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Abstract

In this thesis, I study operational decisions on online platforms (e.g., InnoCentive,

Topcoder, Kickstarter, and Indiegogo) that facilitate crowd-based innovation and

new product development, and I provide insights into how the economic value gen-

erated on these platforms can be enhanced. In the first two chapters, I focus on

crowdsourcing platforms (e.g., InnoCentive and Topcoder) that create value by reg-

ularly organizing innovation contests to find solutions to their clients’ innovation-

related problems from the crowd. Although the value generated on crowdsourcing

platforms is highly dependent on contest organizers’ decisions on the contest rules

such as award scheme, duration, and whether to allow team collaboration, these

decisions and related trade-offs have received limited attention in the literature. To

address this, in the first chapter, I analyze how an organizer should decide on the

duration and award scheme for a contest; and in the second chapter, I study in what

circumstances an organizer should encourage solvers to collaborate as teams or dis-

courage team collaboration. In the third chapter, I focus on crowdfunding platforms

(e.g., Kickstarter and Indiegogo), where entrepreneurs launch campaigns to crowd-

source funding to bring their innovative ideas to life. Although crowdfunding is well

recognized as an alternative means of funding, recent research and practice suggest

that entrepreneurs often use crowdfunding as a mechanism for involving customers

in product development. This motivates me to provide an understanding of crowd-

funding as a product development mechanism and to study a key operational deci-

sion faced by an entrepreneur: whether to launch a crowdfunding campaign for a

basic or enhanced version of a product.



Impact Statement

In recent years, online platforms have emerged as disruptive businesses that create

value by enabling interactions between independent producers (sellers) and con-

sumers (buyers). The operations management literature has looked at important

operational decisions—such as those related to pricing and matching—on online

platforms including Uber, Airbnb, TaskRabbit, among others (cf. Benjaafar and Hu

2020). Overall, my research contributes to this literature on online platforms by

taking an innovation lens to platform operations with a focus on how they can be

used to facilitate crowd-based innovation and new product development.

More specifically, the study in the first chapter contributes to the literature by

identifying a novel trade-off that drives the optimal contest duration, and my in-

terviews with practitioners at crowdsourcing platforms have confirmed the impor-

tance of this trade-off. This enables me to provide practically-consistent insights

about the optimal contest duration and its relationship with the award scheme. The

study in the second chapter contributes to the literature by identifying the gap be-

tween the theory and different policies adopted by crowdsourcing platforms about

team collaboration and by generating practical insights into when the organizer can

benefit from team collaboration. The study in the final chapter contributes to the

literature by providing a nuanced understanding of crowdfunding as a product de-

velopment mechanism and by generating managerial insights into entrepreneurs’

product development and improvement decisions on crowdfunding platforms. It is

also noteworthy that this study is the first in the crowdfunding literature to combine

theoretical analysis, empirical analysis, and text analysis.

The impact of my thesis has been recognized by the operations management
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community and practitioner journals several times. Specifically, the study based on

the first chapter was published in Manufacturing & Service Operations Management

in 2021 and selected as the Institute for Operations Research and the Management

Sciences (INFORMS) Technology, Innovation Management and Entrepreneurship

Section (TIMES) Paper of the Month in June 2021; the study based on the sec-

ond chapter won the 2020 INFORMS TIMES Best Working Paper Award; and the

study based on the third chapter was selected as a runner-up of the 2021 INFORMS

TIMES Best Working Paper Award and was featured by the Financial Times, the

UCLA Anderson Review, and the Wall Street Journal.
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Chapter 1

Introduction

With the advancement in the technology and internet, online platforms such as Uber

and Airbnb have emerged as disruptive business in recent years. These platforms

create value by enabling interactions between external producers and consumers,

and operational decisions such as pricing and matching significantly affect the eco-

nomic value generated on these platforms (cf. Allon and Babich 2020, Benjaafar

and Hu 2020). This thesis consists of three chapters that take an innovation lens

to platform operations, focusing on how they can be used to facilitate crowd-based

innovation and new product development. To this end, I leverage game-theoretical

models, empirical analysis, and natural language processing techniques.

In Chapter 2 and Chapter 3, I focus on crowdsourcing platforms (e.g., Inno-

Centive, Topcoder, and 99designs) that create value by regularly organizing innova-

tion contests to find solutions to their clients’ innovation-related problems from the

crowd (Erat and Krishnan 2012). Although the value generated on crowdsourcing

platforms is highly dependent on contest organizers’ decisions on the contest rules,

some of these decisions and related trade-offs have received limited attention in the

literature (e.g., Terwiesch and Xu 2008, Mihm and Schlapp 2019). To address this,

in Chapter 2, I study the duration and the award scheme of an innovation contest

organized on crowdsourcing platforms. I use a game-theoretical model where the

organizer decides on the contest duration and the award scheme while each solver

decides on her participation and determines her effort over the contest duration.

The quality of a solver’s solution improves with her effort, but it is also subject
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to an output uncertainty. I show that the optimal contest duration increases as the

relative impact of the solver uncertainty on her output increases, and it decreases if

the solver productivity increases over time. These results suggest that the optimal

contest duration increases with the novelty or sophistication of solutions that the

organizer seeks, and it decreases when the organizer can offer support tools that

can increase the solver productivity over time. More interestingly, I characterize

an optimal award scheme, and show that giving multiple (almost always) unequal

awards is optimal when the organizer’s urgency in obtaining solutions is below a

certain threshold. This result helps explain why many contests on crowdsourcing

platforms give multiple unequal awards. Finally, consistent with empirical findings,

I show that there is a positive correlation between the optimal contest duration and

the optimal total award.

In Chapter 3, I study team collaboration in innovation contests. Although

solvers are capable of developing solutions individually and making individual

submissions, if the organizer encourages collaboration, solvers may collaborate as

teams and make team submissions. Motivated from different policies adopted by

crowdsourcing platforms, I identify conditions under which the organizer can bene-

fit from team submissions. By examining equilibrium outcomes of game-theoretical

models, I show, interestingly, that when the organizer seeks high-novelty solutions

to a nondecomposable problem (e.g., design challenges at InnoCentive), the orga-

nizer can benefit from team submissions despite the decrease in solvers’ efforts.

Yet, when the organizer seeks low-novelty solutions to a nondecomposable prob-

lem (e.g., logo design challenges at 99designs), the organizer may not benefit from

team submissions unless teams are highly diverse. I further show that when the

organizer seeks low-novelty or high-novelty solutions to a decomposable problem

(e.g., software challenges at Topcoder), the organizer can benefit from team submis-

sions, but interestingly, only under certain conditions. Finally, I identify conditions

under which solvers can benefit from collaborating as teams because the organizer’s

benefit from team collaboration hinges upon solvers’ decisions. I show that solvers

can benefit from team collaboration in the absence of substantial synergistic gains,
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because without such gains, team collaboration decreases each solver’s effort and

hence cost in equilibrium.

In Chapter 4, I focus on crowdfunding platforms which are well recognized as

an alternative way of raising funds for entrepreneurs (e.g., Hu et al. 2015, Belavina

et al. 2020). Yet, crowdfunding goes beyond raising funds. Entrepreneurs often use

crowdfunding to solicit feedback from customers to improve their products (e.g.,

Mollick 2016), and may therefore prefer to launch crowdfunding campaigns for

a basic version of their products with few or no enhancements (i.e., limited fea-

tures). Yet, customers may not be persuaded by a campaign if a product appears

too basic. In view of this trade-off, a key question for an entrepreneur is how far a

product should be enhanced before launching a crowdfunding campaign. Analyz-

ing a game-theoretical model and testing its predictions empirically, I study how a

product’s level of enhancement at campaign launch influences both whether an en-

trepreneur continues to improve the product during the campaign and whether the

campaign is successful. I show that as the product’s level of enhancement at cam-

paign launch increases, the likelihood of product improvement during a campaign

at first increases (because customers are more likely to provide feedback) and then

decreases (because of increased production cost for the entrepreneur). Furthermore,

although the theoretical model intuitively predicts that the likelihood of campaign

success will always increase when an entrepreneur launches a campaign for a more

enhanced product, empirical analysis shows that the likelihood of campaign suc-

cess first increases and then decreases. This counterintuitive result may be due to

customers being overwhelmed with the complexity of highly enhanced products.

Finally, while crowdfunding experts believe that products should be enhanced as

much as possible before a campaign, I show that this is not always the best strategy.

To conclude, in this thesis, I aim to improve the understanding of operations on

crowdsourcing and crowdfunding platforms and to generate practical insights into

how the economic value generated on these platforms can be enhanced. I hope that

my research contributes to the emerging literature on operations management on

online platforms, motivates practitioners to make better decisions on crowdsourcing
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and crowdfunding platforms, and encourage other researchers to study crowd-based

innovation and new product development and to combine theoretical and empirical

analysis.

I would like to note that for the study in Chapter 2, I collaborated with Gizem

Korpeoglu and Ersin Körpeoğlu; for the study in Chapter 3, I collaborated with

Gizem Korpeoglu and Christopher S. Tang; and for the study in Chapter 4, I collab-

orated with Philipp Cornelius, Bilal Gokpinar, Ersin Körpeoğlu, and Christopher S.

Tang. I performed all analyses and wrote all parts of the chapters myself.



Chapter 2

Optimal Duration of Innovation

Contests

2.1 Introduction
In recent years, crowdsourcing has developed into a legitimate business tool, and

online crowdsourcing platforms such as InnoCentive and Topcoder have enjoyed a

significant growth, generating $1 billion in revenue with an annual growth rate of

37.1% (Chen et al. 2020). These platforms create value for their customers such as

Siemens, Pfizer, Unilever, and NASA by regularly organizing innovation contests.

In an innovation contest, an organizer announces a problem along with a set of

contest rules such as duration (i.e., how long the contest runs for) and award scheme

(i.e., the set of awards).1 Each participating solver generates a solution, and submits

it to the organizer within the announced duration. At the end of the contest, the

organizer evaluates all solutions, and gives award(s) based on the announced award

scheme. In this study, we aim to generate insights into how an organizer should

decide on the contest duration along with the award scheme.

At crowdsourcing platforms such as InnoCentive or Topcoder, we observe that

the contest duration is determined based on contest characteristics. For instance, our

analysis of contests (i.e., challenges) organized at InnoCentive in 2018 shows that

the average duration of reduction-to-practice (in short, RTP) challenges that seek

1While there are other contest rules such as feedback policies, we focus on the organizer’s deci-
sions of the contest duration and the award scheme.
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working prototypes is 81 days, while the average duration of theoretical challenges

that seek theoretical solutions is 48 days. Similarly, at Topcoder, design challenges

that seek innovative solutions (e.g., designing an app) often run longer than develop-

ment challenges that seek low-novelty solutions (e.g., hunting bugs in a software).

In addition to problem-related contest characteristics, the contest duration seems to

be related to support tools provided for solvers. For instance, an organizer at Top-

coder may offer support tools such as test cases, deployment guides, and documen-

tation that can boost the solver productivity by reducing “non-functional decisions,”

and such tools can “shrink timelines” (Topcoder 2019).

In addition to the examples above, empirical studies and our interviews with

practitioners at crowdsourcing platforms establish the managerial relevance of the

contest duration, and they point to the following intrinsic drivers for it. Wang et al.

(2015) empirically show that a longer contest duration may hinder solvers’ partici-

pation but induces participating solvers to perform better. Dr. Kelly Higgins from

InnoCentive explains this trade-off as follows: “we have found that increasing the

length of posting at times has adverse effects ... Solvers [solvers] may think that if

there is an extraordinary length of time for a challenge, it must be extremely dif-

ficult and therefore bypass the challenge.” Thus, as the contest duration increases,

solvers anticipate that they may have to exert more effort, and hence incur higher

cost, so they may choose not to participate in the contest. In addition to these incen-

tive effects, our interviews have also revealed that although the quality of solutions

is the main concern, “clients [organizers] like to receive their solutions as early as

possible.” Thus, increasing the contest duration leads to discounting in the orga-

nizer’s payoff (Seel 2018). Due to these opposing drivers, it is not obvious how an

organizer should decide on the contest duration given different contest characteris-

tics. The theoretical contest literature is of little help because it mostly overlooks

the organizer’s decision of the contest duration, and a few studies that consider the

contest duration (Lang et al. 2014, Seel 2018) provide limited insights because they

fail to capture all intrinsic drivers.

Our interviews indicate that practitioners factor in the contest duration when
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determining the award scheme. Yet, the prior literature on the award scheme over-

looks the contest duration, and often suggests that an organizer should give a single

award, i.e., adopt the winner-take-all (hereafter, WTA) award scheme. However,

we observe that about three fourths of challenges organized at Topcoder have given

multiple awards, and Stouras et al. (2017) also report that about two thirds of chal-

lenges organized at InnoCentive have given multiple awards. A few studies (e.g.,

Kalra and Shi 2001, Ales et al. 2017) show that giving multiple awards can rarely be

optimal when solvers possess certain characteristics (e.g., risk aversion or specific

beliefs about the solver uncertainty), but these studies neither explain why giving

multiple awards is so common in practice nor can they account for why different

contests on the same platform with a similar pool of solvers adopt different award

schemes. Thus, it is important to investigate whether the organizer’s decision of the

contest duration can account for these policies in practice.

To address the gaps between theory and practice, we ask the following research

questions. (Q1) How does the optimal contest duration change with contest charac-

teristics? (Q2) What is the relationship between the contest duration and the award

scheme?

As a first step towards answering these important research questions, we use

a static game-theoretic model where the organizer determines the contest duration

and the award scheme to maximize his profit. Then, each solver decides on her

participation, and each participating solver decides on effort levels she will exert

over the contest duration to maximize her utility.2 The quality of a solver’s solution

increases with her effort, but it is also subject to an output uncertainty. Consistent

with most challenges at InnoCentive and Topcoder, we assume that solvers do not

receive feedback from the organizer.

To capture important contest characteristics and drivers about the contest du-

ration in practice, our model contains the following key features. First, a solver

2Consistent with most papers in the innovation-contest literature (e.g., Terwiesch and Xu 2008,
Ales et al. 2019a), our model assumes that solvers do not receive any information update throughout
the contest, so they can statically determine effort levels they will exert over the contest duration.
Alternatively, one can study a dynamic model where solvers dynamically determine their efforts
based on information they receive over time. We provide more detailed discussion of such a dynamic
model in §2.7, and defer this analysis to future research.
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optimally allocates her (total) effort over the contest duration based on her per-time

productivity. The solver productivity may decrease over time due to factors such

as fatigue (e.g., Amabile et al. 2002) or may increase over time due to factors such

as deeper understanding of concepts (e.g., Jain 2013). For instance, support tools

such as test cases, deployment guides, and documentation at Topcoder can boost

the solver productivity by reducing fatigue due to non-functional decisions and by

facilitating deeper understanding of concepts.

Second, each solver endogenously determines whether to participate or not.

Thus, the organizer ensures that a certain number of solvers chooses to participate

in the contest by determining the contest rules accordingly. When modeling how

the number of solvers is determined, we not only analyze the standard setting in

the innovation-contest literature where the number of solvers is given exogenously,

but also analyze a more novel setting where the organizer influences the number of

solvers (i.e., the number of solvers is endogenous) while determining the contest

rules. Third, we assume that (all else being equal) an organizer prefers obtaining

solutions earlier rather than later. We capture this intuitive property by assuming

that the organizer’s payoff is discounted at a rate that depends on how urgently the

organizer needs solutions. In addition to these features, our model helps us tease out

the impact of the contest duration because we show that under a fixed duration, our

model is equivalent to the standard modeling framework of the innovation-contest

literature (e.g., Terwiesch and Xu 2008, Mihm and Schlapp 2019).

Using our model, we first analyze the optimal contest duration. We show that

as the contest duration increases, each participating solver exerts more (total) ef-

fort, and hence generates a higher-quality solution. However, exerting more effort

raises the solver’s cost of effort, and hence reduces her utility from the contest.

Thus, as the contest duration increases, it gets harder for the organizer to ensure

solvers’ participation. In addition, as the contest duration increases, the organizer’s

payoff is discounted more. We show that which of these three effects drives the

optimal contest duration depends on how urgently the organizer needs solutions.

For the organizer with high urgency (hereafter, impatient organizer), the trade-
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Table 2.1: Summary of managerial insights.

Patient organizer Impatient organizer

Low urgency Moderate ur-
gency High urgency

Optimal
duration
given award
scheme

Increases with the novelty or so-
phistication of solutions, and is
shorter when the solver produc-
tivity increases over time.

Decreases with the novelty
or sophistication of solu-
tions, and is longer when
the solver productivity in-
creases over time.

Optimal
distribution
of awards

Giving multiple
awards is opti-
mal.

The winner-take-all award scheme is opti-
mal.

Optimal
duration and
total award

Both increase with the novelty or sophistication of solutions.

off between increasing solvers’ efforts and incurring more discounting (hereafter,

effort-discounting trade-off) drives the optimal contest duration. However, for the

organizer with low or moderate urgency (hereafter, patient organizer), the trade-

off between increasing solvers’ efforts and ensuring their participation (hereafter,

effort-participation trade-off) drives the optimal contest duration. Interestingly, our

interviews with practitioners at crowdsourcing platforms support our finding be-

cause an organizer at a crowdsourcing platform rarely has high urgency, and prac-

titioners choose the contest duration considering the effort-participation trade-off.

Because the patient-organizer case seems more consistent with practice, we focus

on this case.

After characterizing the optimal contest duration, we analyze how it changes

with contest characteristics. We show that the optimal contest duration increases

with the novelty or sophistication of solutions that the organizer seeks. The intu-

ition is as follows. As the novelty or sophistication increases, the impact of the

solver’s effort on her expected award decreases, so the solver reduces her effort,

which reduces her cost of effort, and hence raises her utility. Thus, the organizer

increases the contest duration to induce solvers to exert more effort while ensuring

their participation. Our finding seems consistent with practice. For example, at Top-
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coder, design challenges that seek innovative solutions have longer durations than

development challenges that seek low-novelty solutions. Similarly, at InnoCentive,

RTP challenges have longer durations than theoretical challenges. We show that

the optimal contest duration also depends on how the solver productivity changes

over time. Although one may expect the organizer to set a longer contest duration

when the solver productivity increases over time, we show that the opposite is true.

This is because although an increase in productivity induces solvers to exert more

effort, the organizer sets a shorter duration to ensure their participation. This re-

sult suggests that an organizer who provides support tools that increase the solver

productivity over time (e.g., test cases, deployment guides, and documentation at

Topcoder) can set a shorter duration without sacrificing the quality of solutions.3

We next analyze the award scheme under the optimal contest duration. We

show, interestingly, that for an organizer with low urgency, it is always optimal to

give multiple awards as the organizer can induce solvers to exert more effort by set-

ting a longer contest duration. We further show that giving multiple awards is even

more desirable when the solver productivity increases over time. This suggests that

giving multiple awards goes hand in hand with offering support tools (e.g., test

cases, deployment guides, and documentation at Topcoder) that increase the solver

productivity over time. As another novel result, we explicitly characterize an opti-

mal award scheme where it is almost always optimal to give unequal awards. These

results help explain why many contests on platforms give multiple unequal awards

because our interviews have revealed that many organizers on platforms have low

urgency in obtaining solutions. Finally, we show that both the optimal contest du-

ration and the optimal total award increase with the novelty or sophistication of

solutions, which provides a plausible mechanism for an empirically-proven posi-

tive correlation between the contest duration and the total award (Yang et al. 2009,

Shao et al. 2012).

3These support tools are unlikely to affect the solver uncertainty because these tools aim to
reduce the cost of development and help with the implementation of solutions. Our insight does not
encompass tools that may affect the solver uncertainty (e.g., by affecting solvers’ creativity).
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2.2 Related Literature
Our study is related to the new-product-development (hereafter, NPD) literature, the

innovation-contest literature, and the scant literature on the contest duration.4

The traditional NPD literature (e.g., Chao and Kavadias 2008) focuses on an

in-house development process of a new product where a product developer has full

control over development efforts. Yet, with a shift in the landscape of classical

research and development, a growing number of organizations have started to look

beyond their boundaries towards outsourcing NPD activities (Eppinger and Chitkara

2006). A cost effective and time saving tool to outsource NPD activities is an in-

novation contest (e.g., Boudreau and Lakhani 2013). Different from a product de-

veloper, a contest organizer has to incentivize competing solvers to participate and

exert costly efforts. Despite this contextual difference, some studies in the NPD

literature show related results to ours. Specifically, Loch et al. (2001) analyze the

optimal composition of parallel and sequential tests, and identify a trade-off be-

tween the cost and duration of testing because parallel testing is faster but costlier

than sequential testing. This is in-line with our interim finding that the solver’s

cost of effort decreases with the contest duration. Dahan and Mendelson (2001)

and Erat and Kavadias (2008) show that the number of parallel and sequential tests

should increase with uncertainty. We show the opposite in an innovation contest,

specifically, solvers’ incentives to exert effort decrease with uncertainty. Indeed, we

show that, to compensate for solvers’ reduced incentives to exert effort, a patient

organizer should increase the contest duration. In addition to the subtleties in our

results arising from the contextual difference, we differ from the NPD literature by

studying the relationship between the contest duration, a decision relevant to both

innovation-contest and NPD settings, and the award scheme, a decision specific to

4As we factor in time as a model component, our study is also broadly related to the race literature
(e.g., Loury 1979, Dasgupta and Stiglitz 1980, Lee and Wilde 1980), which analyzes competition
among solvers where the first solver whose solution satisfies a certain quality requirement receives
an award. In a race, the quality requirement is fixed, and the race duration is inherently unknown;
while in a contest, the solution quality is variable, and the contest duration is known. In the race
literature, to our knowledge, only Judd et al. (2012) show a result related to our study, and state that
setting a higher quality requirement for a race leads to a longer race duration, which is consistent
with our interim result that the quality of a solution increases with the contest duration.
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an innovation-contest setting.

Our study contributes to the innovation-contest literature. Terwiesch and Xu

(2008) pioneer a modeling framework of the innovation-contest literature, and show

that a free-entry open-innovation contest is always optimal. Building on the model-

ing framework of Terwiesch and Xu (2008), Ales et al. (2020) show that a free-entry

open-innovation contest is optimal only when the solver uncertainty is sufficiently

large or the organizer is interested in many solutions. Building on the same model-

ing framework, Nittala and Krishnan (2016) analyze when and how a firm should

organize an internal innovation contest; Hu and Wang (2020) compare a joint and a

separate contest in the presence of multiple attributes; Körpeoğlu et al. (2017) study

the impact of parallel innovation contests; and Mihm and Schlapp (2019) study the

optimal feedback policy. We contribute to the innovation-contest literature by study-

ing the organizer’s decision of the contest duration and by analyzing the relationship

between the contest duration and the award scheme. Indeed, we show that when the

organizer considers a fixed contest duration, our model becomes equivalent to the

standard modeling framework of the innovation-contest literature.

