitable to address the wider research area. It could be an alternative to compare
with, particularly to analyse integration of TES into the electricity system. Remod-D also has
many desirable features for the context of this research project. It is a whole system forecasting
model but simulates at high temporal resolution. Includes a detailed representation of DH,
including TES. It is primarily used to find a cost optimal solution of the energy system
(Fraunhofer, 2019). A strength of this model is the ability to capture the investment of building
retrofit measures.

Many of the models were not available for use. Some were commercially available or charged
for licenses, while others were for internal use only. The only models that are publicly available
or open source that were reviewed are Balmorel, Osemosys and EnergyPlan. The Balmorel and
Osemosys are open-source models that could potentially be adapted for use, but significant
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adaptation of the models is required. EnergyPlan and Remod-D should be studied to aid the
development of this research.

Table 1.4 Comparison of existing models’ functionality

Model Focus DH Dispatch Electric. Include High Canuse UK local- Couples
Included optimis- spot TES Temp historic isation Heat&
ation prices Reso- time- RenGen

lution series

DynEMo  Whole Yes Yes No Yes Yes No Yes Yes
system

Balmorel Whole Yes Yes Yes Yes Yes No No No
system

Enneralt  Electricity Yes Yes Yes No Yes No No No

UK Times Whole Yes No No No No No Yes No
system

SIVAEL Power Yes Yes No No Yes No No Yes

RAMSES Electricity Yes Yes Yes No Yes No No No
and DH

EnergyPlan Whole Yes No No Yes Yes Yes Yes No
system

EnergyPro Electricity Yes Yes No No Yes No Yes No

REMod-D DHand Yes Yes No Yes Yes Yes No No
electricity

0SeMOSYS Whole No No No No No No Yes No
system

RESOM Whole Yes No No Yes No No Yes No
system

ESME Whole Yes Yes No Yes No No Yes No
system

GTMax Electricity Yes Yes Yes No Yes No No No
and DH

1.3.2 Modelling conclusions

Table A-1 in Appendix A contains a detailed overview of all the models covered in the review,
emphasis is given to the purpose of the models from the classifications described, the methods
to model electricity generation, heat demand and DH allocation as well as the optimisation
methods employed. The availability and suitability to address the research area was also
scrutinised. The models are restricted to those covering the power and heat sectors, either on
its own or representing DH as a subsector of the heat sector. None of the models explicitly
couple heating demands and renewable electricity generation with meteorological data, nor do
any models simulate the operation of heat pumps and thermal energy storage based on
electricity spot prices, thus considering the configuration of the electricity system.

This research addresses these gaps by developing a model that optimises DH configuration for
electrified heat by operational costs from electricity network spot prices, therefore including the
configuration of the electricity system. The inclusion of electricity spot for operation has been a
feature of existing models, however the novelty here comes from the predicted spot prices for
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a future energy system. As many of the whole system models have previously done, DH
penetration will be modelled from a system perspective but with higher detail in the potential
of TES to manage residual variable generation and reduce electricity generation costs.
Moreover, the novelty introduced by this project will include a realistic coupling of renewable
generation and heating loads via the use of hourly weather data. The hourly resolution has been
used in existing models and is sufficient to capture the dynamics of storage.

1.4 Research Design

Research on the national potential for DH deployment has typically not analysed it from a
systems perspective. The studies that have done so, do not fully capture the benefits of
integrating heat with the electricity and the trade-offs for TES as a means of flexibility. Most of
the cost-benefit analyses have not been able to fully account for the cost benefits of TES.
Further, the current research has given little guidance on how these systems should be designed
to ensure future proofing and harmonising with the wider system. The research that has given
guidance on what kind of heating technologies to use, for similar reasons have not fully
incorporated the effects of TES and renewable variability on operation.

Flexibility has been shown to be vital in achieving high penetrations of renewable generation in
the electricity system. Despite this, there has yet to be a full investigation into the effectiveness
of TES to support this. Finally, the review of existing tools and models has shown their limitations
to analyse the impact of large-scale TES incorporated into DH networks on the electricity grid.

This thesis aims to address these knowledge gaps. It will fill a gap in research on the use of TES
and DH to manage grid flexibility. Investigating the configuration of DH for a future low carbon
system while maximising benefits and minimising operation costs to uncover their full potential.
This will be achieved by developing a high-resolution DH and electricity network model for the
UK that directly couples the variability of heat demand and renewable generation through the
underlying weather patterns.

1.4.1 Research aims

The aim of this thesis is to investigate the role of electrified DH in a future low emission and high
renewable energy system in Great Britain (GB — England, Scotland and Wales, excluding
Northern Ireland which has a separate grid). Highly renewable systems are likely to have
variable electricity generation. This variability will lead to fluctuations in electricity prices. Under
the assumption that DH networks will be designed and operated on a cost minimisation bases:

To what extent can DH with heat pumps and TES exploit the variability in demand
and electricity prices to minimise operating costs and how should they be designed
to achieve this?

To address this, a series of studies and models will be required with several sub-objectives:

1. The Heat Load Model (HeLoM):
a. Creates a representative time variable DH heat demand considering the areas suitable
for DH deployment and the mix of demand this comprises
b. Synthesises an hourly national (GB) heat demand profile to provide inputs for further
modelling
c. Determines how the DH load profile differs from the national profile.
2. The Electricity Cost Model (EICoM):
a. Collates a suitable scenario to determine the demand characteristics and generation mix
of a highly renewable, all-electric, net zero compatible scenario.
b. Provides a storage or flexibility baseline to later contrast with the inclusion of DH.
c. Devises a methodology to estimate the time varying cost of electricity supply and
estimates the resulting cost of electricity supplied to DH and consumers.
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3. The District Heating Model (DiHeM):
a. Devises a suitable DH simulation with control algorithms using hourly heat demand and
electricity costs as inputs to minimise operating costs.
b. Determines the optimal DH configuration in terms of HP and TES capacity.
Estimates the resulting levelised cost of heat from DH.

An extension of this modelling will be to analyse how a significant DH presence may impact the
electricity system. This can be used to assess the impact of DH and TES on the national electricity
system to explore the value of flexibility provided by DH as described in the review:

What is the impact of a significant DH deployment on the electricity system, how much
flexibility can it provide and to what extent can it supplant grid storage?

This will require using the outputs from DiHeM as input for EICOM and the integration and
coordinated operation of the two models.

4. Model integration:
a. Devise a suitable coordinated operating regime for the integrated system.
b. Estimate the change in peak and total electricity demand for heat with increased DH
deployment.
c. Assess the change in the cost of heat provision with varying DH deployment.
d. Estimate the impact of DH in reducing the renewable generation deficit and the ability
of TES to replace grid electrical storage.

1.4.2 Research design

The design is driven by the need to investigate the potential of DH considering the effects of
integration with the electricity system. As the variability of renewable generation, particularly
wind, can occur at over the time period of hours, the full impact of operating DH with TES can
only be realised at high resolutions. Figure 1.3 shows the system boundaries of the project and
the detailed modelling requirement that is needed to simulate the impact of each sector on the
other.
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Figure 1.3 Modelling system boundaries and energy flows
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The three models are-soft linked with data flowing from HeLoM and EICoM models into DiHeM.
An integrated exploration of the impact of DiHeM on EICoM system is later undertaken.
Meteorological data is an exogenous input for both the heat loads and electricity module. Using
meteorological data, couples the heat demand to renewable power generation. This coupling is
a fundamental feature of this study that distinguishes it from other such studies. Another novel
inclusion in this model is the operation of DH based on upstream cost signals from the electricity
network. A summary of the modelling assumptions used in this study is provided in Table A-2.

1.4.3 Heat Load Model - HeLoM

The Heat Load Model — HeLoM, takes meteorology variables - hourly ambient temperature, wind
speed and solar irradiation, combined with heat use activity patterns as an input and outputs
heat load. This forms an input for the other modules. It will be constructed bottom-up, using
building archetypes applied to a thermal simulation, which needs to capture a high temporal
resolution. The development will draw on existing archetypes and building surveys. It needs to
be disaggregated by area to split out urban-DH heat loads.

4 D 4 ) r " q ™ o
. Development Thermal Archetypes utput:
Input: . Hourly
of domestic model mapped to .
Hourly local - national and
and applied to known .
meteorology . . dissagregated
nondomestic building output area
data archetypes archetypes distribution urban heat
yp yp demand
\ J \ J \ J \ J

1.4.4 Electricity Cost Model - EICoOM

The Electricity Cost Model - EICoM, inputs capacity factors that have been correlated to
meteorology to simulate the grid and output marginal costs. It is defined using scenarios to set
the generation and storage mix. The electricity market prices are assumed to reflect marginal
costs. This work will be an original contribution of this project. The electricity market prices are
intended to be used by the DH module to operate and control the dispatch of heat.

[ Input:Hourly | [ Scenario [ ) f A [ A
put: M . Generation Electricity Output:
wind speed applied to -
. and demand grid Hourly
and solar estimate . L
. managed operating electricity
data derived hourly . -
with grid status costs and
renewable renewable . -

. . storage applied to residual
capacity generation . - )
factors and demand dis/charging cost model generation

\. J \. J \ J \ J \ J

1.4.5 District Heating Model - DiHeM

The District Heating Model - DiHeM connects the supply and demand components from the
other modules. It will take the data provided from the other modules and output costs based on
the configuration of DH for which it has been designed to explore. The design of the operational
control method will form an important aspect of this module. It is initially proposed that this be
a standalone module. As an extension, integrating this with EICoM would be necessary to
analyse the impact on the electricity system.

4 N 4 N 4 N 4 N
Input: .
Definition of Hourly urban a?zfirtitrl’r??o DH network HC())LlI‘IIﬁpL;tI’-Id
District heat demand & and TES Y
. - control HP annual
Heating HP and electricty . level .
dispatch and operating
and TES costs updated
. TES costs
capacity
\, J \ J \ J \ J
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Box 1.1 Economic terminology: the difference between Cost and Price

The terms ‘cost’ and ‘price’ are used frequently in this thesis from Chapter 3 onwards. The
distinction between them is significant in the context of this research. In common parlance,
they are used interchangeably. The Oxford English Dictionary (2001) gives the following
definition:

“A Price is the amount of money required or given in payment for a commodity
or service” and the “Cost is the expense incurred to attain a particular goal”

Expanding upon this in the context of this research, a cost refers to the value of inputs to an
enterprise and following from this, marginal costs represents the value of adding a unit of
production to a system which might have multiple enterprises.

The price refers to the value paid for an output of an enterprise. In theory, in an efficient
market, this is equal to the marginal cost. For the marginal consumer (at the intersection of
the supply and demand curves) this price is exactly what they are willing to pay for the good.
All other consumers consuming would have been prepared to pay a higher price. The
cumulative difference between these higher prices and the optimal price is known as the
Consumer Surplus, a measure of the benefit to consumers collectively.

Similarly, the optimal price is paid to all producers producing the good. For the marginal
producer (at the intersection of the supply and demand curves) the price exactly equals their
total cost of production. All other producers producing have lower production costs than
this. The difference between such a lower cost and the optimal price is the profit made by
the producer; the marginal producer makes no profit (and no loss). The cumulative profit is
known as the Producer Surplus, a measure of the benefit to producers collectively.

1.5 Thesis Structure

Chapter 1 has covered the rationale and defined the research problem for this thesis. Chapter 2
covers the development of Heat Load Model - HeLoM which serves as the basis for demand in
the following chapters. Chapter 3 is the Electricity Cost Model - EICoM. This develops the
dispatch and cost methodology for electricity prices which are used to operate DH. It also
develops a zero-emission scenario in which the heat load forms the basis of consumer HP
demand. Chapter 4 covers the District Heating Model - DiHeM. DH simulation and operational
control of the HP-TES system is developed. Chapters 2, 3 and 4 are designed such that they can
be read independently as standalone sections. An exploration of system integration is covered
in Chapter 5 with a discussion of the work presented in this thesis with key conclusions and
recommendations.
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2 HEAT LOAD MODEL

Chapter Summary

This chapter details the development of the Heat Load Model (HeLoM). Estimation of spatially
disaggregated heat demand is needed for the development of local energy distribution
infrastructure. A significant heat pump deployment would require the electricity distribution
network to have sufficient capacity, and similarly in the event of hydrogen heating. It can also
aid in identifying and planning areas suitable for district heating infrastructure. The temporal
variation of heat demand is important when considering the operation of storage within district
heating and the electrical grid. The difference between the national and urban heat demands
profiles will vary due to the type and occupancy of buildings leading to temporal variations which
have not been widely surveyed. A review of existing national and urban heat load modelling is
first presented with a focus on the modelling methods and datasets used. This leads towards
identifying the appropriate datasets, archetype segmentation and characterisation for the
domestic and nondomestic building stock. The segmentations and archetypes for both domestic
and nondomestic stock are described alongside the spatial disaggregation used. 20 domestic
and 12 nondomestic archetypes in 11 GB weather regions are applied to a thermal model and
calibrated on the local scale using gas consumption statistics. The annual national heat demand
was closely aligned to other estimates and the peak demand was estimated at 219 GWsh. The
urban heat demand was found to have a lower peak to trough ratio than the national demand.
This may have important implications for the uptake and design of district heating.

2.1 Model Objectives

Hourly space heat and hot water demand estimates are required as an input to the modelling in
following chapters. This includes the electrified heat load for electricity scenarios and for district
heating (DH) loads. These demand profiles will differ. The DH loads will primarily be composed
of urban areas. The remaining load can be assumed representative of the national demand and
extrapolated as such. These requirements can be summarised as:

a. Capture the entire hourly national space heat and hot water load based on historic
meteorological data
b. Disaggregate the urban load as a proxy for DH demand

The demand is to be derived from meteorology data, primarily external temperatures, and wind
speeds. Urban loads are split out as these are typically the areas with the highest heat demand
density (HDD). DH networks are generally more economically feasible in these high HDD areas
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with lower costs per unit of heat. The disaggregation of urban heat loads will be achieved
through a spatial disaggregation with the highest ranked HDD areas assumed as being urban.

The temporal variation is crucial when considering the operation of energy storage. It is
surmised that there will be differences in the shape of the daily load profile between the urban
and non-urban areas. This is due to the differences in the type and occupancy of buildings. The
differing use patterns will lead to temporal variations. This difference has not been widely
surveyed. Thus, the requirement is for the model to encompass both a high spatial and
temporal — ‘spatiotemporal’ — resolution.

Industrial and (some high-temperature service sector) heat loads are omitted from this study.
They are likely to fall outside of urban areas and the heat demand is usually of a higher
temperature than that of space and water heat, or what would be appropriate to be supplied
by DH.

2.2 Literature Review of Heat Load Modelling

Most recent national heat demand studies have focused on domestic heating. Space and hot
water heating accounts for 40% of energy demand in the UK with the domestic sector making
up just over two-thirds of this (BEIS, 2020b; Climate Change Committee, 2016). Building stock
energy simulations range from highly detailed simulations of individual buildings which require
detail in geometry, fabric, and usage, up to the scale of the entire building stock containing many
built form types, ages, construction methods and uses in which limited data exist on the
characteristics and spatiotemporal energy demand.

In building energy modelling, top-down models normally explore the inter-relationship of
demand with key factors such as construction age or demography, this can be described as a
deductive method (Sousa et al., 2017). Bottom-up models tend to disaggregate the components
of energy demand into its various components, often employing a building physics based
approach (Kavgic et al., 2010). A notable example used for the UK is the BRE’s Domestic Energy
Model (BREDEM) and has been extensively validated (Anderson, 2002; Henderson and Hart,
2013). At higher spatial resolutions, the impact of an individual building is greater and thus the
need for accuracy increases. The bottom-up approach is hence preferred by designers and
planners. However, it can be difficult to calibrate and validate such models without large scale
data collection, which can often be impractical on such a scale. For this reason, many building
stock energy models use building archetypes as a representation of a statistically average form
of a typology that can be multiplied to the national stock scale. Most building energy models
aggregate energy demand from many buildings and can provide estimates of energy use if the
ratio of built form types is altered.

To highlight the growing importance of this field, there have been several reviews of building
stock energy models conducting in recent years (Kavgic et al., 2010; Keirstead et al., 2012;
Reinhart and Davila, 2016; Sousa et al., 2017). Reinhart and Davila (2016) review the design of
existing bottom-up building stock energy models. They describe the steps required to construct
such models as:

1. Datainput and organisation
2. Thermal modelling
3. Result validation

They identify the information that is required to generate building energy models. This includes
regional weather data, building form, construction and operation data and finally building
occupancy or usage. To estimate future demand, inferences have to be made regarding the
building stock and climate conditions. The authors state that the biggest challenge for such
models is in the definition of the archetypes to recreate the simulated building stock

In the review of Kavgic et al. (2010), the authors compared eight different bottom-up energy
stock models, including five UK based models. All the UK models derived their calculation from
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a version of the BREDEM. All the models reviewed output data at either an annual resolution or
in two cases, a monthly resolution. They vary in the number of archetypes or dwelling types,
ranging from just two age categories to over 8000 unique combinations of dwelling type
including age, form, construction, and heating method. Of these, only the Community Domestic
Energy Model (Firth et al., 2010) contained a spatial resolution higher than the national scale
but only for the existing stock while most others were used for some form of scenario analysis.

Sousa et al. (2017) comprehensively analysed 29 housing stock energy models. Their conclusions
are critical of the current approaches noting that they are limited in scope due to a lack of
transparency, a sentiment shared by Kavgic et al. (2010). Much of this is due to the scale of the
challenge, with some 25 million homes in the UK and a limited number of cross-sectional surveys
from which to base modelling assumption and data validation. There exists a large variation in
their designs, both spatially and temporally (Keirstead et al., 2012). None of the UK based
models however, disaggregated urban loads from the national at an hourly resolution. The
authors conclude that improved data collection standards are needed as well as computational
resources to capture detail at high spatial and temporal resolutions.

Box 2.1 Output areas and geographic subdivisions

Output areas (OA) have been used for data collection in England and Wales since the 2001
Census. They are the smallest geographical unit for which data is collected and designed to
be largely homogenous. Small area statistics are reported at the Lower Super Output Area
(LSOA), consisting of multiple adjacent OAs and Middle Super Output Area (MSOA),
constructed from adjacent LSOAs. LSOAs are designed to have a population of 1000-3000
and MSOAs 5000-15000.

The Scottish equivalents of LSOA and MSOA are Data Zones (DZ) and Intermediate Zones
(1Z). For convenience only the former terminology will be used. Scottish DZ are also smaller
than LSOAs, each DZ contains approximately 500-1200 residents and IZs between 2500-
6000.

Another common subdivision used is the local authority (LA) which are governmental
subdivisions. There are 397 LAs in Great Britain of varied area and population.

2.2.1 National demand

Prediction of peak demand with electrification is a key aim in many assessments of the national
heat load. One of the few spatiotemporal studies has been conducted by Eggiman et al. (2019).
They developed a high spatiotemporal resolution heat and electricity demand model to study
the diffusion of heat pumps in the UK. The authors noted that the need to balance resolution
with computing requirements and data availability is one of the main contributing factors
towards the lack of spatiotemporal projections of UK heat demand. They use the LA subdivision
and disaggregate between domestic, service, and industrial sectors. The temporal variation for
electricity was calibrated via electricity transmission system data. Similar data is not available
for gas transmission, and therefore it was not validated. They use a heating degree day method
to estimate heat demand and like most studies of this kind, they used a combination of yearly
and daily load profiles to decompose annual energy use data into hourly temporal demand. A
strength of this study is the use of technology specific load profiles; they have differentiated
between gas boiler demand profiles and heat pump profiles, notably using measured heat pump
load profiles.

Another recent contribution towards national spatiotemporal heat demand modelling was
conducted by Clegg and Mancarella (2019). They also use the LA level and heat demand was
simulated for a single year in EnergyPlus using four domestic archetypes and four nondomestic
archetypes to derive load profiles. These were mapped to the building stock with statistical
variations in occupancy and in thermal performance characteristics to recreate demand
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diversity. It was found that regional half hourly peaks were 200% larger than the average daily
demand. The authors use this to analyse the impact of the evolution of heating technologies on
the gas and electricity network. A similar method using EnergyPlus generated profiles was
applied at the postcode level and aggregated to city level demand (Wang and Mancarella, 2016).

Taylor et al. (2014b) created a high resolution (1 km square) spatial mapping of heat and
electricity demand to study the diffusion of heating technologies, particularly heat pumps. They
used output area socio-economic census data combined with historic energy demand data
(LSOA for domestic and MSOA for nondomestic). Assumptions were made to increase the spatial
resolution of demand, but the analysis was static with no temporal simulation of demand,
capturing only annual demand at high spatial resolutions. 2009 was used as the base year for
demand modelling and the authors estimate future demands extrapolating from a base year
using scenario factors.

Quiggin and Buswell (2016) used historic weather data to analyse the impact of heat
electrification. The authors note that hourly demand modelling is vital to investigate the impact
of electrified heating. They combined a heating degree day with measured DH demand to
generate domestic load profiles and flat constant nondomestic load. The authors concluded that
peak electricity demand will be significant, and that demand side management can provide an
important balancing function.

Other notable contributions in estimating national heat demand includes the work of
Sansom (2014). A regression analysis was conducted using 2010 weather and daily gas demand
data to estimate national heat load. The daily heat demand was combined with load profiles
obtained from boilers and CHP (combined heat and power) plants to create a half hourly
demand profile for 2010. The synthesised demand data was used for analysis of heat
decarbonisation pathways and the impact of electrification (Sansom and Strbac, 2012).

Many studies focus exclusively on either the domestic or nondomestic building stock. It is
estimated that there are over 2 million nondomestic buildings in the UK compared to over 27
million dwellings but comprises around a fifth of the space and water heat demand (BEIS,
2017a). The studies that primarily focus on the domestic sector in the UK outnumber the studies
in nondomestic modelling. Reasons for this include the oft-cited complexity of the nondomestic
building stock (Bruhns et al., 2000; Liddiard et al., 2008; Smith, 2009; Steadman, 1997).

2.2.2 Domestic modelling

There are a several commonly used bottom up domestic energy models for the national housing
stock (Cheng and Steemers, 2011). Most are based on the English Housing Survey EHS (and prior
to that the English House Condition Survey) which is an ongoing stratified random national
survey covering the housing stock (DCLG, 2017). The segmentations used in the survey are
commonly used in modelling assumptions. It provides the main input to the Cambridge Housing
Model (CHM), a policy advice tool to estimate energy demand from the housing stock and also
provides the basis for other studies (BEIS, 2010).

Cheng and Steemers (2011) note that a common weakness of the current bottom up stock
models is the use of generic occupant behaviour. Considering this, a large differentiating factor
in their model—the Domestic Energy and Carbon Model (DECM), has been the use of multiple
occupancy profiles based on employment status from socio-economic census data. DECM
disaggregates output down to the LA level. The heat demand is estimated based on the SAP
method from the BRE (2009), due to this, only yearly results are output from the model. They
find that dwelling type and socio-economic factors can account for 85% of the variation in
consumption between LAs.

BREDEM is described as a methodology to calculate domestic building energy consumption for
different end uses and has widely employed as the core of other domestic energy models due
to its adaptability (Kavgic et al., 2010). It uses heat balances and simple empirical relationships
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that can be expanded upon to estimate annual domestic energy consumption (Arababadi, 2012).
Examples that use BREDEM include the Community Domestic Energy Model (CDEM) (Firth et al.,
2010). CDEM combines archetypes with the BREDEM method to investigate efficiency
interventions. Another model utilised GIS tools to infer built form and orientation to model the
energy consumption using BREDEM at the neighbourhood scale (Rylatt et al., 2003). The use of
GIS based methods to analyse and gather data is becoming prevalent in building stock modelling.
Oikonomou et al. (2012) looked at the urban heat island effect for London and the risk of
overheating in dwellings. They use GIS data of building form and orientation to conduct
simulations in EnergyPlus. Occupancy profiles were based on the work of Yao and Steemers
(2005), incorporating socio-economic factors. Another GIS based approach applied polygon
information, LIDAR, and thermal imaging to the Cambridge Housing Model to produce energy
demand profiles at the neighbourhood level (Calderdn et al., 2015). There is potential to use this
methodology on a wider scale by city planners but the large computing requirements when
scaled to larger areas remains a key challenge (Rosser et al., 2019).

In contrast to the bottom-up models presented, Watson et al. (2019) use a top-down approach
to determine a regression model using historical gas demand and weather data. This is combined
with load profiles obtained from measured heat pump profiles and differentiated by mean
outdoor temperature. The study modelled a high temporal resolution, and the results can
provide a useful comparison for national heat demand.

2.2.3 Nondomestic modelling

The difficulties involved in modelling the nondomestic stock include the high degree of
heterogeneity, both within and across use categories. Perhaps the biggest challenge involves
the availability of quality data (Taylor et al., 2014b). The energy end use is more varied, meaning
measurements of gas consumption cannot be reliably used as a proxy for heating. The most
comprehensive resource available is the property taxation database collected by the Valuation
Office Agency (VOA). However, this does not identify all floor area in nondomestic sites such as
hospitals or libraries and omits certain use categories such as agricultural buildings or places of
worship. A second important data source are Display Energy Certificates (DECs) for public access
properties in England and Wales, but these can also be inaccurate for many of the same reasons
(Evans et al., 2017). In 2014 DECC commissioned the Building Energy Efficiency Survey (BEES)
(BEIS, 2016c¢) to assess and understand how energy is used in the nondomestic stock across the
different use categories. A comprehensive review of nondomestic stock modelling in the UK has
been covered in Steadman et al. (2020). These have typically been in the form of a building
database containing activity class and floor areas. The energy demand has then typically been
estimated by simple steady state equations, such as energy intensities per floor area for a given
activity class.

The CaRB2 model operates on this basic principle, using data from the above-mentioned
sources, combined with a consumption data per activity type that was obtained from prior
surveys (Liddiard, 2018). However, as it draws upon the VOA data, it only covers England and
Wales. The Cambridge Nondomestic Energy Model (CNDM) has been developed with similar
methods to the CHM (Armitage et al., 2015). This is achieved by segmenting the nondomestic
stock into different building archetypes and applying a steady state energy model. The
segmentation included built form, HVAC type, building age, location and use which resulted in
some 35,000 combinations. The CNDM also uses the taxation database and output is
disaggregated to a regional level but the energy model only produces annual demand with a
breakdown of end use.

GIS approaches are also being used in nondomestic stock modelling, albeit on a smaller scale.
The approach taken by Taylor et al. (2014a) involves combining the existing nondomestic data
sources with ordnance survey data to create polygons of buildings for Leicester city centre. The
3DStock model is intended as a whole stock model but its treatment of the nondomestic stock
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merits attention (Evans et al., 2017). It uses a GIS approach to combine a detailed representation
of the urban building stock in select sub-city areas with taxation data, DECs and energy
consumption data. A key feature of 3DStock is that the model differentiates between buildings
and premises for nondomestic sites. A single premise can be part of a building, or multiple
buildings, and the same building can have multiple premises. The energy consumption data in
the form of annual gas and electricity readings for all premises modelled (a database few other
models have access to) is then matched to the 3D representation of the buildings. It has so far
only been applied to several sub-city areas and provides a high spatial resolution snapshot of
urban energy consumption.