The closest study to our study is by Ales et al. (2017), who analyze the award

scheme in an innovation contest by considering a fixed duration. They show that

when the solver uncertainty has a log-concave density and her participation condi-

tion is satisfied, the WTA award scheme is optimal; and show that giving multiple

awards is optimal in rare cases where one of these conditions is violated (e.g., when

the solver uncertainty follows a log-convex and heavy tailed distribution). Our work

differs from Ales et al. (2017) in the following key aspects. First, we show that even

when the solver uncertainty has a log-concave density and the solver’s participa-

tion condition is satisfied under the WTA award scheme, giving multiple awards is

always optimal for the organizer with low urgency (as in most contests on crowd-

sourcing platforms). Second, we show the novel result that giving multiple awards

is more desirable when the organizer provides support tools that increase the solver

productivity over time (e.g., test cases, deployment guides, and documentation at

Topcoder). Third, different from Ales et al. (2017), we show that these results hold
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when the organizer influences the number of solvers who participate in the contest,

i.e., when the number of solvers is endogenous. Finally, we complement the results

in this literature including Ales et al. (2017) by explicitly characterizing an optimal

award scheme under the optimal contest duration.5

The innovation-contest literature also contains studies that use different mod-

eling frameworks and assume a fixed contest duration. For example, Erat and Kr-

ishnan (2012) study design contests where each solver chooses from a set of de-

sign approaches. Bimpikis et al. (2019) analyze the role of intermediate awards

and feedback in a two-stage contest where they assume that two solvers make con-

tinuous memoryless trials where the success rate of a solver is determined by her

per-time effort. Because the tractability of a general model with both the solver un-

certainty and heterogeneity is very limited (cf. Terwiesch and Xu 2008, Ales et al.

2019a), several papers in the innovation-contest literature focus on heterogeneity

by abstracting away from uncertainty. For instance, Körpeoğlu and Cho (2018) an-

alyze how the solver’s equilibrium effort and the organizer’s profit change with the

number of solvers in the contest. Stouras et al. (2020) show that giving multiple

equal awards may be optimal when the organizer aims to increase the number of

solvers who participate in the contest. As opposed to their result, we show that

when the WTA award scheme is not optimal, the organizer should almost always

give unequal awards. For a detailed review of the contest literature, we refer the

reader to Ales et al. (2019a) and Segev (2020).6

Despite its practical relevance, the contest duration has received little atten-

tion from the theoretical contest literature. Lang et al. (2014) characterize solvers’

equilibria for an exogenously given duration without characterizing the optimal du-

ration. Neglecting the solver uncertainty and participation decision, Seel (2018)

5As another related paper, Kalra and Shi (2001) study sales contests, and show that when solvers
are risk averse, giving multiple awards can be optimal; whereas when solvers are risk neutral, the
WTA award scheme is optimal. In contrast, we show that giving multiple awards to risk-neutral
solvers is optimal when the organizer has low urgency in obtaining solutions. Also, different from
Kalra and Shi (2001), we explicitly characterize an optimal distribution of awards when it is optimal
to give multiple awards.

6Also, for recent studies in empirical research on crowdsourcing, we refer the reader to Hwang
et al. (2019) and Aggarwal et al. (2020) and references therein.
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suggests limiting the contest duration based on the effort-discounting trade-off.

We contribute to this scant literature as follows. First, we identify the effort-

participation trade-off, and show that this novel trade-off drives the optimal contest

duration for an organizer without high urgency. As we discuss above, our interviews

with practitioners at crowdsourcing platforms have revealed that an organizer at a

crowdsourcing platform rarely has high urgency, so the effort-participation trade-off

is more relevant to practice than the effort-discounting trade-off. Second, different

from these papers, we provide practically-consistent insights about how the optimal

contest duration changes with the solver productivity over time and the solver un-

certainty, and the relationship between the contest duration and the award scheme.

2.3 Model

We consider an innovation contest where a contest organizer (“he”) elicits solutions

to an innovation-related problem from a set of N solvers (“she”), and solvers de-

velop their solutions within a contest duration T . Given a population of N solvers,

N(≤ N) can be interpreted as the number of solvers that the organizer aims to attract

to the contest. In our main analysis, we take N as given following the innovation-

contest literature (e.g., Ales et al. 2017, Hu and Wang 2020, Mihm and Schlapp

2019). However, in §2.6, we extend our main results to the case where N is endoge-

nous to the organizer’s profit-maximization problem.

solvers. Each solver i ∈ {1,2, ...,N} generates an output yi that represents the qual-

ity of her solution or solution’s monetary value to the organizer. solver i’s output yi

depends on her effort throughout the contest duration and an output shock.

First, to improve her output, each solver i exerts effort ηi(t) (≥ 0) at time t over

the contest duration T . For instance, solver i’s per-time effort ηi(t) may represent

per-time resources that solver i allocates to the contest such as the full-time equiva-

lent of labor hours or the amount of capital. solver i’s per-time effort ηi(t) leads to

a deterministic improvement in her output yi at the rate of θ(t)ηi(t) where the per-

time productivity θ(t) (> 0) represents the marginal impact of the solver’s per-time

effort ηi(t) on her output. Several factors may affect θ(t). On one hand, as t in-
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creases, solvers may rush or get exhausted, reducing the per-time productivity θ(t)

(e.g., Amabile et al. 2002). On the other hand, as a solver spends more time on de-

veloping a solution, “activities can be sequenced in an efficient order. Consequently,

unnecessary steps are eliminated, ... [and it] leads to a deeper understanding of con-

cepts” (Jain 2013, page 1685). Thus, spending more time on the contest may lead to

an increase in the per-time productivity θ(t) over time. If positive effects dominate,

θ(t) can be increasing; if negative effects dominate, θ(t) can be decreasing; and if

positive and negative effects offset each other, θ(t) can be constant. Throughout the

study, whenever we need to capture how θ(t) changes over time, we consider the

functional form θ(t) = exp(ρt), where the productivity exponent ρ < 0 captures

decreasing productivity, ρ = 0 captures constant productivity, and ρ > 0 captures

increasing productivity.

Second, each solver is exposed to an output shock ξ̃i.7 For example, a chemist

participating in an ideation challenge at InnoCentive faces an uncertainty about

the value of her solution to the organizer. For each solver i, the output shock

ξ̃i(∈ Ξ) is independent, and follows a cumulative distribution function H and a

density function h with E[ξ̃i] = 0 over support Ξ = [s,s], where s ∈ R∪{−∞} and

s ∈ R∪{∞}. We assume that h is log-concave (i.e., log(h) is concave), which is

satisfied by most commonly used distributions such as Gumbel (e.g., Terwiesch and

Xu 2008), uniform (e.g., Mihm and Schlapp 2019), normal, exponential, and lo-

gistic distributions. Let ξ̃ N
( j) be a random variable that represents the j-th largest

output shock among {ξ̃1, ξ̃2, ..., ξ̃N} with a cumulative distribution HN
( j) and a den-

sity hN
( j)(s) =

N!
(N− j)!( j−1)!(1−H(s)) j−1H(s)N− jh(s). To analyze the relative impact

of the solver uncertainty on her output compared to her effort without imposing a

7Our interviews with practitioners at InnoCentive and Topcoder reveal that solvers receive email
notifications right after a new contest is posted, they almost never receive feedback, and do not see
other solvers” submissions. Thus, increasing the contest duration does not lead to a significant in-
formation update, and hence the solver uncertainty over time can be captured by a single output
shock. Mihm and Schlapp (2019) point this out by stating that “[i]n the benchmark case of no feed-
back, the firm [i.e., organizer] does not provide any interim performance information to the solvers
[i.e., solvers]. As a result, each solver’s two-stage effort choice problem reduces to a simultaneous,
single-stage utility maximization problem” (Mihm and Schlapp 2019, page 5). Note that a model
that incorporates time does not need to be dynamic. For instance, time is an important component
in the race literature (e.g., Loury 1979, Dasgupta and Stiglitz 1980, Lee and Wilde 1980), yet it is
common in this literature to adopt a static model.
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distribution assumption, we use the notion of a scale transformation. Two distribu-

tion functions H and Ĥ differ by a scale transformation if there exists a parameter

α > 0 such that Ĥ(s) = H(s/α) for all s ∈ Ξ (cf. Ales et al. 2019a). When ξ̃i is

transformed with the scale parameter α > 1, the transformed output shock ξ̂i = αξ̃i

has mean 0 and variance α2Var(ξ̃i), so the relative impact of the solver uncertainty

increases and the relative impact of her effort decreases. Throughout the study,

whenever we analyze the relative impact of the solver uncertainty or her effort, we

use the scale parameter α , and whenever we do not, we normalize α to 1 for ease

of illustration.

Given solver i’s per-time effort ηi(t), per-time productivity θ(t), and output

shock ξ̃i, solver i’s output takes the following form:

yi =
∫ T

0
θ(t)ηi(t)dt + ξ̃i. (2.1)

We assume that solver i’s cost of per-time effort takes the form cηi(t)b, where c > 0

and b > 1. Assuming convex cost of per-time effort is quite standard in the litera-

ture on multi-stage contests (e.g., Deng and Elmaghraby 2005, Mihm and Schlapp

2019), the product-development literature (e.g., Chao et al. 2009, Kouvelis et al.

2017), the race literature (e.g., Judd et al. 2012), and the project-management lit-

erature (e.g., Wu et al. 2014). For instance, Mihm and Schlapp (2019) study a

two-period model where the per-period cost function is a special case of ours with

b = 2. solver i’s cost over the contest duration T is ψ(ηi,T ) =
∫ T

0 cηi(t)bdt. Let

ei ≡
∫ T

0 θ(t)ηi(t)dt be solver i’s total deterministic improvement of her output over

the contest duration T , and it can represent the total amount of tasks that the solver

performs to improve her solution quality over the contest duration T . Throughout

the study, we refer to ei as the solver’s effort.

The following lemma characterizes the cost function ψ(ei,T ) of effort ei by

considering that solver i can optimally allocate her effort ei over T . We present all

proofs in Appendix A.

Lemma 1 For any ei and T , solver i’s optimal per-time effort is eiθ(t)
1

b−1 τ(T )−1,
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where τ(T ) =
∫ T

0 θ(t)
b

b−1 dt. Thus, for any T , ψ(ei,T ) = ceb
i τ(T )1−b. Moreover,

ψ(ei,T ) is increasing and convex in ei, and decreasing in T .

Lemma 1 shows that the initial model that we present can be simplified to a model

where each solver i can determine her (total) effort ei, and then optimally allocate

her effort over the contest duration T such that she exerts more per-time effort at

times of higher per-time productivity. In this case, solver i’s decision can be rep-

resented by ei, where the solver’s output function is yi = ei + ξ̃i and her cost of

effort can be simplified as ψ(ei,T ) = ceb
i τ(T )1−b. This simplified model has two

desirable properties. First, Lemma 1 shows that ψ(ei,T ) is increasing and convex

in effort ei, and decreasing in the contest duration T . The cost function decreasing

in the contest duration captures an intuitive property in practice that it is easier for a

solver to allocate her effort over a longer period of time (e.g., Amabile et al. 1976,

Ariely and Zakay 2001). Second, when T is fixed, our simplified model boils down

to the standard modeling framework of the innovation-contest literature (e.g., Ales

et al. 2017, Hu and Wang 2020, Mihm and Schlapp 2019).

Each solver maximizes her utility, which is a function of the award she receives

from the contest and the cost she incurs. Following the economics and operations

literature (e.g., Moscarini and Smith 2001, Kim and Lim 2015), we assume that the

solver discounts her award with an interest rate β . Then, solver i’s utility takes the

form U(ei,T,zi) = exp(−βT )zi − ceb
i τ(T )1−b −F , where zi is the award solver i

receives, and F(> 0) is a fixed cost of participation in the contest.

Organizer. The organizer decides on the contest duration T and a vector of awards

(A(1),A(2), ...,A(N)) that we refer to as the award scheme. To isolate the impact

of the award scheme from the impact of the contest duration, we assume that the

organizer sets the present value of awards. (Using present values is also common in

the race literature (e.g., Loury 1979, Dasgupta and Stiglitz 1980), where time is an

important model component.) If solver i produces the j-th largest output y( j), then

she receives an award zi = exp(βT )A( j). Consistent with practice and the literature

(e.g., Terwiesch and Xu 2008), we assume A( j) ≥ A( j+1) for all j ∈ {1,2, ...,N−1}.

Let A = ∑
N
j=1 A( j) be the present value of the total award, and (γ(1),γ(2), ...,γ(N))
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be the distribution of awards such that A( j) = γ( j)A for all j ∈ {1,2, ...,N}, and

∑
N
j=1 γ( j) = 1. We refer to the solver with the largest output as the winner, and refer

to the award scheme that gives an award only to the winner (i.e., γ(1) = 1) as the

winner-take-all (hereafter, WTA) award scheme.

The organizer maximizes the present value of his expected profit, which con-

sists of the organizer’s payoff from the contest minus the total award given to

solvers. We make the following assumptions about the organizer’s profit. First,

as is common in the innovation-contest literature (e.g., Mihm and Schlapp 2019),

we assume that the organizer is interested in the quality of the best solution.8 Sec-

ond, all else being equal, the organizer prefers obtaining solutions earlier rather than

later. We capture this by assuming that the organizer discounts his payoff with a dis-

count factor δ (≥ 0) (e.g., Moscarini and Smith 2001, Seel 2018, Bimpikis et al.

2019). Hence, the organizer’s profit Π = exp(−δT )y(1)− exp(−βT )exp(βT )A =

exp(−δT )y(1)−A.9 Note that the discount factor δ is different from the interest

rate β because δ is also related to the value of solutions to the organizer and how

urgently the organizer needs these solutions. For instance, if the organizer incurs a

significant opportunity cost for not implementing a solution earlier, δ may be large.

The sequence of events is as follows. First, the organizer announces the contest

duration and the award scheme. Then, each solver decides on whether to partici-

pate in the contest, and each participating solver decides on her effort, optimally

allocates her effort over the contest duration, and generates a solution. Finally, the

organizer collects and evaluates all solutions, and awards the best solution(s) based

on the announced award scheme. solvers learn about the quality of their solutions

only after the organizer evaluates all solutions.

Equilibrium among solvers. In our base model, following the innovation-contest

8Note that all our results extend to the case where the organizer is interested in multiple solutions.
Also, following the innovation-contest literature (e.g., Terwiesch and Xu 2008, Mihm and Schlapp
2019), we assume that a solver can submit a solution of any quality. Thus, a solver who chooses to
participate always submits a solution because the solver’s probability of winning an award is positive
when she submits a solution, whereas this probability is zero when she does not submit a solution.

9This profit function assumes the same interest rate for the organizer and solvers. However, our
supplementary analysis shows that our main results extend to a case where solvers’ cash flows are
more sensitive than the organizer’s.
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literature (e.g., Terwiesch and Xu 2008, Hu and Wang 2020, Mihm and Schlapp

2019), we focus on a symmetric pure-strategy Nash equilibrium among participat-

ing solvers.10 However, we show the robustness of our main findings by considering

asymmetric pure-strategy Nash equilibria and mixed-strategy Nash equilibria in Ap-

pendix B.1 and Appendix B.2, respectively. We utilize the best-response argument

to derive the symmetric pure-strategy Nash equilibrium, where each solver exerts

the equilibrium effort e∗. Given that all other solvers exert the equilibrium effort e∗,

solver i’s probability of producing the j-th largest output (hence ranking the j-th)

when she exerts effort ei is as follows:

PN
( j)[ei,e∗] =

∫
s∈Ξ

(N −1)!
(N − j)!( j−1)!

H(s+ ei − e∗)N− j(1−H(s+ ei − e∗)) j−1h(s)ds.

Each solver i chooses her effort ei to maximize her expected utility by solving

max
ei∈R+

N

∑
j=1

PN
( j)[ei,e∗]A( j)− ceb

i τ(T )1−b −F . (2.2)

Evaluating the first-order condition of (2.2) at ei = e∗ yields

N

∑
j=1

IN
( j)A( j) = cb(e∗)b−1

τ(T )1−b, (2.3)

where IN
( j) ≡

∂PN
( j)[ei,e∗]

∂ei

∣∣∣∣
ei=e∗

, and it can be derived as follows:

IN
( j) =

∫
s∈Ξ

[
(N −1)!

(N − j)!( j−1)!
H(s)N− j−1(1−H(s)) j−2

× [(N − j)(1−H(s))− ( j−1)H(s)]h(s)2

]
ds. (2.4)

Let x ≡ ∑
N
j=1 IN

( j)γ( j). Noting that IN
( j) is independent of e∗, the solver’s equilibrium

10Note that we allow for asymmetric participation behavior where N solvers participate and N−N
solvers do not. Which N solvers participate in the contest is immaterial to our analysis because all
solvers are identical.
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effort

e∗ =
(

Ax
cb

) 1
b−1

τ(T ). (2.5)

As ei = e∗ in equilibrium, a solver’s probability of ranking the j-th is 1/N. a solver

participates in the contest if her expected utility is non-negative, i.e., 1
N ∑

N
j=1 A( j)−

c(e∗)bτ(T )1−b −F ≥ 0.

The organizer’s problem. The organizer solves the following profit-maximization

problem:

max
T,(A(1),A(2),...,A(N))

exp(−δT )
(

e∗+E
[
ξ̃

N
(1)

])
−

N

∑
j=1

A( j) (2.6)

s.t.e∗ = arg max
ei∈R+

N

∑
j=1

PN
( j)[ei,e∗]A( j)− ceb

i τ(T )1−b −F , (2.7)

1
N

N

∑
j=1

A( j)− c(e∗)b
τ(T )1−b −F ≥ 0. (2.8)

The organizer decides on the contest duration T and the award scheme

(A(1),A(2), ...,A(N)) to maximize his expected profit in (2.6) subject to the solver’s

incentive-compatibility constraint (2.7) and the solver’s participation condition

(2.8). We make the following mild assumptions to ensure that a solution to (2.6)-

(2.8) exists and it is characterizable. First, we assume that F < A/N because other-

wise, the organizer cannot attract N solvers to the contest, so the organizer’s prob-

lem (2.6)-(2.8) becomes infeasible. Second, we assume that the organizer’s profit Π

is unimodal in T and ∂Π

∂T

∣∣∣
T=0

> 0 so that the Kuhn-Tucker conditions can charac-

terize the optimal contest duration. Note that when the per-time productivity takes

the form θ(t) = exp(ρt), Π is always unimodal in T and ∂Π

∂T

∣∣∣
T=0

> 0 if the discount

factor δ <
(Ax

cb

) 1
b−1 /E

[
ξ̃ N
(1)

]
.

2.4 Optimal Contest Duration
In this section, we analyze the optimal contest duration T ∗ by taking the award

scheme (A(1),A(2), ...,A(N)) as given. The following lemma characterizes the opti-

mal contest duration T ∗.
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0 25

(a) Patient organizer (δ = 5%).

0 25

(b) Impatient organizer (δ = 10%).

Figure 2.1: The organizer’s profit Π as a function of the contest duration T , where T ∗ is the
optimal contest duration and T and T̂ are as in Lemma 2. Setting: ξ̃i ∼ Gumbel
with mean 0 and scale parameter 1; θ(t) = exp(ρt), ρ = 0.01, b = 2, c = 1,
F = 0.25, N = 2, and (A(1),A(2)) = (1,0).

Lemma 2 Let T and T̂ solve the following equations, respectively:

∫ T

0
θ(t)

b
b−1 dt =

A−NF
cN

(
Ax
cb

) −b
b−1

and (2.9)

θ(T̂ )
b

b−1 −δ

∫ T̂

0
θ(t)

b
b−1 dt = δE

[
ξ̃

N
(1)

](Ax
cb

) −1
b−1

. (2.10)

When the organizer’s profit Π is non-monotonic in the contest duration T , there

exists δ1 such that T ∗ = T for any δ < δ1,11 and T ∗ = T̂ for any δ ≥ δ1. When Π

is monotonic in T , T ∗ = T .

The intuition of Lemma 2 is as follows. Increasing the contest duration T has the

following three effects on the organizer’s profit-maximization problem (2.6)-(2.8).

First, it increases the solver’s equilibrium effort e∗, and hence improves the solver’s

solution quality. Second, because of the increase in e∗, the solver’s cost of ef-

fort increases, her utility decreases, and hence the solver’s participation condition

(2.8) becomes tighter. Third, increasing T leads to more discounting of the or-

ganizer’s payoff. When the organizer’s profit is non-monotonic with respect to T

(i.e., when the solver productivity does not increase very fast), which of these three

11A solution to (2.7) should exist under T = T so that the organizer is able to set the contest
duration at T . In Appendix B.3, we provide sufficient conditions (e.g., the fixed cost of participation
F is sufficiently large) for e∗ in (2.5) to be the unique solution of (2.7) under T = T . Note that a
necessary condition for a solution to (2.7) to exist under T = T is that A(N) ≤ F . Although the exact
value of the optimal contest duration T ∗ depends on our focus on symmetric pure-strategy Nash
equilibria, we show, in Appendix B.1 and Appendix B.2, that the intrinsic drivers of T ∗ are the same
under asymmetric Nash equilibria and mixed-strategy Nash equilibria.
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effects drives the optimal contest duration T ∗ depends on the discount factor δ .

Throughout the study, we refer to an organizer with δ < δ1 as a “patient organizer,”

and refer to an organizer with δ ≥ δ1 as an “impatient organizer.” For a patient

organizer, the impact of discounting is small, so the trade-off between increasing

the equilibrium effort e∗ and satisfying the participation condition (2.8) (hereafter,

effort-participation trade-off) drives the optimal contest duration T ∗. Thus, the or-

ganizer sets T such that the solver’s participation condition is binding, i.e., T ∗ = T .

Hence, interestingly, even for a patient organizer (i.e., an organizer who does not

worry about discounting much), it is optimal to limit the contest duration to guaran-

tee solvers’ participation; see Figure 2.1(a). For an impatient organizer, the impact

of discounting is large, so the trade-off between increasing the solver’s equilibrium

effort e∗ and incurring more discounting (hereafter, effort-discounting trade-off)

drives the optimal contest duration T ∗. Thus, the organizer sets T such that the im-

pact of effort and the impact of discounting are balanced, i.e., T ∗ = T̂ (≤ T ); see

Figure 2.1(b).

Lemma 2 also shows that when the organizer’s profit always increases with the

contest duration T , the organizer always sets T according to the effort-participation

trade-off, i.e., T ∗ = T . This happens when the solver productivity increases very

fast. Throughout the study, we focus our discussion on the case where the orga-

nizer’s profit is non-monotonic so that we can also generate insights for the case of

an impatient organizer, but all our results and their intuitions for the patient orga-

nizer apply to the case where the organizer’s profit is monotonic. Note that as we

discuss in §2.1, our interviews with practitioners have revealed that most organizers

on platforms seem to be patient, so the case of a patient organizer is more relevant

to practice. Thus, we focus on a patient organizer in §2.4.1, and we supplement our

analysis by considering an impatient organizer in §2.4.2.

2.4.1 Analysis of Patient Organizer

The following theorem analyzes how the optimal contest duration T ∗ for a patient

organizer changes with the relative impact of the solver uncertainty on her output

compared to her effort. We measure this impact with a scale parameter α . Also,
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under the per-time productivity θ(t) = exp(ρt), we analyze the impact of the pro-

ductivity exponent ρ on T ∗.

Theorem 1 (a) The optimal contest duration T ∗ is increasing in any scale param-

eter α such that δ < δ1.

(b) Suppose that the per-time productivity θ(t) = exp(ρt). Then, T ∗ is decreasing

in any productivity exponent ρ such that δ < δ1.

As discussed in §2.4, the effort-participation trade-off drives the optimal contest

duration T ∗ for a patient organizer, so we explain the intuition of Theorem 1(a) by

focusing on the effort-participation trade-off. As demonstrated in (2.3), the solver

balances the marginal benefit of her effort (i.e., Ax) with the marginal cost of her

effort
(
i.e., cb(e∗)b−1τ(T )1−b). When the relative impact of the solver uncertainty

measured by α increases, the marginal benefit of the solver’s effort decreases, so

she reduces her equilibrium effort e∗. Because e∗ decreases, the solver’s cost of

effort decreases, and hence her utility increases. This increase in the solver’s utility

allows the organizer to increase the contest duration T without violating the solver’s

participation condition, so T ∗ increases with α .

Theorem 1(a) has an important managerial implication. As the scale parame-

ter α increases, the solver uncertainty becomes relatively more impactful and the

solver’s effort becomes relatively less impactful. The relative impact of the solver

uncertainty can be associated with the novelty of solutions that the organizer seeks

(e.g., Terwiesch and Xu 2008). The relative impact of the solver’s effort can be as-

sociated with the sophistication of solutions that the organizer seeks because as the

organizer seeks more sophisticated solutions, the solver’s unit effort has relatively

less impact on her solution. Therefore, Theorem 1(a) suggests that the optimal con-

test duration increases with the novelty or sophistication of solutions that a patient

organizer seeks. This result seems consistent with practice. For example, at Top-

coder, development challenges that seek low-novelty solutions (e.g., hunting bugs in

software) have shorter contest durations than design challenges that seek innovative

solutions (e.g., designing an app). Similarly, at InnoCentive, theoretical challenges

that seek theoretical solutions have shorter contest durations than RTP challenges
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that seek working prototypes. Not only is our result consistent with practice but also

the drivers of our result seem consistent with practice. Specifically, our interviews

with practitioners at InnoCentive and Topcoder have revealed that most organiz-

ers at crowdsourcing platforms seem to be patient, so our results suggest that the

optimal contest duration should be determined by the effort-participation trade-off.

Indeed, our interviews corroborate our model prediction, and indicate that practi-

tioners use the effort-participation trade-off while determining the optimal contest

duration.

Theorem 1(b) shows that for a patient organizer, the optimal contest duration

T ∗ decreases with the productivity exponent ρ . We discuss the intuition focusing

on increasing productivity (i.e., ρ > 0), but the same intuition applies to decreas-

ing productivity (i.e., ρ < 0). As the productivity exponent ρ increases, the solver

productivity increases faster over time, so one may think that the organizer should

increase the contest duration T to benefit from the increased productivity. However,

Theorem 1(b) shows, somewhat counterintuitively, that the opposite is true. The

intuition is as follows. As the productivity exponent ρ(> 0) increases, the marginal

benefit of the solver’s per-time effort increases faster with T , and hence the solver

increases her equilibrium effort e∗ faster. Thus, the solver’s cost of effort increases

faster, and hence the solver’s utility decreases faster. Hence, the solver’s participa-

tion condition (2.8) binds under a smaller T , and hence the organizer sets a shorter

contest duration to guarantee solvers’ participation.12 Our result indicates that the

organizer may benefit from designing a contest with a shorter duration when the

solver productivity increases over time. For instance, an organizer running an app

development challenge at Topcoder can provide support tools such as test cases,

deployment guides, and documentation that can boost the solver productivity by

reducing “nonfunctional decisions” (Topcoder 2019). Our result shows that the or-

ganizer offering such support tools may set a shorter contest duration. Our predic-

tion seems consistent with practice. For example, Topcoder promotes these support

tools by stating that they can “shrink timelines,” i.e., reduce contest durations (see

12Although Theorem 1(b) shows that T ∗ decreases with ρ , the organizer’s profit Π intuitively
increases with ρ .
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Topcoder 2019, page 1).

2.4.2 Analysis of Impatient Organizer

In practice, an organizer may be impatient when his profit is significantly affected by

how soon he obtains solutions. For example, Perpetual Motion, a startup that runs

a logo-design contest at 99designs may require the logo quickly in order to launch

its business (99designs 2018). The following proposition analyzes how the optimal

contest duration T ∗ changes with the relative impact of the solver uncertainty mea-

sured by a scale parameter α . Under the per-time productivity θ(t) = exp(ρt), it

also analyzes the impact of the productivity exponent ρ on T ∗.

Proposition 1 (a) The optimal contest duration T ∗ is decreasing in any scale pa-

rameter α such that δ > δ1.

(b) Suppose that the per-time productivity θ(t) = exp(ρt). Then, T ∗ is increasing

in the productivity exponent ρ such that δ > δ1.

Proposition 1(a) shows that the optimal contest duration T ∗ decreases with the rel-

ative impact of the solver uncertainty measured by α . The intuition is as follows.

As we discuss after Lemma 2, the impatient organizer chooses T by balancing the

marginal benefit of T that arises from a larger effort e∗ with the marginal cost of

T that arises from more discounting. As α increases, the marginal impact of the

solver’s effort on her expected award decreases, leading to a smaller effort e∗ and a

smaller impact of increasing T on e∗ (i.e., smaller ∂e∗
∂T ). The former effect reduces

the marginal cost of increasing T , whereas the latter effect reduces the marginal

benefit of increasing T . Proposition 1(a) shows that the marginal benefit decreases

more than the marginal cost, and hence the organizer reduces T with α . A manage-

rial insight from Proposition 1(a) is that the optimal contest duration decreases with

the novelty or sophistication of solutions that an impatient organizer seeks. This

is primarily because the impatient organizer has so much urgency, and hence the

impact of discounting is so large that the organizer sacrifices the solution quality

for receiving solutions quickly. For example, a startup that urgently needs a logo to

launch its business may prefer a satisfactory logo design quickly rather than waiting
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for the best-quality logo design.

Proposition 1(b) shows, somewhat intuitively, that the optimal contest dura-

tion T ∗ for the impatient organizer increases with the productivity exponent ρ . We

discuss the intuition for increasing productivity (i.e., ρ > 0), but the same intuition

applies to decreasing productivity (i.e., ρ < 0). As ρ(> 0) increases, the marginal

benefit of the solver’s per-time effort increases faster with the contest duration T ,

and hence the solver increases her equilibrium effort e∗ faster. Thus, the marginal

benefit of T increases, leading to a longer T ∗.

2.5 Contest Duration and Award Scheme
This section proceeds as follows. In §2.5.1, we consider the organizer’s decisions

of the contest duration T and the distribution of awards (γ(1),γ(2),...,γ(N)) by taking

the total award A as given. In §2.5.2, we consider the organizer’s decisions of T and

A by taking (γ(1),γ(2),...,γ(N)) as given.

2.5.1 Contest Duration and Distribution of Awards

The following theorem analyzes when it is optimal for the organizer to adopt the

WTA award scheme. As a preparation for the theorem, we let δWTA
1 be the threshold

on the discount factor δ below which T ∗ = T under the WTA award scheme (see

Lemma 2 for the definition of δ1).

Theorem 2 (a) There exists δ 0(≤ δWTA
1 ) such that if δ > δ 0, the WTA award

scheme is optimal; and there exists δ 0(≤ δ 0) such that if δ < δ 0, giving multi-

ple awards is optimal. Also, there exists M ≥ 0 such that if θ ′(T )
θ(T ) ≤ M for any

(γ(1),γ(2),...,γ(N)), δ 0 = δ 0 = δ0.

(b) Suppose that the per-time productivity θ(t) = exp(ρt). Then, δ 0 is increasing

in the productivity exponent ρ .

Theorem 2(a) first shows that when the discount factor δ is above a threshold δ 0,

the WTA award scheme is optimal. The intuition is as follows. For a fixed contest

duration T , the equilibrium effort e∗ is maximized under the WTA award scheme

because the marginal impact of the solver’s effort on her probability of becoming the
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winner is larger than that on her probability of attaining any other rank. When the

organizer has high urgency in obtaining solutions (i.e., δ ≥ δWTA
1 ≥ δ 0), the solver’s

participation condition (2.8) does not bind, and hence the effort-discounting trade-

off drives T ∗. In this case, since the WTA award scheme maximizes e∗ for any

T , the WTA award scheme maximizes the organizer’s profit under T ∗. When the

organizer has moderate urgency (i.e., δ ∈ (δ 0,δ
WTA
1 )), (2.8) binds under the WTA

award scheme. Because the WTA award scheme elicits a larger e∗ for any fixed

T , to satisfy (2.8), the organizer sets a shorter T under the WTA award scheme

than T under other award schemes that make (2.8) binding. Thus, such an award

scheme may yield a larger e∗ at the expense of more discounting. When δ > δ 0,

the negative effect of more discounting outweighs the positive effect of a larger

e∗, and hence the WTA award scheme is optimal. However, more interestingly,

when the organizer has low urgency (i.e., δ < δ 0), the positive effect of a larger

e∗ outweighs the negative effect of more discounting, so giving multiple awards

is optimal. Although Theorem 2(a) presents two thresholds, δ 0 and δ 0, unless

the solver productivity increases very fast over time (i.e., unless θ ′(T )/θ(T ) is

very large), these thresholds take a common value δ0, above which the WTA award

scheme is optimal and below which giving multiple awards is optimal.

Theorem 2(a) has important implications for the contest theory and practice.

By assuming a fixed contest duration, Ales et al. (2017) prove that the WTA award

scheme is optimal when the solver’s participation condition is satisfied and the den-

sity function h is log-concave as in our model. (Note that under a fixed T , our

model becomes a special case of their model.) By factoring in the organizer’s deci-

sion of T , our study complements their analysis on two fronts. First, we show that

their result extends to the case when the organizer has moderate or high urgency

in obtaining solutions. Second, and more interestingly, when the organizer has low

urgency in obtaining solutions, the WTA award scheme is no longer optimal even

if the conditions specified by Ales et al. (2017) are satisfied. Thus, our result helps

explain why many contests on crowdsourcing platforms give multiple awards be-

cause as we discuss in §2.1, many organizers on crowdsourcing platforms have low



2.5. Contest Duration and Award Scheme 41

urgency in obtaining solutions.

Theorem 2(b) shows that when the productivity exponent ρ increases, we have

a larger threshold δ 0 under which giving multiple awards is optimal. The intuition

is as follows. As discussed above, compared to the WTA award scheme, giving

multiple awards may elicit a larger e∗ under T ∗ at the expense of more discounting

due to a longer T ∗. Yet, as ρ increases, T ∗ decreases (see Theorem 1(b)), and hence

the negative effect of more discounting due to giving multiple awards decreases.

Thus, the organizer can benefit from giving multiple awards under a larger δ . An

interesting managerial insight is that giving multiple awards is more desirable for an

organizer that can provide support tools such as test cases, deployment guides, and

documentation to increase the solver productivity over time. Thus, giving multiple

awards goes hand in hand with offering such support tools.

As Theorem 2 shows, the WTA award scheme is not optimal when the orga-

nizer has low urgency. We next study an optimal distribution of awards and how it

changes with the organizer’s urgency. To ensure that there is a single threshold δ0,

we assume that θ ′(T )
θ(T ) ≤ M, where M is as in Theorem 2. This assumption is satisfied

in most settings including the constant per-time productivity assumed by the contest

literature (e.g., Deng and Elmaghraby 2005, Mihm and Schlapp 2019).

Proposition 2 Suppose that θ ′(T )
θ(T ) ≤ M for any (γ(1),γ(2),...,γ(N)), where M(≥ 0)

is defined as in Theorem 2. There exist an optimal distribution of awards

(γ∗(1),γ
∗
(2), ...,γ

∗
(N)) and thresholds (δ0,1,δ0,2, ...,δ0,N) such that 0 ≤ δ0,N < δ0,N−1 <

... < δ0,1 = δ0; and for any j ∈ {2,3, ...,N}, when δ ∈ (δ0, j, δ0, j−1), γ∗(k) is in-

creasing in δ for all k ∈ {1,2, ..., j−1}, γ∗( j) is decreasing in δ , and γ∗(k) = 0 for all

k ∈ { j+1, ...,N}.

Proposition 2 characterizes an optimal award scheme where the organizer gradu-

ally shifts awards from lower-ranked solvers towards higher-ranked solvers as the

discount factor δ increases. For example, when the number of solvers N = 2, as

δ increases, the optimal share of the winner award γ∗(1) increases, and the optimal

share of the runner-up award γ∗(2) decreases; see Figure 2.2(a). For N = 3, as δ

increases, both γ∗(1) and γ∗(2) increase as long as the optimal share of the third award



2.5. Contest Duration and Award Scheme 42

0

0.5

1

(a) N = 2.

0

0.33

0.5

1

(b) N = 3.

Figure 2.2: An optimal distribution of awards (γ∗(1),γ
∗
(2), ...,γ

∗
(N)) as a function of the dis-

count factor δ . The setting is the same as Figure 2.1.

γ∗(3) is positive; and when γ∗(3) = 0, γ∗(1) increases and γ∗(2) decreases; see Figure

2.2(b). Thus, Proposition 2 shows that the more urgency an organizer has, the fewer

awards he should give, and the larger share he should allocate to the winner. The

intuition is similar to that of Theorem 2. The organizer can increase e∗ by increas-

ing the contest duration T and the number of awards. Yet, increasing T comes at

the expense of more discounting. As δ increases, the negative effect of discount-

ing increases, so the number of awards as well as the optimal contest duration T ∗

decreases.13

Proposition 2 has important implications for the contest theory and practice.

Although the prior literature shows that multiple awards can be optimal in rare

cases by assuming a fixed contest duration, these studies either do not explicitly

characterize an optimal award scheme (e.g., Ales et al. 2017) or show that giving

multiple equal awards is always optimal (e.g., Stouras et al. 2020). However, Propo-

sition 2 characterizes an optimal award scheme where giving equal awards is almost

never optimal when considering the organizer’s simultaneous decisions on the con-

test duration and the award scheme. Our finding is indeed consistent with practice.

For instance, among 52 challenges organized at Topcoder in 2019, 45 challenges

give multiple awards, and only two of them give equal awards. Thus, our results

13We characterize an intuitive and easy to implement optimal award scheme. Although there may
be other optimal award schemes that do not change with δ in the same manner as in Proposition 2, all
optimal award schemes have the same intuition. As δ increases, the organizer benefits from reducing
discounting, and achieves this by shifting his award scheme towards the WTA award scheme (hence
increasing ∑

N
j=1 IN

( j)γ
∗
( j)) and reducing the contest duration. Our supplementary analysis shows that

any optimal award scheme features unequal awards for most δ values.
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help explain not only why contests with multiple awards are common in practice,

but also why these contests give unequal awards.

2.5.2 Contest Duration and Total Award

This section analyzes how the optimal contest duration T ∗ and the optimal total

award A∗ change with the scale parameter α and the productivity exponent ρ . For

analytical tractability, we assume that the discount factor δ = 0 (i.e., the organizer

is patient as in §2.4.1), but the main result of this section (Proposition 3(a)) can

also be shown for any δ when the fixed cost of participation F = 0 and the per-time

productivity θ(t) = θ .

Proposition 3 (a) The optimal contest duration T ∗ and the optimal total award A∗

are increasing in the scale parameter α .

(b) When θ(t) = exp(ρt), T ∗ is decreasing in the productivity exponent ρ and A∗

does not change with ρ .

Proposition 3(a) shows that the optimal contest duration and the optimal total award

increase with the scale parameter α . Thus, regarding the optimal contest duration,

Proposition 3(a) yields the same result and has the same intuition as Theorem 1(a).

A direct corollary of Proposition 3(a) is that under the WTA award scheme, as the

scale parameter α increases, the optimal contest duration and the optimal winner

award both increase, so they are positively correlated. Empirical studies by Yang

et al. (2009) and and Shao et al. (2012) corroborate this positive correlation by us-

ing data from Taskcn.com and zhubajie.com (two largest crowdsourcing platforms

in China). Although these papers do not suggest a mechanism for this correlation,

Proposition 3(a) suggests that a plausible mechanism may be how the contest du-

ration and the winner award change with the novelty or sophistication of solutions

that the organizer seeks (see §2.4.1 for the discussion about how larger α implies

larger novelty or sophistication of solutions).

Proposition 3(b) shows that the optimal contest duration decreases with the

productivity exponent ρ , and hence Proposition 3(b) yields the same result and has

the same intuition as Theorem 1(b). Proposition 3(b) further shows that the optimal
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total award does not change with the productivity exponent ρ . This is because as ρ

changes, the organizer changes T ∗ such that the marginal benefit and the marginal

cost of additional total award on the organizer’s profit stay the same. Thus, the

optimal total award A∗ does not change with ρ .

2.6 Endogenous Number of Participating solvers

In our main model, as is common in the innovation-contest literature (e.g., Ales

et al. 2017, Hu and Wang 2020, Mihm and Schlapp 2019), we consider the case

where the organizer ensures that N solvers participate in the contest, where N is

taken exogenously. In this section, we consider the case where the number of par-

ticipating solvers (hereafter, participants) is endogenous to the organizer’s profit-

maximization problem (cf. Terwiesch and Xu 2008, Ales et al. 2020). Given a

population of N(≥ 2) solvers, let N(≤ N) be the number of participants. When N is

endogenous, the organizer’s profit-maximization problem becomes:

max
T,N∈{2,3,...,N},(A(1),A(2),...,A(N))

exp(−δT )
(

e∗+E
[
ξ̃

N
(1)

])
−

N

∑
j=1

A( j) s.t. (2.7),(2.8).

The number of participants N is not a free decision of the organizer because it

is subject to the solver’s participation condition (2.8). Instead, the organizer can

endogenously affect N by setting the contest duration T and the award scheme

(A(1),A(2), ...,A(N)) accordingly. For instance, the organizer may induce more

solvers to participate by setting a shorter T or setting larger award(s).

We first extend Theorem 1 to the case where the organizer decides on the opti-

mal contest duration T ∗ and the optimal number of participants N∗ to maximize his

profit. Note that as in our main analysis, which N∗ solvers participate in the contest

is immaterial to our analysis because all solvers are identical. To study the problem

of a patient organizer (as in Theorem 1) while retaining analytical tractability, we

assume that the discount factor δ = 0 (i.e., the organizer is patient as in §2.4.1). Al-

though we cannot analytically characterize N∗ when δ > 0, our numerical analysis

shows that Theorem 1 extends to the case where the organizer decides on T ∗ and
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N∗ under δ > 0.14

Proposition 4 Suppose that δ = 0. (a) T ∗ is increasing in the scale parameter α .

(b) Suppose further that θ(t) = exp(ρt). Then, T ∗ is decreasing in the productivity

exponent ρ .

Proposition 4(a) shows that for a patient organizer, the optimal contest duration T ∗

increases with the scale parameter α , and Proposition 4(b) shows that the optimal

contest duration T ∗ decreases with the productivity exponent ρ . Intuitions of Propo-

sition 4(a) and 4(b) are the same as intuitions of Theorem 1(a) and 1(b), respectively,

because N∗ does not depend on α or ρ . Specifically, the organizer determines N∗

by balancing the contribution of the equilibrium effort e∗ on the organizer’s profit Π

with the contribution of the expected value of the maximum output shock E
[
ξ̃ N∗

(1)

]
on Π. Interestingly, both of these terms change at the same rate as α , and do not

depend on ρ (see Π in (A.21) in Appendix A). Thus, N∗ does not depend on α or

ρ . We next extend our results about the award scheme.

Proposition 5 (a) Let δ 0[N] and δ 0[N] be the thresholds in Theorem 2 when N

solvers participate in the contest. Then, there exists δ
∗
0 ≡ maxN∈{2,3,...,N} δ 0[N]

such that if δ > δ
∗
0, the WTA award scheme is optimal; and there exists δ

∗
0 ≡

minN∈{2,3,...,N} δ 0[N] such that if δ < δ
∗
0, giving multiple awards is optimal.

(b) Suppose that θ(t) = exp(ρt). Then, δ
∗
0 is increasing in ρ .

(c) Giving multiple unequal awards is optimal for any δ ∈ (δ0,N ,δ
∗
0), where

δ0,N(≥ 0) is defined as in Proposition 2 and δ0,N is independent of the number

of participants N.

Proposition 5(a) shows that when the organizer has sufficiently high urgency (i.e.,

δ > δ
∗
0), the WTA award scheme maximizes the organizer’s profit under the optimal

number of participants N∗. The intuition is similar to that of Theorem 2(a). The or-

ganizer can increase e∗ by simultaneously increasing T and giving multiple awards.
14We take θ(t)= exp(ρt), and randomly generate 10,000 instances where δ < δ1. We observe that

in all instances, T ∗ increases with α and decreases with ρ . In each instance, we randomly select A
from Uniform(0,10), F from Uniform(0,0.5A), ρ from Uniform(-0.01,0.01), α from Uniform(0,2),
b from Uniform(2,10), and δ from Uniform(0,0.1); and assume c = 1, N = 100, γ(1) = 1, and ξ̃i
follows Gumbel distribution with mean 0 and scale parameter 1.
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Yet, increasing T comes at the expense of more discounting, so giving multiple

awards is optimal when the discount factor is sufficiently small. Proposition 5(b)

extends Theorem 2(b) and has the same intuition. Finally, Proposition 5(c) shows

that the main message of Proposition 2 is also preserved. Specifically, when it is

optimal to give multiple awards, these awards should almost always be unequal.

2.7 Discussion and Conclusion

In this study, we have analyzed the duration and award scheme of an innovation

contest intermediated by a crowdsourcing platform. Although practitioners consider

the contest duration as a first-order decision, this decision has received only cursory

attention from the theoretical contest literature. We take the first step toward filling

this gap between the theory and practice.

We develop a normative model of an innovation contest, where an organizer

determines the contest duration and the award scheme and each participating solver

generates a solution by exerting effort. The quality of an solver’s solution improves

with her effort but is also subject to an output uncertainty. To capture intrinsic

drivers in practice that we discuss in §2.1, our model contains the following key fea-

tures. First, a solver optimally allocates her (total) effort over the contest duration

according to her per-time productivity, which may decrease over time due to factors

such as fatigue (e.g., Amabile et al. 2002) or may increase over time due to factors

such as deeper understanding of concepts (e.g., Jain 2013). Second, each solver

endogenously determines whether to participate or not. Thus, the organizer ensures

that a certain (exogenous or endogenous) number of solvers participate by setting

the contest rules accordingly. Third, (all else being equal) an organizer prefers

obtaining solutions earlier rather than later, and hence the organizer’s payoff is dis-

counted at a rate that depends on his urgency. In addition to these features, our

model helps us tease out the impact of the contest duration because we show that

under a fixed duration, our model is equivalent to the standard modeling framework

of the innovation-contest literature.

Our analysis yields the following novel insights. First, we show that the drivers
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for the optimal contest duration depends on how urgently the organizer needs solu-

tions. Thus, although the contest literature (Seel 2018) posits that the contest dura-

tion should be determined by the effort-discounting trade-off, we identify the effort-

participation trade-off, and show that this novel trade-off drives the optimal contest

duration unless an organizer has high urgency. Our interviews with practitioners

at crowdsourcing platforms indicate that an organizer rarely has high urgency, so

we focus on the organizer without high urgency, and show that the optimal contest

duration increases with the novelty or sophistication of solutions that the organizer

seeks. This result seems consistent with the commonly adopted policy at crowd-

sourcing platforms. Perhaps more interestingly, our interviews with practitioners

indicate that the underlying driver in practitioners’ decision making seems to be the

effort-participation trade-off as our model predicts. Furthermore, we analyze how

the change in the solver productivity over time affects the optimal contest duration.