2.2 .4 District scale models

There have been attempts at mapping the heat demand intensity for urban areas in the UK at a
high spatial resolution such as the now defunct National Heat Map developed by the Centre for
Sustainable Energy (2010) for DECC which was designed with an emphasis on the location of
heat networks and waste heat potential. Internationally, other such tools exist at the city scale
however these are only snapshots of heat demand intensity or annual consumption (Fremouw,
2017; Prieto et al., 2018). Tools such as CitySim (Robinson et al., 2009) or Huber and Nytsch-
Geusen (2011) have been developed to aid urban planning and have been demonstrated with
application to case studies, however these localised tools require extensive modelling data
input. Numerous examples exist in the literature of localised studies to forecast heat load in DH
systems that use a variety of methods from detailed network simulation to statistical and
machine learning methods (Calikus et al., 2019; Dahl et al., 2017; Dalipi et al., 2016; Guelpa et
al., 2019; Idowu et al., 2016). As these are localised for specific districts and existing networks,
these models can’t be applied directly to modelling districts in the UK without extensive data
input and large assumption. Methods of creating spatiotemporal energy demand for districts
have been achieved by applying known spatial consumption to temporal profiles based on the
distribution of building archetypes but the temporal profile can be difficult to validate
particularly without comparative data at the same spatial resolution (Mikkola and Lund, 2014).

As already shown, GIS based methods to generate three-dimensional polygons to model districts
and urban centres are prevalent in the literature. Nouvel et al. (2015) compared two methods,
a thermal model applied to 3D reorientations and a statistical method using 2D GIS. They
combined these methods to develop a framework to study heat loads at higher spatial
resolutions, using the statistical method at the lower spatial resolution then applying a thermal
model to 3D representations for higher spatial resolutions. Dogan and Reinhart (2017) applied
GIS to a mixed used neighbourhood in Boston, USA. They generated 3D models that are then
simulated in EnergyPlus to create hourly load profiles. Nageler et al. (2017) applied a GIS to open
source mapping data of an Austrian district to generate polygonal representations of buildings.
Demand profiles were assigned to building using a thermal model and a database of archetypes.
The authors of this study noted that computational resources were the main limiting factors on
enlarging the modelled area.

2.2.5 Conclusion of review

Building stock energy models in the UK are well established, particularly in the domestic sector.
The segmentation of the building stock into archetypes is widely used in the analyses, except in
cases where a regression has been applied to historical data. The main data sources that are
drawn upon are census data, historical consumption and the EHS. Many studies and tools that
map energy demand do so with a static state energy method or mapping historical annual
consumption. Two recent studies have created a spatiotemporal analysis of energy demand
(Clegg and Mancarella, 2019; Eggimann et al., 2019). The heat load modelling was achieved via
either application of load profiles to heating degree day calculations or the generation of load
profiles through building physics models with a reduced set of archetypes.
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Achieving high accuracy is difficult due to the lack of data. In the case of buildings, data on
occupancy and when heating systems are operated is essential. This is one of the primary
reasons that nondomestic modelling is a harder than the well understood domestic sector. With
(non-hourly metered) gas being the main heating vector in the UK, it has not been possible to
use historical consumption alone to determine hourly loads, as is the case with electricity. With
the increasing uptake in heat pumps however, this may be less of an issue in future. DH load
profiles are available and have been drawn upon in the literature to provide urban heat load
profiles. However, the composition of the local building stock varies between locations.

The aim of HeLoM is to generate weather derived spatially disaggregated hourly national heat
load profiles for domestic and nondomestic buildings. This provides the bases for national
demand and the disaggregation enables the urban demand to be extracted as a proxy for DH
demand. It is not possible to use or adapt the existing highly spatiotemporal models for the
purposes of this study. Others that can be adapted are only national in scale, as is the case with
the regression models.

2.3 Archetype Development

Each building is unique, not just in terms of the physical construction, orientation, exposure and
location, but also in its occupancy and use. This model follows the approach of segmenting the
stock into building archetypes. Once building archetypes are defined, a transient thermal
simulation is developed. The purpose of the simulation to calculate the hourly heat demand
using historical weather data. The advantages of using a custom a thermal model for simulating
buildings is that it allows the efficacy of interventions such as altering insulation to be evaluated
and enables the use of custom weather data to simulate heat demand. While individual building
will be simulated, results will be stored at an aggregated level (LSOA or MSOA). Diversity is
achieved by stochastically varying occupancy and application of known diversity factors.

A fundamental challenge in modelling the building stock is in the level of detail and attention
afforded towards grouping similar constructions into segments or archetypes. The archetype
approach is a widely utilised framework in bottom-up building stock modelling. A building stock
can be represented by a sample of building archetypes that represent a statistical average for
the archetype within the stock (Mata et al., 2014).

Table 2.1 Summary of data sources used for HeLoM

Data Level Source

Dwelling build period LSOA/DZ CTSOP4.1 (Valuation Office Agency, 2020)
(Scottish Government Statistics, 2020)

Dwelling type LSOA/DZ QS402EW (Office for National Statistics, 2020) QS402SC
(Scottish Government Statistics, 2020)

Domestic Heating type LSOA/DZ QS415EW (Office for National Statistics, 2020) QS415SC
(Scottish Government Statistics, 2020)

UK Domestic and LSOA/DZ Sub-national gas consumption (BEIS, 2020c)

Nondomestic Gas MSOA/IZ

Consumption

Nondomestic floor areas Building CaRB2 from (Valuation Office Agency, 2020) (Scottish
Government, 2018)

Standard Area MSOA/1Z (Office for National Statistics, 2020)

measurements (Scottish Government Statistics, 2020)

Weather data Regional (Met Office, 2019)
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To develop archetypes, appropriate segmentations need to be identified prior to
characterisation of thermal properties and occupancy. The most fundamental segmentation is
differentiating between domestic and nondomestic. The archetypes developed here will draw
upon the work of a combination of previous studies. The open-source datasets drawn upon for
this work are presented in Table 2.1.

2.3.1 Domestic archetype segmentation

Most domestic archetyping studies in England have drawn extensively on the English Housing
Survey (MHCLG, 2016). As the largest component of Great Britain, this study also utilises it. The
EHS splits domestic buildings into seven archetypes:

1. End and mid terrace
Semi-detached
Detached

Bungalow
Converted flat

6. Purpose built flat

vk wnN

The ONS archetypes per LSOA do not directly correspond to all the EHS ones. They report on
dwelling types as:

1. Detached

2. Semi-detached
3. Terraced

4. Purpose built flat
5. Converted flat

6. Others such as bungalow, caravan, etc.

This study combines end terrace and mid terrace to correspond to the ONS data. While the ONS
reports on purpose built and converted flats. Converted flats have wide variety in form and the
construction information in the available literature is largely for purpose-built flats. Therefore,
all flat varieties will be treated as purpose-built flats. The same archetype segmentation has also
been used in previous studies (Oikonomou et al., 2012; Stamp, 2016). The observed distribution
of the dwelling types used is shown in Figure 2.1.

Flat,
23%

Detached,
23%

Semi-Detached,

Terraced, 24%
30%

Figure 2.1 Dwelling types in the UK housing stock
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Each dwelling category is further split according to construction period. The VOA reports
dwelling age in 12 build periods, from pre-1900 to post-2010, corresponding roughly to a decade
in length while the EHS splits this into five build periods from pre-1919 to post-1990. The
proportion of dwellings per age range has been applied to each dwelling type present in the
LSOA. While it is likely that different dwelling types are built in different periods, the age
variation per dwelling type is estimated from the overall distribution per LSOA as the data is
provided per LSOA without further breakdown of age per dwelling type. This may be an issue
with LSOA’s that have a diverse range of dwelling types and construction periods but in many
LSOA’s the construction type and age fall within a narrow range (Boswarva, 2017). The
distribution of dwelling build-period is shown in Figure 2.2 adapted from Piddington et al. (2020).

Post 1990 Pre 1919
17%

1981-1990
8%

1919-1944
15%

1965-1980
20%

1945-1964
19%

Figure 2.2 Dwelling built period in the UK housing stock

The SAP assessment has 11 age bands that are often combined. Oikonomou et al. (2012) use
five age bands with multiple variations, reducing these to the 15 most commonly found in their
modelled area. Mata et al. (2014) combine six dwelling types with eight narrow and recent age
bands, Cheng and Steemers (2011) use ten age bands that become progressively narrower while
Buttita et al. (2019) use the EHS age bands but combine two of the periods.

Table 2.2 Archetypes used in comparative studies

Source Dwelling Types Age Categories Geographic zones
Mata et al. (2014) 6 Dom 8 pre-1985 to post-2010 4 — major cities
3 Nondom
Cheng and Steemers 5 10 pre-1900 to post- 1 —using 30 year
(2011) 2000 mean data
Buttita et al. (2019) 5 with multiple 5 pre-1918 to post-1991 4 — major cities
variations
Oikonomou et al. (2012) 5 with multiple 6 1-52sites in London
variations
Stamp (2016) 4 4 construction styles 3 weather files
HeLoM 4 5 11 - GB regions

27



Modelling District Heating In A Renewable Electricity System

2.3.2 Domestic archetype characterisation

The form and fabric data for each archetype is used to estimate a specific heat loss (SHL) and
thermal mass (ThM) from construction and fabric assumption per archetype. Dwelling archetype
geometry will be taken directly from the English Housing Survey (MHCLG, 2018). The specific
heat loss will largely be derived from construction data from BRE’s SAP 2016 from which glazing
ratio and performance data are also taken (BRE, 2016). The thermal mass represents the heat
capacity of a building or its ability to store heat. Construction and fabric play a large role in the
thermal mass as do the internals of a dwelling. SAP gives thermal mass with a thermal mass
parameter (TMP) per unit floor area. It has three categories of light, medium and heavy
construction ranging from 100 to 450 kJ/m?K. The TMP used are adapted from Stamp (2016)
who provides estimates for the building archetypes used here and shows that older
constructions tend to be heavier while newer constructions utilise modern lightweight
construction methods and so have a lower TMP. Table B-1 in Appendix B contains all the
estimates and parameters used for domestic archetype characterisation.

Table 2.3 Domestic archetype data sources

Parameter Source

Dwelling Geometry English Housing Survey (MHCLG, 2018)
Construction U-values SAP 2016 (BRE, 2016)

Thermal Mass Parameter Stamp (2016)

Boiler/Heating system size CE54 (Energy Saving Trust, 2010)
Glazing transmittance SAP 2016 (BRE, 2016)

The power rating and efficiency of the heating system varies greatly between dwellings, and the
power capacity determines to a large extent how it is operated. For the purposes of calibrating
the heat load with gas consumption data, it is assumed that all buildings have a gas boiler with
an average efficiency of 85% for heating and 75% for hot water (BRE, 2016; Palmer and Cooper,
2013). The power ratings of the heating system per archetype are assumed from a conservative
calculation of gas boiler power ratings using the domestic heating sizing method CE54 (Energy
Saving Trust, 2010).

2.3.3 Domestic occupancy

Mean occupancy has been adapted from the SAP methodology based on floor area (BRE, 2016).
Measured hourly gas consumption profiles have been used as a proxy for active occupancy
profile and heating system operation for all dwelling archetypes. Average domestic heat load
profiles in UK households exhibit a double peak pattern, with morning and evening peaks. From
surveys on how dwellings are heated with various heating systems including gas boilers and heat
pumps, it appears that dwellings are predominantly heating this way regardless of heating
system and mixed work patterns (Hanmer et al., 2019; Love et al., 2017; Watson et al., 2019).
Yao and Steemers (2005) showed that the load profile is same across dwelling types, with the
magnitude of peaks corresponding to the size of dwelling archetype. A normalised domestic load
profile has been adapted from Wang et al. (2020) to represent the probability of active
occupancy and operation of heating as shown in Figure 2.3.
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Figure 2.3 Normalised domestic occupancy profiles

2.3.4 Nondomestic archetype segmentation

The nondomestic archetypes are based on the CaRB2 activity classifications which expand on
the four VOA bulk classes: retail, office, industry, warehouse (Evans et al., 2017; Valuation Office
Agency, 2020). The primary source of data for nondomestic counts and floorspace as previously
discussed is the VOA taxation database. The available data from CaRB2 contains activity
classification and aggregated floor area per postcode which were combined to LSOA level by
matching postcodes to output area. This did not include detail on activity type (due to data
sensitivity). While floor area has made available, this data has been deemed inaccurate due to
the method of taxation data collection where some classes (such as schools, hotels and
hospitals) do not have floor area records (Liddiard, 2020). The CaRB2 activity classifications,
count and floor areas are shown in Figure 2.4.
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Figure 2.4 Count and floor area per activity classification in the CaRB2 database
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For the purpose of urban load modelling, the five most important categories are office and shops
(retail), followed by factories, warehouse, and hospitality. It was not possible to obtain localised
Scottish nondomestic figures as the CaRB2 data covered only England and Wales. Instead the
overall count of each archetype in Scotland was scaled to each MSOA using annual gas
consumption data, the share of each classification is shown in Figure 2.5 (Scottish Government,
2018). After filtering for only those in urban area, several categories were omitted or combined.
These categories and relative proportions in modelled urban areas are shown in Figure 2.6.

Public Assembly
1%

Offices and Workshops
Retail and Financial 32% 27%

Figure 2.5 Nondomestic classification share in Scotland (Scottish Government, 2018)
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Figure 2.6 Proportion of nondomestic archetypes in modelled urban areas
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2.3.5 Nondomestic archetype characterisation

The occupancy and use of nondomestic buildings exhibit a large variation. There can be many
different sizes, and floor plans, even within the same classification (DCLG, 2011). For example,
while classifications such as “offices” or “education” are generally occupied during normal
working hours, the occupancy and usage times can often vary, with occupancy in the evenings
and weekends not uncommon in these classifications.

The archetypes were adapted from analysis of the CaRB2 data by Barrett (2020). The mean floor
areas for each category were calculated from the total gross internal area and archetype form
was inferred from prior surveys of the nondomestic building stock (Gakovic, 2000; Steadman et
al., 2009, 2000). A medium-weight construction TMP of 250 kJ/m?K was applied to all archetypes
to derive a thermal mass. Benchmark guidelines were followed for the sizing of the heating
system and determining internal heat gains in the various archetype activity classifications
(BSRIA, 2011; CIBSE, 2015a). Where data and benchmarks for the archetype were not found, the
figures were estimated from other archetypes.

Nondomestic internal gains are estimated using benchmark figures from CIBSE (2015a) Guide A.
Offices and schools are well represented in other literature (Korolija et al., 2013; Tian and
Choudhary, 2012). Where the archetype data is unavailable, such as the case for industrial
buildings, this has been estimated based on CIBSE Guide A. A summary of the nondomestic
archetype parameters is shown in Table B-2 in Appendix B.

2.3.6 Nondomestic occupancy

Building occupancy and use was determined mainly from analysis of hourly gas consumption
data for 37 buildings provided by Sustainable Energy Limited (Challans, 2018). An overview of
the provided data is shown in Table B-3. Normalised profiles were extracted for each activity
class available in the dataset. These can be found in Figure B-1 and Figure B-2. This was further
supplemented through secondary studies on occupancy in offices, shops, health and educational
buildings but for non UK based buildings (Duarte et al., 2013; Lindberg et al., 2019). There are
three categories where there is a lack of available data on occupancy: factory, warehouse, and
transport. Factories and warehouses constitute 19% of the modelled stock and both are very
diverse in their activity types. The factory classification can range from a food processing factory
to newspaper print works, while it is unclear to what extent warehouses are heated due to the
large floor area they occupy. Transport buildings are similarly diverse, from a train station to a
petrol station. A 24-hour occupancy with higher daytime usage has been estimated for these
categories as shown in Figure B-3 and Table B-4.

2.3.7 Spatial disaggregation

The highest level of spatial disaggregation analysed is the LSOA level. All the GB domestic stock
has been mapped to this spatial resolution as shown in in Figure 2.7. The nondomestic activity
classifications in the CaRB2 database were available per postcode in England and Wales, but
these were mapped to the LSOA level. In Scotland, nondomestic stock counts were only available
at the national aggregated scale, these were distributed per MSOA, weighted by MSOA
nondomestic gas consumption. A summary per region is given in Table 2.4

Due to computing capacity and storage limitations, only selected MSOAs have been modelled.
The gas demand per square kilometre has been estimated per MSOA using Standard Area
Measurements, then ranked by gas consumption density. The top 20% cumulatively were
chosen as representative of urban heat demand. A further 10% of largest absolute gas
consumption were included to comprise a more representative consumption profile to scale to
national level. The results for each LSOA and MSOA are stored in table form within an SQL
database. Each hour or row of data contains roughly 1600 bytes of data. Six years of results for
10,226 individual LSOAs and MSOAs results in just over 40 GB of data.
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ae,

Figure 2.7 Modelled GB MSOA locations

Table 2.4 Summary of modelled regions

Region LSOAs Modelled % Modelled % Modelled % of = Modelled %
modelled / of GB Gas of Dom Gas nondom gas of GB
total LSOAs consumption consumption consumption Population
London 3443 / 4835 9.7 9.3 10.3 10.3
South East 906 / 5382 1.8 1.4 2.3 1.6
South West 353 /3281 0.9 0.8 1.1 1.0
East of 405 /3614 1.7 0.9 2.9 1.0
England
East Midlands 449 /3614 1.5 0.9 2.5 2.5
West 919 / 3487 2.4 1.8 3.5 1.0
Midlands
North West 1002 / 4497 3.8 2.4 5.8 2.0
Yorkshireand 723 /3317 3.2 1.7 5.8 1.8
the Humber
North East 357 /1657 1.4 1.0 2.2 0.9
Wales 181 / 1909 0.9 0.3 1.3 1.6
Scotland 1051 / 6976 2.7 1.8 4.2 6.7
Total 9789 /41792  30.0 22.4 41.9 23.8
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2.3.8 Weather data

Weather data is divided into GB regions (the highest tier of sub-national division). Weather
stations were selected per region based on proximity to population centres and completeness
of data, covering at least the period 2010-2016. Met office data was compiled ensuring that each
station has been active since at least the beginning of 2010. Missing temperature (wet bulb)
values were linearly interpolated unless large gaps of more than 12 hours were found. Missing
wind speeds were forward filled for a maximum of 2 hours, otherwise they were interpolated to
the next available wind value unless large gaps of more than 12 hours were found. Missing solar
observation data was first linearly interpolated if less than three consecutive hours were
missing, otherwise values were shifted from the previous 24 hours unless large gaps of more
than 24 hours were found. In cases where large sections of data were missing, these were filled
using data from the closest available weather station. Details on each regional station used for
UK hourly weather observations is shown in Table 2.5 and the geographic distribution of each
station is mapped in Figure 2.8.

2.4 Thermal Model Development

Thermal simulations of the building stock are conducted on a per LSOA basis. The compiled data
on the numbers of each domestic and nondomestic archetype is applied to the LSOA. Each
building is assighed a demand set-point temperature, Tst, Which is normally distributed about a
mean of 20 °C with limits of 15-25 °C. This is based on reported domestic set-point temperatures
(Shipworth et al., 2010). There is also evidence that nondomestic archetypes such as offices and
schools fall within this range albeit skewed to the higher limit (Korolija et al., 2013; Tian and
Choudhary, 2012).

The simulation procedure calculates the temperature change of the building thermal mass per
hourly time step. The thermal model simplifies the representation of the buildings as cuboids
with heat transfer through four walls. It assumes the temperature of the building thermal mass
and internal wall surface to be same as the internal air temperature, Tint. The net heat flows from
the buildings are the sum of gains and losses and calculated dynamically to update the
temperature of the thermal mass.

The ambient temperature, Tamb, is given by the hourly weather data. The first step is to estimate
the external wall temperature from convective heat transfer to the air to calculate conduction
through the wall. Calculating wind induced convection is complicated due to geometry,
orientation, and other factors such as roughness and protection from surroundings such as trees
or larger buildings. Heat transfer theory suggests a power law model for heat loss from an object
but a linear form has been found to fit the data well in the ranges often experienced by dwellings
(although this may not hold for very tall tower blocks) (Palyvos, 2008). A linear form equation to
estimate the wind convection coefficient for each surface, h.s, with wind speed, v., has been
suggested (CIBSE, 2007). With the assumption that wind forced convection acts on one side only,
the convection transfer is given by (2.2), setting vy, = 0 in (2.1) for the remaining surfaces:

hes=5.8+4.1vy, (2.2)
Qeonv,s = Ne,s As (Text,s = Tamb) (2.2)

Conduction heat transfer through each surface, Qcong,s, can be calculated from:
Qeond,s = UAs (Text,s = Tint) (2.3)

Under the assumption of steady-state, conduction through each wall is equal to the convection
from the wall, Qconv,s = Qeonds. Using (2.2) and (2.3) we can estimate Tex for each wall and from
this, Qcond,s through each wall.
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Figure 2.8 Locations of regional weather stations used

Table 2.5 UK hourly weather observations - Regional stations

Region Station ID Station Name

London 708 Heathrow

South East 795/862 Shorham Airport/Hampshire (solar)
South West 676 Filton

East of England 461 Bedford

East Midlands 554 Sutton Bonington

West Midlands 19187 Coleshill

North West 1119/1083 Stonyhurst/Shap (solar)
Yorkshire and the Humber 534/370 Bramham/ Leconfield (Solar)
North East 326 Durham

Wales 19206 St Athan

Scotland 24125 Glasgow Bishopton
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Solar gains are dependent on the building envelope’s window area, A., the glazing
transmittance, Gy, and irradiance. As windows are vertical, the incident irradiance, I;, can be
calculated from the horizontal irradiance using the Earth’s axial tilt angle on a given day and
latitude of a given location. The building solar gains, Qsl, can then be estimated by:

Qsol = Aw Gt I (24)

Building infiltration is impacted by factors such as wind speeds and the ambient temperature
which drives the stack effect (particularly in taller buildings). However, factors such as the
opening of windows have a large impact on the ventilation and infiltration rate. The Infiltration
loss is simplified to just the air changes per hour, ach, and building volume, V,, of the archetype:

Qinf = 1/3 ach x Vi(Tamb = Tint) (2.5)

Domesticinternal gains, Qgain, are estimated from the mean hourly occupancy, Py, and floor area,
A assuming 54 W per person, 0.1 W/m? for lighting and small appliances, 105 W per dwelling
for large appliances (such as refrigerators) (Grant and Clarke, 2014).

anin =54P, + 0.1Af+ 105 (26)

Nondomestic internal gains are calculated from the intensity factors in Table B-2 multiplied by
normalised occupancy from Figure B-1, Figure B-2 and Figure B-3. The sum of the heat transfers,
Quot, can now be calculated from:

Qutot = > Qeond,s + Qinf — Qgain (2.7)
The internal temperature change, ATi, is then updated by:

ATint = Qeot/ Min (2.8)

For a large set of buildings, the CIBSE (2015b) code of practice for heat networks suggests the
use of an 80% diversity factor for peak space heat load. This diversity factor is multiplied by the
normalised occupancy profile value to give the hourly probability of heating system operation
and determined randomly for each building.

If internal temperature is lower than setpoint temperature and the building is actively occupied,
then the heat demand is the heat required to raise the temperature of the thermal mass to the
setpoint temperature up to the power capacity of the heating system. If heat is supplied to the
building, then internal temperature is updated using (2.8).

Qgem = Mth(Tset - Tint) (29)

Box 2.2 Diversity factors and peak demand

Although we cannot accurately predict energy demand of a single building or active
occupants, many aggregated buildings can be well approximated. We are concerned with
the local aggregation of buildings not a single dwelling. Diversity assumes that not all peak
demand occurs at the same time and is important when sizing a power/heat plant that serves
multiple customers. The capacity would not be the sum of the maximum demand from each,
but a lower value as the maximum demands will occur at different times. The diversity factor
then indicated the peak aggregated load as a percentage of the sum of the individual loads.

2.4.1 Hot water demand

There have been a range of models produced to calculate hot water demand, mostly for
domestic buildings (Fuentes et al.,, 2018). These have generally been compiled from high
resolution sampling of water consumption and are suitable to apply in an individual building
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analysis such as the BREDEM estimation of hot water. The building model presented here does
not have sufficient detail to calculate high resolution hot water demand per building. As we are
not concerned with the heat performance of an individual building but a demand at an
aggregated level, it is thus appropriate to simplify the approach to hot water demand.

The average hot water consumption in UK dwellings is reported between 3-5 kWh per day (EST,
2008; Knight et al., 2007). The heat network code of practice (CIBSE, 2015b) states that the
Danish standard DS439 for peak domestic hot water demand is widely used in the design of DH
inthe UK. The peak hot water value (kW) for N number of domestic buildings has been estimated
from the Danish standard DS439.

Qhw,max = 17.6 + 1.19Np, + 18.8N%’ (2.10)

The peak heat load is then applied to a daily load profile. The daily domestic water load profiles
have been adapted from a study for DEFRA (EST, 2008) and a design guide for hot water in DH
networks (Robinson, 2018). From the literature, a weekday, Saturday and Sunday load profile
are given as well as a weekday/weekend variation factor. There were minor differences between
the Saturday and Sunday load profile but an average of the two is used as a weekend load profile
and the adjustment factor was applied to the weekend profile. A further adjustment, f,, for the
monthly or seasonal variation is applied as per Burzynski et al. (2012a) which is based on
BREDEM. Aggregated hourly domestic hot water demand can then be estimated from (2.10).

Table 2.6 Monthly factor for domestic hot water variation

Jan Feb Mar  Apr May Jun Jul Aug Sep Oct Nov Dec
fm 1.10 106 102 098 094 090 090 094 098 1.02 1.06 1.10

1.0
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0.8
0.7
0.6
0.5
0.4

03

0.2

£, normalised houly load factor

0.1 ——— \\cekday == == Saturday Sunday

0.0
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00
time of day

Figure 2.9 Normalised daily load profiles for domestic hot water

Quw = fm fh Qhw,max (211)

Nondomestic hot water (and other low temperature heat) demand is more challenging,
especially given the lack of absolute consumption and measured demand profiles. Fuentes et al.
(2018) reviewed hot water load profiles in various building uses which showed a pattern that
largely corresponded to occupancy.

BEIS (2018a) has published estimates of nondomestic hot water energy consumption based on
their Building Energy Efficiency Survey (BEIS, 2016d). The nondomestic hot water energy
consumption in the UK was estimated to be around 14,900 GWh in 2015 and comprises 8% of
the national nondomestic gas consumption. Given that hot water demand accounts for 10% of

36



Heat Load Model

nondomestic heat demand and around 3% of overall space and hot water heat demand in the
UK and compared to heating, hot water consumption has less variation between years, the 2015
numbers were assumed to be representative of all years. Further, it is unclear how each of the
activity classifications produce hot water. In the case of larger hospitality buildings for example,
it is possible that hot water is constantly produced and used in short term storage tanks. Given
this, a simplified approach of assuming 8% of nondomestic gas consumption is for hot water,
produced by gas boilers (at 75% efficiency) distributed evenly over all hours was assumed. The
use of nondomestic gas consumption has its own issues concerning the number of nondomestic
gas connections (see section 2.4.2), but it is assumed that large hot water production has been
from gas.