Although one may expect the organizer to set a longer contest duration when the

solver productivity increases over time, we show that the opposite is true. This is

because although a longer contest duration increases the solver productivity and

may help the organizer receive better solutions from solvers, it also hinders solvers’

participation. This result suggests that an organizer who can provide support tools

that increase the solver productivity over time (e.g., test cases, deployment guides,

and documentation at Topcoder) should set a shorter contest duration.

Focusing on the contest duration and the distribution of awards, we first show

that the organizer should give multiple awards when he has low urgency in obtain-

ing solutions, as in many contests on crowdsourcing platforms. This result helps

explain why many contests on these platforms give multiple awards. Although a

few papers in the innovation-contest literature show that giving multiple awards can

be optimal under rare cases discussed in §2.1, they either do not characterize an

optimal award scheme (e.g., Kalra and Shi 2001, Ales et al. 2017) or show that the

organizer should give multiple equal awards when the WTA award scheme is not

optimal (e.g., Stouras et al. 2020). In contrast, we characterize an optimal award

scheme where it is almost always optimal for the organizer to give unequal awards
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– a result consistent with practice, and provide a possible explanation for this com-

monly applied strategy in practice. We further show that giving multiple awards

is more desirable for an organizer who can provide support tools (e.g., test cases,

deployment guides, and documentation at Topcoder) to increase the solver produc-

tivity over time. Thus, giving multiple awards goes hand in hand with offering such

support tools.

Finally, focusing on the contest duration and the total award, we show that the

optimal contest duration and the optimal total award increase with the novelty or

sophistication of solutions that the organizer seeks. This result provides a plausible

theory for recent empirical findings. Specifically, the positive correlation between

the optimal contest duration and the optimal total award can be due to an increase

in the novelty or sophistication of solutions that the organizer seeks.

Our study is the first step towards understanding the impact of the organizer’s

decision of the contest duration, and naturally has some limitations. Specifically, al-

though we use a static model, one can imagine alternative settings where a dynamic

model can be more appropriate. We use a static model because it captures the first-

order effects and primary trade-offs in contests on crowdsourcing platforms such as

InnoCentive and Topcoder. Also, we show that under a fixed contest duration, our

model becomes equivalent to the standard modeling framework of the innovation-

contest literature (which is also static), and this equivalence allows us to tease out

the impact of the organizer’s decision of the contest duration. However, a dynamic

model may be useful to analyze alternative settings where the organizer provides

feedback. An interesting research avenue is to study the relationship between the

contest duration and feedback policies by employing a dynamic model. By ana-

lyzing a dynamic model, one can also study the impact of the contest duration on

solvers’ participation and effort decisions over time.15 Furthermore, while we use

a simple approach to capture the impact of a deeper understanding of concepts and

15It is worth noting that any dynamic model leads to an asymmetry among solvers, so it requires
the analysis of a model with both solver heterogeneity and output uncertainty. It is well-established
in the innovation-contest literature that such a model has a very limited tractability (e.g., Mihm and
Schlapp 2019, Ales et al. 2019a, Hu and Wang 2020), and hence it requires many restrictive assump-
tions (e.g., the presence of only two solvers and a specific distribution for the solver uncertainty) that
our model does not make.



2.7. Discussion and Conclusion 49

fatigue on the per-time productivity, a more comprehensive dynamic model may

be necessary to analyze the case where the per-time productivity of a solver at any

point in time depends on her effort or her output uncertainty up to that point, and the

analysis of such a dynamic model can be an interesting future research direction.

Finally, instead of focusing on the case where the organizer runs only one contest, it

can be interesting to examine the relationship between the contest duration and the

scheduling of contests when the organizer runs multiple contests.



Chapter 3

Team Collaboration in Innovation

Contests

3.1 Introduction
The internet has enabled organizations to look beyond their boundaries to solve

their problems, and hence organizing an innovation contest has emerged as a vi-

able tool to elicit high-quality solutions cost effectively without paying for “work,

failure, or trial and error” (InnoCentive 2018). In an innovation contest, an orga-

nizer aims to obtain the best (i.e., highest-quality) solution for an innovation-related

problem from a group of solvers, and solvers compete to develop this best solution

and receive an award. Solvers can develop their solutions individually and make

individual submissions,1 or they may collaborate as teams and make team submis-

sions if the organizer allows team collaboration. The prior studies on innovation

management (e.g., Girotra et al. 2010) and innovation contests (e.g., Terwiesch and

Xu 2008) suggest that quality of the best solution depends on the number of solu-

tions generated, the average quality of solutions, and the variance in the quality of

solutions. Team collaboration potentially affects all of these aspects, so it is unclear

how team collaboration affects the quality of the best solution and hence the orga-

nizer’s benefit from the innovation contest. Therefore, in this research, we study

1In some contests, solvers are incapable of making individual submissions due to a necessity of
strong expertise in diverse topics (e.g., chemistry and biology). In such a contest, the organizer might
always encourage team collaboration because receiving complete solutions requires collaboration.
We naturally focus on contests where solvers are capable of making individual submissions.
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when the organizer can benefit from team submissions.

Recent studies in the innovation literature suggest that the problem type plays

a significant role in whether collaborating as a team leads to a better performance.

Specifically, when the problem can be decomposed to different tasks (hereafter, de-

composable problems), each of which can be performed by a team member, team

collaboration can lead to a better performance (Chan et al. 2021). For example, soft-

ware challenges can be classified as decomposable problems (e.g., MacCormack

2001, Chan et al. 2021) because a software system can be decomposed according to

different functionalities, each of which can be performed independently (e.g., Apel

and Kästner 2008). In this case, team members’ efforts are substitutable. However,

when the problem is very complex and hence requires a “holistic” solution, it may

not be possible to decompose the problem to independently workable tasks, so the

problem can be categorized as a nondecomposable problem (e.g., Orth and Malke-

witz 2008, Chan et al. 2021). In this case, the prior literature suggests that a team

may perform worse than a group of individuals because working as a team may

require strong coordination and communication (e.g., Chan et al. 2021) and indi-

viduals’ parallel working can be beneficial (e.g., Sommer and Loch 2004, Sommer

et al. 2020). For example, design challenges are often classified as nondecompos-

able problems because of their holistic nature (e.g., Chan et al. 2021).

According to the above work, the inherent nature of the problem type —

whether it is nondecomposable and decomposable — may help us understand why

team collaboration is beneficial in certain settings and not in others. Indeed, when

we observe popular crowdsourcing platforms such as InnoCentive, Topcoder, and

99designs, we realize that they have different problem types and different policies

regarding team submissions. For example, InnoCentive mostly organizes (system)

design challenges (such as design of affordable sanitation facility or inflation system

for paddle boards), which require holistic solutions. If one applies the results of the

innovation literature that we discuss above to the setting of InnoCentive, one might

deduce that team submissions should be discouraged at InnoCentive, yet InnoCen-
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tive encourages solvers to make team submissions in about 70% of its challenges.2

Similarly, applying the results of the innovation literature to the setting of Top-

coder, one might expect that team submissions should be encouraged at Topcoder

that organizes software challenges, yet Topcoder does not allow team submissions.

These gaps between theory and practice may stem from the competitive nature in

innovation contests, which is not relevant in traditional innovation/problem-solving

settings, and hence not explicitly captured in the innovation literature.

Another factor that may play a part in how beneficial team collaboration is

the “novelty” of solutions sought in an innovation contest. Indeed, the innovation-

contest literature (e.g., Mihm and Schlapp 2019, Hu and Wang 2020) emphasizes

that the novelty of solutions sought plays an important role in designing an in-

novation contest because for a low-novelty solution, the solution quality depends

more on solvers’ efforts, yet for a high-novelty solution, the solution quality de-

pends more the uncertainty involved in the problem (e.g., Terwiesch and Xu 2008).

For example, at Topcoder, development challenges such as Database Setup Chal-

lenge expect solvers to develop elementary solutions (Topcoder 2021a), so they can

be considered as seeking low-novelty solutions (incremental innovations). In con-

trast, data science challenges such as Streamflow Forecast Challenge expect solvers

to develop innovative algorithms (Topcoder 2021b), so they can be considered as

seeking high-novelty solutions (breakthrough innovations). Despite the potential

impact of the novelty of solutions sought on team collaboration, this factor has not

been explored in the literature on teams.

To address these gaps in the prior theory and provide an explanation for the

mixed policies in practice, we ask the following research question: (Q1) When

should the organizer encourage or discourage team submissions?3 Interestingly,

our interviews with InnoCentive have revealed that, even when the organizer en-

courages team submissions, solvers can still make individual submissions in some

2We have collected the data from InnoCentive’s website, and analyzed 60 contests whose an-
nouncements are available on August 30, 2019. Also, we have interviewed John Elliott (former
vice president of sales at InnoCentive) and Greg Bell (former head of marketing and community at
Topcoder) to gain insights into their operations.

3We do not distinguish a crowdsourcing platform from its clients because their incentives are
aligned with regard to encouraging team submissions.
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contests. As the organizer’s benefit from team submissions hinges upon whether

solvers benefit from collaborating as teams, we ask the following research question:

(Q2) When do solvers benefit from team collaboration?

To answer our research questions, we incorporate a team’s collective output

into the standard modeling framework in the innovation-contest literature (e.g., Ales

et al. 2017, Mihm and Schlapp 2019, Hu and Wang 2020). In our model, the or-

ganizer is interested in the quality of the best submission, and aims to determine

whether to encourage or discourage team submissions. When solvers make individ-

ual submissions, our model boils down to the standard modeling framework of the

innovation-contest literature, where each solver decides on her effort that improves

her individual output. In this case, a solver’s output depends on her effort and output

shock, which is related to the novelty of solutions sought (e.g., Terwiesch and Xu

2008, Mihm and Schlapp 2019).

When solvers make team submissions, the quality of a team’s collective so-

lution depends on whether the organizer seeks solutions for a nondecomposable

or decomposable problem. When the organizer has a nondecomposable problem,

team members in each team can pursue alternative solution approaches in parallel

(e.g., Amaldoss et al. 2000, Roels 2014). Here, the key motivation for solvers to

collaborate is that solvers cannot be sure which solution approach is better before

developing solutions (Amaldoss et al. 2000). Although team members pursue al-

ternative solution approaches in parallel, they can share their ideas about different

solution approaches (e.g., by brainstorming (Girotra et al. 2010) or providing feed-

back to each other (Gino 2019)). Such interactions of team members can lead to

more diverse ideas about the problem (e.g., Taylor and Greve 2006) or better per-

formance in identifying promising solution approaches (e.g., Singh and Fleming

2010).4 We capture this effect by considering an interaction shock in addition to

the team member’s effort and output shock. After team members in each team de-

4We focus on solvers’ diversity in background and experiences that help teams to generate more
diverse set of ideas and solutions. Despite these differences, we assume that solvers are still compa-
rable in terms of their skills and hence have identical output functions. It is well-established in the
innovation contest literature that a model that captures both the solver’s uncertainty (as in our study)
and heterogeneity in skills has a very limited analytical tractability (cf. Ales et al. 2019b).
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Table 3.1: Impact of team submissions on the organizer’s profit.

Low-novelty solutions
(Effort-driven Solutions)

High-novelty solutions
(Shock-driven Solutions)

Nondecomposable
Problems

Team submissions are detri-
mental unless teams are
highly diverse (e.g., logo
design challenges at 99de-
signs)

Team submissions are bene-
ficial (e.g., design challenges
at InnoCentive).

Decomposable
Problems

Team submissions are bene-
ficial when (a) teams are di-
verse or (b) teams are less di-
verse and increasing effort is
difficult (e.g., development
challenges at Topcoder).

Team submissions can be
beneficial when teams are
diverse (e.g., data science
challenges at Topcoder).

velop their solutions in parallel, they select the most promising one and submit it as

a team’s solution.

When the organizer seeks solutions for a decomposable problem, team mem-

bers can work on different tasks to develop the team’s solution. In this case, team

members can share their ideas about how to tackle their tasks, and hence a team’s

output depends on team members’ interaction shocks in addition to their efforts and

output shocks. Note that for any type of problems, as the organizer is interested

in the quality of the best submission, the organizer’s profit depends on solvers’ ef-

forts (hereafter, effort contribution) and the maximum of shocks (hereafter, shock

contribution) under both individual submissions and team submissions.

As we summarize in Table 3.1, our equilibrium analysis yields the following

results. Based on the innovation literature (e.g., Sommer et al. 2020, Chan et al.

2021), one might expect that the organizer should discourage team submissions

when seeking solutions to a nondecomposable problem. Indeed, we show that this

is the optimal strategy when the organizer seeks low-novelty solutions to a nonde-

composable problem (e.g., logo design challenges at 99designs) and team diversity

is sufficiently low. This is because solvers’ incentive to exert effort is smaller when

collaborating due to sharing the award and free-riding effect, and this negative ef-

fect can be outweighed by the benefit of team members’ interactions on the shock
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contribution only when teams are highly diverse. However, we show that when the

organizer seeks high-novelty solutions to a nondecomposable problem (e.g., design

challenges at InnoCentive), the organizer can benefit from team submissions. The

intuition is as follows. When the organizer seeks high-novelty solutions, the impact

of team collaboration on the organizer’s profit mostly depends on its impact on the

shock contribution. When solvers make team submissions, the shock contribution

increases because of team members’ interactions, and hence the organizer’s profit

increases. This result may explain why team collaboration is encouraged in most

InnoCentive challenges, despite the possible coordination losses in solvers’ efforts.

We next analyze the case when the organizer seeks solutions to a decompos-

able problem, and find that the organizer should encourage team submissions, but

interestingly, only under certain conditions. Specifically, when the organizer seeks

high-novelty solutions (e.g., in Streamflow Forecast Challenge at Topcoder) or low-

novelty solutions (e.g., in Database Setup Challenge at Topcoder), the organizer can

benefit from team submissions through the increase in the shock contribution due to

team members’ interactions. Yet, in this case, the number of generated solutions de-

creases when solvers collaborate as teams. Thus, the benefit from team members’

interactions should be sufficiently large, which can be achieved by more diverse

teams (e.g., Taylor and Greve 2006, Singh and Fleming 2010), so that it can out-

weigh the negative impact of the decrease in the number of solutions on the shock

contribution. Therefore, it can be better for the organizer to encourage (form, if

possible) more diverse teams to benefit from the increase in the shock contribution.

We further show that when seeking low-novelty solutions to a decomposable

problem, the organizer can benefit from team submissions also through the increase

in the effort contribution if increasing effort is difficult for solvers. The intuition

is as follows. When solvers collaborate as teams, although sharing the award and

free-riding effect decrease each solver’s incentive to exert effort, this effect can be

outweighed by the benefit of accumulation of team members’ efforts when increas-

ing effort is difficult for solvers. It is worth noting that, in this case, diversity of

ideas due to team members’ interactions reduces team members’ incentive to exert
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effort. Therefore, in this case, it can better for the organizer to encourage (form, if

possible) less diverse teams to be able to benefit from the increase in the effort con-

tribution. Our results for decomposable problems may help explain why Topcoder

discourages team submissions because it may not be easy for Topcoder to control

the diversity of teams, yet they also show that there is an opportunity to benefit from

team submissions that Topcoder may consider in the future.

Finally, to answer our second research question, we compare the individual

solver’s utility and the team member’s utility, and show that the team member’s

utility is larger. The intuition is as follows. When solvers collaborate as teams, their

incentive to exert effort decreases due to sharing the award and free-riding effect.

Thus, team members exert less effort than individual solvers, and hence incurs a

smaller cost of effort. Because members in all teams end up exerting less effort,

the expected award of solvers does not change when they collaborate, and hence

the team member’s utility is larger than the individual solver’s utility. However,

our additional analysis shows that when team collaboration results in synergistic

gains, team members’ incentive to exert effort increases, and hence each solver’s

utility can decrease with team collaboration. This result may explain why in some

InnoCentive challenges, solvers make individual submissions although they are en-

couraged to make team submissions.

3.2 Related Literature

Our study is related to the innovation-contest literature, the literature on collabo-

ration in other competitive settings (e.g., sales contests and competition between

alliances), and the innovation and product-development literature on collaboration.

The innovation-contest literature analyzes the organizer’s decisions in an in-

novation contest such as the number of participants (Terwiesch and Xu 2008, Ales

et al. 2020), award scheme (Ales et al. 2017, Korpeoglu et al. 2020), feedback mech-

anism (Mihm and Schlapp 2019), duration of a contest (Korpeoglu et al. 2020),

whether to run an internal contest (Nittala and Krishnan 2016), whether to run a

simultaneous or sequential contest (Hu and Wang 2020), whether to run multiple
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parallel contests (Körpeoğlu et al. 2017), and whether to run multi-staged curated

contests (Khorasani et al. 2020). We build on the modeling framework of these stud-

ies, which focus on the output uncertainty in an innovation contest.5 We contribute

to this literature by comparing the case of individual submissions with the case of

team submissions in innovation contests, and by specifying conditions under which

the organizer and solvers can benefit from team submissions.

Our study is also related to the literature on collaboration in other competitive

settings such as sales contests and competition between alliances. In this stream

of research, the closest study to ours is by Chen and Lim (2013), who show that

team members exert larger efforts than individual solvers only when team members

feel guilt aversion. Thus, in the absence of such a behavioral effect, solvers always

reduce their efforts when making team submissions, and the organizer is always

worse off. This is because the organizer maximizes the total output of solvers, and

hence the organizer’s profit only depends on solvers’ efforts (not directly on their

output shocks). Thus, whenever each solver’s effort decreases, so does the orga-

nizer’s profit. In an innovation contest, the organizer maximizes the best output, so

our study has two fundamental differences from the setting of Chen and Lim (2013).

First, the organizer’s profit depends on solvers’ efforts as well as the expected value

of the maximum of output shocks. Second, the total effort exerted for the best output

can be larger under team submissions even when each solver decreases her effort.

Other studies in this stream of research are as follows: Amaldoss et al.

(2000) compare efforts of same-function alliance members with efforts of parallel-

development alliance members; Amaldoss and Rapoport (2005) study the impact

of the competition structure on alliance members’ efforts for developing a prod-

uct and a market; Amaldoss and Staelin (2010) compare efforts of same-function

alliance members with efforts of cross-function alliance members; and Chen and

Lim (2017) analyze the impact of the team’s ability composition on team members’

efforts. These papers do not consider an organizer who incentivizes alliance/team

5There are also studies (e.g., Stouras et al. 2020, Körpeoğlu and Cho 2018) focusing on the
heterogeneity of solvers by suppressing the output uncertainty. (We refer the reader to Ales et al.
(2019b) and Segev (2020) for detailed reviews.)
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members to maximize profit, and do not compare alliance/team members’ efforts

with efforts that they would exert as individuals. Thus, we contribute to this liter-

ature by comparing the case of team submissions with the case of individual sub-

missions and by characterizing when the organizer and solvers benefit from team

submissions.

Our study is also related to the innovation and product-development literature

on teams (e.g., Sosa et al. 2004, Bhaskaran and Krishnan 2009, Girotra et al. 2010,

Sting et al. 2016, Taneri and Meyer 2017). The most relevant studies to ours are

the theoretical study by Kavadias and Sommer (2009), the experimental study by

Sommer et al. (2020), and empirical studies by Taylor and Greve (2006), Singh and

Fleming (2010), and Chan et al. (2021). Kavadias and Sommer (2009) study the im-

pact of collaboration on the quality of the best solution by comparing two extreme

cases where all solvers work together to develop a collective solution and where

each solver first develops a solution and then solvers together choose the best so-

lution to implement, and show that for complex problems, individuals can perform

better than a team. Sommer et al. (2020) experimentally validate this theoretical

result, and suggest that this result is caused by the fact that working in parallel

can be better for complex problems (Sommer and Loch 2004) and groupthink can

harm the team’s collective solution (Bendoly 2014). Similarly, Chan et al. (2021)

suggest that individuals can perform better than a team when the problem is non-

decomposable because in this case, collaboration may lead to coordination losses.

These studies neither capture the competition among solvers nor do they consider

an organizer who needs to incentivize competing solvers to exert costly efforts to

maximize profit. As we discuss in §3.1, the gap between these results and crowd-

sourcing practice necessitates a study of team collaboration in innovation contests,

and our study aims to fill this gap. Finally, to model the case of team submissions

and interpret our theoretical results in this study, we build on the empirical find-

ings that teams can generate more diverse solutions than individuals (e.g., Taylor

and Greve 2006) and teams can perform better when identifying promising solution

approaches (e.g., Singh and Fleming 2010). These results suggest that team collab-
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oration may shift the average solution quality as well as increasing the variance of

the quality of solutions.

3.3 Model
We consider an innovation contest in which an organizer elicits solutions to an

innovation-related problem from a group of solvers (“she”).6 We study cases where

each solver is capable of developing an individual solution, and hence the solver

either develops her individual solution and makes an individual submission; or if

the organizer encourages collaboration, she can collaborate with other solver(s) and

make a team submission.

Motivated by practice and the literature (e.g., Chan et al. 2021) as we discuss in

§3.1, we focus on two types of problems: (1) a nondecomposable problem, which is

not amenable for team members to share the requisite tasks without significant coor-

dination (e.g., Chan et al. 2021), and (2) a decomposable problem with (perfectly)

substitutable tasks, where team members can divide up the tasks to be done. In

§3.3.1 and §3.3.2, we present the models for the case of a nondecomposable prob-

lem and the case of a decomposable problem with (perfectly) substitutable tasks,

respectively.7

3.3.1 Nondecomposable Problem

We analyze each solver’s equilibrium effort and utility and the organizer’s profit

when solvers make individuals submissions and team submissions for a nondecom-

posable problem, respectively.

Individual Submissions. To model the case of individual submissions for a nonde-

composable problem, we use the standard modeling framework in the innovation-

contest literature (e.g., Ales et al. 2017, Mihm and Schlapp 2019). Let N be the

6In our model, the organizer can be an enterprise that organizes its own contest or a crowdsourc-
ing platform that organizes a contest on behalf of its client, and we do not distinguish these two
cases because incentives of a crowdsourcing platform and its client are aligned with regard to team
submissions.

7In §3.5.3, we also consider the case when team collaboration may result in synergistic gains or
coordination losses, and extend our results for the case of a problem decomposable to substitutable
tasks. Also, in Appendix D.2, we consider a problem that can be decomposable to complementary
tasks.
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set of solvers who participate in the contest, and let N ≡ |N | denote the number

of these solvers. Each solver i ∈ N generates an “output” yi, which represents her

solution quality and takes the following form:

yi = ei +ξi, (3.1)

where ei is solver i’s effort and ξi is solver i’s “output shock.”8 We assume that

ξi’s are independent, and follow normal distribution with mean zero and standard

deviation σ (i.e., Normal(0,σ2)), where h(s) and H(s) denote ξi’s density and dis-

tribution functions, respectively. Output shock ξi represents the uncertainty in indi-

vidual solution-generation and evaluation processes, and σ captures the novelty of

solutions sought (e.g., Mihm and Schlapp 2019, Hu and Wang 2020). Specifically,

σ is large when the organizer elicits high-novelty solutions (e.g., breakthrough in-

novations); and σ is small when the organizer elicits low-novelty solutions (e.g.,

incremental innovations).