2.4.2 Model calibration

The annual domestic heat demand is then compared and calibrated with domestic LSOA gas
consumption from 2016 for LSOAs that had at least 50% of dwellings connected to the gas grid
using an average boiler efficiency of 85% (Palmer and Cooper, 2013). An assumption is made
that the dwellings connected to the gas grid are evenly distributed per dwelling type. This may
not necessarily hold true in all areas, for example, all flats in a particular LSOA could be
disconnected from the gas grid while all other dwelling have a connection, but this level of detail
is currently unobtainable. For areas that had a lower percentage of gas connection, the average
regional adjustment was applied across all years.

Table 2.7 Average calibration factors per region

Region LSOAs modelled Modelled LSOAs with  Mean calibration factor
above 50% domestic (modelled/measured)
gas connection

London 3443 2047 0.92
South East 906 654 1.01
South West 353 215 0.99
East of England 405 337 1.10
East Midlands 449 389 1.09
West Midlands 919 829 1.15
North West 1002 856 1.13
Yorkshire and the 723 646 1.09
Humber

North East 357 324 1.11
Wales 181 146 1.07
Scotland 1051 764 0.94
Total 9789 7207 1.03

Nondomestic modelled heat loads have been adjusted using the mean regional domestic
adjustment factor. The number of nondomestic gas connections do not correspond to
nondomestic premise count from CaRB2 as shown in Figure 2.10. Neither is there a dataset on
the number of 'non-gas' nondomestic premises as exists for domestic buildings. In the
nondomestic sector, multiple premises can share a single gas meter in one building, or across
multiple buildings or may have an unconnected supply point. Analysis of the nondomestic gas
consumption data shows that around 6% of this fall into the unallocated category. Also, the
designation of a nondomestic gas meter is arbitrary and based on a 73,200 kWh cut-off applied
by BEIS (2020c), therefore some smaller nondomestic premises fall incorrectly into domestic
consumption and vice versa. In addition, it is possible that some industrial gas use may also be
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present and it is not possible to easily subtract this demand. However, it is assumed that
industrial demand will be small percentage in urban areas with high heat demand density (but
may be higher in the modelled MSOAs with highest gas demand in Figure 2.7).
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Figure 2.10 Comparison between CaRB2 count and nondomestic gas meters per MSOA
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Figure 2.11 Modelling steps for aggregating domestic and nondomestic demand

2.4.3 Parameter sensitivity

The sensitivity of the input parameters to the thermal model was tested. Each parameter in
Figure 2.12 was tested one at a time by scaling the parameter and observing the percentage
change in total heat load for the entire six-year period. The sensitivity was conducted on 1000
domestic buildings, comprising of each domestic archetype in the ratios given in Figure 2.1 using
London meteorology data.
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The most sensitive parameters observed in advanced building simulation models are the wall U-
values, ventilation rate and setpoint temperature (Imam et al., 2017). Linear responses to the
inputs are observed with window thermal transmittance and SHL. Increasing the transmissibility
value results in larger thermal gains and thus reduced heat load. The SHL values encompasses
both fabric U-values and air change losses. The most sensitive input parameter to the model is
the internal setpoint temperature. Reducing the setpoint causes a rapid reduction in heat load,
but a rapid increase is not observed with increasing setpoint. A limitation of this model is with
the method in which the model infers occupancy and the power capacity of the heating system
which both limit the maximum heat demand of a simulated building. As heating systems are
normally sized according to the heat load requirements of a building, a constantly occupied and
unlimited power heat source should result in larger response in heat load, mirroring the
observation with decreasing SHL.

4400,
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% Int. Setpoint
3 Window Trans.
[+]
cu SHL
o
= Thermal Mass
[i}]
2 Wind Coeff.
o
Floor area
-
0 0.5 1 1.5 2
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Figure 2.12 Sensitivity of thermal model parameters

2.5 Results

The total domestic and nondomestic modelled areas represent 22% and 42% of the total
national (GB) value. These were extrapolated to represent 100% of national demand. These
values can be adjusted and extrapolated to future demand estimates specified as a percentage
change from current heat demand, for example if the domestic stock were to grow by 10% then
the domestic demand figure is scaled accordingly. The 2010 heat load profile is shown in Figure
2.13. The results for 2010 weather data are presented as a comparison with previous estimates
of 2010 GB heat demand in Table 2.8 and government estimates (DECC, 2015a) in Table 2.9. The
modelled loads correspond well to the annual demand presented in other studies while the peak
load has close agreement with Watson et al. (2019) estimate. Quiggin and Buswell (2016) used
a restricted and unrestricted profile giving two peak values and the domestic annual figure was
imputed from heating efficiency assumptions. Nondomestic annual consumption has been
estimated at 124 TWh while the other studies estimated 144 and 105 respectively. The
nondomestic peak (which does not coincide with the domestic) is substantially lower than
Sansom’s. However, Watson et al. (2019) suggests that Sansom overestimated their peaks and
their estimate is more robust due to their use of multiple load profiles.
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Table 2.8 Comparison of 2010 heat demand with previous estimates

Model Domestic Domestic Peak ND Annual TWh Total Peak
Annual TWh GWin GWin

HeLoM 362 172 124 219

Watson et al. (2019) 391 170 - -

Sansom (2014) 398 277 144 358

Quiggin and Buswell (2016) 358 262/117 105 -

Table 2.9 ECUK 2010 heating consumption estimates

2010 Domestic TWh Industrial Service Total Nondom Total TWh
TWh TWh TWh
Space Heating 392 35 114 149 550
Hot Water 82 - 22 22 104
Total 483 35 136 171 654
200
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Figure 2.13 Modelled national hourly heat demand for 2010
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Figure 2.14 Comparison of national coldest day and mean December demand profile
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A comparison of the GB load profile for the December average and the peak demand day as
modelled in HeLoM are shown in Figure 2.14. The average shows that morning peak is typically
larger than the evening peak. However, the peak day has a larger evening peak occurring
between 1700 and 1800. The peak to trough ratio is larger than that found by Watson et al. who
have a flatter demand curve on the peak day, but it is less than Sansom’s. The load profile used
in Watson et al. reflects the heating pattern of a heat pump while Sansom’s load is based on the
equivalent gas consumption. If this is the case, the implications of a high peak for the operation
of domestic heat pumps may have profound consequences for the electricity network. To
prevent surges in demand, the consumption pattern would need to be altered to flatten the
demand profile or some form of demand side flexibility may be required such as TES.

The annual demand duration curve in Figure 2.15 shows that the nondomestic demand is
generally consistent throughout the year. Both the domestic and nondomestic showing a steep
increase of relatively few hours at peak load with those few hours combining to increase the
peak load by around 35 GWu. The hourly national heat load results for all modelled years is
shown in Figure 2.16. The heating season can be clearly observed in the darker areas as are the
milder periods which punctuate periods of high demand mid-winter.
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Figure 2.15 Domestic and nondomestic national heat demand duration curves for 2010

2.5.1 Urban heat load

The distinction between overall GB heat load and the urban heat load is made as DH would likely
be constructed in urban areas owing to the favourable economics. The ratio of domestic to
nondomestic heat loads will make a difference to the daily load profile as will the proportion of
each archetype, with urban areas having a higher share of flats for example.

The heat demand from the top 5% of HDD MSOAs has been used as a proxy for urban heat load.
Figure 2.17 shows the heat demand duration as a proportion of peak for the GB demand
compared to the urban demand. The demands were first normalised such that the annual
demands were equivalent and the area below each curve is the same.

The figure shows that the urban base load as a percentage of peak is higher than the overall GB
load and remains higher for half the time. The GB load curve then begins to rise sharply,
overtaking the urban demand with both curves exhibiting a sharp peak as in Figure 2.15. Figure
2.18 shows that the average urban winter load profile has lower peaks and lower peak to trough
ratio compared to the average GB load profile. It also has a much more pronounced morning
peak and a quicker drop-off while the daytime loads from nondomestic building prolong the
drop-off to the mid-day trough.
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Figure 2.16 Modelled national hourly heat load 2010-2015 from HeLoM
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Figure 2.18 Average winter load profile comparison

The spatiotemporal load at the LSOA level is shown in Figure 2.19 (with MSOA boundaries
marked in black) at four times (9 am to 6 pm). The annual values of domestic LSOA load have
been calibrated to consumption data, but the intraday profile and nondomestic load at this level
are estimated model outputs. Such a tool has potential for use by urban planners who may want
to identify areas of synergy such as whether a residential area with morning and evening peaks
is beside a commercial area with day-time load.
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2.6 Discussion

HelLoM has been developed to generate estimates of heat load for both urban sub-city areas
and the national level. Previous studies using similar methods have provided an exploration of
domestic loads. However, any future large-scale DH development is likely to include
nondomestic buildings as well. This model builds on previous work in the segmentation and
characterisation of archetypes. A thermal model using regional weather data has been
developed to provide hourly heat loads. It too builds on previous work and can be used to test
the efficacy of efficiency interventions in future work.

Knowledge of localised peak loads is necessary when planning electricity infrastructure such as
in the event of large-scale consumer HP uptake. It also has an impact on the design of DH such
as pipe sizing and for energy centres which need to be adequately sized to meet peak loads. The
results of the highest HDD areas have been aggregated here as a substitute for total DH load.
The results show that there is a discernible difference in the average heat load profile between
the national load profile and the urban subset which demonstrates the need to disaggregate the
urban load. On the national scale, the impact of peak winter heating loads on the electrical
system has been the subject of several other studies. This model suggests that the peak may be
more likely to occur around the evening peak with the cumulative contribution of domestic and
nondomestic loads.

2.6.1 Development challenges

This work draws on established building stock modelling methods and building thermal
modelling such as BREDEM. The thermal model contains many simplifications. It is not suitable
for a more detailed single building analysis where more information on the construction,
orientation and occupancy would be available. The nondomestic archetypes used here were
limited to 12 activity classes but could have benefited from data on activity types as well
accurate floor area estimates and more monitored occupancy data. The novelty of the study in
this chapter emerges from the synthesis of the methods and data sources used. It has produced
high spatiotemporal resolution output using historic meteorological data as the main driver of
demand.

Modelling demand at high resolution necessitates high computing and data storage
requirements. This is especially the case as the spatiotemporal resolution increases as more
detail needs to be captured. The study has relied on historical consumptions data. A central
challenge remains in the validation or calibration of results in the absence of reliable
benchmarking data on building energy performance (Oreszczyn and Lowe, 2010). Calibration of
the output has been done at an aggregated level against total and peak heat load. Using this
method, the accuracy of calibration decreases with increasing spatial resolution. At higher
resolutions, the impact of any outlier or anomalous building has a larger impact on the total heat
load. This may become less of a challenge in future with smart meter monitoring.

The translation of the modelled heat loads to HP electricity load profiles (see section 3.7.3) may
also be dubious. HPs are unlikely to be operated as gas boilers are. Adapting these heat loads to
HP electrical load profile may be inaccurate. A similar argument could be applied to the use of
low temperature DH demand which is likely to have a flatter load profile.

Such a tool however, has potential for use by urban planners. It can be used to identify areas of
temporal synergy such as whether a residential area with morning and evening peaks is beside
a commercial area with daytime load. The results cannot be used for local DH design. DH design
typically requires a more localised analysis of heat loads, identifying large heat loads, heat sinks
and the loads that differ from the standard occupancies modelled here.
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2.6.2 Uncertainties in demand

A central assumption underlying the modelling here is that any future DH expansion will occur
in areas of high HDD. The spatial distribution of heat loads is unlikely to differ much. However,
there are large uncertainties in future demands from factors such as population growth,
efficiency improvements and climate change effects. While population growth and efficiency
improvements can be accounted for in the presented modelling, climate change may have the
biggest impact. The Met Office UK climate projections envisage a range of 0.7 - 4.2°C warmer
winters by 2070 (Lowe et al., 2018). Additionally, there may be more erratic weather patterns
whose impacts cannot be easily measured or recreated using past weather data. Building
efficiency improvements may counteract increases in population growth but more recently we
have experienced an upheaval in working patterns and building occupancy. How this might
affect absolute demand, day to day temporal variations from weather patterns and seasonal
variation from climate change is still unclear. These uncertainties do not invalidate any such
analysis. Combined with the many other uncertainties, the modelling will provide an
understanding of the causalities in the system and enable better system design.
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3 ELECTRICITY COST MODEL

Chapter Summary

This chapter details the development of the Electricity Cost Model (EICoM). To accommodate

the variability of renewable generation, flexibility in the network is vital. A primary flexibility

option is grid scale electricity storage. The goal of EICOM is to model the effect of storage on
electricity costs for highly renewable scenarios. A simulation is made of the electricity system
using capacity factors based on measured meteorology to drive renewable output and the
consequent operation of grid storage to balance differences between demand and generation.
A marginal costing method is devised to calculate the operational costs incurred in each hour.
These cost structures can form a transparent economic base for informing market design and
setting prices for use in energy system models. After validating the output against historic data,

ElICoM is then applied to a modified net-zero scenario. The scenario is high-renewable and highly

electrified, utilising the heat demand modelled in chapter 2. Results show that while costs for

renewable generation are relatively low, reliance on battery storage for backup particularly
during peak periods can result in high electricity supply costs. The variability and long runs of

low-cost electricity favours the use of storage. Thermal energy storage in district heating is a
low-cost option that can take advantage of this variation. The output from EICoM provides the
basis to compare storage options, analyse the impact of electrified heating and to develop the
operational control strategy for district heating.

3.1 Renewable Energy and Grid Balancing

The UK already has a large amount of variable renewable energy (VRE) on the electricity grid.
With the predicted mass electrification of other sectors such as heating and transport, the
demand on the grid is also projected to grow. Managing this demand with VRE will require a

change in the way in which the grid is operated, possibly requiring significant amounts of

electricity and other storage operated in a smart energy system.

The increase in VRE on the grid is creating challenges with grid balancing and meeting peak

electricity demand. This issue is currently solved largely through the use of dispatchable, fossil
fuel operated plants such as gas turbines. Grid electricity storage such as batteries is an option

to provide flexibility and reduce curtailment of renewable resources. A secondary objective of

this work is to provide an analysis of their economic viability and impact on electricity prices.

Historically, electricity prices have followed a predictable pattern of daily cycles of peak and off-
peak prices with seasonal variability and a strong link with fluctuations in fuel prices (Grubb and
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Drummond, 2018). This predictability enables planning of smart grid infrastructure
requirements as well as the electrification of other sectors by making informed investment
decisions. However, with VRE composing a larger share of the electricity system’s generating
capacity, electricity prices are becoming less predictable as exemplified by a recent record run
of negative prices following by a sharp spike in balancing costs on the grid (Elexon, 2019; Ofgem,
2018).

As VRE increases, imbalances between supply and demand at daily, seasonal and annual
timescales are expected to increase (Joos and Staffell, 2018). To avoid curtailment of VRE and to
ensure that low carbon electricity is supplied during periods of low VRE, some forms of electricity
storage will be required on the grid. With capital costs declining, lithium-ion batteries are
experiencing a rapid uptake at the utility scale. As recently as 2016 a deployment of 15 GWh of
battery storage by 2030 was considered ambitious (Strbac et al., 2016). More recent studies
have revised this figure to over 100 GWh by 2035 to achieve a high renewable deployment
(Aunedi et al., 2021).

The present system has a low but growing VRE penetration with thermal fossil fuel plants
composing the largest share of generation. Flexibility is largely achieved by dispatchable plant
using stored fuels such as fossil and biomass. These fuels provide a large provision of the
balancing requirements in the current system and complemented by storage such as pumped
hydro. VRE generators have been rapidly reducing in capital costs and have very low operational
costs (BEIS, 2016e). But they are inflexible, and the subsequent costs of integrating VRE must
then be considered. As the penetration of VRE on the system increases, the flexibility costs
associated with them are projected to rise (Strbac et al., 2015). The impact a larger storage
capacity will have on electricity cost patterns is uncertain. This is compounded by the
uncertainty surrounding future demand and supply profiles. While studies show that VRE could
reduce costs, there has been less analysis on the impact of the cost of energy storage on
electricity supply costs.

This chapter develops a methodology used to derive a time-series of electricity generation costs
for scenarios with high renewable deployment and with large capacities of grid storage. This is
followed by the development of a net-zero scenario, with the translation of generation costs to
electricity prices for the scenario.

Box 3.1 Definitions of Cost and Price in context

The definitions of cost and price were discussed in Box 1.1. A cost refers to the value of inputs
to an enterprise and marginal costs represents the value of adding a unit of production to a
system while price is the value paid for an output of an enterprise and is in theory, equal to
the marginal cost for an efficient market.

EICoM calculates the hourly marginal cost of generating electricity for the grid. It then adds
on to this, transmission and distribution costs which equals the total cost of producing and
supplying electricity to end users. Assuming an efficient market, this is then the hourly
electricity price to consumers of grid supplied electricity.

The electricity price then forms part of the cost of supplying heat for a DH network in the
subsequent chapter. The other costs incurred by DH network operators include the capital,
operating and maintenance costs. This will be explored further in Chapter 4. Extending this,
(although not discussed in this thesis), the cost of heat supply (and the DH operator’s profit
margin) then forms (among other factors) the price of heat to consumers.
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3.2 Review of Renewable Electricity Price Variance

Forecasting of electricity prices has been well explored. Various approaches such as
econometric, statistical, or multi-agent models are used to assist in estimating spot prices over
various time horizons. Weron has provided a detailed review on the state of the art in electricity
price forecasting techniques (Weron, 2014).

There have been numerous studies analysing the effect of VRE on spot prices. Many of these
show a rise in volatility of prices. Much of this analysis has been performed on historical data of
northern European electricity markets.

Dong et al. (2019) showed using historic data on the Nordpool market that price volatility
increases with a higher penetration of renewables. This increase in volatility is more pronounced
in regions where wind generation was dominant. Wozabal et al. (2016) performed a statistical
analysis of spot price variance in Germany, challenging the assumption that higher VRE increases
price variance. They found that small fractions of VRE actually decreased price volatility, but
higher fractions resulted in larger increases in price variance. They highlight the importance of
price variance as a revenue stream for smart grid infrastructure such as storage. Dillig et al.
(2016) use historic spot prices in Germany to create counterfactual prices in the absence of VRE.
They found increased hourly volatility in prices and show that prices in a higher VRE system are
lower on average than a system without VRE. They also find that increasing VRE in the system
results in a higher cost of dispatchable generation, potentially due to lower capacity factors.
Comparing the German system with high solar capacity and the Danish system with high wind
over various timescales, Rintamaki et al. (2017) studied volatility of prices during high VRE
periods. They observed that daily volatility of prices in the wind dominated system is reduced in
high wind areas. This is attributed to stable wind speeds over daily timescales. They also found
that volatility increased in a high solar system due to the daily fluctuation in solar power. Price
volatility on a weekly scale was shown to increases in both cases. This is supported by Wozabal
et al. who found that small fractions of wind power leads to a reduction in price volatility.

There have recently been some attempts to quantify the effects of largescale VRE in future
scenarios in various markets. Pikk and Viiding (2013) analyse the Nordpool market spot price
and predict a higher volatility in a high VRE scenarios. Similarly in Germany, Ketterer found that
an increase in wind generation capacity will lead to a more volatile spot price but with reduced
average prices (Ketterer, 2014). Sorknazes et al. (2019) Investigated the effect of VRE on
wholesale prices using a market economic simulation in EnergyPLAN. They calibrated their
economic model with 2015 Nordpool spot prices then simulated future VRE capacity effects on
prices. The authors determined that any increase in VRE generation reduces wholesale prices.

Badyda and Dylik (2017) studied historical market and renewable generation data for several
European countries. Extrapolating their observations, they predict a pronounced seasonality in
the price variance with up to three times higher average prices in high demand periods.
Maxwell et al. (2015) used a similar method to investigate the role of renewable subsidies in
Denmark. They state that future work would benefit from a better understanding of how VRE
effects electricity prices.

3.2.1 Marginal cost methods

The previous authors have studied price variance using statistical or econometric analysis to
model and describe prices in high VRE scenarios. Another class of models described by Weron
(2014) falls into the “fundamental model” category, so called as it attempts to describe the
important physical and economic factors that give rise to generation costs. The use of marginal
generating costs falls into this latter class. These models typically use defined marginal cost
curves for generators and determine cost by the point at which it intersects with demand curves.

The use of marginal costs in predicting electricity prices is a standard method to predict system
prices and is a useful price estimator (Misgens, 2006). Electricity markets consist of many
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generators bidding to supply electricity, each with differing costs. Economic theory predicts that
in a market with perfect competition and sufficient capacity, the market auction price should
clear at the cost of supplying a marginal increase of demand in the system. Further, the price of
electricity should be equal to the marginal cost of the most expensive generator active on the
system. Even though cheaper generators may be active on the system, market price is set at the
highest auction clearing price and all electricity generators obtain the same remuneration.

However, the actual wholesale price of electricity is rarely at the marginal cost due to market
imperfections and secondary costs. Marginal costs can provide a reference point about which
wholesale prices deviate. Marginal costs have been shown to be the largest component of day-
ahead wholesale electricity prices in the UK. This includes the added costs of transmission,
distribution and mark-ups from utility companies, composing about 40% of end electricity prices
(Gissey et al., 2018).

Haas et al. (2013) study the impact of solar power in European electricity markets using a
marginal cost method. Like other studies, they predict higher volatility at both hourly and daily
timescales which will in turn result in higher operating costs for dispatchable generators in the
long term. They highlight the growing importance of balancing markets going forward in Europe.
Morales et al. (2011) used locational marginal costs to study the impact of regional wind power
generation on a simulated electricity market to obtain statistical characterisation of wind prices
with wind power and Miisgens (2006) has used marginal costs with a dispatch model to study
market power in Germany and the effect of integration with other markets. A study of the merit
order effect due to the cost of wind generation found depressed electricity prices and lower
returns to other generators in the Spanish market (Figueiredo and da Silva Pereira, 2017). The
authors used this to highlight the inadequacy of the Iberian power market to incentivise further
investment.

Marginal costs have been used by Lamont to assess the system value of VRE and to optimise
generator capacity on the GB system (Lamont, 2008). They use a simplified dispatch model of
‘always-on’ baseload, then a selection of VRE or dispatchable plant based on marginal costs.
They assumed that the cost of constraining wind power is at the price set by the renewable
obligation certificate rather than marginal run costs. Green and Vasilakos (2011, 2010) used a
market equilibrium model with marginal generator costs to study market behaviour and the
impact of wind power on long-term prices. They find that yearly variations of wind output can
affect intra-year revenue for wind generators by up to 20%, but this is lower than the present
impact of fluctuating fuel costs. In addition, they find that that the revenue wind generators
receive for constraining output has significant consequences on the resulting capacity mix. Seel
et al. (2018) have used marginal costs to analyse wholesale price patterns in the four grid regions
of the USA. Using a capacity expansion model to derive high VRE scenarios, they found a
reduction in average annual prices throughout but differing average price patterns based on VRE
mix and region.

Notably, in the literature presented, there has been a lack of analysis on the effect of large-scale
grid storage on electricity supply costs. The method presented in the following sections presents
a contribution to this literature.

3.3 Modelling Methodology

This section first develops a simplified representation of the electricity system with large
fractions of VRE and grid storage. It is a simplified representation where each generator type is
treated as an aggregate, while spatial and transmission constraints are not explicitly modelled.
Generation capacity is split into flexible and inflexible generation. Flexible generators are
assumed to be Combined Cycle Gas Turbines (CCGT) that are able to adjust output to follow
demand. VRE output varies uncontrollably with the wind resource but can be spilled or
constrained. Baseload is assumed to be nuclear generation with constant output but could
equally be a thermal generator with carbon capture and storage (CCS). The approach assumes
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flexibility is first achieved with grid storage, then via dispatchable CCGT. The supply of electricity
from storage is essentially treated as another generator

Note that the costs initially calculated are at the point where generator and storage supply
electricity to the high voltage grid, and do not include transmission and distribution losses. These
costs might be simple constant additional costs per kWh, or more complex reflecting hourly
demand variations which determine network capacity and losses. These additional costs will be
smaller for high voltage supply, such as to industrial or DH HPs for example, compared to the
majority of consumers on the distribution grid.

3.4 Dispatch Model

Renewable generation is defined via hourly capacity factors (the percentage of installed capacity
generating power), from historical meteorological data and projected installed capacity.
Dispatchable generation capacity is assumed to be sufficient to meet any residual deficit in
demand. The maximum required dispatchable generation occurring in a year is then one input
to the capital cost of the system used in the calculation of marginal costs.

Demand data is an exogenous input to the model and assumed inelastic i.e., demand is always
met regardless of the cost of electricity. Hourly demand is scaled for each scenario from a
historical demand timeseries such that it corresponds to the same time period to maintain the
weather linkage. This initial scaling assumes that historic demand profiles are preserved in future
scenarios and will be revisited later.

The capacity factor or Availability, A, for each renewable generator (onshore wind - ONS,
offshore wind - OFS, solar — SOL) is multiplied by the installed capacity, C, to obtain hourly
renewable generation. This is added onto a baseload generation capacity, Css,, defined in the
scenario. Baseload generation is assumed constant throughout the simulated period and is
always less than or equal to the minimum demand. Consequently, the baseload never sets the
marginal price in this model.

Total low carbon electricity generation, G.cg, for each hour, i, is then the sum of baseload and all
VRE generators:

Grep,i = Cst + ConsAons,i + CorsAors,i + CsorAsoL,i (3.1)

If there is a surplus of electricity generation over demand Dj, Gicgi— Di > O, then G, — Di is
allocated to the available storage if charge capacity is available otherwise the renewable power
is constrained. If the demand exceeds the available generation G.cgi— Di < 0, then the electricity
storage is discharged by the amount D; — Gicg;. If the discharge is insufficient, the dispatchable
power generators, CCGT is then activated and the dispatchable generation is Gpsp = Di — Gics, —
GocH,i -

Here it is assumed that storage operates in coordination with VRE to meet residual demand
deficit or absorb the residual surplus. An implicit assumption in the modelling is that all stores
charge and discharge simultaneously by the same fraction of their capacity. High carbon
dispatchable generation is treated as a last resort in order to minimise the associated emissions.
The choice is made to contrast with a conventional market in which generators bid to supply
electricity. The aim of the smart grid infrastructure is to prioritise emissions reductions. This may
well arise in a conventional market structure with the inclusion of carbon costs. Initially, no
constraints are placed on the charging and discharging power of storage. This assumption
becomes reasonable as the number of individual stores increases but will be verified in the
results.
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3.5 Marginal Cost Method Development

Upon completing a simulation of the electricity system, each hour is classified as one of four
basic hour types, some of which have further subdivisions. For each hour type there is a different
algebraic expression used to calculate the marginal electricity generation cost, MC.

e Type 1 SRP: Hours with surplus renewable generation, “Surplus Generation hours”.
These are hours where supply exceeds demand and remaining storage capacity.

e Type 2 CHR: Hours in which electricity storage is charged “Charge hours”

e Type 3 DCH: Hours in which electricity storage is discharged “Discharge hours”
subdivided into:

- Full cycle discharge (DCHf) hours where storage capacity is full prior to
discharging

- Part cycle discharge (DCHp) hours in which storage is partly charged prior to
discharging

e Type 4 DSP: Hours in which backup dispatchable generation is required “Dispatch hours”
subdivided into:

- Peak dispatchable hours DSPp where the difference between electricity
demand and low carbon generation is at its highest which determines its
capacity (GW)

- Off-peak dispatchable hour DSPo which are all other dispatchable hours

The procedure must be carried out in a particular order. After simulating the electricity system
for a period of a year (or number of years), the marginal costs for Surplus hours, Cse, are
calculated followed by the cost for Dispatch hours, Cpsp, both peak and off-peak. Charge hours
costs, Ccur, are then calculated which finally enable the Discharge hour costs Cpcy, to be
calculated.

Dispatch Surplu.s Dlspatgh Charge Discharge
Model Generation Generation
. . Hour Costs Hour Costs
Simulation Hours Costs Costs

Figure 3.1: Order of operation to calculate marginal costs for each hour type

3.5.1 Surplus generation hours

When baseload and renewable generation exceeds demand and electricity storage charging
capacity, curtailment of renewable generation will be required. It would be economic to curtail
the renewable technology with the highest variable cost (however these are small for renewable
generators). This is analogous to creating a merit order of net variable cost and identifying where
Demand intersects the resulting merit-order stack. This indicates the particular renewable
technology that sets the market price during that hour and may vary hour by hour. This
technology is the “marginal technology,” denoted by the subscript m.

The marginal costs for Surplus Generation hours, MCsgp, is then given by the variable costs of
the marginal generator, Vi, minus the cost of constraining output from the marginal generator,
Mm:

MCsrp,i = Vini — Mo, (3.2)

3.5.2 Off-peak dispatch hours

When electricity demand exceeds the available low-carbon power including stored electricity,
demand must be met by dispatchable plant, this is assumed to be CCGT but could be one of
several plant types. To minimise carbon emissions, it is assumed that this plant only operates
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during the hours required to make up the generation shortfall. Therefore, all the year-on-year
costs of the dispatchable plant must be met by this operation; but it is assumed these are legacy
plant with sunk costs, so they do not incur capital costs. Hence, for off-peak dispatchable hours,
the marginal generation costs, MCospo, in £/MWh is given by the variable operating costs of the
dispatchable plant:

MCpspo,i = Ve (3.3)

The variable operating costs include fuel and carbon costs, and variable O&M costs. The O&M
costs in this case will need to be a conservative estimate due to the impact on efficiency and
O&M of frequent ramping, part load and cold start.

3.5.3 Peak dispatch hours

The annual fixed operating costs of the dispatchable plant are recovered during the peak
dispatch hours. These costs are often called Fixed Other-Works Costs (FOWC) which are a close
approximation of the Net Avoidable Cost (NAC), the net cost of keeping the plant open for
another year.

In a system with VRE, there is uncertainty over the operation of dispatchable capacity and
therefore of the revenue it will obtain from the hourly market. Therefore, the UK has had a
Capacity Market auction whereby the generator or store receives a guaranteed annual payment
regardless of the amount generated. This market is currently under investigation but is assumed
to apply in the costing methodology (Carbon Brief, 2018). Battery storage was permitted to
participate in the capacity market; however, the costs of providing peak demand from storage
remains high. The National Grid recovers the cost of the capacity market auctions during peak
weekday demand periods, November-February 4-7pm or around 240 hours or 2.7% of hours in
the year (though this means of allocation is somewhat arbitrary) (Inenco Energy, 2016).

Following this means of recouping marginal capacity costs, 2.7% of the Dispatch hours with the
highest difference between Demand and Low Carbon Generation, Di — G.cs;, are allocated as
Peak Dispatch hours. The marginal cost for peak dispatch hours, MCpspp, is then calculated by
the product of annual fixed costs of the dispatchable generator Fp, and the peak dispatchable
generation, Gp,, divided by the the forced outage rate of dispatchable plant, Rep, and total
dispatchable generation in all peak dispatch hours, plus the variable costs:

Fp rgg{x(GD,i)

(1= 12 Sosip(Gp)

MCpspp,i = +Vp (3.4)

3.5.4 Charge hours

A projection of the incremental renewable generator is made which is the renewable generator
that sets the cost of charging storage. The incremental technology in the UK would likely be
offshore wind. This is based on the constraints on the building of further onshore wind, its higher
output in winter when demand is high and the higher cost of solar generators. The incremental
technology is distinct from the marginal generator which can be any VRE (including incremental),
storage or dispatchable, during an hour.

The marginal generation cost during charge hours is set by the incremental technology, denoted
by subscript n, for a given scenario. The variable cost of the incremental technology, V., during
surplus hours in which it is less than that of the marginal technology must also be recovered.
These ‘energy credits’ can be calculated by the difference in variable costs minus the cost of
constraining output between the marginal and incremental generator:
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2 Gn,i[(Vm,i - Mm.i) - (- Mn)] (3.5)

SRP

The fixed costs of the incremental renewable generator, F,, across the year (or the chosen time
period for calculation) must be recovered. This fixed cost is given by the expression:

Fo = ) (AniMCri) + ) (AniMCocn) + ) (AniMCosp)

CHR DCH DSP
- 2 An,i(Vn - MTL) (3 6)
CD1D )
+ C 2 Gn,i[(Vm,i - Mm,i) - (Vn - Mn)]
i SRp

Substituting for MCpcn (3.12) and using the following approximation:

DZH (Am' [ZCHRC(A”'iMCi)/ ZCHRC(An.i)D
- (Z Am‘) (et an)

DCH

(3.7)

The marginal cost during charge hours is given, from (3.6), (3.7) and from (3.12) below, by:

MCCHR,L'
1 1
Fa = 5= Zocn Kocn iAni = Zpse(AniMCospi) = 7= Zsrp Gni (Vi = M)
N 1 Xpch Anyi
NepgAn (1 + ——')
CHR=n,L Es Ycur Any (3.8)

1
(C_HZSRP Gn,i +2Xcpp An,i) (V, — My)

1
E_SZDCH Ani + XcurAni

3.5.5 Discharge hours

Assuming the storage has a constant efficiency Es with no standing loss assumed then for every
unit of power discharged, 1/E; units of power must be charged. The cost of charging the storage
must be recouped from discharging. The assumption is made that all the individual batteries are
charged and discharged evenly across each individual unit in the capacity as if one single
aggregate battery. The cost incurred from this charging is dependent on the cumulative charge
hour costs preceding the discharge, back to when the store was last empty, denoted with CHRc.
The average cost of charging during charge hours in the period preceding the discharge,
weighted by the availability of the incremental renewable generator is given by:

ZCHRC(An,iMCi)/ZCHRC(ATM.) (3.9)

The fixed cost of storage capacity must also be recovered during discharging. Here it is assumed
that the marginal cost of supplying power from discharging storage is driven by the incremental
storage cost to meet incremental demand and the cost of charging the storage from renewable
generators.

The recovery of the fixed cost of storage during discharge hours in this method is recovered
through full charge-discharge cycles. A full discharge cycle is defined as each time the storage
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capacity is full preceding the discharging cycle which can run for multiple hours. Part discharging
cycle are other hours when storage is not full prior to the discharge cycle. The cost of grid storage
during part and full discharge hours Kpcn, is defined by the storage capacity, Cs, the fixed and
variable running costs of storage, Fs and V;, the storage efficiency (defined as effective energy
output per input), Es, and the discharged amount Qpch:

Kpcrp,i = Vs (3.10)
FCs
K ==
beHrt Yoy Qpen,i (3.11)

The marginal cost during a discharge hour is then given by:

Y cure(AniMC;)
Es ZCHRC(ATL,L')

MCpch,i = Kpcn,i (3.12)

3.5.6 Data sources

The capacity factor data to construct hourly renewable generation profiles have been obtained
from the work of Pfenninger and Staffell (2016) published on the ‘Renewables Ninja’ website.
The capacity factors are derived from a combination of historical meteorological data and known
or planned renewable generator locations.

Electricity demand data is obtained from the National Grid’s historic demand data archive which
contains the demand on the transmission network and a breakdown of each power source
meeting the demand per half hour (National Grid ESO, 2019). Hourly demand is calculated from
the sum of two half hourly periods. This data however is not fully representative of the true GB
electricity demand as it does not include any power generation embedded in the distribution
network.

Cost assumptions where possible were obtained from government projections. The cost of
dispatchable generation (CCGT) was obtained from Leigh Fisher and Jacobs (2016) report
commissioned for DECC. Similarly, the cost of renewable generation was taken from a review
undertaken by ARUP (2016) for DECC. Other assumptions were sourced from the Department
for Business, Energy and Industrial Strategy Electricity Generation Costs report (BEIS, 2016e). An
electricity storage cost review by IRENA (2017) was used for battery storage (Li-ion) assumptions
supplemented by Lazard’s (2019) levelised cost of storage analysis. Where applicable, all costs
in this thesis have been adjusted for inflation to 2020 figures. An overview of these can be found
in Table C-1 of Appendix C.

3.6 Model Validation

The model output is first compared to historic generation data for the year 2016 before the
results from two high VRE scenarios are presented. These scenarios are adapted from the
National Grid’s Future Energy Scenarios (2017a), using the projected generation capacity mix
from the two scenarios that conform to the 2050 decarbonisation targets.

3.6.1 Dispatch model

The model output using 2016 renewable capacities is compared to historic generation data for
the year in Table 3.1 (BEIS, 2017b). This method is designed for a renewable and storage
dominated system thus an exact match for electricity generation and prices with a present-day
system should not be expected. However, it is useful to compare the low carbon generation
output from the model with the data. In the model, all other generation is assumed to be
dispatchable whereas this is not the case in the present-day system.
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Baseload nuclear generation is overestimated as the model assumes a 100% availability. The
data shows an 83% annual capacity factor for nuclear generators which would be due to
maintenance or faults affecting availability. Comparison for the output of the renewable
generation data from Stafell and Pfenninger (2016) shows that it has been calibrated accurately.
Solar PV and offshore wind outputs are very close to historic output data while onshore wind
has been slightly overestimated.

Table 3.1 Comparison of 2016 low carbon generation with modelled generation

Onshore Wind Offshore Wind Solar PV Nuclear

TWh TWh TWh TWh
2016 Data 21.1 16.4 10.3 65
Modelled 24.3 16.0 10.7 78

3.6.2 Scenario Analysis

The scenarios “Two degrees” and “Community Renewables” from the National Grid’s Future
Energy Scenarios 2017 are designated here as ‘Scenario A’ and ‘Scenario B." The details of these
scenarios are presented in Table 3.2. The renewable generation and grid storage capacity from
the two scenarios was used as input for the scenario analysis and 5% interest on all capital costs
has been applied for initial analysis.

Table 3.2 National Grid FES Scenarios comparison

Scenario Name Demand Offshore Onshore Solar PV Nuclear Total Grid
(relative Wind GW Wind GW GW GW Capacity Storage
to 2017) GW GWh

A (Two +25% 43.4 22.3 43.7 20.0 224.3 17.3

Degrees)

B (Community +48% 32.5 50.7 66.2 18.6 267.6 29.0

Renewables)

A comparison of the modelled marginal electricity generation costs for each scenario with
wholesale prices from 2016 in Table 3.3 shows that the average daily cost of electricity
generation is lower than the 2016 average price in both high VRE scenarios modelled here. The
maximum average daily cost is higher however due to the fixed annual costs of dispatchable
generation (assumed here as CCGT) being recouped over fewer hours of the year. Additionally,
these would also be the days that have the highest difference (residual) between electricity
demand and renewable generation, requiring dispatchable plant to fulfil the remaining demand.

Table 3.3 Cost comparison with renewable capacity and storage

Scenario Renewable Wind Share of  Solar Share of Average
Capacity GW total capacity  total capacity £/MWh

A (Two Degrees) 109.4 29% 19% 34.1

B (Community Renewables) 149.4 31% 25% 35.1

2016 actual 26.79 16% 11% 41.12

The scenarios were modelled using demand and renewable data from 2006-2016. The results
for individual years can be found in Appendix. A. detailed look at Scenario A in Figure 3.2 shows
a winter month period in 2016 with the residual renewable generation (above) and storage
levels and electricity costs (below). It shows that costs frequently spike corresponding to cycling
of electricity storage levels in the system. When storage levels are full, surplus generation hours
resultin low costs. However, as a result of renewable fluctuation the storage level varies rapidly
requiring discharge then dispatch periods, which result in higher costs. Two peak dispatch hour
are observable near the beginning of December when residual generation is most negative. It
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suggests that the storage capacity in Scenario A is insufficient for the renewable capacity in the
absence of other flexibility options.

Explicit constraints on charging and discharging rates have not been applied. However, the peak
power to energy ratio in the simulations of the scenarios was 0.66 MW/MWh. This is within the
limits of grid scale lithium-ion storage where typical power to energy ratios are 1.0 (Hesse et al.,
2017).

—— Residual Generation
60000 U
40000
=
= 20000
=
0
-20000
2016-12 2017-01
20000 1200
—— Store Level
17500 —
1| 1nrnn fost - 1000
15000 —
~ 800
12500
£ =
< 10000 - - 600 =
p= I
7500
— 400
5000
— 200
2500 | k i Jj uh
0 l l 0
2016-12 2017-01

Figure 3.2: Residual renewable generation (above) and resulting cycling of storage and costs
(below) for Scenario A 2016

Off-peak dispatch hours are cheaper than discharge hours under the current cost projections
used. This is the case with the current assumptions of short run variable costs of dispatchable
hours being less than that of discharge (fuel £35/MWh, carbon £70/MWh, O&M £1.5/MWh).
For the storage capacity defined in Scenario A, a total short run variable cost for dispatchable
generation would need to be at least that of the highest discharge cost, £251/MWh. From the
perspective of limiting carbon emissions, it would be desirable to have DSP hours cost higher
than DCH hours. Adjusting DSP hour costs to be higher than DCH hours meant that the average
in Scenario A increased from £36.34 to £49.83, almost a 40% increase in average annual costs.

Within the current market framework, unless fuel or carbon costs increase above projected
values, dispatchable/thermal generation would be higher in the merit order than less carbon
intensive electricity from discharging electrical storage, owing to their lower marginal costs,
Figure 3.3. Figure 3.4 shows adjusted dispatch hour costs to reflect an ideal scenario where
dispatch costs are higher than discharge costs.
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Figure 3.4: Scenario A 2013 price duration curve with adjusted DSP hour costs

For both scenarios, the positive residual generation from renewables is far higher than the
negative residual, Figure 3.5, which suggests an overcapacity of renewables in both scenarios.
Analysis of the residual duration curves as well as the absolute maximum of negative residual
generation can allow better estimates of storage requirements and the corresponding effect on
prices, but an optimisation of scenario storage levels is beyond the scope of this study.

Figure 3.6 shows a 24-hour rolling average of the mean modelled generation costs for scenario
A from the 2006-2016 data, scenario B exhibited a very similar distribution. A clear seasonality
can be observed in the costs, with higher cost periods being concentrated in the winter where
despite wind generation in these scenarios being higher, there are periods of low generation
coinciding with high demand often leading to higher costs.
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Figure 3.6: Scenario A 24-hour rolling average of modelled costs and trendline 2006-2016

Another observation is that an increase in the share of renewables does not directly lead to
lower average electricity generation costs. This can be seen in the average cost difference
between scenario A and B. These are similar despite B having a significantly higher renewable
capacity to meet a significant difference in demand. Scenario A has higher average costs in some
year compared to B.

The fewer dispatch hours that occur within a year, the higher the maximum costs become as
there are fewer hours where dispatchable plant operates. The fixed annual costs of the
dispatchable plant per MWh of electricity grows as there are fewer peak dispatch hours against
which to recover fixed costs of the capacity. The cost of electricity from peak dispatch hours
would decline if dispatchable plant capacity decreased, in other words, if the highest negative
residual decreases.

This peaking function at high demand times is normally performed by open cycle gas turbines
(OCGT) that are able to ramp output, consequently they have high O&M and variable costs but
low fixed costs. Cost for DSP hours are based on CCGT due to their higher efficiency and
predicted improvement in technology and ramping ability. Also, as renewable generation grows,
dispatchable generation will be gradually retired; by about 2050, the remaining dispatchable
plant may likely be already-existing CCGTs.
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3.6.3 Sensitivity Analysis

Scenario B is presented alongside high and low-cost projections to display the sensitivity of
prices to capital cost projections. In this case, the interest rate on capital costs for renewables
and storage has been adjusted from the base case of 5% to a low case of 2.5% and high case of
10%. The variable operational costs of dispatchable generation have been adjusted to +20%.

It is observable in Figure 3.7 that surplus hours are the same for each case as these are only
dependent on the variable operating costs of renewables. Peak DSP hours (not shown) are
affected in the same way as off-peak DSP hours as it is assumed that no new dispatchable plant
is built and thus no new capital is required. DCH hours are affected as expected due to the
changed annuitised capital costs of storage capacity. In this particular scenario, the costs for
charge hours in the high costs case is below the base case (Table 3.4). This is due the increased
revenue to the incremental renewable from higher costs in both DSP hours and DCH hours. If
dispatchable generation costs were left unchanged, then it is expected that CHR hour costs
would be changed in line with the change in annuitised capital costs of the incremental
renewable generator.

Table 3.4 Average price comparison for high and low-cost cases

£/MWh
Scenario B Scenario B High Scenario B Low
Average Annual Price 36.40 40.51 31.05
Average Discharge Price 156.97 181.65 134.95
Average Charge Price 62.88 58.02 53.79
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Figure 3.7: Scenario B with high and low-cost projections (clipped for detail)

3.7 Scenario Development

The scenarios presented thus far from FES 2017 have since been superseded. UK policy makers
have since introduced more ambitious net zero targets (BEIS, 2020a; Committee on Climate
Change, 2019). A scenario from the revised FES (2020) is adapted for use in the following
chapters.

An overview of these scenarios adapted from the FES 2020 data tables is given in Table C-2 and
Table C-3. The revised scenarios all have ambitious renewable generation targets. Of these
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‘Consumer Transformation’ (CT) and ‘Leading the Way’ have a high battery storage capacity,
with most of the other storage capacity comprised of short term pumped hydro. The CT has a
larger baseload, comprised of Nuclear and thermal generators with CCS, higher annual demand,
and lower fossil fuel capacity. It also has the largest electrified heating projections of all the
scenarios with the most ambitious district heating development targets. This makes it a suitable
Net Zero (NZ) scenario to adapt for this study which will be used for analysis of electrified DH.

3.7.1 Electricity demand

Electricity demand is composed of the existing demand data as per the previous scenarios but
with the addition of electric vehicle (EV) demand and HP demand. The largest departures from
the CT scenario will be the assumption of 100% electric heating as opposed to around 70% in
the original scenario. The increased fraction of electric heat demand increases the total annual
demand in this scenario to 520 TWh. Hourly electricity demand is composed of scaled historical
electricity demand profile (as described in section 3.4) and new HP and EV demand.

3.7.2 Electric vehicles demand

The daily EV charging load profile shown in Figure 3.8 was derived from the inverse of daily traffic
flow statistics (Barrett, 2020). The profile is then multiplied such that the annual demand is
consistent with the scenario demand of 87 TWh in Table C-2. This results in the same daily EV
load whereas in reality there are variations across the week and year. There are further
complexities such as EVs contributing to ancillary services and balancing (vehicle to grid), which
have not been modelled.
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Figure 3.8 Daily Electric Vehicle demand profile for the NZ scenario

3.7.3 Heat pump demand

The national GB heat demand, Dy, from the HeLoM model are used to estimate the demand for
electric heating from HPs, Dgup. The FES 2020 CT scenario has around 70% electrical heat with
the remainder from hydrogen and biofuels. For the NZ scenario we assume 100% of the heat
demand is met by HPs, increasing the electric heat load by 30%. The annual electricity demand
then increases from 450 TWh to 520 TWh. Using the ambient temperature, Tamb, a separate COP
is calculated for domestic heat pumps using a Carnot efficiency based on absolute temperatures
in K, Ecar, of 0.4 and 0.45 for nondomestic heat pumps according to (3.13) assuming an output
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temperature of 50°C (323 K). The heat demand can then be converted to a heat pump electrical
demand from (3.14).

Ecar(273 + 50)

COPyp =
HP = 573 4 50 — Ty (3.13)

Dy
Dgyp = COPpp (3.14)

Most of these heat pumps are likely to be connected to the local electrical distribution network
so appropriate distribution losses must be applied. UK Power Networks estimate that overall
distribution losses across the country are in the region of 6% (Strbac et al., 2018a). Distribution
losses, Lpst, are first estimated from (3.15) with a constant loss factor and variable power law
losses, and factors zo and z; from (Barrett, 2014). In contrast to applying a constant loss factor,
this results in larger losses when HP demand, D;np, on the distribution network is high.

Lpsr = zp + ZlDiZ,HP (3.15)

This provides the hourly variation of losses in accordance with the demand level. National Grid
(2017b) published seasonal average transmission system losses for the London region as: Spring
1.3%, Summer 1.3%, Autumn 2.1%, Winter 2.9%. Assuming distribution losses follow the same
seasonal pattern as transmission losses, seasonally losses are then: Spring 5.0%, Summer 5.0%,
Autumn 8.1%, Winter 11.1%. Distribution losses are then normalised seasonally to these
percentages and the heat pump demand, Diup, is suitable inflated.

The reference load consists of all existing time varying demands from historic demand data but
suitably scaled as per the demand in the CT scenario. The historic demand is scaled such that
the total CT scenario demand in Table C-2 is the sum of electric heating demand, EV demand
and the scaled historic demand. The modelled daily demand from 2012 for the NZ scenario is
shown in Figure 3.9.
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Figure 3.9 Modelled 2012 daily Electricity Demand for the NZ Scenario

3.7.4 Electricity generation

As described in the dispatch methodology, electricity generation comprises renewable
generators — composed of onshore wind, offshore wind, and solar PV, dispatchable generators
and grid storage (batteries). However, several further adjustments and assumptions are made
for the NZ scenario. Firstly, offshore wind technology has improved in recent years and average
capacity factors are projected to increase. Second, the increase in demand for the adapted NZ
scenario necessitates an increase in generation and storage capacities.
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The baseload generation as described in section 3.4 is assumed constant throughout the
simulated periods and is set less than the minimum demand. As it is always less than the
demand, consequently it never sets the marginal cost of electricity generation and its
composition is not an important factor in this study. However, it is assumed to be nuclear
generation with constant hourly output but could equally be a thermal generator with carbon
capture and storage (CCS).

3.7.5 Offshore wind turbine technology

The projected wind capacity factors from the Renewable Ninja dataset have an average below
40%. This is in line with UK aggregate offshore capacity factors which have increased from 30%
to 40% (IRENA, 2019; The Crown Estate, 2019). In 2020 the average offshore UK installed wind
turbine is around 3-5 MW capacity, however the largest wind turbines being installed in the
North Sea in 2020 have a 12 MW capacity for which the capacity factor is projected to be 63%
annually (GE, 2018). A report commissioned by BEIS projects aggregate offshore capacity factors
to rise by up to 60% by 2035 (BEIS and DNV GL, 2019) and design for offshore turbines of up to
50 MW are currently under development (Gerdes, 2018) which may make capacity factors
higher than 60% feasible. Offshore capacity factors are transformed for the NZ scenario by
raising the original factor to a power of 0.565 to produce a mean capacity factor of 55%. The
transformed capacity factors are shown in Figure 3.10 where the factors are more evenly
distributed whereas the original factors had a large concentration in the lower quartile (before
transformation; p =0.38, 0 =0.042 and after; pu =0.55, 0% =0.048). Higher capacity factors may
reduce storage requirements, but this also depends on how the generation is distributed across
the year relative to demands.
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Figure 3.10 Offshore capacity factors before (top) and after (bottom) transformation
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3.7.6 Generation and storage capacity

The Consumer Transformation scenario is simplified to create an all-renewable scenario. Core
aspects of the electricity system are retained from the CT scenario while sufficiently simplifying
it to work with EICoM. Other capacity such as hydrogen, other renewables, as well as flexibility
aspects such as interconnectors are omitted, this needs to be compensated for by increasing the
renewable generators.

As minimum demand has increased in the NZ scenario, the baseload generation is raised from
17 to 25 GW, the new minimum system demand. The renewable and storage capacities are also
scaled up, maintaining the relativity between the renewable generators and with storage. The
2010 weather year was used as the design year, representing a stress test with the highest
electricity costs and most DSP hours from all the simulated years.

An acceptable level of dispatchable generation, which we assume as the security of supply for
the scenario, was designated as 2% of annual demand. As per Figure 3.11, it was found that a
scenario multiplier of 1.25 is sufficient to reduce dispatchable generation to 2% of annual
demand without significantly altering DSP and DCH prices. The resulting NZ scenario generation
and storage capacities are shown in Table 3.5 and the modelled total daily demand and
generation for 2010 is shown in Figure 3.13. There was a substantial difference between storage
requirements to attain this security of supply in 2010 compared to other years.
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Figure 3.11 Base scenario adjustment factors experimentation

The remaining 2% of dispatchable generation (less than 1% of hours in a year) is assumed to be
entirely covered by system flexibility which includes industrial demand side response and
interconnectors. To compensate for the omission of dispatchable generation in the NZ scenario,
DSP hour costs are instead assumed to replaced by a ‘flexibility cost’ a value equal to the highest
DCHf cost. As the costs of DSP hours have reduced, the cost model is re-run for CHR and DCH
hours to ensure that the revenue earned by the incremental renewable generator (i.e. offshore
wind) is adjusted and consistent with the new DSP costs. This results in a small reduction
(E2/MWe,) in CHR and hence DCH costs as there are very few DSP hours in the year and account
for a small amount of revenue to the incremental generator.
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Table 3.5 CT base scenario and adjusted NZ generation and storage capacity

cT NZ
Solar GW 75.36 94.20
Offshore wind GW 82.72 103.4
Onshore wind GW 47.74 59.67
Baseload GW 17.92 25.41
Total Storage GWh 194.1 242.62
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Figure 3.12 Cumulative Demand and Generation for NZ 2010

Figure 3.12 shows the cumulative demand and generation for 2010 with the NZ scenario.
Cumulative generation is always higher than cumulative demand creating a large surplus.
However, the fraction that can be stored depends on storage power and energy capacities. The
cumulative generation minus demand line shows the surplus generation that can be absorbed
by storage. This is not the same as the actual operation generation minus demand curve which
becomes negative when demand is higher than generation.
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Figure 3.13 Daily total Demand and Generation for NZ 2010
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3.7.7 Electricity consumer price

DH HPs are assumed to be connected to the high voltage (HV) transmission and measured half-
hourly for industrial consumers. The final price is also inclusive of transmission (TNUoS) and
distribution (DU0S) charges. Transmission losses are included as per the method with consumer
HP demand, but low voltage (LV) distribution losses do not apply to HV industrial HPs.

Transmission charges are calculated based on the average power demand over three Triad half-
hours in the year (National Grid, 2017b). These are the half-hours of highest demand on the
system. These charges are normally very high with National Grid forecasting that for London the
charge will reach £60 per kW by 2025. The Triad half-hours are not known in advance but are
only identified at the end of the year. However, National Grid do provide warnings in advance
of half-hours which run the risk of being Triad half-hours. To deal with this, the ten hours of
highest electricity demand are identified and set to the maximum cost in that year if they already
aren’t the most expensive.