Following the innovation-contest literature (e.g., Mihm and Schlapp 2019, Hu

and Wang 2020), we restrict our attention to a symmetric pure-strategy Nash equi-

librium. Let e∗ be each solver’s equilibrium effort when solvers make individual

submissions, and let PN [ei,e∗] be solver i’s probability of producing the largest out-

put when she exerts effort ei given that all other solvers exert the equilibrium effort

e∗. We derive PN [ei,e∗] as follows:

PN [ei,e∗] = P{yi > y j,∀ j ∈ N \{i}}=
∫

∞

−∞

H (s+ ei − e∗)N−1 h(s)ds. (3.2)

Consistent with the innovation-contest literature (e.g., Mihm and Schlapp 2019, Hu

and Wang 2020), the organizer gives a winner award A (> 0) to the solver who

produces the best output. If solver i produces the best output, she receives an award

A; otherwise, she receives nothing.

When solver i exerts effort ei, she incurs a cost of ceb
i , where c > 0 and b > 1

(e.g., Chen and Lim 2013, Mihm and Schlapp 2019). Here, parameter b represents

8Solver i’s output can be written as yi = ei+(ξ I
i +ξ E

i ), where ξ I
i represents the uncertainty related

to individual solution-generation process and ξ E
i represents the uncertainty related to evaluation

process. To ease our exposition, we represent both uncertainties with a single output shock ξi (e.g.,
Mihm and Schlapp 2019, Hu and Wang 2020).
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the convexity of the cost function, which measures how quickly the marginal cost

of additional effort increases, and hence “how difficult it is to increase effort” (e.g.,

Hu and Wang 2020). Accounting for ceb
i and PN [ei,e∗] in (3.2), solver i chooses her

effort ei by solving the following utility-maximization problem:

U∗ ≡ max
ei∈R+

(
A ·PN [ei,e∗]− ceb

i

)
. (3.3)

Evaluating the first-order condition of (3.3), we derive e∗ and U∗ in the following

lemma.

Lemma 1 Each solver’s equilibrium effort e∗ and utility U∗ satisfy:9

e∗ =
(

A ·LN

cb

) 1
b−1

, where LN ≡ (N −1)
∫

∞

−∞

H(s)N−2h(s)2ds, and (3.4)

U∗ =
A
N
− c
(

ALN

cb

) b
b−1

. (3.5)

Note that e∗ is decreasing in N because LN in (3.4) is decreasing in N (cf. Ales et al.

2020).

The organizer is interested in the quality of the best solution, and hence the

organizer’s expected profit in equilibrium is

Π
∗ = E

[
max
i∈N

{yi}−A
]
= e∗+E

[
max
i∈N

{ξi}
]
−A =

(
ALN

cb

) 1
b−1

+mN −A, (3.6)

where mN =E [maxi∈N {ξi}]. We refer to the first term e∗ as the solver-effort contri-

bution and the second term mN as the solver-shock contribution, which is increasing

in N by the definition of the expected value of the maximum of random variables.

Team Submissions. We now examine the case where solvers collaborate as teams

and make team submissions for a nondecomposable problem. In preparation, we

define a team t as a partition of the set of solvers N , where we denote the set of

solvers in team t by N τ
t and

⋃
t N

τ
t = N . Note that we use the superscript τ to

distinguish notation related to team submissions from the notation related to indi-

vidual submissions. Let n (≥ 2) be the number of solvers in each team (hereafter,

team size). We assume that N is divisible by team size n so that |N τ
t | = n for all

9In Appendix D.3, we provide sufficient conditions for e∗ in (3.4) to be the unique solution of
(3.3), and we assume that at least one of these sufficient conditions holds (e.g., Mihm and Schlapp
2019, Ales et al. 2020).
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t ∈ T ≡ {1,2, ...,N/n} (e.g., Amaldoss et al. 2000, Chen and Lim 2013).

As we discuss in §3.1, when the organizer has a nondecomposable problem,

the key motivation for solvers to collaborate is that they cannot be sure which so-

lution approach is better before developing their solutions (Amaldoss et al. 2000).

Thus, solvers collaborate as teams so that team members in each team t can pur-

sue alternative solution approaches in parallel (e.g., Amaldoss et al. 2000, Roels

2014). Similar to the solution of each individual solver in (3.1), the solution of

each team member i(∈ N τ
t ) depends on her effort eτ

ti and “output shock” ξti re-

lated to solution-generation and evaluation processes, which is analogous to ξi in

(3.1): ξti’s are independent and follows Normal(0,σ2). Because team members can

share their ideas about different solution approaches (e.g., by brainstorming (Girotra

et al. 2010), or providing feedback (Gino 2019)), the solution of each team mem-

ber i(∈ N τ
t ) also depends on an “interaction shock” ξ B

ti generated through team

members’ interactions. Thus, each team member i’s output yτ
ti takes the following

form:

yτ
ti = eτ

ti +ξ
B
ti +ξti.

We assume that ξ B
ti follows Normal(µB,σ

2
B), where µB ≥ 0 and σB > 0; and ξ B

ti ’s

and ξti’s are independent within each team t, considering that team members try

alternative (mostly independent) solution approaches and team members come up

with diverse (mostly independent) ideas. Also, ξ B
ti ’s and ξti’s are independent across

teams, consistent with the common assumption in the literature that solvers’ output

shocks are independent (e.g., Hu and Wang 2020). Our model of the team mem-

ber’s output captures the idiosyncrasies in team members as well as the additional

uncertainty and the performance enhancement generated through team members’

interactions captured by parameters σB and µB, respectively.

To ease our exposition, let ξ τ
ti = ξ B

ti + ξti, which represents the team mem-

ber’s “overall output shock.” Assuming that ξ B
ti and ξti are independent for

each team member i in team t, since ξ B
ti follows Normal(µB,σ

2
B) and ξti fol-

lows Normal(0,σ2), each team member’s overall output shock ξ τ
ti follows

Normal(µB,σ
2 +σ2

B), where g(s) and G(s) denote ξ τ
ti ’s density function and dis-
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tribution function, respectively.10 The definitions of the team member’s overall

output shock ξ τ
ti and the individual solver’s output shock ξi enable us to capture

two first-order effects of team collaboration identified in the innovation literature.

First, the variance in team members’ output shocks is larger than the variance in

individual solvers’ output shocks (i.e., σ2+σ2
B > σ2) because team members bring

diverse ideas about different solution approaches, and this effect increases as the

team becomes more diverse (Taylor and Greve 2006). Second, the mean of team

members’ output shocks can be larger than the mean of individual solvers’ output

shocks (i.e., µB ≥ 0) because teams can be better at identifying promising solu-

tion approaches (Singh and Fleming 2010). This effect also increases as the team

becomes more diverse (Singh and Fleming 2010).

After team members in team t develop their solutions in parallel, they select

the best solution and submit it as team t’s solution. Thus, team t’s output yτ
t can be

calculated as follows:

yτ
t = max

i∈N τ
t

yτ
ti = max

i∈N τ
t

{eτ
ti +ξ

τ
ti} . (3.7)

Let e∗,τ be a team member’s effort in a symmetric pure-strategy Nash equilibrium,
and let Pτ

N [eτ
ti,e

∗,τ ] be team t’s probability of winning when team member i ∈ N τ
t

exerts eτ
ti given that other (n− 1) members of team t and members of other teams

exert e∗,τ . By using (3.7), we derive team t’s probability of winning Pτ
N [eτ

ti,e
∗,τ ] as

follows:

Pτ
N [eτ

ti,e
∗,τ ] = P{yτ

t > yτ
k ,∀ k ∈ T \{t}}

= P

{
max

m∈N τ
t

{eτ
tm +ξ

τ
tm}> max

j∈N τ
k

{
eτ

k j +ξ
τ
k j

}
,∀ k ∈ T \{t}

}

= P

{
max

{
eτ

ti +ξ
τ
ti , max

m∈N τ
t \{i}

{e∗,τ +ξ
τ
tm}
}
> e∗,τ + max

j∈N τ
k

{
ξ

τ
k j

}
,∀ k ∈ T \{t}

}
=
∫

∞

−∞

G(s+ eτ
ti − e∗,τ)N−1 g(s)ds+(n−1)

∫
∞

−∞

G(s+ e∗,τ − eτ
ti)G(s)N−2g(s)ds,

(3.8)

where the first term is the probability that team member i in team t generates the

10When ξ B
ti and ξti are correlated for each team member i in team t, ξ τ

ti follows Normal(µB,σ
2 +

σ2
B +2ρσσB), where ρ is the correlation. In Appendix D.1, we show that our main results continue

to hold under such correlation.
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best solution and the second term is the probability that one of other (n−1) mem-

bers in team t generates the best solution. The first derivative of (3.8) with respect

to eτ
i evaluated at eτ

i = e∗,τ yields:

∂Pτ
N [eτ

ti,e
∗,τ ]

∂eτ
ti

∣∣∣∣
eτ

ti=e∗,τ
= (N −n)

∫
∞

−∞

G(s)N−2 g(s)2ds. (3.9)

We assume that winning team members share the award A equally (e.g., Chen and

Lim 2013).11 Thus, team member i chooses her effort eτ
ti by solving the following

utility-maximization problem:

U∗,τ ≡ max
eτ

ti∈R+

(
A
n

Pτ
N [eτ

ti,e
∗,τ ]− c(eτ

ti)
b
)

. (3.10)

Evaluating the first-order condition of (3.10), we derive e∗,τ and U∗,τ in the follow-

ing lemma.

Lemma 2 Each team member’s equilibrium effort e∗,τ and utility U∗,τ satisfy:12

e∗,τ =
(

A ·Lτ
N

ncb

) 1
b−1

, where Lτ
N ≡ (N −n)

∫
∞

−∞

G(s)N−2g(s)2ds, and (3.11)

U∗,τ =

(
A
n

)( n
N

)
− c(e∗,τ)b =

A
N
− c
(

ALτ
N

ncb

) b
b−1

. (3.12)

We next analyze the organizer’s profit under team submissions. As in the case of

individual submissions, the organizer is interested in the quality of best solution.

Let mτ
N ≡ E

[
maxt∈T

{
maxi∈N τ

t

{
ξ τ

ti
}}]

. For all i ∈ Nt and t ∈ T , eτ
ti = e∗,τ as in

(3.11), so by applying (3.7), the organizer’s expected profit in equilibrium can be

calculated as follows:13

11Our interviews with practitioners and solvers at InnoCentive have revealed that equal share of
the award is common in practice. Also, in our main analysis, to isolate the impact of team submis-
sions, we assume that the organizer gives the same award A under individual and team submissions.
However, in §3.5.1, we extend our main results to the case where the organizer sets optimal awards
under individual submissions and team submissions.

12In Appendix D.3, we provide sufficient conditions for e∗,τ in (3.11) to be the unique solution of
(3.10), and we assume that at least one of these sufficient conditions holds (e.g., Mihm and Schlapp
2019, Ales et al. 2020).

13Note that this does not require that each team t can gauge the exact value of ξ τ
ti ’s, and only

implies that each team’s ranking of its members’ outputs is consistent with the organizer’s ranking
of them.



3.3. Model 65

Π
∗,τ = E

[
max
t∈T

{yτ
t }−A

]
= E

[
max
t∈T

{
max
i∈N τ

t

{e∗,τ +ξ
τ
ti}
}]

−

=

(
ALτ

N
ncb

) 1
b−1

+mτ
N −A. (3.13)

Analogous to the terms in (3.6), we refer to the first term e∗,τ as the team-effort

contribution, and the second term mτ
N as the team-shock contribution.

3.3.2 Decomposable Problem

We next discuss the case of a decomposable problem that can be divided to substi-

tutable tasks, each of which can be performed by different solvers. For example,

a software development project can be decomposed into substitutable tasks, which

may represent different “features,” i.e., units of functionality (e.g., Apel and Kästner

2008). In this case, the efforts exerted by different solvers for each task are also sub-

stitutable.

Individual Submissions. Suppose that K is the set of substitutable tasks associ-

ated with the decomposable problem and K ≡ |K | denotes the number of tasks.

Let yik be the performance of each solver i ∈ N for each task k ∈ K . Analogous

to solver’s output yi in (3.1), for each task k, solver i’s performance depends on her

effort eik and output shock ξik (Hu and Wang 2020). For ease of exposition, we as-

sume that ξik’s are independently and identically distributed with Normal(0,σ2/K).

Thus, each solver i’s output associated with the decomposable problem is

yi = ∑
k∈K

yik = ∑
k∈K

(eik +ξik) = ∑
k∈K

eik + ∑
k∈K

ξik = ei +ξi, (3.14)

where ei ≡ ∑k∈K eik is solver i’s “overall effort” across all tasks; and ξi ≡ ∑k∈K ξik

is solver i’s “overall output shock.” Since ξik follows Normal(0,σ2/K), the solver’s

overall output shock ξi follows Normal(0,σ2). (This is analogous to ξi in §3.3.1;

see Table 3.2 (bottom row)). Thus, the solver i’s output yi in (3.14) for a decom-

posable problem is identical to the solver i’s output yi in (3.1) for a nondecompos-

able problem. Therefore, in the case of a decomposable problem with substitutable

tasks, the solver’s equilibrium effort e∗, the solver’s equilibrium utility U∗, and the

organizer’s profit Π∗ are as stated in (3.4), (3.5), and (3.6), respectively.
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Team Submissions. We now examine the case where solvers make team submis-

sions for a decomposable problem with K substitutable tasks. As in §3.3.1, n (≥ 2)

is the team size, and the number of solvers N is divisible by n so that |N τ
t |= n for

all t ∈ T . We also assume that the number of tasks K is divisible by n so that team

member i performs each task k ∈Ki, where Ki is the set of tasks that team member

i performs, |Ki|=K/n for each team member i, and
⋃

i∈N τ
t

Ki =K . Similar to the

case of individual submissions, for each task k ∈ Ki, team member i ∈ N τ
t ’s per-

formance depends on her effort eτ
tik and output shock ξtik (Hu and Wang 2020), yet

team members can also share their ideas about how to tackle their tasks. Therefore,

the performance of team member i for task k also depends on a random variable ξ B
tik

generated by these interactions. Thus, team member i’s performance across her set

of tasks Ki can be calculated as follows:

yτ
ti = ∑

k∈Ki

(eτ
tik +ξ

B
tik +ξtik) = eτ

ti + ∑
k∈Ki

(ξ B
tik +ξtik),

where eτ
ti ≡ ∑k∈Ki eτ

tik is the total effort of team member i exerted for all tasks in Ki

that she performs. Thus, team t’s output yτ
t can be calculated as follows:

yτ
t = ∑

i∈N τ
t

yτ
ti = ∑

i∈N τ
t

eτ
ti + ∑

i∈N τ
t

∑
k∈Ki

(ξ B
tik +ξtik) = ∑

i∈N τ
t

eτ
ti +ξ

B
t +ξt , (3.15)

where ξt ≡ ∑i∈N τ
t ∑k∈Ki ξtik is team t’s “output shock” related to solution-

generation and evaluation processes and ξt follows Normal(0,σ2) (this is anal-

ogous to ξti in (3.7); see Table 3.2 (bottom row)); and ξ B
t ≡ ∑i∈N τ

t ∑k∈Ki ξ B
tik is the

“interaction shock” generated through team members’ interactions and ξ B
t follows

Normal(µB,σ
2
B).

14 (This is analogous to ξ B
ti in §3.3.1; see Table 3.2 (bottom row).)

As in §3.3.1, we assume that ξ B
t ’s and ξt’s are independent within each team t

and across teams. Let ξ τ
t = ξ B

t + ξt , which represents the team’s “overall output

shock.” Then, since ξ B
t follows Normal(µB,σ

2
B) and ξt follows Normal(0,σ2), ξ τ

t

follows Normal(µB,σ
2 +σ2

B), where g(s) and G(s) are ξti’s density function and

14Note that as ξt follows Normal(0,σ2) and ξt is the summation of n · K
n number of ξtik’s, we

assume that ξtik’s are independently and identically distributed with Normal(0,σ2/K) for ease of
illustration. Similarly, as ξ B

t follows Normal(µB,σ
2
B) and ξ B

t is the summation of n · K
n number of

ξ B
tik’s, we assume that ξ B

tik’s are independently and identically distributed with Normal(µB/K,σ2
B/K).
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Table 3.2: Each Individual Solver’s Output and Each Team’s Output.

Individual Submissions Team Submissions

Nondecomposable
Problems

yi = ei +ξi,
where ξi ∽Normal(0,σ2)

yτ
t = maxi∈N τ

t
yτ

ti =

maxi∈N τ
t

{
eτ

ti +ξ B
ti +ξti

}
,

where ξ B
ti ∽Normal(µB,σ

2
B)

and ξti ∽Normal(0,σ2)

Decomposable
Problems

yi = ei +ξi,
where ξi ∽Normal(0,σ2)

yτ
t = ∑i∈N τ

t
yτ

ti =

∑i∈N τ
t

eτ
ti +ξ B

t +ξt ,
where ξ B

t ∽Normal(µB,σ
2
B)

and ξt ∽Normal(0,σ2)

distribution function, respectively.15

As we summarize in Table 3.2, the definitions of the team’s overall output

shock ξ τ
t and the individual solver’s output shock ξi enable us to capture two first-

order effects of team collaboration identified in the innovation literature. First, the

variance in teams’ output shocks is larger than the variance in individual solvers’

output shocks (i.e., σ2 +σ2
B > σ2) because team members bring diverse ideas for

each task (Taylor and Greve 2006). Second, the mean of teams’ output shocks can

be larger than the mean of individual solvers’ output shocks (i.e., µB ≥ 0) because

teams can be better at identifying a promising solution approach for each task (Singh

and Fleming 2010).

As in §3.3.1, let e∗,τ be a team member’s (total) effort in a symmetric pure-

strategy Nash equilibrium, and let Pτ

N/n [e
τ
ti,e

∗,τ ] be team t’s probability of winning

when team member i ∈ N τ
t exerts eτ

ti given that other (n− 1) members of team t

and members of other teams exert e∗,τ . By using (3.15) and noting that the number

of teams is |T |= N/n, we derive Pτ

N/n [e
τ
ti,e

∗,τ ] as follows:

Pτ

N/n [e
τ
ti,e

∗,τ ] = P{yτ
t > yτ

k ,∀ k ∈ T \{t}}

= P{eτ
ti +(n−1)e∗,τ +ξ

τ
t > ne∗,τ +ξ

τ
k ,∀ k ∈ T \{t}}

=
∫

∞

−∞

G(s+ eτ
ti − e∗,τ)

N
n −1 g(s)ds. (3.16)

15For ease of illustration, we consider the case where ξ B
t and ξt are independent for each team t.

When ξ B
t and ξt are correlated for each team t, ξ τ

t follows Normal(µB,σ
2 +σ2

B + 2ρσσB), where
ρ is the correlation. We show in Appendix D.1 that our main results continue to hold under such
correlation.
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As in §3.3.1, members of the winning team share the award A equally, so team

member i chooses her effort eτ
ti by solving the following utility-maximization prob-

lem:

U∗,τ ≡ max
eτ

ti∈R+

(
A
n

Pτ

N/n [e
τ
ti,e

∗,τ ]− c(eτ
i )

b
)

. (3.17)

Evaluating the first-order condition of (3.17), we derive e∗,τ and U∗,τ in the follow-

ing lemma.

Lemma 3 Each team member’s equilibrium effort e∗,τ and utility U∗,τ satisfy:16

e∗,τ =

(
A ·Lτ

N/n

ncb

) 1
b−1

, where Lτ

N/n ≡
(

N
n
−1
)∫

∞

−∞

G(s)
N
n −2g(s)2ds, (3.18)

U∗,τ =

(
A
n

)( n
N

)
− c(e∗,τ)b =

A
N
− c

(
ALτ

N/n

ncb

) b
b−1

. (3.19)

We next analyze the organizer’s profit under team submissions. As in §3.3.1, the

organizer is interested in the quality of best submission. Let mτ

N/n ≡ E [maxt∈T ξ τ
t ].

For all i∈Nt and t ∈T , eτ
ti = e∗,τ as in (3.18), so by applying (3.15), the organizer’s

expected profit in equilibrium

Π
∗,τ = E

[
max
t∈T

{yτ
t }−A

]
= ne∗,τ +E

[
max
t∈T

{ξ
τ
t }
]
−A

= n

(
ALτ

N/n

ncb

) 1
b−1

+mτ

N/n −A. (3.20)

Analogous to the terms defined in (3.13), we refer to the first term ne∗,τ as the

team-effort contribution and the second term mτ

N/n as the team-shock contribution.

3.4 Impact of Team Collaboration
By using the results established in Lemmas 1, 2, and 3 and the organizer’s profits in

(3.6),

(3.13), and (3.20), we now analyze the impact of team collaboration on the

organizer’s profit and the solver’s utility when the organizer seeks solutions to a

16In Appendix D.3, we provide sufficient conditions for e∗,τ in (3.18) to be the unique solution of
(3.17), and we assume that at least one of these sufficient conditions holds (e.g., Mihm and Schlapp
2019, Ales et al. 2020).
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nondecomposable problem and a decomposable problem in §3.4.1 and §3.4.2, re-

spectively.

3.4.1 Nondecomposable Problem

Analysis of Organizer’s Profit. We compare the organizer’s profit Π∗ given in

(3.6) for the case when solvers make individual submissions and the organizer’s

profit Π∗,τ given in (3.13) for the case when solvers make team submissions. This

comparison yields:

Π
∗,τ −Π

∗ = (e∗,τ − e∗)+(mτ
N −mN) . (3.21)

In (3.21), the first term is the difference between the team-effort contribution and

the solver-effort contribution, and the second term in (3.21) is the difference be-

tween the team-shock contribution and the solver-shock contribution. Recall from

§3.3.1 that the individual solver’s output shock follows Normal(0,σ2) and the team

member’s overall output shock follows Normal(µB,σ
2 +σ2

B). In preparation, we

first analyze the impact of team members’ interactions (measured by σB and µB) on

(e∗,τ − e∗) and
(
mτ

N −mN
)
, and obtain the following proposition. (All proofs are

presented in Appendix C.)

Proposition 1 (Nondecomposable problem) (a) e∗,τ < e∗, and (e∗,τ − e∗) is de-

creasing in σB and constant in µB. (b) mτ
N > mN , and (mτ

N −mN) is increasing

in σB and µB.

Proposition 1(a) first shows that when the organizer elicits solutions to a nonde-

composable problem, the team-effort contribution e∗,τ is always smaller than the

solver-effort contribution e∗. The intuition is as follows. When solvers collaborate

as teams to solve a nondecomposable problem, as members of each team work in

parallel, it can be observed from (3.7) that each team’s submission can be generated

by one of its members. Due to this free-riding effect, a team member has less incen-

tive to exert effort than an individual solver who develops her own solution. Also,

when solvers collaborate as teams, members of the winning team share the award,

which further reduces the solver’s incentive to exert effort. Thus, when solvers
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collaborate as teams, the effort contribution decreases (i.e., e∗,τ < e∗).

Proposition 1(a) further shows that the difference of effort contributions (i.e.,

e∗,τ −e∗) decreases with the uncertainty (i.e., σB) generated through team members’

interactions. This is because with this additional uncertainty, the quality of each

team’s solution depends less on team members’ efforts, and hence each team mem-

ber’s incentive to exert effort decreases. Finally, Proposition 1(a) shows that the

difference of effort contributions does not change with the performance enhance-

ment (i.e., µB) generated through team members’ interactions. This is because this

performance enhancement does not affect the relative ranking of teams’ submis-

sions, and hence does not have any impact on the team member’s incentive to exert

effort.