Distribution charges for half-hourly metered HV customer according to UK Power Networks
(2020) consist of a unit charge of 2.403 p/kWh, which applies between 11:00 and 14:00, and
between 16:00 and 19:00, on Mondays to Fridays across the whole year. A capacity charge of
7.79p per kW for every day of the year, and a fixed fee of 75p for every day of the year.

The cost of electricity supply for the NZ scenario in 2010 is shown in Figure 3.14 inclusive of the
extra charges. While we assume that this would be the price paid by consumers in a perfect
market, there are many factors that influence the price such as environmental and social
obligations, supplier operating costs and margin, and VAT where applicable. Further, different
consumers will have different tariffs and it is unlikely that domestic consumers will be exposed
to the modelled costs spikes. Tariff design is important for energy companies so that they are
able to absorb these high-cost periods and provide competitive prices for consumers.
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Figure 3.14 NZ Scenario daily mean electricity costs

There are a further cost of supply and supply margin that industrial half-hourly customers
experience such as supplier costs and profits, and system balancing costs (Grubb and
Drummond, 2018). These costs are estimated to increase the final price by £10.26 per MWh.
Assuming an efficient market, the final charges to an industrial consumer compared to the cost
of generation for 2010 weather data are shown in Figure 3.15. These costs and prices are
assumed to apply in the future.
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Figure 3.15 Duration curve of electricity prices and generation costs for NZ 2010

3.8 Discussion

A simplified electricity dispatch model has been described along with the details of a marginal
cost-based pricing method. This has produced a time-series of generation costs corresponding
to high VRE and storage scenarios. Forecasting precise electricity prices is infeasible. Rather, the
method presented here allows an exploration of future cost patterns and magnitudes that can
provide some insight into how electricity purchasing and pricing decisions can be made. The
output can then be used in energy system models to assess options such as DH storage, and to
help define markets for investment and dynamic operation.

Higher VRE capacities in the future will increase the need for investment in flexibility options.
The GB system currently has a lot of flexible dispatchable generation using stored fossil fuels. To
reduce carbon emissions from power generation, the reliance on fossil fuel dispatchable
generation will need to be virtually eliminated. Flexibility can be provided with electricity storage
of some form, but also by storage such as with DH heat (as explored later), bioenergy or
synthetic fuels such as hydrogen. Transmission links with other countries can aid in balancing
and thereby reduce storage needs.

VRE, particularly wind, has rapidly reduced total generation cost and low marginal short run
avoidable costs but requires other technologies to balance demand and supply. The cost
patterns of future electricity generation will become more uncertain and unpredictable, which
translates to uncertainty in wholesale electricity spot prices. Better knowledge of these price
patterns enables better decision making and encourages investment in smart grid infrastructure
and electrification of other sectors as well as being important for electricity utility and industrial
consumers.

3.8.1 The impact of costs

Previous studies that have quantified the distribution and variance of future electricity
generation prices have been based on detailed simulations of the electricity market. These are
difficult to replicate without access to custom tools or software. Most have also lacked an
analysis of the effect of integrating electricity storage into a system with renewables.

Electricity prices arising from markets should reflect the costs of building and operating
electricity assets. This includes storage, such that economic optimality arises to the degree
possible given market imperfections. Markets should be sufficiently competitive regardless of
who owns and controls storage operation: The operational market might be managed by, for
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example, National Grid, even if owning no storage. The costing method presented here can
inform the design of efficient, cost reflective markets that also meet other criteria such as the
avoidance of penalising the poorer consumers with extreme price spikes.

The modelling here assumes perfect foresight. In practice, real-time indicative marginal costs
could be estimated ex-ante using forecasts of social activity and weather, and hence demand,
and wind and solar generation. Using modelling taken forward as the rolling year develops, it
can take advantage of past data and forecasts of demand as well as of generation availability. At
the end of the accounting year, adjustments could be made to settlements so that they conform
to accurate marginal costs calculated ex-post.

The method has made several key assumptions, one of which is that the carbon intensity of
electricity generation should take precedence in the merit order of supply. The analysis of two
high VRE and storage scenarios shows that that the capacity cost of storage results in the cost
of battery discharge being higher than the marginal costs of dispatchable plant. The merit order
would be the same as a cost-based order if the short run cost of dispatchable generation was
more expensive than electricity discharged from storage. This would however require carbon or
fuel costs to be significantly higher than is assumed.

The high VRE scenarios show prolonged low marginal cost periods that last for several days
followed by spikes usually occurring at high demand periods where peaking plants are required.
This confirms the observation from previous work that short term variability of costs is reduced
in high wind scenarios, but intra-day variance is increased. These spikes may be predictable in
advance through projections of demand and advanced forecasts of VRE generation. Another
trend observed from these high wind scenarios is the seasonality in mean prices that are
observed in both scenarios for each modelled year. That is, the frequency of prices from
discharge and dispatch hours is higher in winter periods and suggests that there might be a role
for seasonal energy storage to reduce this seasonality effect.

3.8.2 The net zero scenario and district heating

Scenario development was not a primary aim of this study. The generation and storage
capacities presented in the NZ scenario are large and echo the messages coming from other
studies. A recent study into the lowest cost generation mix required to achieve net-zero found
that the required offshore wind capacity is more than double the existing 2030 targets at over
100 GW. Additionally, the study finds that a large expansion in the current energy storage
capacity is needed to accommodate renewable generation at between 187-312 GWh (Aunedi et
al., 2021). This goes to highlight the scale of transformation required to achieve net-zero for the
electricity sector.

The NZ Scenario is a modification of an existing National Grid scenario which is in line with the
UK’s net zero targets for the electricity sector. The scenario is modified such that heating is fully
electric with consumer heat pumps replacing the fractions of hydrogen and biofuel-based
heating prescribed in the original CT scenario. The heat pump demand is taken from the HeLoM
model with the addition of variable distribution and transmission losses. The increase in
electricity demand necessitated a larger grid generation and storage capacity such that the
relativity between total and peak demand is retained in the NZ scenario. The remaining fraction
of DSP hours were eliminated by assuming they can be covered by other flexibility measures
such as demand side response.

Once costs are generated by EICoM, various network charges are added to convert these into
final electricity prices. These prices are intended to represent the variability that would be
experienced by a DH operator in such a scenario. The magnitude of prices is expected to provide
an estimate for the operating costs of DH in the subsequent chapter. Electrified DH systems will
need to be designed to the patterns of a future electrical grid to achieve net-zero. The flexibility
they provide through TES capacity will in-part be dependent on these price patterns.
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4 DISTRICT HEATING MODEL

Chapter Summary

This chapter details the development of the District Heating Model (DiHeM). Academic and
commercial modelling of district heating is a developed field. However, the impact of
electrification and the consequences of a highly renewable grid on district heating are less well
explored. The operating strategy for cost minimising in district heating system models is
dependent on the size of thermal plant and storage capacity as well as its operational conditions.
Physics-based representations of a district heating network and thermal energy storage are
developed. DiHeM assumes a 70°C flow and variable return temperature modelling dynamic
COPs and thermal losses. Using the urban heat load from chapter 2 and hourly electricity prices
from Chapter 3 as a basis for operation, heuristic control strategies are first explored. A model
predictive control optimisation is then applied to DiHeM to find low-cost combinations of heat
pump and thermal energy storage sizes. The minimum electricity operating costs were found to
vary by year, dependent on annual conditions. Results show that thermal energy storage
equivalent to around 1% of annual demand is sufficient to minimise operating costs and enables
operational flexibility beyond 4 days. Access to this extra storage capacity could provide benefits
for the electricity system. The cost of delivered heat is found to be financially competitive with
other options, at around £88 per MWhy, but this is largely dependent on the capital costs of the
network.

4.1 Review of District Heating Modelling

Many tools and models have been developed to analyse and simulate DH. The modelling of DH
overlaps with the field of urban energy modelling, often including local electricity systems due
to the prevalence of Combined Heat and Power (CHP) based DH. There are several ways to
segment these models; based on purpose, such as simulation, optimisation, analysis type; or the
modelling methods used and approach of the model.

Modelling methods in the literature are split as physical models and black box or energy models
(Guelpa, 2020; Talebi et al., 2016). Physical models, sometimes also referred to as network
models as they explicitly model the network features, include the primary network, plant layouts
and configuration of the network. Energy models, so called because they omit direct
representation of many network features, are normally simplified representations that model
the energy transfers in the system via relationships between components. The calculations in
these can also be categorised as steady state or dynamic. DH networks are inherently transient
systems that are in constant imbalance, and steady state is rarely achieved. Most models employ
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steady state calculations for the hydraulic network components as dynamic fluid simulations are
computationally demanding and requires a large amount of input data. For example, a branch
of piping is rarely ever at a single temperature, rather temperatures propagate and details of
the losses change depending on what part of the flow is being analysed. Steady state simplifies
this to a single temperature and loss in the branch. There are cases when a detailed simulation
of the inner workings is needed; such as when measuring pressure waves which can propagate
faster than temperatures in the system (Kallio, 2020). These details are generally not required
in many forms of analysis. This review segments the literature as network design aids, simulation
models and energy models.

4.1.1 Design aid models

Design aid models are normally network models and typically aim to refine and optimise aspects
of the system including pipe size and routing; flow characteristics such flow temperature and
flow rates; and plant configuration and capacity. The network topology and pipeline modelling
can have a substantial impact on results (Guelpa, 2020). Fluid flow modelling in pipes is
computationally expensive. This is usually simplified to characteristics of flow and estimated
pressure losses for each branch between ‘nodes’ of a network. The pipe types and diameters
can then be selected based on required flow rates and modelled heat losses.

Ahmed and Mancarella (2014) developed such a model to assess the performance and
economics of DH designs. It intended to give strategic overview on the feasibility of DH given
specific inputs parameters. The model sized pipes based on flow characteristics and used
exogenous heat loads which they calculated via building simulation software (EnergyPlus). They
tested several configurations, finding that the network cost of pipework installation is the most
influential factor. The authors cite the lack of tools to evaluate techno-economic performance
of DH systems as their motivation. Barone et al. (2020) built a dynamic model to compare DH
and cooling networks to both asses feasibility and optimisation. Using an implementation in
Matlab, they calculate heat loads for every branch of the network. The model optimises flow
parameters and selects standard pipe sizes given inputs such as load topology and weather data
to calculate losses. Dominkovic et al. (2017) used similar methods to assess the interconnection
of several DH grids and optimise the connection points. Thermal characteristics of different
network layouts were compared by Kuosa et al. (2013). They used a static analysis built with
excel-visual basic that compared flow conditions and losses. They demonstrated a method that
allows adjustment of heat demand at the building level.

Modelica is a widely used language for dynamic DH modelling. It has been used to assess the
coupling of DH with distributed energy generation (Leitner et al., 2019; Simonsson et al., 2021).
Leitner et al. model the flow with a 1D wave equation, capturing the thermal inertia within the
pipe network. The authors have made their modelling library opensource. Another Modelica
based dynamic model used a combination of topology input in the form of CAD drawing and
data pre-processing in Matlab to simulate heat propagation in pipes (Hermansson et al., 2018).
Like many other studies, the model has been validated with data from an operational DH system.

4.1.2 Simulation and digital twins

Simulations of DH systems are usually ‘digital twin’ physical models created as an operational
aid and to assess improvements. This means that there is no clear distinction between
simulation or design tools. These models contain high temporal resolution dynamic simulations,
fully capturing the hydraulic network. One of the prominently used commercial simulation tools
is Netsim (2017). Netsim allows the detailed reconstruction of a DH including pipes details and
locations of loads. It can perform both static and dynamic calculations. Network layout is
modelled as a set of interconnected nodes and the level of detail can be adjusted to include only
primary pipelines or the entire secondary pipework. The flexibility of the software makes it
useful for analysing changes in the network. For example, Brandt et al. (2014) used Netsim to
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analyse distributed generation to conclude that differential temperature fronts lead to pipe
fatigue. Termis is another simulation tool modelling the hydraulic network and can use live data
to improve operational efficiency (Aveva, 2018). Other advanced features available in Termis
include the addition of forecast data and maintenance scheduling via analysis of flow conditions.
Other full simulations of DH network and plant include PSS Sincal which also allows testing of
operating strategies (Pirouti et al., 2013).

In simulation models, accurate pipe simulation allows for the estimation of pressure drops and
thermal losses in the network. The topology of the network is also vital to the simulation, and
the tools have various ways of inputting and modelling the network. Ancona et al. (2014) use a
graphical user interface to input network layout. The geometry is input as a series of nodes with
components attached such as heat exchangers. They validate their model against Termis.

The commercial tool Apros (2021) is used for the simulation of DH systems. It can model both
the thermal plant and the hydraulic network. Kallio (2020) created a digital twin of an entire
network down to substation components. Despite validation with historic data, errors were still
present in the simulation with the author citing the difficulty of simulating a high level of detail.
This was also the issue with needing to refine the calculation of pressure drops across junctions.

The spHeat tool was developed for simulation and used to assess operational strategies (Ben
Hassine and Eicker, 2013). SpHeat simulates dynamically in Matlab and includes features such
as the impact of spatial heat load distribution. The authors determined that network efficiency
can be improved by 10% if large loads were located closer to the thermal plant.

Jing et al. (2014) use a bespoke energy simulation in Matlab for a DH and cooling system with
renewable generation. They statistically optimised plant components to devise a control
strategy to minimise fuel consumption. Simulink is a graphical environment for Matlab and is
widely used for simulation and control modelling. Li et al. (2016) use it to simulate the primary
network components and connections to improve flow characteristics and selection of
appropriate pipe dimensions.

4.1.3 Energy models and system analysis

Energy models omit a direct representation of the distribution network and only model the
energy flows from the central plant. Commercial models that aid in the design and selection of
energy centre plant such as EnergyPro are available, this form of analysis in the literature has
frequently used bespoke modelling tools. Typical applications of these models look to configure
plant size or analyse the operation of the DH plant in the context of a wider system. One such
model, EnergyPLAN is used for planning of national and local energy systems (Lund et al., 2015).
Given the prominence of DH in Scandinavia, the simulation of DH and its interaction with the
wider energy system, particularly with variable renewable energy is a main feature of the model.
It has been widely used in academic research to study to study the impact of DH on national
energy systems and has localised input files for many regions and countries including the UK.

Saletti et al. (2020) simulated the energy transfers from plant to substation to optimise layout
for conditions where extensive network data is not available. Noussan et al. (2014) analysed the
upgrade of the thermal plant of an existing DH system. They used an energy modelling method
with ten years of high resolution (360 seconds) heat load data from the central plant. The
analysed various configurations for the central plant to find optimal TES levels.

Nuytenn et al. (2013) developed an energy model to analyse operational flexibility of a CHP with
either centralised or distributed TES. They simulate heat loads and generation as energy fluxes
using historic demand data to test various operational strategies and find that centralised TES
offers superior flexibility. Noussan et al. (2014) perform a similar analysis with a combination of
biomass boilers, CHP and TES, using high resolution demand data. They determined that TES
improves their system's efficiency by 8.6%.
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A study with similar goals as this project used an energy model with operational optimisation to
analyse the performance of a DH energy centre (Reynolds et al., 2018). They used an hourly
demand as input with operational optimisation of a CHP and boiler in conjunction with TES.
Similar methods have been used by Verilli et al. (2017) and Gambino et al. (2016) who study
flexible loads as do Wang et al. (2015) who simulate a thermal plant with the addition of solar
thermal generation and Wernstedt et al. (2003) who use this approach with operational
optimisation to evaluate control strategies with various plant configurations.

4.1.4 Control and optimisation methods

Models of DH systems require a method to dispatch heating and control the use of TES. The
operating strategy chosen can have a profound impact on the outcome. Operational control and
management is important for DH systems in practical use. Operational management of a DH
system focuses on improving the efficiency of the system and minimising operational costs or
maximising revenue such as with the generation of electricity from a CHP. Much of the literature
on operation and control has focused on the optimisation of CHP in DH, often in conjunction
with TES. This is as CHP-DH systems are the most predominantly installed DH systems. There is
a comparative lack of analysis on the operation of HPs in DH, particularly for future scenarios,
despite CHP being more complex than HP based DH. The implementation would require an
energy model. Common inputs would include constraints, demand and prices with the
operational objective typically being cost, efficiency or emissions optimisation.

Operation control often employs model predictive control (MPC) algorithms with dynamic
process models, optimising over a finite time horizon. MPC are a set of techniques that
computes the current optimal control sequence based on information of future conditions,
implementing the first step of this sequence, and progressing forward in time recalculating for
the evolved systems. It can therefore be applied to real time operation with the use of feedback
loops to adjust processes and predict how a system is likely to respond.

MPC is suitable for processes with continuous variables such as the control of flow rates and
temperatures. MPC differs from other control methods such as proportional—integral-derivative
(PID) control in that it utilises data on future operating conditions to predict the behaviour of
the system. MPC employs an algorithmic optimisation and may use linear programming, mixed
integer linear programming (MILP), mixed integer nonlinear programming (MINLP), genetic
algorithms and dynamic programming (DP) and typically computed with commercially available
solvers such as GAMS and CPLEX.

The choice of algorithm depends on the system functions and processes being modelled as these
can often be nonlinear. While nonlinear algorithms allow complex interactions to be modelled,
linear algorithms are often faster and scale better. But they can be limited in applications and
care must be used with the formulation as global optimum solutions are not always attainable
or indeed known. Nonlinear processes and constraints can be linearised or approximated when
used with linear algorithms. This can however, adversely impact the accuracy of results (Atabay
et al., 2018). These methods normally require high computational effort which is made worse
with larger network sizes and more variables (Vandermeulen et al., 2018). The alternative is to
use deterministic or heuristic methods that employ ‘rule of thumb’ decision trees or function
gradients, thus avoiding the higher computational effort. These algorithms can perform well
when applied to a narrow operating range (Sarbu, 2021).

Comprehensive reviews on the use of MPC for DH modelling have been covered by Sameti and
Haghighat (2017) and Vandermeulen et al. (2018). The literature features many examples of
single objective MILP optimisation for a variety of configurations. It has been applied to the
scheduling of CHP with TES and boilers by Verrilli et al. (2017). The authors account for the
quality of forecast and included constraints such as plant layout in their formulation. Similarly
Gambino et al. (2016) present a control strategy that minimised costs of heat production with
boilers and TES, with a particular focus on the physical modelling of boiler operating constraints.
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The use of TES was compared to the thermal inertia of the DHN and building using CHP with the
objective of minimising costs. The formulation involved an iterative approach to approximate
nonlinear interaction (Lesko et al., 2018). Moustakidis et al. (2019) propose an innovative multi-
level MPC formulation. Each level computed over different time scales, from long-term forecasts
for strategic decisions to immediate operating conditions enabling fast response for hydraulic
control and refinement. The long-term forecasts are supported by machine learning from
weather data and smart meter monitoring. The authors applied their optimisation to a
simulation of a real network to minimise operating costs. They found that the optimal control
strategy regularly keeps TES levels low during periods of low demand. The use of TES with CHP
and solar power was simulated with a monthly forecasting horizon to minimise global costs
(Wang et al., 2015). They found that TES is used frequently, and CHP output fluctuates more.
Other formulations have looked at CHP-TES in different configuration to maximise electricity
export revenue. The price volatility of a future spot market could encourage the use of CHP to
generate revenue (Romanchenko et al., 2017; Vanhoudt et al., 2018).

Comparatively few studies have used nonlinear programming (NLP) methods to control
operation. The thermal inertia of a DH system and buildings was used in conjunction with CHP
to improve the utilisation of renewable electricity and to minimise operational costs using a
MINLP (Gu et al., 2017). Powell et al. (2016) present a MINLP to find optimal charge rates for
TES with the objective of minimising costs when participating in the wholesale electricity market
over a 24-hr time horizon. Other NLP formulations have considered thermal comfort in building
while minimising operating costs in the DH system (Fanti et al., 2015).

Genetic algorithms have been used by Pirkandi et al. (2016) with a multi-objective optimisation
of a CHP paired with gas turbine. Evins (2016) employs multi-objective optimisations to optimise
CHP plant layout and control. Other novel techniques have been employed by Hohmann et al.
(2019) who achieved the simultaneous control of flow rate and temperature via a two-stage
stochastic optimisation and Claessens et al. (2017) who optimised the control of DH power
production using learning algorithms.

Despite the design problem being similar, there has been little analysis of HPs in a DH context,
with control studies focusing on building systems (Fischer and Madani, 2017). The use of MPC
with HPs in tandem with batteries has been considered , with a focus on dynamic pricing and
grid ancillary services (Fischer, 2017; Fischer et al., 2014; Georges et al., 2017; Nielsen et al.,
2013). The optimal operation of a HP with TES and batteries under variable electricity prices was
studied, achieving a 25% reduction in annual costs using DP (Salpakari and Lund, 2016).

Despite DiHeM not including detailed modelling of the hydraulic network, an appropriate
formulation with MPC and LP could control flow rates. However, the goal with this analysis is to
control the use of HP and TES, controls that are essentially binary decision variables and suited
to the use of a Dynamic Programming (DP) algorithm. Moreover, the operating conditions have
highly intermittent signals from the supply costs and LP formulations have been shown to not
be good at responding to these. DP is a method that allows a high degree of expression with the
system formulation and has been shown to perform better than other NLP and LP when applied
to an energy storage system with variable electricity costs (Atabay et al., 2018).
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Box 4.1 Dynamic Programming - DP

The Python optimisation library Prodyn uses an MPC optimisation method known as dynamic
programming (DP) and has been applied to the operation of energy storage with dynamic
pricing (Atabay et al., 2018). It is based on Bellman’s principle of optimality (Bellman, 1952).

The method is suitable for multistage decision problems where each step is dependent on
previous steps. It breaks the problem into a finite number of subproblems and drops paths
that are not possible. The algorithm can be applied backwards or forwards in time. The
forward implementation requires a starting state to be selecting, from which the optimal
control route to each possible endstate is given.

The method allows a high degree of freedom of expression when defining the model
function. It can permit complex interaction between variables but the need to discretise
continuous variables can lead to suboptimal solutions and the degree of discretisation can
lead to scaling issues leading to high computational costs. This can be time consuming as the
computational requirements scale with the number of possible state values, control
decisions and timesteps. A full overview of the theory and implementation of dynamic
programming is given in Bertsekas (1995).

4.1.5 Summary of review

The review of DH modelling has provided an overview of the types of models and tools for DH
in contemporary use. The energy model approach, where the simulation of DH requires only
details of the energy transfers in the system, is widely used in the literature and is a suitable
means of analysing the HP-TES energy centre. The method of controlling heat dispatch and
allocation of TES heat is an essential feature of dynamic DH modelling. There are a variety of
control and optimisation techniques ranging from heuristic based control to MPC methods. The
use of a MPC utilising DP has been selected as a suitable method for application in this project.

4.2 Modelling Methodology

The objective of DiHeM is to simulate the operation of DH with an exogenous input of heat loads
and a series of electricity prices. This will be used to explore configurations of the DH system
and how this in turn influences the operation of the system. HP and TES capacities are defined
as input parameters and amongst the outputs are the electrical input E, to the HP and the cost
of this power.

The TES is considered as a pressure connected, stratified water tank. The tank hot water
temperature, T, is assumed the same as the flow temperature and stratified into two layers,
with the cold layer temperature, T, variable depending on the DH return temperature. In reality
Th is often slightly higher than Tr to compensate for losses and dilution upon discharge (Sarwar,
2020). We assume pressure connection as opposed to hydraulic separation. Separation is
achieved via heat exchangers and is beneficial in several circumstances such as for systems that
have high pressure variation due to terrain or if the quality of return water cannot be trusted.
This is sometimes the case if heat interface units (HIU) are not used in the primary circuit. The
advantages of pressure connection are that temperature differentials across the heat exchanger
are eliminated as this would require a higher Ty and thus higher HP output temperatures
resulting in a lower coefficient of performance (COP).
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The distribution network transports hot water from the energy centre to buildings and returns
cooler water. It is to be modelled as a closed loop network where the return flow is reheated to
the desired flow temperature. Typical UK DH systems are designed at a flow and return
temperature of 80/60°C, but rarely achieve this temperature difference due to inadequate
design and commissioning (Crane, 2016). Surveys of operating schemes in the UK has found an
average flow temperature of 88°C while the corresponding survey numbers in Denmark are
78/43°C (Averfalk and Werner, 2017; DECC, 2015b). The move towards the fourth generation of
DH systems envisions flow temperatures of 70°C and below with average return temperatures
circa 20°C (Lund et al., 2014).

Acceptable flow temperatures are limited by the sizing of the heating systems installed in
buildings. This puts a constraint on the flow and return temperatures. It has been shown that
with efficiently designed buildings and heating systems, supply temperatures can be as low as
45°C. Low-temperature DH systems been demonstrated in small scale test cases in the UK and
abroad (Burzynski et al., 2012b; Celsius, 2020; Lund et al., 2018). While the modern DH paradigm
aims for lower supply and return temperatures, the housing stock in the UK may be a limiting
factor in what flow temperatures can be achieved in future DH systems (Millar et al., 2019). If
future DH development is limited to purpose-built buildings, then those systems could quite
possibly achieve low flow temperatures. However, a large-scale uptake of DH would likely
include many existing buildings and the UK historically has a low replacement rate.

This model assumes a flow-supply temperature, T¢, of 70°C, which is considered on the upper
limit of what can be considered ‘low temperature DH’ (Best, 2018). A peak return temperature
of 50°C is set, giving a minimum temperature differential of 20°C.

4.2.1 Operating modes

The possible operating state of the DHN’s components over an hour is defined as one of three
discrete modes:

1. The HP is off, there is no electrical input, and the heat load is met entirely by discharge
from the TES. This can only occur when there is sufficient hot water in the TES.

2. The HP is on and covers the entire heat load (or its maximum capacity). The electrical
input to the heat pump corresponds to the contemporaneous COP.

3. TheHPisat full capacity and covers the entire heat load using the residual spare capacity
to charge the TES.

A combination of modes in the same hour may also be possible. Such as in the case of an
undersized HP and insufficient TES which is unable to cover the heat load. In that case the HP
provides its full capacity followed by a discharge from the TES, mode 1 followed by mode 2. A
schematic of the operating modes is shown in Figure 4.1.

4 .2.2 Distribution network

Return temperature should decrease at part heat load to reduce pumping costs and heat losses.
The relationship between return temperature and heat load is complex, depending on the heat
interface units (HIU), characteristics of the space-heating emitters and of the hot water service
heat exchangers as well as many other case specific factors. Achieving low return temperatures,
T,, is generally a good indicator of DH efficiency and allows smaller pipes and pumps. This
reduces thermal losses and enables more energy storage in the TES due to a larger temperature
difference (Crane, 2016). Historically, some DH systems were designed with fixed flow rates
using bypasses around the heat emitters/exchangers. This results in higher than necessary flow
rates and high return temperatures leading to inflated pumping costs and heat losses. For these
reasons, variable volume-fixed flow temperature schemes are now the standard with all modern
DH systems.
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As a simplified approximation, a linear relationship with the DH load is used. Starting from a
maximum of 50°C at times of peak heat load, as the heat load tends towards zero, so will the
flow rate. The return temperature therefore tends towards the ambient temperatures for space-
heating, around 15°C.