Proposition 1(b) shows that when the organizer elicits solutions to a nondecom-

posable problem, the team-shock contribution mτ
N is larger than the solver-shock

contribution mN , and the difference of shock contributions (i.e., mτ
N −mN) increases

with both the additional uncertainty (i.e., σB) and the performance enhancement

(i.e., µB) generated through team members’ interactions. The intuition is as fol-

lows. When the organizer seeks solutions to a nondecomposable problem, even if

solvers collaborate as teams, each solver develops one solution. Thus, under both

individual and team submissions, the best solution is selected among N solutions.

Yet, the additional uncertainty (i.e., σB) and the performance enhancement (i.e., µB)

generated through team members’ interactions both increase the team-shock con-

tribution mτ
N . Therefore, when solvers collaborate as teams, the shock contribution

increases, and this benefit (i.e., mτ
N −mN) increases with σB and µB.

In summary, Proposition 1 reveals the following tradeoff for a nondecompos-

able problem: team collaboration results in a lower effort contribution but results in

a higher shock contribution. To examine which effect dominates the other, we now

use (3.21) and characterize the conditions under which team collaboration results in

a higher organizer’s profit in the following theorem.

Theorem 1 (Nondecomposable problem) (a) Suppose µB = 0. Then, for any σ ,

there exist two thresholds σB and σB such that Π∗,τ > Π∗ if σB > σB, and Π∗,τ < Π∗
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0

>

(a) Impact of σ and σB when µB = 0.

0

>

(b) Impact of σ and µB when σB → 0.

Figure 3.1: For a nondecomposable problem, when is the organizer’s profit Π∗,τ under team
submissions larger than the organizer profit Π∗ under individual submissions?
Setting: ξi ∼ Normal(0,σ2), ξti ∼ Normal(0,σ2), ξ B

ti ∼ Normal(µB,σ
2
B), A =

1, b = 2, c = 1, n = 2, and N = 10.

if σB < σB.

(b) Suppose σB → 0. Then, there exist thresholds σ and µB such that Π∗,τ ≥ Π∗ if

σ ≥ σ or µB ≥ µB, and Π∗,τ < Π∗ if σ < σ and µB < µB.

When the organizer seeks solutions to a nondecomposable problem, one might ex-

pect that the organizer cannot benefit from team submissions due to the decrease in

solvers’ incentive to exert effort. Yet, Theorem 1 shows that the organizer can bene-

fit from team submissions under some conditions. Specifically, Theorem 1(a) shows

that when there is no performance enhancement generated through team members’

interactions (i.e., µB = 0), the organizer can benefit from team submissions if the

uncertainty generated through team members’ interactions is sufficiently large (i.e.,

σB > σB). The intuition is as follows. As Proposition 1 shows, when solvers collab-

orate as teams, although the effort contribution decreases (i.e., e∗,τ < e∗), the shock

contribution increases (i.e., mτ
N > mN). Proposition 1 also shows that this positive

effect increases as the uncertainty (i.e., σB) generated through team members’ in-

teractions increases, and hence can dominate the decrease in the effort contribution.

Therefore, as Figure 3.1(a) illustrates, the organizer can benefit from team submis-

sions through the increase in the shock contribution when σB is above a threshold.

However, when σB is below a threshold, the organizer cannot benefit from team

submissions.

Theorem 1(b) shows that when there is no additional uncertainty generated

through team members’ interactions (i.e., σB → 0), the organizer can benefit from
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team submissions if the performance enhancement generated through team mem-

bers’ interactions or the novelty of solutions sought is sufficiently large (i.e., σ ≥ σ

or µB ≥ µB). The intuition is as follows. As Proposition 1 shows, the increase

in the shock contribution increases as the performance enhancement (i.e., µB) in-

creases. Thus, when µB is above a threshold, the increase in the shock contribu-

tion dominates the decrease in the effort contribution, and hence the organizer’s

profit is larger under team submissions. Furthermore, as the solution novelty mea-

sured by σ increases, the decrease in the effort contribution becomes insignificant

because each solver’s incentive to exert effort decreases (e.g., Terwiesch and Xu

2008), whereas the increase in the shock contribution increases. Thus, when the

solution novelty measured by σ is above a threshold, the organizer can also benefit

from team submissions through the increase in the shock contribution. Therefore,

as Figure 3.1(b) illustrates, the organizer can benefit from team submissions when

σ ≥ σ or µB ≥ µB. Otherwise, the organizer’s profit decreases when solvers collab-

orate as teams. Overall, as we summarize in Table 3.3 (top row), Theorem 1 shows

that for a large σ , the organizer can benefit from team submissions; and for a small

σ , the organizer can benefit from team submissions only when σB > σB or µB > µB.

Theorem 1 has important managerial implications when combined with prior

empirical results that the additional uncertainty and performance enhancement gen-

erated through team members’ interactions increases with the diversity of teams

(e.g., Taylor and Greve 2006, Singh and Fleming 2010). Specifically, consistent

with the innovation literature (e.g., Sommer et al. 2020, Chan et al. 2021), we show

that it may be better for the organizer to discourage team submissions when elic-

iting low-novelty solutions (small σ ) to a nondecomposable problem such as logo

design challenges at 99designs unless teams are highly diverse. Yet, in contrast to

the results in the literature, we show that when the nondecomposable problem re-

quires high-novelty solutions (large σ ), as in design challenges at InnoCentive for

example, it may be beneficial for the organizer to encourage team submissions to

obtain more diverse solutions. These results may explain why team collaboration is

encouraged in most InnoCentive challenges, but discouraged at 99designs.
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Table 3.3: Impact of team submissions on the organizer’s profit.

Small σ

(Low-novelty solutions)
Large σ

(High-novelty solutions)

Nondecomposable
problem

Team submissions are detri-
mental unless σB or µB is
very large (e.g., logo design
challenges at 99designs)

Team submissions are bene-
ficial (e.g., design challenges
at InnoCentive).

Decomposable
problem

Team submissions are bene-
ficial when (a) σB or µB is
large or (b) σB is small and
b is large (e.g., development
challenges at Topcoder).

Team submissions are bene-
ficial when σB or µB is large
(e.g., data science challenges
at Topcoder).

In addition to these managerial implications, Theorem 1 has important impli-

cations for the contest theory. The prior literature focuses on the case where the

organizer maximizes the total or average output of solvers, and shows that as the

equilibrium effort is smaller under team submissions, the organizer cannot benefit

from team submissions unless there exist some behavioral effects (e.g., guilt aver-

sion) that increase the equilibrium effort (cf. Chen and Lim 2013). Different from

this literature, we consider an innovation contest where the organizer maximizes the

best output, so the organizer can benefit from team collaboration via the increase in

the shock contribution. This positive effect of team collaboration disappears when

the organizer maximizes the total or average output because, in that case, the orga-

nizer’s profit depends only on solvers’ efforts. Therefore, in an innovation contest,

the organizer can benefit from team collaboration more than what the contest theory

suggests for other types of contests (e.g., sales contests). Our prediction also seems

to be consistent with the empirical finding of Girotra et al. (2010) that analyzing the

average output may underestimate the benefits of teams.

Analysis of Solver’s Utility. We now examine when solvers benefit from collab-

oration while generating solutions to a nondecomposable problem. To do that, we

compare an individual solver’s utility U∗ given in (3.5) and a team member’s utility

U∗,τ given in (3.12) as stated in Lemmas 1 and 2, respectively. This comparison
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yields:

U∗,τ −U∗ = c(e∗)b − c(e∗,τ)b . (3.22)

As seen from (3.22), the difference between U∗,τ and U∗ boils down to the dif-

ference between the solver’s cost of effort and the team member’s cost of effort.

Thus, from Proposition 1(a), we obtain the following corollary, whose intuition is

the same as the intuition of Proposition 1(a).

Corollary 1 Team member’s utility U∗,τ is always larger than individual solver’s

utility U∗.

Corollary 1 suggests that when the organizer seeks solutions to a nondecompos-

able problem, the organizer can collect team submissions whenever the organizer

encourages team submissions.

3.4.2 Decomposable Problem

Analysis of Organizer’s Profit. We compare the organizer’s profit Π∗ given in

(3.6) for the case when solvers make individual submissions and the organizer’s

profit Π∗,τ given in (3.20) for the case when solvers make team submissions. This

comparison yields:

Π
∗,τ −Π

∗ = (ne∗,τ − e∗)+
(

mτ

N/n −mN

)
. (3.23)

In (3.23), the first term is the difference between the team-effort contribution (based

on n members of the winning team) and the solver-effort contribution, and the sec-

ond term is the difference between the team-shock contribution and the solver-shock

contribution. Recall from §3.3.2 that the individual solver’s output shock follows

Normal(0,σ2) and the team’s overall output shock follows Normal(µB,σ
2 +σ2

B).

In preparation, we first analyze the impact of teams’ interactions (measured by σB

and µB) on (e∗,τ − e∗) and
(
mτ

N −mN
)
, and obtain the following proposition.

Proposition 2 (Decomposable problem) (a) There exist thresholds σ ′
B and b such

that when b > b, ne∗,τ > e∗ if and only if σB < σ ′
B. Also, (ne∗,τ − e∗) is decreasing

in σB and constant in µB.
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(b) There exist σ ′′
B and µ ′

B such that mτ
N >mN if σB >σ ′′

B or µB > µ ′
B, and mτ

N/n ≤mN

if σB ≤ σ ′′
B and µB ≤ µ ′

B. Also, (mτ

N/n −mN) is increasing in σB and µB.

Proposition 2(a) shows that when increasing the effort is sufficiently difficult (i.e.,

b > b), the team-effort contribution is larger than the solver-effort contribution (i.e.,

ne∗,τ > e∗) if and only if the additional uncertainty (i.e., σB) generated through

team members’ interactions is sufficiently small. The intuition is as follows. When

solvers collaborate as teams, although sharing the award and free-riding effect de-

crease their incentive to exert effort, as n team members exert effort to develop

a team’s solution, the team-effort contribution can be larger than the solver-effort

contribution. Yet, this is possible under two conditions. First, increasing the effort

should be sufficiently difficult such that the benefit of n team members’ contribu-

tion can outweigh each team member’s smaller incentive to exert effort. Second,

the additional uncertainty generated through team members’ interactions should be

sufficiently small because this effect reduces each team member’s incentive to exert

effort. Proposition 2(a) further shows that the difference of effort contributions (i.e.,

ne∗,τ − e∗) decreases with σB, yet it does not change with µB. The intuition is same

as the intuition of Proposition 1(a).

Proposition 2(b) shows that the team-shock contribution mτ
N is larger than the

solver-shock contribution mN when the additional uncertainty (i.e., σB) or the per-

formance enhancement (i.e., µB) generated through team members’ interactions is

sufficiently large, and the difference of shock contributions (i.e., mτ

N/n −mN) in-

creases with both σB and µB. The intuition is similar to the intuition of Proposition

1(b), but in this case, when solvers collaborate as teams of size n, the number of

solutions generated decreases from N to N/n. Thus, the benefit of team members’

interactions should be sufficiently large to outweigh the negative effect of the de-

crease in the number of solutions, and hence the shock contribution increases when

solvers collaborate as teams.

In summary, Proposition 2 reveals the following tradeoff for a decomposable

problem: Although team members’ interactions improve the shock contribution,

they reduce the effort contribution. We now use (3.23) to characterize when Π∗,τ >
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0

>

(a) Impact of σ and σB when µB = 0.

0

>

(b) Impact of σ and µB when σB → 0.

Figure 3.2: For a decomposable problem, when is the organizer’s profit Π∗,τ under team
submissions larger than the organizer profit Π∗ under individual submissions?
Setting: ξi ∼Normal(0,σ2), ξt ∼Normal(0,σ2), ξ B

t ∼Normal(µB,σ
2
B), A= 1,

b = 2, c = 1, n = 2, and N = 10.

Π∗ in the following theorem.

Theorem 2 (Decomposable problem) b is as defined in Proposition 2.

(a) Suppose µB = 0. Then, for any σ , there exists σB such that Π∗,τ >Π∗ if σB >σB.

Furthermore, there exist thresholds σB, σ , and σ such that when σB < σB, σ < σ ,

and b > b, Π∗,τ > Π∗; and when σB < σB and σ > σ , Π∗,τ < Π∗.

(b) Suppose σB → 0. Then, there exist thresholds µB, σ , and σ such that Π∗,τ > Π∗

if µB > µB or σ < σ and b > b; and Π∗,τ < Π∗ if µB < µB and σ > σ .

Although one might expect that an organizer who seeks solutions to a decompos-

able problem always benefits from team submissions because team members can

share the tasks, Theorem 2 shows that this expectation holds only under certain con-

ditions. Specifically, Theorem 2(a) first shows that when there is no performance

enhancement generated through team members’ interactions (i.e., µB = 0), the orga-

nizer can benefit from team submissions if the uncertainty generated through team

members’ interactions is sufficiently large (i.e., σB > σB). The intuition is as fol-

lows. As Proposition 2 shows, when solvers collaborate as teams and σB is large,

although the effort contribution decreases (i.e., ne∗,τ < e∗), the shock contribution

increases (i.e., mτ

N/n > mN). Proposition 2 also shows that as σB increases, this pos-

itive effect on shock contribution increases, and hence outweighs the decrease in the

effort contribution. Therefore, as Figure 3.2(a) illustrates, the organizer can bene-

fit from team submissions through the increase in the shock contribution when the
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additional uncertainty generated through team members’ interactions is sufficiently

large.

Theorem 2(a) further shows that when the overall uncertainty is sufficiently

small (i.e., σB < σB and σ < σ ) and increasing the effort is sufficiently difficult

(i.e., b > b), the organizer can benefit from team submissions. The intuition is as

follows. As Proposition 2 shows, when solvers collaborate as teams under small

σB, although the shock contribution decreases (i.e., mτ

N/n < mN), the effort con-

tribution increases (i.e., ne∗,τ > e∗) under large b. Also, as the solution novelty

measured by σ decreases, the increase in the effort contribution increases because

each solver’s incentive to exert effort increases, yet the decrease in the shock con-

tribution decreases (e.g., Mihm and Schlapp 2019, Hu and Wang 2020). Therefore,

when σB < σB, σ < σ , and b > b, the increase in the effort contribution dominates

the decrease in the shock contribution, and hence as Figure 3.2(a) illustrates, the

organizer can benefit from team submissions through the increase in the effort con-

tribution. On the other hand, when σB < σB and σ > σ , the decrease in the shock

contribution outweighs the (possible) increase in the effort contribution, and hence

Π∗,τ < Π∗.

Theorem 2(b) shows that when there is no additional uncertainty generated

through team members’ interactions (i.e., σB → 0), the organizer can benefit from

team submissions if the performance enhancement generated through team mem-

bers’ interactions is sufficiently large (i.e., µB > µB), or the solution novelty is suf-

ficiently small (i.e., σ < σ ) and increasing the effort is sufficiently difficult (i.e.,

b > b). The intuition is as follows. As Proposition 2 shows, the team-shock contri-

bution increases with µB. Thus, when µB is above a threshold, the increase in the

shock contribution dominates the (possible) decrease in the effort contribution, and

hence the organizer can benefit from team submissions through the increase in the

shock contribution. Furthermore, as Proposition 2 shows, the difference of effort

contributions is positive when b is sufficiently large; and this difference increases

as the solution novelty measured by σ decreases, and hence dominates the decrease

in the shock contributions. Thus, when the solution novelty measured by σ is be-
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low a threshold and b is above a threshold, the organizer can benefit from team

submissions through the increase in the effort contribution. Therefore, as Figure

3.1(b) illustrates, the organizer can benefit from team submissions when µB > µB,

or σ < σ and b > b. On the other hand, when µB < µB and σ > σ , the organizer’s

profit decreases when solvers collaborate as teams. Overall, as we summarize in

Table 3.3 (bottom row), Theorem 2 shows that for any σ , the organizer can benefit

from team submissions when σB > σB or µB > µB. Furthermore, for a small σ , the

organizer can also benefit from team submissions when σB is sufficiently small and

b is sufficiently large.

Theorem 2 has important managerial implications. Specifically, consistent

with the innovation literature (e.g., Sommer et al. 2020, Chan et al. 2021), we show

that the organizer can benefit from team submissions when seeking solutions to a

decomposable problem such as software challenges at Topcoder, but only under

certain conditions. Specifically, when the organizer elicits high-novelty solutions

(e.g., data science challenges at Topcoder) or low-novelty solutions (e.g., develop-

ment challenges at Topcoder), the organizer can benefit from team submissions by

encouraging (forming, if possible) more diverse teams. Moreover, when the orga-

nizer elicits low-novelty solutions to a decomposable problem and increasing the

effort is difficult for solvers, the organizer can also benefit from team submissions

by encouraging (forming, if possible) less diverse teams.

Although these results are in line with the literature, we find a contrasting re-

sult to the literature that team collaboration can also be harmful for the organizer

who seeks solutions to a decomposable problem. For example, when eliciting high-

novelty solutions from less diverse teams or eliciting low-novelty solutions from

solvers who can easily increase their efforts, the organizer may not benefit from

team submissions. Given these findings, it is understandable why Topcoder dis-

courages team submissions, yet our findings above suggests that Topcoder may also

find an opportunity to benefit from team submissions in some of its challenges.

Theorem 2 replicates the implications of Theorem 1, and also has another im-

portant implication for the contest theory. Specifically, since the organizer maxi-
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mizes the best output in an innovation contest, even when e∗,τ < e∗, the team-effort

contribution ne∗,τ can be larger than the solver-effort contribution e∗. Thus, the

organizer can benefit from team submissions through the increase in the effort con-

tribution despite team members’ smaller incentive to exert effort. This result is in

contrast to other contest settings (e.g., sales contests), where team collaboration is

always harmful when it leads to lower incentives to exert effort.

Analysis of Solver’s Utility. We now examine when solvers benefit from collab-

oration while developing solutions to a decomposable problem. To do that, we

compare an individual solver’s utility U∗ given in (3.5) and a team member’s utility

U∗,τ given in (3.19) as stated in Lemmas 1 and 3, respectively. This comparison

yields:

U∗,τ −U∗ = c
(

ALN

cb

) b
b−1

− c

(
ALτ

N/n

ncb

) b
b−1

. (3.24)

As seen from (3.24), the difference between U∗,τ and U∗ boils down to the differ-

ence between the solver’s cost of effort and the team member’s cost of effort, and

by analyzing this difference, we obtain the following proposition.

Proposition 3 Team member’s utility U∗,τ is always larger than individual solver’s

utility U∗.

Proposition 3 shows that when the organizer seeks solutions to a decomposable

problem, solvers benefit from collaborating as teams. The intuition is as follows.

When solvers collaborate as teams, on one hand, the number of competing solu-

tions decreases from N to N/n, which motivates team members to exert a larger

effort, on the other hand, the solver’s expected award decreases from A to A/n. As

the latter negative effect outweighs the former positive one, the solver’s equilibrium

effort decreases with team collaboration, and hence U∗,τ >U∗. Therefore, Proposi-

tion 3 suggests that the organizer can benefit from team submissions whenever the

organizer encourages it.

To conclude, Corollary 1 and Proposition 3 reveal that solvers can benefit from

team collaboration. However, Theorems 1 and 2 suggest that whether the organizer

should encourage team submissions would depend on: (1) whether the problem is
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nondecomposable or decomposable, (2) the novelty of solutions sought (i.e., σ ),

and (3) team members’ interactions (i.e., σB and µB).

3.5 Additional Analysis

This section is organized as follows. In §3.5.1, we extend our main results to the

case when the organizer sets optimal awards under individual and team submis-

sions. In §3.5.2, we discuss the impact of the team size on the outcomes of team

collaboration. In §3.5.3, we extend our results in §3.4.2 to the case when team

collaboration may result in synergistic gains or coordination losses.

3.5.1 Optimal Awards under Individual Submissions and Team

Submissions

In this section, we consider the case when the organizer sets the optimal award

under both individual submissions and team submissions. In preparation, observe

from (3.6), (3.13), and (3.20) that the organizer’s profit under different settings can

be expressed in the following generic form:

Π(F,M) = A
1

b−1 F +M−A (3.25)

First, observe from (3.6) that for the case of individual submissions, F =
(

LN
cb

) 1
b−1

and M = mN . Second, observe from (3.13) that for the case of team submissions

for a nondecomposable problem, F =
(

Lτ
N

ncb

) 1
b−1 and M = mτ

N . Finally, observe

from (3.20) that for the case of team submissions for a decomposable problem,

F = n
(

Lτ

N/n
ncb

) 1
b−1

and M = mτ

N/n. In all cases, F and M are independent of A.

Therefore, the organizer maximizes Π(F,M) over the award A to decide on the

optimal award A∗ under both individual submissions and team submissions. (We

assume b> 2 such that Π(F,M) is concave in A, and hence A∗ is finite.) We evaluate

the first derivative of Π(F,M) in (3.25) with respect to A, and obtain A∗ for any

generic form of F and M as follows:

A∗ =

(
F

b−1

) b−1
b−2

. (3.26)
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Under the optimal award A∗ in (3.26), the organizer’s profit is

Π
∗(F,M) = (A∗)

1
b−1 F +M−A∗ =

(
F

b−1

) 1
b−2

F +M−
(

F
b−1

) b−1
b−2

= (b−2)
(

F
b−1

) b−1
b−2

+M. (3.27)

Using Π∗(F,M) in (3.27), we make the following observations about the impact

of team collaboration under A∗. First, when the organizer sets the optimal awards

under individual submissions and team submissions, the organizer’s benefit from

the shock contribution M in (3.25) does not change. More interestingly, the impact

of team collaboration on both the effort contribution under any A (i.e., A
1

b−1 F in

(3.25)) and the net effort contribution under A∗ (i.e., (b− 2)
( F

b−1

) b−1
b−2 in (3.27))

depends only on the impact of team collaboration on F . Therefore, Theorems 1 and

2 extend to the case where the organizer sets A∗ under both individual submissions

and team submissions. Also, notice from (3.26) that it is optimal for the organizer

to set a larger award under the case where the effort contribution under any A is

larger. This means that the organizer sets a larger A∗ for solvers whose incentive

to exert effort is already larger. Finally, even when the organizer sets the optimal

award A∗, each solver compares her utility when making an individual submission

and her utility when making a team submission under the same A∗. Thus, Corollary

1 and Proposition 3 for any A directly extend to the case when the organizer sets A∗.

3.5.2 Impact of Team Size

In this section, we analyze the impact of team size n on when the organizer and

solvers benefit from team collaboration. Since the equilibrium outcomes under the

case of individual submissions do not depend on team size n, we analyze the impact

of team size n on the equilibrium outcomes under the case of team submissions.

Nondecomposable Problem. In the following proposition, we analyze the impact

of team size n in the case of a nondecomposable problem.

Proposition 4 (a) The team-effort contribution e∗,τ in (3.13) decreases with team

size n. (b) The team-shock contribution mτ
N in (3.13) does not change with n. (c)
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0

>

(a) Impact of σ and σB when µB = 0.

0

>

(b) Impact of σ and µB when σB → 0.

Figure 3.3: For a nondecomposable problem, when is the organizer’s profit Π∗,τ under team
submissions larger than the organizer profit Π∗ under individual submissions?
The setting is the same as Figure 3.1. Arrows depict regions where Π∗,τ > Π∗.

The team member’s utility U∗,τ in (3.12) increases with n.