Return temperature at timestep i is given by (4.2), where Lis load:
Tr,i =15+ 35(Li/Lpeak) (4.2)

The mass flow rate, Moy, in the DH system can then be calculated using the return temperature
from (4.2), by the specific heat of water cy:

Mpui = Li/cw(Tr — Tr ) (4.2)

In mode 1, there will be no electrical input to the HP and mass flow rate of discharge from the
TES is equal to the mass flow rate of the DH. In mode 2, there is no mass flow through the TES
and the mass flow rate from the HP is the same as the DH mass flow rate. Mode 3 is more
complex due to the flows through the TES. We assume that the HP heat output Qup, is at the
maximum HP capacity. The mass flow rate through the TES, Mres, is taken in the negative
direction, with inflow charging the TES. Myp, is the mass flow rate through the HP’s output heat
exchanger and Tr, is the temperature of the mixture of the return flow and TES cold discharge
at temperature T.. The state of the DH system can then be calculated from the following
equations (4.3)-(4.6):

MTEs,i = MHP,i - MDH,L’ (4.3)
Qup,i = MHP,ij(Tf = Tini) (4.4)
(Mpu,iTy0) + (Mrgs;Tr i)
T = " (4.5)
HP,i
Qup.i .
% + Mpp,(Tr — Ty i)
Mrgs,; = = (4.6)
' (Tf Tc 1)

4.2.3 Distribution losses

Reported distribution losses among current schemes vary greatly and losses above 40% for older
DH schemes are not uncommon. Modelling distribution losses is complex even when a DH with
a known topology is simulated. An inexhaustive list of factors that contribute towards these
losses include piping length, material and insulation level as well as trench depth, ground
temperatures, connection into buildings etc. as well as of course, flow temperatures (Vesterlund
etal., 2013). Without explicitly including pipe sizes and making assumptions on insulation levels,
distribution losses cannot be directly calculated. A reasonable assumption here would be to
assume distribution losses in line with projections for 4GDH systems and current best cases.

Making comparisons between losses is complicated by the fact that there is no standard method
of measuring or reporting losses (Masatin et al., 2016). A Nordic Council report estimates that
distribution losses accounted for 10%, 11% and 12% of total energy produces in Finland, Norway
and Sweden respectively with no indication of methodology (Patronen et al., 2017). Surveys in
the UK have found average distribution losses for bulk schemes where the operator delivers
heat to distribution points at 6% and non-bulk schemes where the operator delivers directly to
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end customers at 28% (DECC, 2015b). It can be inferred from this that a large amount of losses
areincurred at the connection points into buildings and internal distribution pipework. The DECC
study also reported parasitic electrical losses of 1-4%.

A reasonable assumption to make is that future DH systems, with lower operating temperatures
and flow rates appropriately designed and commissioned with optimal routing algorithms, and
with a milder climate in general, would have losses in line with the best Scandinavian systems.
This model will then apply a constant 12% distribution loss factor.

4.2.4 Thermal energy storage

Thermal Energy Storage has been a main component in DH systems for many decades. It has
primarily been used as a short term/diurnal storage device in conjunction with CHP based heat
generation. The construction and modelling concepts for TES as a mature technology are well
established.

Tank TES (TTES) are normally insulated steel cylindrical constructions. They achieve stratification
of water temperatures through the use of diffusers to avoid mixing of the layers with a small
transition zone between them. Hot water can then be siphoned from the top, with a cold-water
connection at the bottom of tank. Stratification makes calculating heat losses from the TES more
complicated and CFD based simulations are often employed to model the losses (Kong et al.,
2016; Ochs et al., 2021). The tanks maintain a constant mass of water with cold water being
discharged simultaneously as hot water is delivered to the tank and vice-versa (Thomsen and
Overbye, 2016).

Smaller tanks are typically constructed with a height/diameter (h/d) ratio of higher than one to
increase stratification in the store. Larger stores however, tend to have larger diameters with a
h/d ratio between 0.4 and 0.7. This is largely due to the engineering limits of the steel
construction to limit the stresses from water pressure. The extra cost of construction and
maintenance for thicker tank walls effectively limits the practical sizes of TTES. While the tanks
are normally clad in a layer of insulation, heat losses also benefit from an economy of scale due
to the geometry of a tank. Doubling tank diameter increases volume by a factor of 8 and surface
area by a factor of 4 which effectively halves the percentage heat loss.

Estimates for the cost of TTES also show economies of scale. As the energy capacity depends on
the temperature range with which the store is operated, numbers are generally presented as a
cost per unit volume. Eames et al. (2014) show that smaller stores can cost upward of £390/m?3
while the DECC (2015b) evidence gathering on TES report suggests that this can fall to less than
£100/m3. The Danish Energy Agency (2018) shows that the upper limit for these economies of
scales with TTES takes effect in the 10,000 — 15,000 m? range, beyond which it is more efficient
to use alternative forms of large scale TES such as pit TES (PTES). They recommend the use of a
power-law relationship with the volume, Vs, to estimate capital costs where the cost per m* is
6705V, as shown in Figure 4.2, but add that this is highly sensitive to the cost of steel which

TES 7
may also fluctuate with energy prices.

With the increased use of renewable sources for heat production, larger or multiple TES are
becoming more common. The larger tanks can be found fully or partially buried or replaced by
pit PTES that use similar operation principles (Ochs et al., 2009). Schematics of this are shown in
Figure 4.3.
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Figure 4.2 Costs per unit volume for TTES and PTES

PTES are essentially plastic lined reservoirs and have been demonstrated in several commercial
projects such as the Vojens in Denmark, which at 200,000 m3, operating at 80°C, holds over 12
GWh of thermal energy. Evidence from these projects shows unit costs of around £25/m3 or
£500,000/GWhh (Danish Energy Agency, 2018; Eames et al., 2014). While PTES thermal losses
appear comparable to those of well insulated tanks (Sgrensen and Schmidt, 2018), the round
trip efficiency is lower at 70% (compared to 98%). This is likely to improve with increased
standardisation and commercial development. It should be noted however, that the costs shown
in Figure 4.2 do not include the cost of land and 15% of these costs are dependent on local
ground conditions. Construction costs per unit volume PTES is cheaper, with the cost per m3
being 97359Vrs%74, and more practical than large scale TTES at larger sizes but the land
requirements and ground conditions can be limiting factors and may not always be available
near urban areas which can increase costs (Hesaraki et al., 2015).

Figure 4.3 Schematics of partially buried TTES (left) and PTES (right) adapted from (Sgrensen
and Schmidt (2018)

4.2.5 TES implementation

The mass of hot water, My, in the tank at any time determines the state of charge and the flow
rate, Mres;, measured in magnitude and direction, charge or discharge, enables the state of
charge to be calculated in the next hour, M 1. Tcp is initialised at 32.5°C and updated upon
mixing with water at T, entering the bottom of the TES while discharging during mode one.
During mode 3, Mg, is taken in the negative direction and AMy = Mres, increases accordingly at
Th while Mc:-MTES,i-

Thermal losses, Qres, via conduction are estimated based on a cylindrical steel tank with hres/d7es
ratio of 0.5. Wall thickness, Ts, is estimated using (4.7) assuming construction from steel (304)
commonly used in such applications with a modulus Ys of 207 MPa and a safety factor, SF, of 1.5
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under ambient pressure, P.mp (Engineering ToolBox, 2005). The tank walls are clad with 300 mm
of insulation, T, (Danish Energy Agency, 2018) with thermal conductivity, k,, of 0.05 W/mK,
using stainless steel’s thermal conductivity, ks, of 20 W/mK. Heat losses are then computed as
per (4.8) with conduction across the surface area, Ars, using the mean average water
temperature in the thermal store, Tres;, as the internal temperature.

_ PamthESSF
tT - Z—YS (4.7)
Q _ ATES(TTES,L' - Tamb,i)
TES,i — T_S+ T_n (48)
kS kn
QTESi
AM,, ; =
h,i+1 Cw(Th_ _ Tc) (49)
QTESi
AT, ;g = —2
ci+1 Cch,i (4. 10)

In the absence of a more sophisticated model for the TES, losses are applied to the TES by
subtracting the equivalent mass of hot water and increasing the cold-water mass according to
(4.9). In the event where there is no hot water remaining, losses are applied by reducing t.
according to (4.10). Losses from the mixing of the hot and cold layers are neglected as this
requires a more sophisticated model of the TES and fluid mechanics taking account of effects
such as buoyancy.
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Figure 4.4 Specific heat losses from modelled TES

4.2.6 Heat Pump

The use of large-scale heat pumps in DH is not new but future high renewable scenarios may
favour their use due to the decarbonisation of the electrical grid. Vapour compression cycle heat
pumps have commonly been used in DH applications. Absorption cycle heat pumps are now
becoming popular for use, in part due to their ability to provide cooling (Averfalk et al., 2017).
Large heat pump installations often include multiple HPs in parallel that have multi-stage
compressors, using a variety of refrigerants and heat sources (EHPA, 2019). Without needing to
infer too much about the precise set-up, we assume a single stage HP defined by a maximum
heat output capacity and a generic source temperature.
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The COP of a HP is dependent on the operating conditions. The difference between the sink and
source temperatures limits the maximum theoretical COP, termed the Carnot efficiency. The
actual operational COP can then be estimated by applying an efficiency factor, nue, that accounts
for losses from various factors of machine design. This efficiency factor can vary depending on
operating temperatures and manufacturers often produce COP curves on a case by case basis
for specific operating conditions and setups, applying quadratic regressions to obtain precise HP
COPs (Ruhnau et al., 2019). If the operating conditions are relatively constant, then a constant
nue can be applied. A range between 60-70% of the theoretical performance has been suggested
as providing realistic HP COPs by an industrial heat pump manufacturer (Eckett, 2020).

4.2.7 HP implementation

Large HP installations can use industrial waste heat or other environmental heat sources. These
are however dependent on local availability and may have a large regional variances with
individual systems having higher COPs that are not reproduceable at all locations. Alternatively,
sources could be some mix of borehole, water (sea/river/sewage) source, air, waste heat etc.
but detailing designs for different resources at different locations is beyond the scope of this
research.

The choice has been made to model a generic source temperature assuming it is reflected by
the seasonal variation in ground temperatures. Ground temperatures provide a reasonable
estimate of the seasonally varying input to the HP. Beardsmore and Cull (2001) have given the
calculation of temperatures at depth from period surface heating as per (4.11). Source
temperatures, Ts, were calculated at an assumed depth of z=3m and thermal properties of soil
€ were estimated as per the data in Busby (2015).

Ts; = Toe %% sin(2mt; — €z) (4.11)

We model the COP as a fraction nue = 65% of the Carnot cycle efficiency. A heat exchanger
between the HP condenser and the heat sink (the DH flow) is required to raise its temperature
from the HP heat exchanger inlet (either the return or mixture temperature, T, or Tn,) to the flow
temperature, Tr. The HP condenser at temperature Tcong, must then be higher than Tt to allow
for losses across the heat exchanger which we assume is a counterflow heat exchanger. Most
common refrigerants used in heat pumps have critical temperatures well above 70°C (and
boiling point well below 0°C) therefore 75°C is selected as a constant Teong (Zehnder, 2005). The
log-mean temperature, AT.v, across the heat exchanger is then used to calculate the COP from
(4.12) and (4.13) where T, = T in Mode 3. The electrical input E; to the HP during hour i required
to output heat H; is then simply E; = Hi/ COP;.

_ (Tcond - Tr,i) - (Tcond - Tf,i)

LMt In (Tcond — Tr,i) (4.12)
Tcond - Tf,i
Teona — ATy + 273
COPyp; =1 .
P P T o — ATpag g — T (4.13)

In reality, there would also be a heat exchanger between the ground and the HP evaporator but
as a generic source temperature is being modelled and an appropriate Carnot efficiency is being
applied, this may be simplified. Figure 4.5 shows modelled COPs alongside daily mean ambient
temperatures and modelled ground temperatures using 2015 weather data. The COPs show
seasonal variance as well as hourly variance according to T, which is determined by DH load. The
mean modelled COP across all weather and all years is 4.3 and corresponds to surveyed
operational and modelled HPs in this temperature range (David et al., 2017; Pieper et al., 2019;
Ruhnau et al., 2019).
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Figure 4.5 Modelled daily mean COPs compared to ambient and ground temperatures 2015

Previous designs of large heat pumps were not suitable for fast load changes and modulation,
not least because frequency-controlled heat pumps have a more complex design. Modern
industrial heat pumps are able to ramp up at 20% per minute and a minimum output 25% of
capacity (Eckett, 2020). Over an hour this is negligible, hence no ramp limits are applied to the
output.

4.3 Operating Algorithm Development

To assess the performance of the DH network and TES, it is necessary to evaluate how it will be
operated. This section covers the development of operating algorithms that can be used to
simulate operation based on the electricity costs from EICoM and the heat loads from HeLoM.
The operating algorithm selects one of the three operating modes to minimise operating costs
while meeting the heat load at all times. In the event where heat load is partially met, a penalty
cost is applied. This may occur if the HP has insufficient capacity or the TES has insufficient
charge. A penalty is applied that is equivalent to the use of electric resistance heaters (i.e. COP
=1). The cost of electricity, Cg, to operate the HP is:

Cei = (QHP,i/COPHP,i)PE,i (4.14)

DiHeM assumes that the DH operator has knowledge of the heat demand and the electricity
cost during each timestep hour. The issue of lookahead and accuracy of forecasts will be
addressed later. The costs shown in this section concerned with algorithm development are
(unless otherwise stated) derived from the annuitised capital and operating costs of TES and HP
(which includes electricity costs). A discount rate of 3.5% is applied to DH infrastructure capex
(HM Treasury, 2018). The DH costs used and the sources from which they are derives are shown
in Table D-1 in Appendix D. The initial exploration excludes the cost of the network for clarity as
this remains unchanged.

4.3.1 Analysis of operating conditions

Electricity costs and heat loads have been modelled for the period 2010-2015. For simulation
purposes and data presentation, it is useful to simulate from midyear to midyear to avoid having
to begin in midwinter. Ambient temperatures and offshore wind capacity factors are the main
drivers of heat demand and electricity costs in the NZ scenario. Thirty years of meteorological
data for winter total offshore wind capacity factors (see chapter 2) and average winter ambient
temperatures show a large degree of correlation Figure 4.6. Of the modelled years, 2010 has
both the lowest total capacity factors and lowest average temperature (only 1985 was lower).
The 2014-2015 period is the closest to an ‘average’ year in terms of temperature and capacity
factors.

For economic operation, the worst circumstances are a prolonged run of high electricity costs
coinciding with a period of high heat demand. For this analysis, the urban heat load (see chapter
2) has been scaled to a load averaging 1 TWh per year.
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Figure 4.6 Comparison of winter season wind capacity factors and mean temperature

Figure 4.7 shows the five-day rolling average of the electricity costs and heat loads from EICoM
and HeLoM. For the period 2010-2011, the long run of above average heat loads coinciding with
high electricity costs suggests this will be a challenging period and the DH must reliably meet
the heat load in this time. A large TES and/or a well-designed operational control algorithm will
be needed to minimise costs, and this represents the worst-case conditions in the simulated
period. In contrast, 2012-2013 which also has high electricity costs and above average heat
loads, there are long periods of sustained low costs that can allow TES to recharge for the
following high-cost period. The success of such a strategy would again be dependent on the
design of the control algorithm. 2013-2014 has both above average winter temperatures and
capacity factors with no sustained period of high costs, lower peak costs, and below average
heat loads. It represents the best-case year in the modelled periods.
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Figure 4.7 Five day rolling average of electricity costs and heat demand
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To design an operating strategy, it is useful to consider the main parameters that influence its
results. Figure 4.8 shows 12 hour rolling mean costs and demand for selected periods,
highlighting the challenge with designing an operating algorithm. It is reasonable at this stage to
assume that the operator has knowledge of demand and grid conditions or cost. Charging is
most economical during hours with the lowest electricity costs (neglecting losses). A sufficiently
sized TES and HP combination should be able to cycle the TES (blue and green arrows) from the
beginning of December 2010 until the third discharge period which sees a long run of
consistently high prices.
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Figure 4.8 12 hour rolling demand and prices for selected periods

Basic algorithm (BSC): The simplest strategy would empty the TES and must then use the HP
during expensive hours (red arrow). During the beginning of February 2013, there is a long
period of low costs which can only be fully taken advantage of with a sufficiently large store.
There are short periods between the peaks which may be enough to recharge the TES given a
sufficiently sized HP. Towards the end of the month, there is a long stretch of high prices which
would deplete the TES with a basic operating strategy.

Trigger algorithm (TRG): A more advanced strategy would charge and discharge during the local
price peaks and troughs (blue and green dashed arrow).

Dynamic optimisation algorithm (DOA): A more complex strategy involves foresight of prices and
heat load (see RDOA section 4.3.5) which enables charging at moderate prices to avoid very high
prices and unnecessary charging in a later period. The matter is further complicated by TES
losses. An optimum operating strategy is then highly dependent on the configuration of HP and
TES. This determines both how long heat demand can be met by the TES and how quickly the
TES can be recharged.

A look at the correlation between hourly electricity costs and demand in Figure 4.9 shows no
clear relationship between the two. This highlights a significant challenge in devising a heuristic
based operating strategy that is based on the present operating conditions alone. There is a
large concentration of low prices across the range of heat demand but especially at lower
demand which corresponds to the large amount of surplus hours in the summer.
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Figure 4.9 Correlation between heat demand and electricity cost

4.3.2 BSC algorithm

The first exploratory approach is the BSC algorithm. The BSC is a heuristic algorithm that
operates based on present grid conditions with the assumption that grid can provide signals on
the status of the grid: for example, if there is a generation residual surplus or deficit. This would
be beneficial from the viewpoint of the electricity system operator encouraging shifting
electricity consumption to surplus generation periods.

The BSC uses hour type as the operating decision whether to charge TES. The HP is operated
based on unrestricted TES charging limited to surplus hours (up to HP power limit). The use of
the HP is avoided during all other hours unless the TES has insufficient capacity to cover the heat
demand.

The conversion between TES percentage of annual demand and number of peak hours for this
DH heat load is shown in Table 4.1. All analyses from this point on were conducted assuming a
network of 50 GWh per annum average demand. Figure 4.10 shows the effect of varying HP and
TES using BSC. For the worst-case scenario period 2010-2011 the lowest cost range starts at
around 1.5% of annual demand and a HP sized to 100% of peak demand (which occurs in 2010-
2011) in comparison to the average period of 2014-2015 where the minimum occurs at a smaller
HP.

Table 4.1 TES percentage and peak hours equivalence for modelled DHN

TES % of Annual Demand TES number of Peak Hours storage
0.1 1

0.2 2

0.5 10

1.0 20

2.0 40

Looking at the hourly operation shows that the TES discharges during non-surplus hours before
the higher peak prices are reached. The BSC has limited use and a more sophisticated method
that utilises electricity or a lookahead is required.
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Figure 4.10 The effect of relative TES and HP size on cost (HP+TES annuitised capital) 2010-
2011 (top) and 2014-2015 (bottom)

4.3.3 TRG algorithm

The TRG algorithm concept is an extension of the BSC in which it is assumed that the operator
has knowledge of the current electricity cost. Another heuristic algorithm, it operates by a set
trigger price below which the HP will try to maximise utilisation to charge TES and discharge the
TES above this price. Electricity costs and hour type are linked but the trigger price method
provides a greater control over when to charge and discharge as an intermediate value of trigger
price can be set.

Figure 4.11 shows the effect of varying trigger price on the cost of electricity (a) and the total
cost (b) with relative HP and TES sizes at the best trigger price found for each combination. The
figure demonstrates that the optimal trigger price varies depending on the combination of HP
and TES. Lower trigger prices are found for larger HP and TES as these give access to more hours
and hence charging opportunity. The actual optimal trigger price was also found to vary
depending on the period and season simulated with the lowest trigger prices found in the
summer season. This indicates that the TRG can be extended through an adaptive trigger that
can vary, based on operating conditions. Some form of lookahead could also be paired with this
method.
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These exploratory simulations reveal that larger HP, beyond 100% of peak capacity have little
effect on the cost of electricity (Figure 4.11b) and as HPs do not exhibit economies of scale with
size, this leads to higher total costs overall (Figure 4.11a). The electricity costs plateaus near a
100% HP size in the average 2014-2015 period. This can also be seen using the BSC where
minimum costs are reached at around a 100% HP for the worst-case period and around 75-80%
for the best-case period. Despite the cases where an undersized HP is economically beneficial,
there is a strong case to use HP sized to peak capacity to ensure security of supply for the DH
network. Further, larger HPs may have an adverse effect on the electricity network and may lead
to higher connection charges. Therefore, the simulations presented in this chapter will proceed

with a HP sized to 100% of peak heat demand.
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Figure 4.11 The impact of varying HP and TES with optimal Trigger prices on total cost (a) and

electricity costs only (b) for the period 2014-2015
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4.3.4 Dynamic optimisation algorithm

To assess how well the designed heuristic algorithms (BSC and TRG) work, we compare their
results to the theoretical minimum costs using the Dynamic Optimisation Algorithm (DOA). The
DOA utilises an open source operational optimisation library called Prodyn (Atabay, 2016) which
utilises dynamic programming techniques to determine the optimal sequence of control modes
to minimise total cost. The DOA is initially applied with perfect foresight over all defined hours
with defined start and end states for a discretised system. Prodyn utilises dynamic programming
(DP) techniques to determine the optimal sequence of control modes to minimise total cost. The
DOA is applied with perfect foresight of demand and prices over all defined hours (in the year
or period simulated), with defined start and end states for a discretised system.

Atabay (2018) explains how a model function such as the DH system must be discretised when
using the DOA. The DOA is applied to the DH system model with discrete decision variables, U;,
used in the three operating modes for each time step.

The TES must also be divided into discrete levels, X, and the inputs and outputs to the TES, which
are continuous variables, must also be discretised. A compromise must be made between
accuracy and speed. Larger step sizes speed up the DOA at the expense of accuracy. The TES is
divided into discrete levels, X, of size 1 MWh for all store sizes, so the number of levels depends
on the size of TES. To avoid having to select a start and end state for the TES during midwinter,
which would impact the operation, the simulations are started and ended midsummer from
empty-to-empty charge state (Xo = Xn=0) as this has the least impact on the final result. The DOA
applies the model function, f, to calculate the state of the TES, X;, at the next timestep.

Xiy1 = f(X,U)) (4.15)

The algorithm computes the cost Ci of going from X; to Xix1 when a decision U; is made at a
timestep for each possible decision and TES state (for example only those states that can be
attained in a single timestep with the HP combination are computed).

G = gX;,Up) (4.16)

The algorithm then works forward from the defined state Xo, over N timesteps to finds the
sequence, ¢, which minimises total costs, J, over all timestep.

N
Jo = Eg(xt, u?) (4.17)
t=0

A comparison of the hourly operation of the algorithms highlights the simplicity of the heuristic
algorithms. Figure 4.12 shows the operation of the algorithms for the same period with a 0.1%
TES - this is shorthand for a TES capacity of 0.1% of annual demand (GWh). The DOA regularly
cycles on a daily basis, charging during the night and discharging mostly during the daily peaks
even during a long run of high prices. This is what would be expected of a diurnally sized TES. In
comparison, the BSC and TRG approaches cycle far less often.
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Figure 4.12 Hourly operation of 0.1% TES for BSC (top), TRG (middle), DOA (bottom)
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Figure 4.14 shows the hourly operations of the algorithms with a large TES - 1% of annual
demand. It is observable that the cycling of TES with the TRG roughly mirrors the DOA. These
cycles correspond to the timings between prolonged high price periods which triggers the TRG
algorithm. The BSC is less successful in recreating this behaviour. The DOA however, utilises the
TES far more in each cycle, charging and discharge small amounts to avoid short-term price
spikes. A diversion in the algorithm behaviour is observable from around the 6000 hour point
onward. Here the DOA keeps the charge state of the TES low, charging only later in the low-price
period while the BSC and TRG both immediately recharge to capacity. This can only be achieved
with foresight of conditions while the BSC and TRG only uses present operating conditions.
Another factor not considered by these is the hourly variation in COP. The COP varies based on
seasonal variation and hourly operating conditions. Higher COPs normally occur during lower
demand periods where the return temperatures are lower. This favours charging overnight
where not only is demand lower and prices tend to be lower, but the COP is higher.

The effect of using large-scale TES on electricity costs during the best and worst-case periods
using the DOA algorithm is shown in Figure 4.13. In the best-case simulated period 2013-2014,
2% TES eliminates all cost spikes and TES larger than this would be redundant in the modelled
prices of the assumed high renewable system. But in the 2010-2011 period, 2% TES is unable to
flatten the costs and they can only be reduced with larger TES capacities. Although the costs
during a given hour aren’t eliminated, Figure 4.15 shows how these costs are progressively
reduced with increasing TES.
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Figure 4.13 Comparison of five-day rolling average of electricity costs with various TES sizes
using DOA for 2010-2011 (top) and 2013-2014 (bottom)
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using DOA for select periods

The DOA shows the optimum operating procedure for any size TES and operating conditions. It
highlights the complexities involved with designing a rule-based heuristic algorithm. The
operating rules and concepts differ depending on the size of storage to demand ratio.
Development of a heuristic algorithm may have limited practical use except for efficiency of
modelling. The practicality would also depend on that future data is actually available to DH
operators and techniques such as machine learning could provide powerful tools to refine such
heurisitic algorithms. The DOA provides a useful measure as to how well the BSC and TRG
algorithms perform compared to a theoretical optimum. The DOA so far has perfect knowledge
of the operating conditions, with foresight over all hours and hourly COPs. To ascertain a realistic
indication of DH operation in real operating conditions, it is necessary to limit the information
available to the DOA.

4.3.5 Rolling Dynamic Optimisation Algorithm

With the DOA, a specific starting and ending charge state must be set. If the ending charge state
is left undefined, the algorithm will always empty the storage at the end as the minimal solution.
In theory, a DH operator with perfect foresight of operating conditions of the entire year or
winter period could perform the optimal combination of operating modes to minimise the
annual operating cost. In practice this will never be achieved as beyond the immediate future,
the accuracy of forecasts diminishes, and instead seasonal statistics will need to be relied upon.
The DOA can be applied on a rolling basis with a limited lookahead time but a final charge state
at the end of the optimisation must be defined. Here it is necessary to introduce the concept of
lookahead time and forecast accuracy.

The National Grid currently bases their own generation and demand forecasts on Met Office
data which they receive 4 times per day at hourly resolution for 14 days ahead (Caplin, 2017).
From this data they can project wind and solar generation as well hourly demand from demand
forecast models. Electricity cost projections using the method from EICoM are dependent on
supply and demand forecasting. National Grid produces, 2 day ahead and 7 day ahead hourly
forecasts as well as 2-52 week ahead weekly peak forecasts. These are published via Elexon and
indicative day ahead prices are also available on short term energy trading platforms. The Met
Office describes its own forecasts in the 1-2 day range as a “detailed forecast”; 3-5 days as a
“general picture”; 6-15 days as a “broad description”; and 16-30 days as an indication of
probable weather conditions (e.g. warmer or wetter). They have found a 92% forecast accuracy
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in temperatures within £2°C in their week ahead forecasts and these will generally improve by
the time DH would be scaled up (Met Office, 2017).

It is then reasonable to assume that a short term (up to seven day) look ahead is possible with
high accuracy to forecast DH load. Beyond this there would be a good indication of relative
conditions. Similarly, with the demand and generation forecasts, short term electricity cost
projections can be made. The hourly operation over which the DOA lookahead is applied is then
be restricted to 5 days (120 hours). Information from 7 day (168 hours) ahead hourly forecasts
can be used to inform the endstate (at 120 hours). Beyond 7 days projections will need to be
made.

The rolling DOA algorithm (RDOA) is an application of the DOA on a rolling basis with a limited
time horizon lookahead period. As demonstrated by the DOA, the operating strategies of a small
TES is different to a large TES. With a small TES, that is sized for diurnal demand, the operating
strategy is normally to charge overnight during low prices and discharge at peak times or when
both demand and prices are higher during the day. In this case knowledge of future operating
conditions beyond a few days is of little use. With large TES, projections of conditions a week or
further in advance are desirable to optimally utilise the capacity. For the aforementioned
reasons above, the time horizon on which the RDOA is operated, lookahead is restricted to a
maximum of 120 hours (5 days). Running the RDOA over this full lookahead period for small TES
becomes redundant and experimentation has shown that beyond a point it gives the same
results at the expense of computation times. The required lookahead duration is estimated
based on the HP and TES capacity as well the mean winter DH load. The duration of storage in
the TES, Dres, can be estimated from the mean winter load Lon

TESax
Drgs = —— (4.18)

Lpn
An endstate for the RDOA lookahead must be defined, a TES level after a given number of hours
cannot be more than the HP is able to attain in that time. The average time to recharge the TES
from empty during the winter season, Dcug, can be estimated in relation to the HP capacity minus

[DH-
D _ TESax
CHR = HP, .. — ZDH (4.19)

As the HP size to TES size ratio decreases, Dcur Will become larger than Dres. In this case, Dres
must be set equal to Dcug With @ minimum operation over 24 hours and a maximum of 120 hours.
The selection of the rolling final charge state is based on analysis of the DOA operation. We
assume that the final charge state must be sufficient to cover demand in a projected period
equal to Dres beyond the RDOA lookahead, from all hours where the electricity price is higher
than the trigger prices found in section 4.3.3.

Where the projected period is beyond the 7-day horizon of hourly forecasts, then the demand
is extrapolated from the demand during the ‘known’ lookahead period. As this endstate is
always in a future horizon it is never reached, but during intermediate time steps, the RDOA may
indeed find it optimal to completely charge or discharge the TES. Where the projected period is
beyond the 7-day horizon of hourly forecasts, then the demand is extrapolated from the demand
during the ‘known’ lookahead period. After running the RDOA, the optimal control for the
lookahead period is returned and applied only to the first 24 hours. The RDOA then moves
forward by one day to re-calculate. The RDOA sequence and interaction of Prodyn with HeLoM
is shown in Figure 4.16.

The TES levels over the period 2014-2015 for various TES capacities using the RDOA are shown
in Figure 4.17. The smallest TES size shown, 0.1% annual demand or 2 peak hours shows constant
cycling throughout the year similar to the DOA in Figure 4.12. The regular charge/discharge
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frequency is maintained at 1% TES and the full capacity of the TES is regularly utilised in the
heating season while the utilisation of full capacity reduces at 2% TES.
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Figure 4.16 Implementation of Prodyn optimisation algorithm with HeLoM
Box 4.2 Challenges of developing the RDOA

Creating the RDOA procedure required much experimentation. This was mainly regarding the
length of the period in which to run the DOA, lookahead period and endstate selection. Where
possible, it was desirable to reduce the DOA run length to avoid unnecessarily lengthening
computation times; though in practice this would not be an issue for DH operators.

The endstate is selected such that it is sufficient to cover the demand in the costlier hours
during the lookahead period. The lookahead period must be adjusted based on the size of the
TES. A long lookahead period for a small TES may lead to assignment of a constantly full TES
and conversely a short lookahead period for a larger TES may underutilise the TES capacity.
Another factor to consider was the size of HP. The endstate selected must be attainable with
the HP size while also being able to meet demand. Defining the endstate incorrectly could lead
to suboptimal operation

Through trialling several methods, the given definitions of charge and discharge duration were
settled upon as this was found to give the best results for all HP and TES combinations.
Variations of endstate such as a seasonally defined end state were considered, but this loses
the strength of the lookahead ability. This was particularly in the case of unseasonal weather.
Varying endstate and lookahead based on (the known) projected demand gave best results.

95



Modelling District Heating In A Renewable Electricity System

The full charge/discharge cycles of the TES at larger sizes correspond directly to periods of high
electricity prices. With a HP capacity equal to peak demand, and a 1% TES, charging of the TES
from empty to full takes between 1 and 2 days. With a 2% TES, this increases to 2 to 4 days. The
doubling of TES capacity from 1% to 2% has little effect on the broader operating patterns in
comparison to the operating pattern at smaller sizes. With a high forecast accuracy in the sub-
2-day period, the RDOA operation of a 1% TES can be practically recreated in ‘real world’
conditions with a high level of confidence.

The TES operation can be split into sub daily cycles and multi day cycles. Figure 4.18
demonstrates the smallest cycle length with a 0.1% TES is a single diurnal cycle. It has a stronger
twice daily cycle and less intense shorter cycles on the order of a few hours (lower frequency
equates to longer cycle lengths). This shows that the small duration TES never holds a full charge
for longer than a day with a small TES, often cycling multiple times per day, in response to daily
loads variation. The 1% TES also demonstrates these sub-diurnal cycles, but also has longer
multi-day cycles shown in the inset on a logarithmic scale with a 3-day and 7-day cycle showing
strong signals.
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Figure 4.17 TES operation at various TES sizes using the RDOA for the period 2014-2015
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4.4 Algorithm Comparison

Comparing the results of each algorithm in Figure 4.19 for the best-case and worst-case periods
shows that the RDOA as expected outperforms the other BSC and TRG algorithms. While the
trigger price compares well, it requires experimentation to find the appropriate trigger price.
However, this shows that the TRG is useful for efficiently exploring DH configurations. It can
generate results relatively quickly, with simple heuristics and known performance limits.

The RDOA is 18% higher than the minimum electricity costs given by the DOA. The absolute cost
difference between the RDOA and DOA in the worst-case period is almost three times more than
the best case. All the algorithms plateau at a level beyond which extra TES capacity provides
little benefit except for in the worst-case period where the plateau is not reached with any
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algorithm even with 5% TES size. However, there is a gradual rate of reduction and the costs at
1% TES is within 25% of the 2% TES size.

For the 2013-2014 period, the RDOA plateaus at over 80% higher than the DOA value with a
difference of around £27,000 compared to 2010-2011 where the RDOA plateaus at just under
20% higher than the DOA value but with a difference of nearly £60,000. This highlights the
difference in potential operating costs between a best-case year and worst-case year. Figure
4.20 shows the graph for RDOA in all modelled periods. It demonstrates that costs plateau
around 1% TES for all periods except the worst-case period 2010-2011. The RDOA shows that
for every measured year, the operating electricity costs for 1% TES were within 1.25 times the
costs of a TES of double the size, suggesting that the best TES to annual demand ratio is in the 1
- 2% range.

1,600

1,400 ——BSC TRG ——DOA RDOA

1,200

1,000

800

600

£ Thousands

400

200

0

0% 1% 2% 3% 4% 5%
TES% of Annual Demand

800

700 —BSC TRG ——DOA RDOA

600

500

-\

300

fThousands

200

100

0

0% 1% 2% 3% 4% 5%
TES% of Annual Demand
Figure 4.19 Comparison of electricity costs of all algorithm from the periods 2010-2011 (top)
and 2013-2014 (bottom)
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4.5 District Heating Network Configuration

The total annual DH operating costs inclusive of annuitised capital network, TES, HP, and
electricity costs are shown in Figure 4.21. The medium range costs from Table D-1 have been
used assuming a network of 50 GWh per annum average demand and a 22 MW4, heat pump
sized to peak demand. The TES costs assumes economies of scale for all sizes and the electricity
costs are the mean annual electricity operating costs for each TES value from all modelled
periods. The minimum operating costs are at a TES value of 1.3% of annual demand. This
corresponds to a levelised cost of heat (LCOH) of £88 per MWhy, and is around 11% saving in
operating costs per year. The low and high-cost ranges were £50 and £128 per MWh, of
delivered heat. Using TES costs that are within the economies of scale range, the cost curve will
remain the same at larger DH sizes and the LCOH will be preserved.
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Figure 4.21 Total annuitised capital, O&M, and electricity annual costs per MWh of delivered
heat for varying TES capacities
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Figure 4.22 Comparison of annual component cost per MWh of delivered heat for Low,

Medium and High cost sensitivity ranges

The component cost ranges are illustrated in Figure 4.22 where it can be seen that a large share
of the costs come from the network itself. Previous estimates have shown that network costs
amount to over 70% of total costs (ETIl, 2018). The cost breakdown for the medium range in
Figure 4.23 suggests that this is closer to 60% owing to the higher capital costs of HPs. Of the
network costs, the majority of this comes from the cost of the heat connections, including the
HIUs and heat meters. This has been found to be a key area of sensitivity with a wide cost range
and the figures have been based on a limited number of UK installations. This is seen as a major
barrier to deployment (DECC, 2015b). Other studies have shown the possibility for significant
network cost reduction in the UK in comparison with Scandinavian DH systems. A report from
Poyry proposes a possible 50% reduction (Macadam et al., 2009) while an ETI study shows up to
40% reduction through a combination of financing, experiential learning and supply chain
management (ETI, 2018) and industry experts suggest a network capital cost reduction of at
least 30% is a distinct possibility (BEIS, 2018b). With a 30% decrease in network costs in the
medium cost range projections, the LCOH falls to £74 per MWh of delivered heat. By
comparison, this is similar to a survey of heat prices from existing UK DH schemes where the
average price charged for heat was £73 per MWh (DECC, 2015b).
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Figure 4.23 Medium case annual operating costs distribution
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4.6 Discussion

This chapter documented the development of the District Heating Model — DiHeM, a DH energy
model which enabled experimentation and optimisation of DH plant components. Various
control strategies were trialled to operate the dispatch of heat from the HP and TES, ultimately
settling on the implementation of a Model Predictive Control (MPC) operating algorithm.
Existing DH studies were reviewed to identify appropriate methods and built upon in the
modelling used for this study.

The modelling approach reduced the DH network to its fundamental components: a single heat
load with fixed supply and variable return temperatures and physics-based representations of
HPs and TES. This included thermal losses and dynamic COPs, both dependent on operating
conditions. The DH model was designed to operate in three discrete modes per hourly timestep.
While individual DH systems may indeed have higher source temperatures such as from sewage
or waste heat, ground source temperatures have been used as a generic source temperature.
These temperatures are less locationally dependent than other heat sources and are assumed
to be representative of the average COP that may be achieved in the event of widespread DH
deployment.

The flow and return temperatures have been modelled linearly assuming a variation between
50°C at peak and 15°C at no load, but rarely dropped below 30°C during the simulations. In
reality, this relationship is never linear and there are many factors that are case specific, such as
building internals, radiators, heat exchangers and the action of bypasses. Bypasses are used to
maintain flow temperatures and normally result in heat losses being higher than assumed at low
demand. This would result in higher return temperatures and would reduce the storage capacity
of the TES. It also means that losses are a higher percentage of demand at low demand periods.

Distribution network losses were modelled as 12% multiplier of hourly demand. However, these
losses should have been an additional constant loss to equal 12% annually rather than 12% of
hourly demand. The impact of this would be negligible during the summer low demand periods
as electricity prices are low and the TES does not operate but would lead to pessimistic results
during high demand as it overestimates peak losses and therefore electricity consumption of
HPs (when COP is typically lowest). Ultimately, further research is needed to model the dynamic
network heat losses.

The inclusion of other sources such as geothermal or industrial waste heat in the modelling
would result in superior COPs, reducing the electricity costs. The economics of other heat
generators such as solar thermal have not been studied nor has the inclusion of cooling which
was deemed outside the scope of this project.

4.6.1 Operation algorithm

Operational algorithms were explored for the control of TES and dispatch of heat. Heuristic
based algorithms were first considered; the BSC algorithm which operated based on electricity
grid conditions, and an improvement upon this was the TRG algorithm that uses electricity prices
as the basis for control. The strength of these algorithms is the speed of simulation for modelling
purposes. However, from analysis of hourly charging, the lack of any foresight used in these
algorithms limited their performance.

Existing methods have been built upon to implement an MPC. This was used to both optimise
dispatch with perfect foresight- DOA, and over a limited time horizon - RDOA. These algorithms
used a type of MPC algorithm known as dynamic programming. Although it has several drawback
including discretisation and computing requirements, it is particularly suited to the formulation
used in DiHeM and could be easily adapted to operate the discrete modes of the model. The
minimum achievable electricity cost is difficult to determine; however, a good indication of the
theoretical minimum electricity costs can be estimated from the lowest hourly electricity costs
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(during surplus hours, see Chapter 3.5) and average COPs attained by the system. In practice,
this is difficult to achieve due to storage and HP limitations.

The RDOA provides a realistic assessment of the operating costs using a limited time horizon. It
can be seen how close this is to the DOA costs and dependent on the weather year being
simulated. Knowing the relative performance of the TRG compared to the RDOA can make it a
useful algorithm to employ for quick results. The heuristic based algorithms can be improved
upon extending it to use variable trigger price curves and including forecasting. This could easily
extend to machine learning levels of sophistication where the algorithm continues to be refined
based on continuing use data. With the use of the MPC algorithm, it was not worth pursuing
such complexity and could easily be a doctoral research project itself. Meta-optimisation of the
RDOA, both in terms of efficiency and accuracy, would also be a useful exercise. These
limitations are relevant only to the modeller. DH operators will operate in real time and have
access to greater computational power.

The results show that electricity costs rapidly fall with increasing TES capacity, up to around 1%
of annual demand. Above 1%, costs continue to decline depending on the period measured but
the reductions are diminished. TES capacities above 1% may be useful in bad weather years,
where it was found that costs continue to diminish above 2% TES. If as a result of climate change,
bad weather years and extreme winter weather were to become more common in the British
Isles, then there may be a stronger case for larger capacities. This would require a better
understanding of the local impacts of climate change and perhaps a complex statistical analysis
of weather and costs. There are of course other options for storage with DH, such as biomass or
hydrogen. With CHP, these have the wider benefit of producing electricity, but such an analysis
was outside the scope of this project.

The electricity costs used are based on the assumptions of the marginal cost model — EICoM for
the NZ scenario. The reality of future costs and energy system are almost certainly going to differ
from those presented here. The electricity costs do however simulate highly varying electricity
costs. The modelling here shows that the majority of costs are concentrated in specific periods
during the intersection of high costs and prolonged high demand. Larger TES capacities will help
reduce these concentrated costs. This is also very dependent on the dynamic market structure,
whether it operates on spot prices, day ahead prices and how far in advance contracting will be.
DH operators may have separate contracts for electricity and there is the possibility that
operators of smaller schemes with limited flexibility or TES may agree a Contracts for Difference
(CfD) with electricity providers, protecting them from volatile electricity prices, but this would
largely negate the benefits of flexibility gained via TES.

4.6.2 District heating cost and policy implications

The results have provided an indication for the range of LCOH that could be expected from DH
in highly renewable scenarios as well as the expected operating costs for electricity import,
which has rarely been accounted for in contemporary analysis. These figures could be used as
input data to provide the basis for further analysis on the potential for DH along the lines of the
studies presented in Table 1.2.

The current and projected capital costs of DH infrastructure show that TES costs account for a
small fraction of this. There is some range in the annual electricity costs to achieve cost
reductions but by far the largest determining factor are the network costs at around 60% of the
LCOH. Various stakeholders suggest that this can be reduced by around 40% of current network
costs. Depending on whether network costs decrease as projected, heat delivered by DH can
still be financially competitive with consumer HPs and with current gas boiler heating assuming
medium cost projections (Wang, 2018), although the latter is subject to the future cost of gas
and associated emissions.
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4.6.3 Practical Implications

Tank construction has a practical limit to due material properties and engineering constraints.
Tank walls have to be built to withstand the pressure of a large volume of water. This pressure
can be reduced by altering the ratio of height to diameter at the expense of land area. One way
to avoid this is by partially burying the tanks, but this increase construction costs. With this
method hybrid pit-tank TES with very large volumes on the order of 100,000 m* have been
proposed (Ochs et al., 2020); but the largest tanks connected to DH remains around 15,000 m?
while the largest PTES is 200,000 m3. Underground TES may offer a route to larger storage
capacities, albeit with high capital costs, and there has been shown to be substantial availability
of underground stores in the UK, the locations of which, would have to be matched to areas of
DH deployment (Gluyas et al., 2020).

The UK has historically used large gas holders built close to urban populations to store ‘town
gas’ for use in buildings and the local gas distribution grid. They have become obsolete since the
UK gas network transformed to use North Sea gas, but many still exist unused near town centres.
At their peak, National Grid owned “over 500”, SGN owned 110 and several other companies
owned and operated gas cylinders around the UK with an estimated 750-1000 gas holders at
their peak (Ram, 2015; SGN, 2021).

The UK now has many unused gas holders. The typical cylinder at full capacity was around 50,000
m3. Assuming a DH network flow temperature difference of 55°C, a 15,000 m3 TES stores just
under 1 GWh and combined with an energy centre, could serve a DH with a 100 GWh annual
demand. The large gas holder in Kennington, London (pictured in Figure 4.24) is 60m diameter
with a minimum land area requirement of 2827 m2. A TES of 1:2 ratio occupying the same land
area would hold a TES of over 80,000 m3. This would have a capacity of over 5 GWh (at 55°C
temperature difference). The area occupied by 750 gas holders would allow construction of
around 3.75 TWh worth of TES which can serve DH with aggregated heat demand of 375 TWh,
which is over half of the low temperature annual space and hot water demand for buildings in
Britain.

While it is highly unlikely that this level of DH will be constructed in the UK, and of course this
needs to be spatially distributed and co-located with areas of high demand, it is an indication
that the potential for low-cost DH networks is not limited by area for TES. The largest
uncertainties arise from the cost of land to construct large TES. The costs of land in urban areas
will not be trivial and these costs, including the cost of the building which house the energy
centre have not been entirely factored in as these are highly location specific and may greatly
impact the capital expenditure.

Figure 4.24 Aerial view of the Kennington gas holders (Google Maps, 2021)
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4.6.4 Chapter conclusions

While TES capacity of around 1% of annual demand (corresponding to roughly 20 hours of peak
demand) is found to minimise annual costs, the reality is that these costs represent a small
fraction of the overall costs of heat from a DH system. The TES and associated electricity costs
form around 12% of the final cost of delivered heat. As has been emphasised in the literature
and by key stakeholders, there are far greater gains to be made by focusing on reducing network
costs. This may be through better design and construction methods, supply chains or financing
methods.

Minimum costs being achieved at 1% TES suggests that if this capacity is implemented and DH
is widely deployed, then there is significant operational flexibility to be gained for the electricity
system. This figure is also dependent on the fractions of wind and solar power deployment and
the capacity factors they may be able to achieve in future. With the ability to shift demand by
over 4 days at this TES capacity in the modelled NZ scenario, electricity peak loads can be
reduced, and DH can facilitate the integration of variable renewable electricity.

The DH design and operation in this chapter has reflected the case of DH-HP operation being
non-marginal upon the electricity system. If DH deployment is going to increase and become a
major component of the GB energy system, then the operation of DH will at some stage become
marginal on the electricity system, altering electricity costs and in turn, the operation of DH.
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5 CONCLUSIONS: A SYSTEM
PERSPECTIVE

5.1 Thesis Summary

The motivation of this research began with identifying the need to decarbonise heat supply in
the UK. As a result of the electricity grid decarbonising, electrification of heat is a promising
method of achieving this. With heat pumps, district heating can potentially deliver a
considerable amount of electrified heat to urban areas. It can also provide a beneficial role in
the electricity system by providing greater flexibility and COPs compared with individual heat
pumps. To understand this role, we first needed to identify how DH may be designed and
operated according to the requirements of a future system. With reference to the research aim
and questions in section 1.4.1:

To what extent can DH with heat pumps and TES exploit the variability in demand
and electricity prices to minimise operating costs and how should they be designed
to achieve this?

This has necessitated the development of a series of models where this thesis has:

1. Developed HeLoM to model the projected urban heat load for DH

e Where the modelling comprised of building stock data and areas of highest heat demand
density to provide an estimate of an urban DH demand load profile.

e Similarly estimated the national (GB) heat load profile, contrasting the output to similar
modelling of the 2010 total and peak demand.

e Differences between the normalised urban and national demand duration profile were
found and more significantly, the peak to trough ratio of the urban demand profile was
lower than the national, indicating that the urban demand has a flatter demand curve.

2. Created EICoM to simulate the electricity system

e Utilising an existing net zero compatible scenario from National Grid which included a
high fraction of electrified heat and DH deployment.

e This was modified to 100% electrified heat and the generation and storage capacities
were suitably adjusted to maintain the peak demand to renewable generation and
storage capacity ratio such that it provided a security of supply where 98% of demand is
met directly with renewable generation or via storage.
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e A novel methodology was devised to simulate the variability in electricity prices based
on marginal generation costs with distribution and transmission losses, finding strong
seasonality in a highly renewable system.

3. Combined the outputs of HeLoM and EICoM in DiHeM

e Andimplemented an optimisation algorithm to control the dispatch of heat from the HP
and TES with a finite time horizon. The finite time horizon resulted in costs 20% higher
than a perfect foresight algorithm.

e |t was found that a TES capacity equivalent to around 1% of annual heat demand is
sufficient to minimise operating costs with a HP sized to peak demand.

5.2 District Heating and the Electricity System

This thesis has achieved a modelling system that allows further exploration of DH for given
scenarios. A question remains concerning how DH can fit into the wider system and what role it
can play in it. We can explore the effects of large-scale DH deployment in several ways:

1. Replace Consumer heat pump electricity demand with an equivalent fraction of DH
electricity demand. With this we can observe the impact on annual electricity consumption
and peak electricity demand via:

a. The effect of COP difference
b. The effect of load shifting via TES

2. Integration of EICoM and DiHeM to observe the impact on renewable generation surplus

and deficits from:
a. The co-operation of TES and grid storage
b. Varying grid storage capacity on the system

5.2.1 Substitution of demand loads

By simply replacing a fraction of consumer HP electricity demand with the equivalent DH
demand, we can begin to explore trends associated with the growth of DH. The ability to shift
demand with TES means that the DH hourly load profile will not be a simple translation of the
existing consumer HP profile attained through enhanced COPs. Figure 5.1 shows the impact of
replacing 10% of consumer HP demand with DH. This results in a 3% decrease in annual demand
of electricity for heating, due to a combination of enhanced COPs and lower transmission losses
and 10% reduction of peak demand due to TES shifting the entire DH load away from the peak.
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Figure 5.1 Peak and total electricity demand with DH deployment
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5.2.2 System electricity costs

The resulting change in marginal electricity costs are shown in Figure 5.2 for each simulated year
as DH expands to 10%. The annual mean marginal costs remain largely unchanged, but peak
costs rise by varying amounts depending on the year as there are fewer dispatchable hours to
recoup fixed operating costs (we can see in 2010, the year with most dispatchable hours, has
the lowest peak generation costs). Around 80% of hours actually remained unchanged, these
were almost exclusively surplus hours. Around 6% of hours reduced in costs and 14% increased.
The average charge and discharge hour costs increased, as do the peak costs (maximum
discharge hour costs). This is due to the reduced revenue from dispatch (flexibility) hours which
constitute around 12% of all the hours. The increase of these costs is offset by the large decrease
in costs during the extra surplus hours where the marginal generation costs are very low. Given
most hours remain unchanged in cost and only the previously high-cost hours increase in cost,
it may be that hourly DH operation, based on electricity price signals from the grid, would not
be significantly altered given mass deployment other than during a minority of specific hours.
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Figure 5.2 Change in the mean (solid) and maximum (dashed) marginal generation costs

5.2.3 Electrified heating costs

Both the average unit and total annual cost of electricity for heating falls with increasing DH
deployment as shown in Figure 5.3. Using the modelled heat loads from Chapter 2, this
corresponds to a total cost of between £10 billion and £18 billion per year for electric heating.
As this is modelled from substituting demand loads, the difference in distribution costs is not
taken into account here, and neither is the impact of TES on the need for battery storage. In
Section 4.5 it was shown that the average annual cost of electricity for a non-marginal DH system
was just under £9/MWhq,. As the fraction of DH deployment increases, the average cost would
tend towards this number, this average will itself change as DH becomes marginal on the system.
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Figure 5.3 Change in the average unit (top) and total annual (bottom) cost of electric heating

5.2.4 Integrating EICoM and DiHeM

An examination of how the flexibility of DH can be exploited by the electricity grid and utilise
the extra storage capacity is more complex. The modelling methods used do not permit a robust
hard integration of DiHeM and EICoM without a fundamental redesign of the models. While the
dispatch algorithm in EICoM functions on an hourly basis, the evaluation of costs only occurs
retrospectively on an annual basis. This presents an issue as the RDOA in DiHeM operates on the
basis of known hourly electricity prices. When DH is significant on the system, the electricity
demand will change and affect the marginal generation costs and hence the electricity price to
the DH operator and in turn impact the operation of the DH. The resulting operation sequence
could then be run again in EICoM but there is no guarantee that this iteration will converge.

Furthermore, DH would impact on the optimal capacities of electricity generators and storage
and so affect system costs and hourly prices. Properly then, the operation and system design
would be optimised using an integrated model. Full integration of the models and optimisation
would require a further research programme. One option to explore the coordinated operation
of DH is on the basis of a centralised dispatch system. This effectively removes agency from the
DH operator. By allowing the decisions in DiHeM to be controlled by the state of EICoM, the
dispatch model in EICoM is set to treat DH TES as a secondary store after the grid’s electrical
storage has been fully utilised. This maximises the flexibility of the grid as electricity can be used
for any purpose and minimises the use of dispatchable generators. The central dispatch is such
that:

e When there is surplus power, priority is given to charging grid storage first, followed by
the DH HPs, to first meet the DH load, and then to charge TES with the remaining excess
HP capacity

e When there is a deficit of power, priority is given to switching off the DH HPs and the
DH load is met from the TES, followed by discharging grid storage.
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Figure 5.4 shows the comparison of DH to a counterfactual of full consumer HP based heating
in the NZ Scenario. Surplus renewable generation slightly increases. However, the benefits of
DH can be seen with a 60% reduction in the deficit at 10% DH deployment. The deficit would
otherwise need to be made up from either dispatchable plant or other flexibility/storage in the
system.
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Figure 5.4 Change in renewable surplus and deficit after integration

5.2.5 Equating thermal and electrical storage

In Section 3.7 it was determined that 242 GWh, of grid storage was necessary in 2010, the design
year, to attain a security of supply where 2% of all demand was achieved via either dispatchable
plant or other flexibility. For other weather years, the requirement was less than this.