Proposition 4(a) shows that the team-effort contribution e∗,τ decreases with team

size n because the award A for the winning team is divided among more team mem-

bers. Proposition 4(b) shows that the team-shock contribution mτ
N does not change

with n. The reason is that when the organizer has a nondecomposable problem,

team members work in parallel to develop solutions, and hence the total number of

solutions generated in the contest depends only on the number of solvers N. Thus,

Propositions 4(a) and 4(b) along with Theorem 1 show that as n increases, the orga-

nizer benefits less from team submissions, see Figures 3.3(a)-(b). Yet, Proposition

4(c) shows that as n increases, solvers benefit more from team collaboration as their

incentive to exert effort decreases. Thus, Proposition 4 suggests that it can be bet-

ter for the organizer to limit the team size when encouraging team submissions, if

possible.

Decomposable Problem. In the following proposition, we analyze the impact of

team size n on the team-effort contribution ne∗,τ and the team-shock contribution

mτ

N/n in (3.20), and the team member’s utility U∗,τ in (3.19).

Proposition 5 (a) The team-effort contribution ne∗,τ in (3.20) increases with team

size n when b is sufficiently large. (b) The team-shock contribution mτ

N/n in (3.20)

decreases with n. (c) The team member’s utility U∗,τ in (3.19) increases with n.

Proposition 5(a) shows that ne∗,τ increases with team size n when increasing the
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0

>

(a) Impact of σ and σB when µB = 0.

0

>

(b) Impact of σ and σB when µB = 0.

0

>

(c) Impact of σ and µB when σB → 0.

Figure 3.4: For a decomposable problem, when is the organizer’s profit Π∗,τ under team
submissions larger than the organizer profit Π∗ under individual submissions?
The setting is the same as Figure 3.2. Arrows depict regions where Π∗,τ > Π∗.

effort is sufficiently difficult (i.e., b is sufficiently large). The intuition is follows.

As n increases, although more team members share the award A, which decreases

their incentive to exert effort, more team members contribute to the team’s solution.

Because the former negative effect decreases with b, when b is large, the latter

positive effect dominates the former negative effect, and hence ne∗,τ increases with

n. Proposition 5(b) shows that mτ

N/n decreases with n because the number of team

submissions N/n decreases with n. As Figures 3.4(a)-(c) illustrate, Proposition

5 along with Theorem 2 show that as n increases, unless b is large, the organizer

benefits less from team submissions. Yet, Proposition 5(c) shows that as n increases,

solvers benefit more from making team submissions because their incentive to exert

effort decreases with n. Therefore, Proposition 5 suggests that it can be better for

the organizer to limit the team size when encouraging team submissions, if possible.

3.5.3 Synergistic Gains and Coordination Losses Arising from

Team Collaboration

In this section, we extend our results in §3.4.2 to the case when team collaboration

may result in synergistic gains or coordination losses. First, when solvers make in-

dividual submissions, the solver’s equilibrium effort e∗ and utility U∗, and the orga-

nizer’s profit Π∗ are as stated in (3.4), (3.5), and (3.6), respectively. We next discuss

the case of team submissions. In this case, team member i in each team t exerts effort

eτ
ti to contribute to team t’s output yτ

t as in §3.3.2. To capture both synergistic gains

and coordination losses within a team, we use the constant elasticity of substitution
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(CES) function (cf. Arrow et al. 1961, Roels 2014). For analytical tractability, we

assume a single output shock ξt (follows Normal(0,σ2) as in §3.3.2) related to the

problem and a single interaction shock ξ B
t (follows Normal(µB,σ

2
B) as in §3.3.2)

generated through team members’ interactions. Recall from §3.3.2 that the team’s

overall output shock ξ τ
t = ξ B

t +ξt , where ξ τ
t follows Normal(µB,σ

2+σ2
B) and g(s)

and G(s) are ξ τ
t ’s density function and distribution function, respectively. Then,

team t’s output can be modeled as follows:

yτ
t =

(
∑

i∈N τ
t

(eτ
ti)

γ

) 1
γ

+ξt +ξ
B
t =

(
∑

i∈N τ
t

(eτ
ti)

γ

) 1
γ

+ξ
τ
t , (3.28)

where γ = 1 represents the case where team members’ efforts are perfectly substi-

tutable as in (3.15) (Amaldoss and Rapoport 2005). As γ increases from 1, it cap-

tures coordination losses (i.e., loss in efficiency; Roels 2014) within a team because(
∑i∈N τ

t
(eτ

ti)
γ
)1/γ

< ∑i∈N τ
t

eτ
ti. However, as γ (> 0) decreases from 1, it captures

synergistic gains within a team because
(

∑i∈N τ
t
(eτ

ti)
γ
)1/γ

> ∑i∈N τ
t

eτ
ti.

By using (3.28), we derive team t’s probability of winning Pτ

N/n [e
τ
ti,e

∗,τ ] for

any γ as follows:

Pτ

N/n [e
τ
ti,e

∗,τ ] =
∫

∞

−∞

G
(

s+((eτ
ti)

γ +(n−1)(e∗,τ)γ)
1
γ −n

1
γ e∗,τ

)N
n −1

g(s)ds. (3.29)

The first derivative of (3.29) with respect to eτ
ti evaluated at eτ

ti = e∗,τ yields:

∂Pτ

N/n [e
τ
ti,e

∗,τ ]

∂eτ
ti

∣∣∣∣
eτ

ti=e∗,τ
= n

1
γ
−1
(

N
n
−1
)∫

∞

−∞

G(s)
N
n −2g(s)2ds= n

1
γ
−1Lτ

N/n, (3.30)

where Lτ

N/n is as defined in (3.18). We characterize the equilibrium in the following

lemma.

Lemma 4 Each team member’s equilibrium effort e∗,τ and utility U∗,τ satisfy:

e∗,τ =
(An

1
γ
−2Lτ

N/n

cb

) 1
b−1

and (3.31)

U∗,τ =
A
N
− c
(An

1
γ
−2Lτ

N/n

cb

) b
b−1

. (3.32)

Lemma 4 extends Lemma 3 to any value of γ , and shows that as γ increases, e∗,τ

decreases and U∗,τ increases. In this case, the organizer’s expected profit in equi-
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librium is

Π
∗,τ = n

1
γ e∗,τ +E

[
max
t∈T

{ξ
τ
t }
]
−A = n

1
γ

(An
1
γ
−2Lτ

N/n

cb

) 1
b−1

+mτ

N/n −A. (3.33)

Notice that the team-effort contribution n
1
γ e∗,τ decreases with γ . By comparing Π∗

given in (3.6) under individual submissions and Π∗,τ given in (3.33) under team

submissions, we extend Theorem 2 in the following proposition.

Proposition 6 (a) Suppose µB = 0. Then, for any σ , there exists σB such that

Π∗,τ > Π∗ if σB > σB. Furthermore, there exist thresholds σB, σ , and σ such that

when σB < σB, σ < σ , and b > b, Π∗,τ > Π∗; and when σB < σB and σ > σ ,

Π∗,τ < Π∗.

(b) Suppose σB → 0. Then, there exist thresholds µB, σ , and σ such that Π∗,τ > Π∗

if µB > µB or σ < σ and b > b; and Π∗,τ < Π∗ if µB < µB and σ > σ .

(c) As γ decreases, Π∗,τ −Π∗ increases.

Propositions 6(a) and 6(b) extend Theorems 2(a) and 2(b) to the case when syner-

gistic gains or coordination losses can arise from team collaboration. Furthermore,

Proposition 6(c) shows that as γ decreases, team members increase their efforts due

to synergistic gains, so the organizer benefits more from team submissions. This

result is also consistent with the literature because when γ ≥ 1, 1/γ can be inter-

preted as the “degree of decomposability” of the problem, and Chan et al. (2021)

suggest that decomposability of an invention (i.e., decrease in γ) favors teams over

individuals.

We next analyze when solvers benefit from team submissions. The following

proposition compares an individual solver’s utility U∗ given in (3.5) and a team

member’s utility U∗,τ given in (3.32).

Proposition 7 There exists γ such that U∗,τ >U∗ if and only if γ > γ .

Proposition 7 extends Proposition 3, and shows that the team member’s utility is

smaller than the individual solver’s utility when γ is below a threshold. This is

because as γ decreases, synergistic gains create incentive for team members to

exert more effort, leading to an increase in their cost of effort. This result may
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explain why solvers make individual submissions in some InnoCentive challenges

even when team submissions are encouraged.

3.6 Discussion and Conclusion

In recent years, crowdsourcing platforms (e.g., InnoCentive, Topcoder, and 99de-

signs) have enjoyed significant growth because innovation contests have emerged as

a viable tool to outsource innovation. In an innovation contest, solvers can make in-

dividual submissions, or if the organizer encourages team submissions (as in about

70% of InnoCentive challenges), they can make team submissions. In both cases,

the organizer’s profit depends on the quality of the best submission, and the inno-

vation literature (e.g., Girotra et al. 2010) show that the quality of the best solution

depends on the number of solutions generated, the average quality of solutions, and

the variance in the quality of solutions. Yet, it is unclear how team collaboration

affects all these aspects in an innovation contest because the prior studies in the

innovation literature on collaboration (e.g., Kavadias and Sommer 2009, Sommer

et al. 2020, Chan et al. 2021) neither consider the competition among solvers nor

do they consider the presence of an organizer. Motivated from this gap between

the theory and practice and different policies adopted by crowdsourcing platforms,

we identify conditions under which the organizer and solvers can benefit from team

collaboration.

Inspired by the literature on coproduction (e.g., Amaldoss et al. 2000, Roels

2014) and the innovation literature (e.g., Taylor and Greve 2006, Singh and Flem-

ing 2010), we incorporate a team’s collective output into the standard modeling

framework in the innovation-contest literature (e.g., Mihm and Schlapp 2019, Hu

and Wang 2020), and generate the following insights. First, based on established

results in the innovation literature, one might expect that the organizer should dis-

courage team submissions when seeking solutions to a nondecomposable problem

(e.g., Chan et al. 2021). Indeed, we show that this is the optimal strategy when the

organizer seeks low-novelty solutions to a nondecomposable problem (e.g., logo de-

sign challenges at 99designs) and team diversity is sufficiently low, because solvers’
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incentive to exert effort decreases when they collaborate as teams. However, we es-

tablish a new result that cannot be derived from the ones in the prior literature:

When the organizer seeks high-novelty solutions to a nondecomposable problem

(e.g., design challenges at InnoCentive), the organizer can benefit from team sub-

missions due to the additional uncertainty and the performance enhancement gen-

erated through team interactions (e.g., Taylor and Greve 2006, Singh and Fleming

2010). This result may explain why team submissions are encouraged in most In-

noCentive challenges, despite possible coordination losses in solvers’ efforts. Al-

though practitioners may allow team collaboration just to provide an option for

solvers, our results show that this strategy can lead to better contest outcome only

for specific types of problems.

Second, when the organizer seeks solutions to a decomposable problem, one

might expect that the organizer always benefits from team submissions (e.g., Som-

mer et al. 2020, Chan et al. 2021) because team members can share tasks. However,

we show that this expectation holds only under certain conditions. Specifically,

when the organizer seeks high-novelty solutions (e.g., in Streamflow Forecast Chal-

lenge at Topcoder) or low-novelty solutions (e.g., in Database Setup Challenge at

Topcoder), the organizer can benefit from team submissions when the benefit from

team members’ interactions is sufficiently large, which can be achieved by more

diverse teams (e.g., Taylor and Greve 2006, Singh and Fleming 2010). We further

show that when seeking low-novelty solutions to a decomposable problem, the or-

ganizer can benefit from team submissions also through the increase in the effort

contribution if increasing effort is difficult for solvers. As the diversity of ideas due

to team members” interactions reduces team members” incentive to exert effort,

in this case, it can better for the organizer to encourage (form, if possible) teams

with limited diversity (e.g., by prompting solvers with similar backgrounds to form

teams). Given these findings, it is understandable why Topcoder discourages team

submissions, yet our findings above suggests that Topcoder may also find an oppor-

tunity to benefit from team submissions in some of its challenges.

Our results have also two important implications for the theory on teams in
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contests (e.g., Chen and Lim 2013). First, since the organizer maximizes the best

output in an innovation contest, even when each team member’s equilibrium effort

is smaller than each individual solver’s equilibrium effort, the team-effort contribu-

tion can be larger than the solver-effort contribution in the case of a decomposable

problem. Thus, the organizer can benefit from team submissions due to the in-

crease in the effort contribution although team members’ incentive to exert effort

is smaller. Second, different from traditional contests (e.g., sales contests) where

the average or total output of solvers is maximized, in innovation contests, the or-

ganizer can benefit from team submissions due to the additional uncertainty and the

performance enhancement generated through team members’ interactions. These

implications are consistent with the empirical finding of Girotra et al. (2010) that

analyzing the average output may underestimate the benefits of collaboration.

Finally, we show that the team member’s utility is larger than the individual

solver’s utility unless team collaboration results in substantial synergistic gains.

This is because when solvers collaborate as teams, all solvers (in all teams) end

up exerting less effort, leading to a similar expected award but a significantly lower

cost of effort for each solver. Yet, if synergistic gains create sufficient incentive for

team members to exert more effort than they would individually, solvers’ utilities

decrease when they collaborate as teams. This result may explain why in some

InnoCentive challenges, solvers make individual submissions although they are en-

couraged to collaborate.

Our study is an initial attempt to analyze the impact of team submissions in

an innovation contest, which provides opportunities for future research. First, con-

sistent with the innovation-contest literature (e.g., Mihm and Schlapp 2019), we

assume that solvers are identical to ensure tractability, yet it can be interesting

to empirically or experimentally examine the impact of team submissions when

solvers are heterogenous. Second, we focus on the organizer’s decision on whether

to encourage or discourage team submissions, and abstract away from dynamics

associated with solvers’ team formation. However, it would be interesting to con-

duct an experimental study to understand how solvers form teams to generate so-
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lutions to nondecomposable and decomposable problems. Finally, consistent with

the innovation-contest literature (e.g., Hu and Wang 2020), we assume that the or-

ganizer seeks solutions from a fixed number of solvers regardless of the decision

to encourage team submissions. Yet, it can be interesting to empirically analyze

whether/how the number of solvers changes when the organizer encourages team

submissions.



Chapter 4

Product Development in

Crowdfunding: Theoretical and

Empirical Analysis

4.1 Introduction
The internet has enabled entrepreneurs to use crowdfunding to raise funds from a

large number of people for projects ranging from social entrepreneurship to for-

profit enterprises.1 In addition to crowdfunding being an important financial instru-

ment (e.g., Hu et al. 2015, Belavina et al. 2020, Chakraborty and Swinney 2021),

recent research and practice suggest that it can be used by entrepreneurs (hereafter

creators) as a mechanism to involve customers in product development and thus to

improve their products during their crowdfunding campaigns (e.g., Mollick 2016,

Cornelius and Gokpinar 2020). Customer involvement in product development can

lead to significant cost savings (e.g., Thomke and Bell 2001, Loch and Kavadias

2008), so a creator may consider launching a crowdfunding campaign for a basic

version of a product (as opposed to a more enhanced version with more features;

Althuizen and Chen 2021) to leave room for improvements to it. However, if a

product appears too basic, customers may be discouraged from contributing to the

campaign, making it less likely that the campaign will be successful (i.e., reach the

1The first recorded crowdfunding on the internet occurred in 1997, when the British band Maril-
lion raised $60,000 from fans to fund its North American tour (Masters 2013).



4.1. Introduction 91

funding goal). Thus, we study how a creator should choose the product’s level of

enhancement at campaign launch (hereafter initial enhancement level), taking into

account the impact this may have on product improvement and campaign success.

To understand how customers can contribute to product improvement during

a crowdfunding campaign, consider the following example from Kickstarter—a

global crowdfunding platform that has raised $5 billion for entrepreneurs over the

last decade (Kickstarter 2021g). In October 2015, the “onomo” team launched

a campaign for an innovative bike navigation device, HAIZE (see Figure 4.1(a);

Kickstarter 2021a). During the campaign, customers suggested that HAIZE could

include a wristband so that they could also use the product when not on a bike

(see Figure 4.1(b)). In response to suggestions from customers, the creator added

a wristband to the product and revised the campaign description accordingly (see

Figure 4.1(c)). In our interview, the creator of HAIZE explained this process as

follows: “It’s definitely very efficient for that kind of [market] research... the idea,

for example, of adding a wristband to the device, it was always like floating... we’re

not sure if we should do this [or not]... But then, we began to receive very relevant

testimonies of people who were having amazing ideas [about a wristband]...”

As this example aptly shows, a creator can make a strategic choice to launch

a crowdfunding campaign for a basic product and improve it during the campaign.

Since the initial enhancement level of a product can affect whether a creator im-

proves it during the campaign, we start by investigating the following research

question: (Q1) How does the initial enhancement level affect the likelihood that

the product will be improved during the campaign?

Besides affecting product improvement, the initial enhancement level also in-

fluences whether customers pledge money to the campaign, and ultimately whether

the campaign is successful. Indeed, experts on Kickstarter campaigns assert that a

creator should “have as much done as possible” and “launch [a campaign] as close to

production as possible” for a successful campaign (Kickstarter 2021e). The implicit

assumption here is that a campaign for a more enhanced product is more likely to

be successful, so we investigate this by asking: (Q2) How does the product’s initial
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(a) Initial product. (b) Customer comment. (c) Product improvement.

Figure 4.1: Example of initial product, customer comment, and product improvement.

enhancement level affect the success of the campaign?

Building on the descriptive analyses presented above, and with the aim of gen-

erating actionable insights, we study a case in which a creator chooses the optimal

initial enhancement level to maximize the profit from the campaign. This allows us

to test whether Kickstarter experts are correct in their assertions by investigating the

following research question: (Q3) Should a creator enhance the product as much as

possible before launching a campaign?

To answer these questions and inspired by the crowdfunding practice and liter-

ature (e.g., Hu et al. 2015, Belavina et al. 2020, Chakraborty and Swinney 2021), we

build a parsimonious game-theoretical model of a “reward-based, all-or-nothing”

crowdfunding campaign that takes into account the creator’s product improvement

decision.2 In such a campaign, a creator solicits funds from customers to finance

the launch of a product. To this end, the creator specifies the initial enhancement

level of the product (the more enhanced the product is, the greater the number of

features it offers), and announces a funding goal and a pledge price. Having con-

sidered these, customers then decide whether to pledge money in return for the

product, and after pledging, they can make comments to induce the creator to im-

prove the product further. (Customers cannot make comments before pledging; see

Kickstarter 2021h.) If the creator sees comments, the creator decides whether to

improve the product, and if improvements are made, other potential customers will

be seeing the improved product before making pledging decisions. By the end of

2There are also other forms of crowdfunding with respect to the type of reward and type of
funding. We refer the reader to Chen et al. (2020) for a review of other forms of crowdfunding.
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the campaign, if the total amount pledged reaches the funding goal, the campaign

is successful; the creator receives the funds raised, and products are then produced

and delivered to customers. If the total amount pledged fails to reach the funding

goal, the campaign fails; the creator receives and delivers nothing, and customers

are fully refunded.

We first analyze how the initial enhancement level of a product affects the

likelihood of a product being improved during the campaign. Because making an

improvement is costly, one might expect that the more enhanced a product is, the

less likely the creator will be to make any further improvement to it during the

campaign.3 Yet, our analysis reveals an opposing effect at play. Specifically, when a

product is more enhanced, customers are more likely to pledge and to comment, and

hence the creator is more likely to receive a comment that can be used to improve

the product. This increases the likelihood of a product being improved during the

campaign. However, above a certain level of initial enhancement, the likelihood of

product improvements decreases because of the additional costs the creator would

incur if implementing them.

To address our second research question, we analyze how the initial enhance-

ment level affects campaign success. Our theoretical model predicts that the likeli-

hood of campaign success increases with the initial enhancement level, albeit at a

decreasing rate when the initial enhancement level is high. The reason is that when

the product is highly enhanced, customers are already very likely to pledge, so their

incentive to pledge is less responsive to a higher initial enhancement level.

We test our theoretical results empirically using a unique large-scale data set

from Kickstarter. Our data set contains detailed information about campaign char-

acteristics as well as product descriptions from the beginning and end of the cam-

paigns. To create a measure of enhancement levels of products (i.e., number of

features that products offer; Ulrich and Eppinger 2016, Althuizen and Chen 2021),

we take advantage of these detailed product descriptions, and use an unsupervised

3For instance, while responding to a customer comment asking for an extra USB port, one creator
on Kickstarter explained why it was not feasible to improve the product in this way by saying: “Yes,
I would love to have USB3, or USB type C... What you might not know fully is that it is a serious
additional cost...” (Kickstarter 2021f).
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natural language processing technique, latent Dirichlet allocation (LDA; Blei et al.

2003). LDA has been used by marketing and operations scholars for purposes such

as extracting product features (Toubia et al. 2019) or generating a measure of a

firm’s innovation (Bellstam et al. 2020) from textual data. We address possible

endogeneity concerns in our empirical analysis by exploiting a policy change on

Kickstarter that reduced minimum campaign requirements and thereby provided an

exogenous shock to initial enhancement levels.

Our empirical analysis supports the predicted relationship between the initial

enhancement level and the likelihood of product improvement. More interestingly,

although our theoretical model intuitively predicts that the likelihood of campaign

success will increase with the initial enhancement level, we do not observe this

empirically. Instead, the likelihood of campaign success first increases with the

initial enhancement level but then, counterintuitively, decreases. This discrepancy

between our normative theory and the empirical finding hints at the presence of

possible behavioral effects. Specifically, when enhancing a product, a creator may

end up with a too complex or too advanced product, which can be overwhelming

for customers (e.g., Mick and Fournier 1998) or can lead to customer anxiety (e.g.,

Castaño et al. 2008, Goodman and Irmak 2013). Indeed, when we revise our the-

oretical model to incorporate such behavioral effects, our theoretical predictions

become consistent with the empirical results.

Building on these results and to generate prescriptive insights, we investigate

whether the creator should enhance the product as much as possible before the cam-

paign. To this end, we analyze a model in which the creator chooses the optimal

initial enhancement level to maximize profit. In contrast to what experts on Kick-

starter campaigns suggest, we show that a creator should not always enhance a

product as much as possible because there is a trade-off between cost savings and

chances of success. Specifically, when customer involvement in product develop-

ment can lead to substantial cost savings in product development activities, it can

be better for the creator to launch the campaign for a basic version of a product and

improve it during the campaign in response to customer feedback, even though this
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may decrease the chances of the campaign being successful.

4.2 Related Literature
As a phenomenon that has emerged quickly, crowdfunding has caught the attention

of entrepreneurs, managers, and business scholars. Accordingly, there is a relatively

new but growing literature on crowdfunding. We first discuss theoretical and empir-

ical studies of crowdfunding and then summarize our contributions to this literature.

In the crowdfunding literature, Hu et al. (2015) have pioneered theoretical stud-

ies of reward-based, all-or-nothing crowdfunding by analyzing whether the creator

should offer a single reward or multiple rewards. Follow-up studies (e.g., Du et al.