The grid residual (generation minus demand) curve in Figure 5.5 shows the effect of grid storage
and DH on the generation surplus and deficits using 2010 weather data. An ideal system should
be perfectly balanced, the next best would be to eliminate the deficits. The orange curve
represents hourly generation minus demand before the action of any grid storage. The addition
of grid storage eliminates over 750 deficit hours (shown by the solid blue line). The dashed
yellow line shows the addition of 10% DH on the system which further reduces the deficit. This
level of DH deployment, assuming TES sized at 1.3% annual demand (as per results the findings
in chapter 4), would have just under 550 GWhy, of connected TES (assuming a DH system
temperature difference of 55°C) . The value of this extra storage on the system can be estimated
by the cost of grid storage displaced without altering the deficit (dashed blue line).

For the 2010 weather year, this displacement is around 107 GWh of grid storage. 2010 was an
exceptionally cold year which enhances the DH-TES system’s ability to provide virtual storage
for the grid (i.e. if heat demand were zero there would be no HP electricity demand to interrupt
and the storage ability would be zero). Other years had a lower overall storage requirement than
2010 to attain the same security of supply (and hence a smaller displacement), despite DH being
able to provide a greater level of virtual storage due to the higher heat demand in 2010.
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Figure 5.5 Grid residual duration curves for NZ scenario and integration of DH (2010)

For a 10% DH deployment, TES capacity and the corresponding capital costs were assumed with
a reference DH temperature difference of 55°C. With a fixed volumetric capacity of TES, the
actual stored energy varies with the temperature differential. The average winter DH
temperature difference was 38°C which gives an effective winter TES capacity of around 380
GWhyh. The thermal storage electrical equivalence can then be estimated by the ratio of the
effective winter capacity and maximum displacement (380/107). This is in the region of 3.5, that
is 1 GWh, of grid storage can be displaced by 3.5 GWhy, of TES (depending on the level of heat
demand). This figure is essentially the average winter COP of the DH system, suggesting that the
TES can be operated like grid storage provided that there is DH load on the system.

As per the capex assumptions from Chapter 3, 107 GWh, of electrical storage represents a £36
billion capital investment. Using the medium range assumptions from Chapter 4, a 10% DH
deployment would require an estimated £52 billion capital expenditure (network + HP + TES).
The cost of the DH infrastructure needs to be factored in as a pre-requisite to be able to connect
such quantities of TES to the system. TES represents less than 4% of the total capital of a DH
network. Once the infrastructure is in place, the addition of further TES would require little
further investment. Every 1 GWhy, of TES at a cost of £4.45 million potentially displaces up to
0.2 GWh, of electrical storage, at a cost of £67.4 million (this is a 1:5 ratio at 55°C temperature
difference as opposed to a 1:3.5 ratio at a 38°C difference).

The integration described here effectively assumes joint operation of the system and operates
according to a surplus/deficit merit order which tries to maximally conserves exergy, but it is not
price driven, though it may well minimise total system avoidable costs. However, the output
from DH is assumed to be unavoidable as it is driven by demand, whereas grid storage output is
optional. The level of displacement of grid storage presumably arises because of the inability of
grid storage to meet demand in worst-case conditions due to insufficient charge. It is difficult to
cover the extreme worst-case condition with the modelled decarbonised electricity system due
the many variables involved. These include the state of charge of both grid storage and TES, the
heat load and the electricity demand on the grid, and also the conditions and renewable output
leading up to this. Because of these many uncertainties, small changes within the system could
lead to large changes in the ability of TES to displace grid storage. While this result is a starting
point, further analysis needs to be conducted with a more robustly integrated model.
Experimentation on varying levels of TES and DH deployment levels is also needed to determine
the minimum DH investment required to achieve grid benefits and how much TES can be
supported at each level of DH deployment. The answers to all these questions are highly
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dependent on the scenario, operating algorithm, and system design assumptions that any future
analysis should consider.

5.2.6 Summary of model integration

This section has addressed the second main research aim which was to analyse how a significant
DH presence may impact the electricity system. This was stated in section 1.4.1 as:

What is the impact of a significant DH deployment on the electricity system, how
much flexibility can it provide and to what extent can it supplant grid storage?

This required integrating EICoM and DiHeM and coordinating the operation of the two models
assuming a centralised dispatch. The results from this analysis at 10% DH deployment can be
summarised as:

e A simple substitution of electricity demand loads shows that electricity demand for
heating is reduced by 3% and peak demand is reduced by 10%.

e Annual mean electricity costs remain consistent and the costs in around 80% of hours
in a year remain unchanged. However, peak marginal generation costs increase with
fewer hours of dispatchable generation or other forms of flexibility.

e The total cost of electric heating for both individual HPs and DH was found to vary
between £10 billion to £18 billion.

e The deficit in renewable generation is reduced by 60% while there is a slight increase in
the surplus of renewable generation.

e DH can displace around 107 GWh, of grid storage with every 1 GWhy, of TES able to
displace 3.5 GWh, of electrical battery storage (at a 38°C temperature difference).

5.3 Key Findings and Contributions

Each of the main chapters of this thesis has provided contributions to knowledge in their
respective areas. Chapter 2 has drawn upon many existing sources to develop a method to
model high spatiotemporal resolution heat loads on a large geographical scale. While various
heat maps with high spatial resolution are in existence, the temporal dimension in HeLoM is
novel. The modelling enabled disaggregation of urban loads at selected heat demand density
thresholds as a proxy for DH load. The urban heat loads were shown to have a different temporal
profile to the modelled national profile demonstrating that these cannot be simply
interchanged. The output, both national and local urban load, can be used in various other
research applications and model inputs.

Chapter 3 developed EICoM which introduced a novel method for calculating marginal electricity
generation costs from capital intensive systems. The modelling revealed that while intra-day
variation of costs increases, the short-term variability decreases in high wind scenarios. The
costs also show a strong seasonality, which was reinforced in the NZ scenario with the addition
of fully electric heat loads. The NZ scenario itself was an adaptation of an existing national
scenario where it was assumed that dispatchable generation can be eliminated through
flexibility measures such as demand side response, interconnection and vehicle-to-grid (V2G).
These flexibility measures amounted to 2% of annual demand in the stress case period, and
represents a security of supply for the electricity system. The resulting generation mix shows
ambitious renewable deployment capacities. This ambition, however, is in line with
contemporary analysis in the field. Significantly, it was shown that the marginal cost of electricity
supply in a highly renewable system with grid storage can be within a manageable range.

In Chapter 4, output from HeLoM and EICoM are combined in DiHeM. The operational control
of the HP — TES system was implemented with a novel application of an MPC algorithm, the
RDOA. The RDOA has a finite time horizon corresponding to the accuracy of weather forecasts.
This enables a practical grasp of the operating costs and can approximate within 20% of a perfect
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foresight simulation. It was estimated that the levelised cost of heat from bulk DH systems would
be in the region of £88 per MWhy,, of which around £9 per MWhy, are from fuel (electricity)
costs. The model was used to determine the optimal TES capacities for the NZ scenario. It was
determined that a TES capacity of 1.3% annual demand is sufficient to minimise electricity costs
(with a heat pump sized to peak load). However, with the costs of current DH infrastructure, TES
represents a small fraction of the capital investment.

This final section has shown that significant quantities of DH can be deployed with the result
that electricity demand for heating and peak loads on the grid are reduced, as is the deficit in
renewable generation without greatly impacting electricity costs. An attempt at integrating
EICoM and DiHeM reveals that the amount of grid storage that is displaced by TES is highly
dependent on yearly weather conditions. This can be as much as 3.5 GWh, of TES for every 1
GWh, of grid storage on the system at significant cost savings.

5.3.1 Policy implications

DH costs are still very dependent on large capital investments and financing is a central issue.
Reducing the cost of DH infrastructure is the subject of intense scrutiny among stakeholders. A
reduction in DH capital costs of over 40% has been suggested (ETI, 2018), thereby increasing the
areas in which deployment of DH is economical. There is uncertainty regarding the cost of land
and space for TES, but the value to the grid that DH could provide merits further attention.

The modelling in this thesis has shown that the capacity requirements and therefore system
capital costs are set by the worst-case period. In this research, this was the winter of 2010 which
had a prolonged cold period with low renewable output. In Chapter 2, the peak simulated heat
loads were seen during this period. The capacities in the NZ scenario in Chapter 3 were set by
2010 which was the year with the highest number of DSP hours. Chapter 4 also showed that the
DH capacity requirements are determined by this period. If the 2010 meteorology year were not
simulated, then the results here may look quite different. A fundamental question is whether a
future system be designed according to this worst-case? How often will this worst case occur,
particularly considering a changing climate with predicted milder winters? The NZ scenario was
designed around a security of supply constraint but this may not be the grid operator’s only
constraint. It might also be to minimise the total cost of electricity to consumers. The marginal
generation costs of electricity modelled here are largely driven by capital costs of both
renewables and storage. Storage has a big impact on prices, and so this tends to favour
prioritising its reduction over renewables. The whole system must be secure in worst-case
conditions and the options are not limited to those discussed here.

It has also been shown that TES provides the highest benefits to the electricity system in the
worst-case year. DH TES thereby offers the opportunity of greatly reducing system storage and
dispatchable generator costs. This alone merits further investigation and any policy analysis or
future scenario modelling should acknowledge this. Should DH then be designed and deployed
according to this worst-case period at the expense of heating costs? If so, what incentives would
be provided to DH owners and operators to provide this valuable flexibility? And importantly,
who would be responsible for coordinating this?

The benefits of DH could be maximised with a co-ordinated system as the integrated modelling
has illustrated. The design of such a system is a challenge of high complexity and raises further
questions and challenges such as what signals are involved and who manages the system. The
modelling here simulated a single large TES, effectively assuming that all stores are charged and
discharged in unison. This is unlikely to be the case and something that could only be achieved
via a centralised coordinated system operator. Alternatively, if the system is decentralised with
competing agents, how is chaotic hunting avoided? We can only speculate on the configuration
of the future energy system, and what the role of the National Grid or other operators may
become. But in the absence of a central dispatch agent, would dynamic markets be able to
recreate this behaviour? These are questions unanswered here.
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The investment, ownership and operation of grid infrastructure is entirely separate from that of
DH. A whole system cost minimisation would strengthen the case for DH. If a 10% DH
deployment with a capital cost of £52 billion saved £36 billion in grid electricity storage, the
effective spend on 10% DH deployment would be only £16 billion. Assuming that this level of
deployment covers 3.5 million dwellings, this represents a spend of around £4,600 per dwelling
(a conservative estimate considering that nondomestic buildings would form a large component
of urban DH schemes). By comparison the typical cost of installing a domestic air source HP is
around £10,000 (Vaughan, 2021). A £5,400 saving for 3.5m dwellings is £18.9billion and further
savings could be achieved by considering the counterfactual costs of needing to reinforce the
local electrical distribution network.

While observing these cost savings, it is important to remain cognizant of the declining costs of
utility scale lithium-ion batteries and other form of grid storage. Some projections estimate a
2050 cost reduction of over 50% compared to the values used in this study (Cole et al., 2021).
Though this reduces the impact of the cost savings from TES compared with lithium-ion
batteries, TES is still significantly cheaper and of course these projections are based partly on
historical trends and the continued availability of the required raw materials and associated
supply chains.

The modelling of marginal generation costs shows that high levels of renewable deployment
should not necessarily lead to high electricity prices in an efficient market. Average electricity
generation costs remain in line with present costs, but these costs are seasonal. Increasing
renewable deployment does however increase the costs of the few remaining dispatch or
flexibility hours where there is a generation deficit, but this modelling has not reduced system
capacities to avoid this. Tariff design will be vital to protect owners of consumer HPs from being
exposed to the highest costs in winter, particularly as they are unlikely to have the load shifting
abilities of TES. Large purchasers of electricity (electricity retailers and large consumers) may
well enter into contracts-for-differences (CfDs) with wholesalers to fix their prices going
forwards, and hence shield themselves from volatile and high short-run prices. The economics
of storage however, depends on price volatility. Short-run prices need to be visible and
accessible in the market, in order for storage to be properly rewarded. If they are not, then
insufficient storage will be built, increasing volatility and threatening security of supply.
Similarly, electricity retailers could offer a range of tariffs to small consumers - with a premium
reflecting the extent to which the consumer is insulated from high and volatile prices.

5.3.2 Strengths and limitations

A strength and novel feature of the analysis in this thesis is that real weather underlines the
primary data feeding into the simulated supply and demand. Weather data from the eleven GB
regions provided by the Met Office (2019) directly fed into the heat load modelling in HeLoM.
The renewable capacity factors from Staffell and Pfenninger (2016) were based on NASA Merra
reanalysis data. This fundamentally linked the patterns of supply and demand, a link that is
reinforced with higher renewable capacities. However, future weather and climate conditions
will not be the same as the modelled past; in particular increased average ambient temperatures
will reduce space heat loads and increase cooling demand, but episodes of extreme weather
may impact on peak demands (Met Office, 2021).

The DH modelling rests on a single scenario. This scenario was based on a recent National Grid
net zero scenario with a significant fraction of DH. Real world outcomes do not always follow
the planned or most economic investments pathways. The purpose of this modelling is not to
make a prediction, rather it is an exploration of future outcomes and a key challenge is to
understand the uncertainties in these outcomes. How would these results change with lower
renewable deployment or in a hydrogen dominated scenario? Compared to the National Grid
scenarios, the NZ scenario adapted for this thesis had the highest level of heat electrification
and DH deployment which made it most suitable for analysis. The largest departure from it was
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the elimination of dispatchable hydrogen, this hydrogen is also a storage mechanism for the
energy system.

The analysis of significant DH deployment in this concluding chapter effectively models a single
large DH system with a single TES. In reality there would be many individual systems with
different demand load profiles, HP COPs, etc. A rudimentary integration of EICoM and DiHeM
was attempted with an assumed merit order. But given that we know little about the
composition of other storage and flexibility measures on the system, it is difficult to make any
firm conclusions on this basis, but rather to create new avenues of exploration.

5.4 Future Work

A natural progression of this work is to extend the integration of EICoM and DiHeM. This includes
a co-optimisation of both electricity dispatch and storage in conjunction with TES. The challenge
will come in the design of the optimisation and definition of the objective function which is being
optimised. While a cost comparison between DH and grid storage has been attempted, a further
addition is a comparison with consumer HPs. This would involve a comparison of not only the
capital costs of installation but also the cost difference of the electricity consumption (inclusive
of transmission losses). This would then tend towards a total system optimisation.

The heat loads from HelLoM are assumed to be inflexible in DiHeM. While attempts have been
made to capture the effects of diversity and thermal inertia in the heat load modelling, there is
no option in DiHeM to pre-heat or adjust temperature set-points. This increases the flexibility of
the DH system. However, this would have required each building to be dynamically modelled,
increasing computing demands.

Now that the modelling system is in place, further scenarios can be readily simulated. While a
full system optimisation is beyond the capabilities of the modelling, an economic optimisation
of DH deployment may be possible. Following from this, a central discussion point has been the
matter of system design according to the worst-case period. This may require a full statistical
analysis of the likely performance of the RDOA operational optimisation algorithm compared
with perfect foresight in the face of an uncertain future. A statistical analysis of meteorology
may be useful, but this may also require further climate modelling.

Including climate scenarios could enable a more robust analysis of heat loads as well as possible
cooling loads. Cooling loads have only been captured indirectly through extrapolation of current
electricity demands. Summer temperatures are projected to rise, and the frequency of heat
waves may also increase. This cannot be simulated with the use of historical meteorological data
and cooling loads may need to be explicitly derived. The question of cooling demand is certain
to increase in importance in the coming years. The summer periods typically have high surpluses
of electricity generation. Electric cooling loads could readily use this surplus and are unlikely to
be as critical to system design as heating is. HPs and DH networks can also be used to provide
cooling and the modelling can be extended to a district heating and cooling network.
Substituting air-conditioning with district cooling is akin to replacing consumer HP with DH-HP
resulting in lower electricity consumption. The provision of heating and cooling with HP could
allow for the storage of both. An interseasonal TES could be used to store excess cold in the
winter and heat in the summer. Indeed, concepts such as 'fifth generation district heating and
cooling' systems are beginning to emerge that consider this proposition (Lund et al., 2021).

The results presented here show that the widespread deployment of DH can have an important
function in the national energy system and warrants that it is thoroughly investigated as part of
an energy system strategy. The issues directly impact organisations such as the electricity
network operator, National Grid ESO, who should certainly examine these outcomes as well as
being scrutinised by the appropriate government department and the Climate Change
Committee who advise them and ultimately shape the direction of energy policy and research.
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To summarise the scope of future work and extensions of the research presented in this thesis,
this includes but is not limited to:

o Fully integrated electricity system and DH simulation including co-optimisation of
dispatch, electrical and thermal storage, and a total system optimisation to contrast DH
with consumer HPs.

e Inclusion of dynamic heat demand to capture the effect of varying temperature
setpoints, pre-heating and thermal inertia.

e Addition of further national energy scenarios and economic optimisation of national DH
deployment for each.

e Inclusion of summer cooling loads and potentially district cooling and cold stores

5.5 Epilogue

Since writing this thesis, the UK (and indeed the international) energy system has gone through
a period of crisis. A perfect storm of low renewable generation coinciding with a nuclear power
plant and interconnector outage and a period of volatility in the natural gas market has resulted
in the collapse of several energy suppliers participating in the electricity retail market and
threatened several more. Their losses will inevitably be passed onto consumers who could face
higher electricity prices while the sustained high level of gas prices will likely lead to increased
domestic heating costs. A further consequence of this is a possible increase in electricity
generation from coal, thereby resulting in increased emissions.

This highlights the importance of some of the themes discussed in this thesis, particularly the
need for long-term energy storage to provide system resilience and reduce exposure to an
international commodity market. System design to ensure security of supply will be crucial as
both the deployment of renewable generation and electrified demands such as heating
increases. The need for appropriate market design is as vital as ever, to reduce the exposure of
energy companies and consumers to high energy prices and volatility in the market while
simultaneously allowing owners of storage access to this volatility to promote investment in
storage and security of supply.

In this time, the UK government has published their Net Zero Strategy (2021b) and the Heating
and Buildings Strategy (2021a) papers. While these are somewhat lacking in substance, they do
signal support for domestic heat pumps via a (limited) capital grant scheme, with a role for
hydrogen in industry and transport. For the power sector, the strategy confirms the intention
for a mass deployment of offshore wind, with little comment however, on the storage and
flexibility needed to accommodate this. Meanwhile, district heating continues to move up the
agenda, with the completion of a recent consultation on zoning to support the development of
new district heating networks (BEIS, 2021c) and a response to a consultation on regulatory
frameworks for district heating markets (BEIS, 2021d). This illustrates the pace of development
in this area and demonstrates that the topics covered in this thesis are going to remain relevant
for the foreseeable future.
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Table A-2 Summary of main modeling assumption

Section Assumption

2.1

2.5

23

2.3.2
233
2.3.7

2.4

2.4
2.4
24.1
2.4.2
33

3.4
3.5
3.54
3.5.6
3.7

3.73

3.73
3.7.5
4.2.2

4.2.6

4.2.6

4.2.5

4.2.6

4.3
4.3.5

5.2.5

District heating loads are entirely consisted of urban heat demand which have the highest heat
demand density as these are likely the most economic areas for DH deployment.

The national heat load profile can be extrapolated from the consumption profile of the top
10% gas consumption areas.

All buildings of the same archetype exhibit the same physical characteristics.
HeLoM models all building with a (gas boiler) heating power input efficiency of 85%.
All domestic archetypes exhibit the same occupancy pattern.

Nondomestic MSOA gas data for urban areas is predominantly service and commercial sector
rather than industrial use.

The temperature of the building thermal mass and internal wall surface are equal to the
internal air temperature

Wind forced convection acts only on one side of a building.

The building thermal model assumes steady state heat transfer.
Nondomestic hot water demand has a constant flat hourly distribution.
Age distributions of domestic buildings is evenly spread across archetypes.

The GB electricity network is an isolated island with no interconnection. Baseload generation is
constant and dispatchable would be lower in the merit order than renewable generation.

A dispatch merit order would include a carbon emission tax as well as direct cost.
Electricity prices reflect marginal costs with additional transmission and distribution costs.
Grid batteries all charge and discharge in unison, effectively a single large store.
Lithium-ion batteries are assumed for grid electrical storage.

Non heating and transport demand variations can be estimated by extrapolating existing
demand. EV charging demand is the inverse of traffic flows with no vehicle to grid service.

Individual domestic and nondomestic heat pumps operate with a fraction of Carnot efficiency
of 0.40 and 0.45 respectively.

UKPN electricity losses for London and South East are representative of the country.
2050 offshore wind capacity factors will average 0.55, higher than the present average.

The DH operates with a fixed 70°C flow temperature and a return varying linearly between
50°C at peak load and 20°C at zero load.4.2.3Hourly distribution losses are 12% of the hourly
load on the DH network.

DH HPs are connected at high voltage and therefore avoid LV distribution losses.
Generic HP source temperatures vary seasonally as ground temperatures at 3m depth.

TES are pressure connected with the DH network and stratified in two layers and designed
with a height/diameter ratio of 0.5. Thermal losses are simplified by using the average tank
temperature as representative of the surface temperature.

DH has a single stage heat pump with a Carnot efficiency of 65% and negligible ramp limits. A
generic source temperature is used based on ground temperature variations.

A back up electrical resistance boiler is able to provide any unmet thermal load.

The rolling dynamic optimisation algorithm has perfect foresight in the finite time horizon
periods specified.

A centralised dispatch agent or market controls the storage on the electrical system and TES in
DH. The model implicitly has a single large DH system with HP and TES which act upon the
electrical system rather than smaller DH systems with unique load profiles and multiple
smaller TES.
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Table B-3 Details of hourly nondomestic gas consumption from data provided by Sustainable
Energy Ltd (Challans, 2018)

CaRB2 Class  Building Data Further Information Estimated Active Occupancy
sources Length
Offices 5 2011-2015 5 office 7-5 weekday, 8-15 weekend
Hospitality 2 2015-2017 2 hotels 6-23
Arts Leisure 3 2013-2014 3 theatres 8-21
Sports 5 2010-2015 5 leisure centres 7-20
Education 16 2011-2015 10 primary, 5 secondary,  6-17 weekday, 6-15 weekend
1 college
Health 2 2011-2015 1 hospital, 2 care homes 24hr
Community 2 2013-2015 1 Library, 1 day centre 7-18
Emergency 1 2013-2014  Fire station 24hr weekday, 12hr weekend
1
0.9
- 08
<
5 07
=1
o 06
3
- 05
@
L 04
m
€03
2
0.2
0.1
Shop Factory — — = Warehouse - - — Transport
0
00.00 03.00 06.00 09.00 12.00 15.00 18.00 21.00

Figure B-3 Hourly estimated nondomestic occupancy factors

Table B-4 Estimated activity classifications

CaRB2 Class

Estimated Active Further information
Occupancy

Shop (retail)
Factory
Warehouse

Transport

9-20
24hr
24hr
24hr

(Duarte et al., 2013)
Reduced overnight
Reduced overnight

Reduced weekend
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Appendix C - Chapter 3

Table C-1 Input cost assumptions used in cost modelling”

Generator CAPEX  Fixed Var Efficiency Fuel Carbon Lifetime Source
£/kW o&M o&M % cost cost years
£/MW/a £/MWh £/MWh £/MWh
CCGT Class H 526.8 15,520 1.5 0.6 35 19** 25 (BEIS, 2016€; Leigh
Fisher and Jacobs,
2016)
Offshore. 1860 45,715 3.5 0 0 0 25 (ARUP, 2016; BEIS,
Wind 2016e)
Onshore. 1395 22,100 5 0 0 0 23 (ARUP, 2016; BEIS,
Wind 2016e)
Solar PV 652 4,792 0.1 0 0 0 25 (ARUP, 2016; BEIS,
2016e)
Li-lon 337 2,120 2 0.9 0 0 15 (IRENA, 2017;
(E/kWh) (£/MWh/ Wilson, 2019)
a)

* All costs have been adjusted for inflation to 2020 figures

**Calculated assuming a carbon price of £300/tCO.e (Burke et al., 2019)

Table C-2 National Grid FES 2020 Scenarios

Generation / Demand CcT ST LW SP
Baseload - GW 24.32 22.52 15.05 8.79
Offshore Wind - GW 82.72 87.87 83.97 64.73
Onshore Wind - GW 47.74 28.82 41.52 25.28
Solar PV - GW 75.36 56.17 71.13 30.77
Other Renewables - GW 15.77 15.69 7.32 8.02
Other capacity - GW 33.02 45.32 23.05 10.09
Fossil fuel - GW 0.07 0.24 0.5 43.19
Battery - GWh 51.9 21.1 56.2 23.9
Other storage - GWh 142.2 125.2 146.7 91.5
Total Annual demand TWh 451 374 386 394
Electric Vehicle Annual demand - TWh 87 82.5 81.1 82.2
Domestic Electrified Heat - TWh 83 44 74 47
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Table C-3 National Grid FES 2020 Heating Scenarios

Heating method 2019 CcT ST LW SP
ASHP 0% 57% 13% 42% 8%
Electric storage heaters 5% 5% 5% 5% 6%
GSHP 0% 7% 1% 6% 0%
Direct Electric Heating 2% 2% 2% 3% 3%
Gas boilers 85% 0% 0% 0% 68%
Hybrid boilers (Natural gas) 0% 0% 0% 0% 6%
Hybrid boilers (Hydrogen) 0% 10% 13% 26% 0%
Oil, LPG, & solid fuel boilers 5% 0% 0% 0% 3%
Hydrogen boilers 0% 0% 53% 0% 0%
Biomass boilers [Biofuels] 0% 0% 0% 1% 0%
District Heat 2% 16% 10% 13% 5%
Biofuels (Off gas Grid) 0% 3% 2% 3% 1%
Others 0% 0% 0% 2% 0%
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Appendix D - Chapter 4

Table D-1 Assumptions and sources used for DHN costs’

Low Medium High Source

Network Capital non- 456 1043 1699 (DECC, 2015b)
bulk £/ MWh
Network Fixed OM 13.1 (Wang, 2018)
£/ MWh,/yr
Network Lifetime 50
Years
HP Capital 435,000 652,500 870,000 (Danish Energy
£ /MWy, Agency, 2016)
HP Fixed OM 900 1750 2600 .
£/ MWar/yr (Marina et al.,

w/y 2021)
HP Var OM (exc elec) 1.3 1.52 1.74
£/MWhy,
HP Lifetime 25
Years
TES Capital 1900 4450 or 7000 (Danish Energy
£/MWh 107,198(TES) %4 Agency, 2018)
TES Fixed OM 4.35 16.52 28.7
£/MWh/yr (BEIS, 2016a)
TES Lifetime 40
Years

* All costs have been adjusted for inflation to 2020 figures
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