2017, Chakraborty and Swinney 2019, 2021, Burtch et al. 2020, Li et al. 2020) an-

alyze the creator’s other design decisions, including the funding goal, the pledge

price, limited rewards, and the timing of referrals and contingent stimulus policies

(e.g., limited time offer). There are also theoretical studies that analyze how crowd-

funding platforms can be designed to prevent misconduct (Strausz 2017, Belavina

et al. 2020).4 Empirical studies focus mainly on factors that influence customers’

pledging decisions and campaign success such as altruism, geographic proximity to

creators, and creators’ pre-campaign information sharing (e.g., Burtch et al. 2013,

Mollick 2014, Agrawal et al. 2015, Lin and Viswanathan 2016, Kuppuswamy and

Bayus 2017, Wei et al. 2020). Other empirical papers study broader aspects of

crowdfunding such as the similarity between the evaluations of crowdfunding cus-

tomers and those of experts (Mollick and Nanda 2016), the impact of crowdfunding

on a creator’s ability to reach venture capital investors (Sorenson et al. 2016), and

differences between the pledge price and the post-campaign retail price (Blaseg

et al. 2020). Recently, Cornelius and Gokpinar (2020) show that crowdfunding

campaigns are more likely to be successful with greater customer involvement. For

a detailed review of this literature, we refer the reader to Allon and Babich (2020)

4There are other theoretical studies that ask broader questions about crowdfunding such as when
to use different forms of crowdfunding (e.g., Belleflamme et al. 2014, Bi et al. 2019) or how crowd-
funding interacts with traditional financing sources (e.g., Roma et al. 2018, Babich et al. 2021).
Recently, Chemla and Tinn (2020) analyze the value of crowdfunding as a tool to test the potential
market. For a detailed review, we refer the reader to Chen et al. (2020).
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and Chen et al. (2020).

While existing research has significantly improved our understanding of

crowdfunding as a new financing (e.g., Hu et al. 2015, Belavina et al. 2020) and cus-

tomer interaction mechanism (e.g., Mollick 2016, Cornelius and Gokpinar 2020),

the product development decisions made by creators in crowdfunding have not re-

ceived attention in the literature either theoretically or empirically. Our study fills

this gap by providing a nuanced understanding of crowdfunding as a product de-

velopment mechanism. Specifically, inspired by practice and theoretical models in

the crowdfunding literature, we first construct a theoretical model that includes the

creator’s decision on product improvement during the campaign. This model helps

us build a theory about the impact of the initial enhancement level of a product on

the likelihood of product improvement and campaign success. We then test this

theory empirically with a unique large-scale data set. Our theory helps us generate

practically grounded insights into whether the creator should improve a product as

much as possible before the campaign. To our knowledge, our study is the first in

the crowdfunding literature to combine theoretical and empirical analyses. Thus,

one of its key strengths is that our theoretical and empirical analyses inform each

other. Specifically, our theory helps us generate testable hypotheses for our empir-

ical study, and our empirical results hint at the presence of behavioral effects and

help us improve our theoretical model.

Our work is also related to the NPD literature that studies when to launch a

product by considering different trade-offs.5 Specifically, assuming that a more en-

hanced product always increases the customer’s utility, the majority of studies in

this literature (e.g., Cohen et al. 1996, Özer and Uncu 2013, Gao et al. 2021) in-

vestigate how much to delay the launch to enhance the product by considering the

risk of losing the first-mover advantage. Recently, Bhaskaran et al. (2020) con-

5Our study is also related to the broader NPD literature (e.g., Thomke and Bell 2001, Loch et al.
2001, Erat and Kavadias 2008, Sommer et al. 2009) that has mainly focused on operational decisions
related to experimentation and testing (e.g., whether to test sequentially or in parallel) mostly to
resolve technical uncertainty before product launch. This literature suggests that cost of making
changes and redesign increases over time in a product development process. We build our theoretical
model based on this result, and study an innovative setting where product development continues
based on customer feedback after product launch (i.e., launch of a crowdfunding campaign).
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sider a different trade-off: Launching a basic and immediately available version of

a product brings earlier revenues (as opposed to delaying the launch to develop a

more enhanced version), yet this may negatively affect the perception of future ver-

sions of the product. Different than the setting of these papers, we analyze a setting

where launching a crowdfunding campaign for a basic version of the product neither

brings any early revenue nor establishes any first-mover advantage. Therefore, we

identify a unique trade-off for product enhancement before launch that is relevant

in crowdfunding settings and contribute to this literature on several fronts. First,

we empirically show that enhancing the product too much before a crowdfunding

campaign may reduce the likelihood of campaign success, which implies that the

customer’s utility does not always increase with the initial enhancement level of the

product. Thus, the common assumption in product launch literature does not seem

to hold in crowdfunding settings. Second, we consider a setting, where customers

receive the final version of the product even though they pledge before the creator

improves the product during the campaign. This unique feature of crowdfunding

eliminates the risk of losing future value unlike settings where customers stick with

the product they purchased even though the product is later improved. Despite this

advantage, there are additional challenges for the creator because the creator re-

ceives pledges only when the campaign is successful, and improvements hinge on

customers’ voluntary feedback. Therefore, launching a more enhanced product may

solicit more feedback and increase the chances of campaign success in crowdfund-

ing, which may not be concerns in settings analyzed in the NPD literature. In sum,

our study expands the NPD literature on product launch decisions by focusing on

crowdfunding, a novel product development and financing setting.

The remainder of the study is organized as follows. In §4.3, we discuss our

theoretical model and its predictions; in §4.4, we discuss our empirical models and

their results; in §4.5, we revise our theoretical model based on empirical results; in

§4.6, we analyze the optimal initial enhancement level; and in §4.7, we discuss the

results and limitations of our study.
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Figure 4.2: The sequence of decisions and events in a crowdfunding campaign where the
product may potentially be improved during the campaign.

4.3 Theoretical Model and Analysis
We consider a reward-based crowdfunding campaign where a creator elicits funds

from customers (“she”) to finance the launch of a physical product,6 and each cus-

tomer pledges to receive the product as a reward. We focus on an all-or-nothing

setting where the creator sets a funding goal, and if the total amount pledged ex-

ceeds the funding goal by the end of the campaign, the campaign is successful. In

this case, the creator collects money pledged and delivers products to those who

have pledged. When the total amount pledged does not meet the funding goal, the

campaign fails, and hence the creator does not receive any funds or deliver any

products and customers are refunded (e.g., Hu et al. 2015, Belavina et al. 2020).

Because crowdfunding is a nascent research area and our aim is to use our the-

oretical results to develop testable hypotheses, we develop a parsimonious model.

Specifically, we build on the model of Hu et al. (2015) by incorporating the cre-

ator’s product improvement decision and construct a four-stage game-theoretical

model that involves one creator and two customers, as illustrated in Figure 4.2. Ta-

ble 4.1 summarizes the main assumptions in our model. We will describe our model

according to the sequence of events.

Stage 0: The creator launches a crowdfunding campaign. The creator specifies

a funding goal G (> 0) and an initial enhancement level qi (> 0), which represents

6Note that we focus on a campaign for a physical product such as camera equipment because a
campaign for a non-physical product such as software may require a different model.
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how enhanced the product is. For example, as we discuss in §4.1, HAIZE with

wristband (i.e., a navigation device with more features) is a more enhanced version

of the initially introduced navigation device. We assume that the creator incurs an

investment cost of Ci · qi, where Ci ≥ 0, to launch a campaign for a product whose

initial enhancement level is qi (e.g., Chakraborty and Swinney 2021). Although

the creator can also incur some investment cost when improving the product during

the campaign, we normalize this cost to zero for ease of illustration. (Note that

our results are qualitatively similar when we incorporate this cost into our model.)

Therefore, the initial investment cost Ci corresponds to the (opportunity) cost of

enhancing the product before the campaign (e.g., the cost of market research, con-

cept generation, design rework, or engineering changes) rather than involving cus-

tomers in an earlier stage of product development. The creator sets the pledge price

p = G/2 so that the campaign is successful if and only if both customers pledge

(Hu et al. 2015).7 To study our first two research questions (Q1) and (Q2) analyt-

ically and empirically, we consider the case when qi is exogenously given, so the

initial investment cost Ci ·qi is sunk. However, when we examine our third research

question (Q3), qi is endogenously determined.

Stage 1: Customer 1’s pledging decision. Customer 1 with valuation v1 arrives

at the campaign. For j = {1,2}, valuation v j measures customer j’s marginal will-

ingness to pay for the enhancement level of the product, and v j’s are independent

across customers and drawn from a Uniform distribution with parameters 0 and 1

(e.g., Krishnan and Ramachandran 2011, Belleflamme et al. 2014).8 Once arrived

at the campaign, customer 1 not only observes the pledge price p and the initial en-

hancement level qi of the product from its detailed description but also anticipates

the final enhancement level q f of the product. Thus, to decide whether to pledge

or not, customer 1 compares her effective valuation v1 · q f of the product and the

7As a supplementary analysis, we also consider a model where two customers (instead of just
customer 2) arrive after customer 1 yet the funding goal G is still 2p. In this case, it is still possi-
ble that the campaign is successful if two out of three customers pledge, so no single customer is
pivotal in whether the campaign will be successful. Our supplementary analysis of this case yields
qualitatively similar results to our main results.

8In the crowdfunding literature (e.g., Hu et al. 2015), it is common to assume such a distribution
on valuations.
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Table 4.1: Summary of the main assumptions in the theoretical model.

Assumptions References

Two customers arrive at the campaign sequen-
tially, the funding goal G = 2p, and the per-unit
production cost is cq2

f , where c > 0.
Hu et al. (2015)

v j’s are i.i.d. with Uniform(0,1).
Krishnan and Ramachandran
(2011), Belleflamme et al.
(2014)

Customers are fully refunded if the campaign
fails.

Hu et al. (2015), Chakraborty
and Swinney (2021)

pledge price p (e.g., Belleflamme et al. 2014). If customer 1 does not pledge, the

campaign fails, and both customers receive a reservation value of 0. If customer 1

pledges, the next stage commences.

Stage 2: Customer 1’s commenting decision. Customer 1 decides whether to

make a comment to entice the creator to improve the product during the campaign,

which can enhance the product by qu (> 0). For instance, qu may represent the

degree of improvement achieved by adding a wristband to the HAIZE navigation

device, as discussed in §4.1.9 If customer 1 does not make any comment, then the

final enhancement level of the product is q f = qi.

Stage 3: The creator’s product improvement decision. If customer 1 makes

a comment with a enhancement level of qu, then the creator decides whether to

improve the product further or not. If the creator improves the product, then the final

enhancement level of the product is q f = qi+qu (e.g., Krishnan and Ramachandran

2011); otherwise, q f = qi. Note that q f = qi + qu can be achieved even before

the campaign if the creator is willing to incur the related cost (e.g., extra market

research).

Stage 4: Customer 2’s pledging decision. Customer 2 with valuation v2 arrives at

the campaign. Upon observing the final enhancement level q f and the pledge price

9For ease of illustration, we assume that the customer’s cost of commenting is negligible com-
pared to the utility she can obtain from a potential improvement in the product. In Appendix F.2, we
extend our analysis to the case where the customer incurs some non-negligible cost when she makes
a comment.
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p, she decides whether to pledge or not. If customer 2 pledges along with customer

1, the campaign is successful, and the creator receives pledges and delivers products

to customers by incurring a per-unit production cost of c · q2
f , where c > 0 (e.g.,

materials and labor; Guo and Zhang 2012, Hu et al. 2015). If customer 2 does

not pledge, then the campaign fails. (Our results are qualitatively similar when the

per-unit production cost is c ·q f .)

4.3.1 Analysis of Sub-game Perfect Equilibrium

For any given pledge price p and initial enhancement level qi, we determine the sub-

game perfect equilibrium via backward induction. First, in Stage 4, customer 2 with

valuation v2 ∼ Uniform(0,1) pledges if and only if her expected utility U2 = v2q f −

p ≥ 0. If the creator improved the product in Stage 3, the final enhancement level

q f = qi + qu, and hence customer 2 pledges with probability qi+qu−p
qi+qu

. Otherwise,

the final enhancement level q f = qi, and hence customer 2 pledges with probability
qi−p

qi
. We assume that qi > p to avoid trivial cases where even a customer with

maximum valuation does not pledge when there is no improvement.

In Stage 3, if customer 1 pledged and made a comment in Stages 1 and 2,

the creator decides whether to improve the product during the campaign by com-

paring the creator’s expected profit ΠI with improvement and expected profit ΠNI

with no improvement. By taking customer 2’s pledging probability qi+qu−p
qi

and the

per-unit production cost c(qi +qu)
2 into consideration, the creator’s expected profit

with an improvement is ΠI =
(

qi+qu−p
qi+qu

)(
2p−2c(qi +qu)

2)−Ciqi.10 Similarly, the

creator’s expected profit without improvement is ΠNI =
(

qi−p
qi

)(
2p−2cq2

i
)
−Ciqi.

Thus, the creator improves the product during the campaign if and only if ΠI ≥ΠNI ,

i.e.,
p2

qi(qi +qu)
− c(2qi +qu − p)≥ 0. (4.1)

In Stage 2, if customer 1 pledged in Stage 1, she decides whether to make

10Although we normalize the unit investment cost Cu of improving the product to zero, our results
are qualitatively similar when Cu > 0; i.e., ΠI =

(
qi+qu−p

qi+qu

)(
2p−2c(qi +qu)

2
)
−Ciqi −Cuqu. Note

that in this case, Ci > Cu represents the case where the investment cost is mainly related to market
research, while Cu > Ci represents the case where the investment cost is mainly related to design
rework.
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a comment or not. First, suppose that condition (4.1) is violated. Then, even if

customer 1 makes a comment, she anticipates that the creator will not improve the

product in Stage 3 and customer 2 will pledge in Stage 4 with probability qi−p
qi

.

Thus, in this case, customer 1’s expected utility is UC
1 =

(
qi−p

qi

)
(v1qi − p). Simi-

larly, if customer 1 does not make a comment, she anticipates that customer 2 will

pledge in Stage 4 with probability qi−p
qi

, and hence customer 1’s expected utility is

UNC
1 = UC

1 . Since UNC
1 = UC

1 , the cases where customer 1 makes a comment and

does not make a comment are both in equilibria.

Now, suppose that condition (4.1) holds. Then, if customer 1 makes a com-

ment, she anticipates that the creator will improve the product in Stage 3 and cus-

tomer 2 will pledge in Stage 4 with probability qi+qu−p
qi+qu

. Thus, in this case, cus-

tomer 1’s expected utility is UC
1 =

(
qi+qu−p

qi+qu

)
(v1(qi +qu)− p). However, if cus-

tomer 1 does not make a comment, she anticipates that customer 2 will pledge in

Stage 4 with probability qi−p
qi

, and hence customer 1’s expected utility is UNC
1 =(

qi−p
qi

)
(v1qi − p). Therefore, customer 1 makes a comment in Stage 2 if and only

if UC
1 ≥UNC

1 , i.e., v1 ≥ p2

qi(qi+qu)
.

Finally, in Stage 1, customer 1’s pledging decision depends on whether she

anticipates an improvement in the product or not. First, suppose that condition

(4.1) holds so that customer 1 anticipates an improvement and makes a com-

ment when v1 ≥ p2

qi(qi+qu)
. Then, customer 1 decides whether to pledge or not

by comparing her expected utility UP
1 when she pledges, where UP

1 = UC
1 =(

qi+qu−p
qi+qu

)
(v1(qi +qu)− p), and her expected utility UNP

1 when she does not

pledge, where UNP
1 = 0. Thus, customer 1 pledges if and only if UP

1 ≥ UNP
1 , i.e.,

v1 ≥ p
qi+qu

. Therefore, in a setting where customer 1 anticipates an improvement,

she pledges and makes a comment if

v1 ≥ max
{

p2

qi(qi +qu)
,

p
qi +qu

}
=

p
qi +qu

.

This means that if condition (4.1) holds, customer 1 makes a comment whenever

she pledges. Second, suppose that condition (4.1) is violated. Then, regardless

of customer 1’s commenting decision in Stage 3, customer 2 pledges in Stage 4

with probability qi−p
qi

. In this case, customer 1’s expected utility when she pledges
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is UP
1 =

(
qi−p

qi

)
(v1qi − p), and her expected utility when she does not pledge is

UNP
1 = 0. Thus, customer 1 pledges if and only if v1 ≥ p

qi
.

By using the creator’s and customers’ rational strategies explained above, we

next characterize the equilibrium outcomes. We aim to understand how the initial

enhancement level affects whether the product is improved during a campaign or

not. Thus, we calculate the ex-ante probability that there is an improvement in

the product during the campaign, and we denote this probability by P(improve).

Also, let P(success) be the ex-ante probability that the campaign is successful. The

following lemma characterizes these equilibrium outcomes. We present all proofs

in Appendix E.

Lemma 1 If p2

qi(qi+qu)
− c(2qi + qu − p) ≥ 0, then P(improve) = qi+qu−p

qi+qu
and

P(success) =
(

qi+qu−p
qi+qu

)2
; otherwise, P(improve) = 0 and P(success) =

(
qi−p

qi

)2
.

Lemma 1 first characterizes the case where condition (4.1) holds so that the cre-

ator is willing to improve the product during the campaign and customer 1 makes

a comment whenever she pledges. In this case, customer 1 pledges and makes a

comment with probability qi+qu−p
qi+qu

, and hence P(improve) = qi+qu−p
qi+qu

. Also, cus-

tomer 2 pledges with probability qi+qu−p
qi+qu

, and hence P(success) =
(

qi+qu−p
qi+qu

)2
.

Lemma 1 also characterizes the case where condition (4.1) is violated. In this

case, regardless of customer 1 making a comment or not, P(improve) = 0 and

P(success) =
(

qi−p
qi

)2
. Note that, ceteris paribus, P(success) is greater when the

creator improves the product during the campaign, which is consistent with the em-

pirical finding of Cornelius and Gokpinar (2020).

4.3.2 Probability of Product Improvement

Using Lemma 1, we next answer our first research question (Q1). The follow-

ing proposition characterizes the impact of the initial enhancement level qi on

P(improve).

Proposition 1 There exists a threshold qi (≥ 0) such that when the initial enhance-

ment level qi ≤ qi, P(improve) increases with qi; and when qi > qi, P(improve) = 0.
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Figure 4.3: The impact of the initial enhancement level qi on P(improve) and P(success).
The setting: p = 1, c = 0.01, and qu = 0.1.

One might expect that the higher the initial enhancement level qi, the less likely

the product is to be improved during the campaign. However, Proposition 1 shows

that the probability of product improvement during the campaign increases with

the initial enhancement level qi up to a threshold qi but above this threshold, the

creator does not improve the product during the campaign, as illustrated in Figure

4.3. The intuition is as follows. P(improve) depends on the decisions of both

the creator and customer 1. First, consider the creator’s improvement decision.

When the creator improves the product during the campaign, the product becomes

more enhanced, and hence each customer is more likely to pledge, yet the creator

expects to incur a higher production cost (i.e., c(qi + qu)
2 instead of cq2

i ). When

the initial enhancement level qi is higher, improving the product leads to a smaller

increase in the customer’s likelihood of pledging and a larger increase in the cost

of production. Because of these opposing forces, the creator improves the product

during the campaign only when qi is below a certain threshold (i.e., qi ≤ qi).11

Next, consider the decisions of customer 1. As qi increases, customer 1’s ex-

pected utility increases, and customer 1 is thus more likely to pledge and make

a comment, which increases P(improve). However, this is possible only when the

creator improves the product further (i.e., qi ≤ qi). Thus, P(improve) increases with

qi ≤ qi, but P(improve) = 0 when qi > qi.

11Even when the marginal cost of production is constant (i.e., cost of production is c · q f ), this
result continues to hold because as qi increases, improving the product leads to a smaller increase in
the customer’s likelihood of pledging.
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Based on Proposition 1, we establish the following hypothesis (hereafter H1).

Hypothesis 1 As the initial enhancement level of a product increases, the likeli-

hood that the product will be improved during the campaign first increases and

then decreases.

4.3.3 Probability of Campaign Success

We next use Lemma 1 to answer our second research question (Q2). The fol-

lowing proposition characterizes the impact of the initial enhancement level qi on

P(success).

Proposition 2 (i) When p2

qi(qi+qu)
− c(2qi +qu − p) ̸= 0, P(success) is increasing in

qi. (ii) Also, there exists a threshold qi (> 0) such that for qi > qi, P(success) is

concave in qi.

Proposition 2 shows that, regardless of whether condition (4.1) holds with strict in-

equality or it is violated (i.e., whether the creator is willing to improve the product

during the campaign or not), the probability of campaign success increases with the

initial enhancement level qi, but at a decreasing rate when qi is above a threshold;

see Figure 4.3(a).12 The intuition behind Proposition 2(i) is that as the initial en-

hancement level qi increases, each customer’s expected utility increases, and the

customer is thus more likely to pledge. Thus, P(success) increases with qi. Propo-

sition 2(ii) stems from two opposing effects. First, as qi increases, the marginal

benefit of increasing qi on each customer’s probability of pledging decreases. Sec-

ond, there is also an indirect effect of one customer’s pledging on the other one’s

decision, and the marginal benefit of increasing qi on this indirect effect increases

with qi. When qi is above a certain threshold (i.e., qi > qi), the former effect is more

dominant than the latter, so the marginal benefit of increasing qi on the probability

of campaign success decreases.

Based on Proposition 2, we establish the following hypothesis (hereafter H2).

12Note that when p2

qi(qi+qu)
− c(2qi +qu − p) = 0, the creator does not improve the product during

the campaign as qi increases, and hence P(success) decreases from
(

qi+qu−p
qi+qu

)2
to
(

qi−p
qi

)2
.
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Hypothesis 2 As the initial enhancement level of a product increases, the likelihood

of campaign success increases, but at a decreasing rate when the initial enhance-

ment level is high.

4.4 Empirical Models and Analysis
We test H1 and H2 by using a unique data set collected from Kickstarter, a crowd-

funding platform that enables creators to launch reward-based, all-or-nothing cam-

paigns. To launch a campaign on Kickstarter, each creator first prepares a campaign

page that includes a textual description of the product along with supporting materi-

als such as pictures. On the campaign page, the creator also specifies a funding goal

and the pledge price required to receive the product as a reward. Once the campaign

has been launched, a customer arriving on the campaign page reads the product de-

scription to decide whether or not to pledge. As we discuss in §4.1, if a customer

pledges, she can make a comment on the campaign page to induce the creator to im-

prove the product further (customers cannot make comments before pledging; see

Kickstarter 2021h); and if the creator improves the product, the creator revises the

product description accordingly. After the campaign ends, customers cannot pledge

or the creator cannot revise the product description. As we discuss in §4.3, if the to-

tal amount pledged at the end exceeds the funding goal, the campaign is successful;

otherwise, the campaign fails and customers are refunded. In the remainder of this

section, we describe the sample, variables, empirical models, and empirical results.

4.4.1 Sample

Consistent with our theoretical model, we focus on 21,768 campaigns for physical

products in the Technology and Design categories launched on Kickstarter between

July 2013 and February 2016.13 The sample contains 6,488 successful campaigns,

12,111 failed campaigns, and 3,169 cancelled campaigns.14 We exclude 388 cam-

13These campaigns constitute the majority of the Technology and Design campaigns, and include
product subcategories such as camera equipment, hardware, and product design, but not software,
web, and graphic design. Our additional analysis shows that the empirical results reported in §4.4.4
continue to hold when we include campaigns for non-physical products.

14Campaigns can be cancelled due to intellectual property disputes or at the discretion of creators
(Kickstarter 2021b). Although we exclude cancelled campaigns in our main empirical analyses, our
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paigns that are not suitable for textual analysis (e.g., non-English campaigns, see

§4.4.2), so the final sample contains 21,380 campaigns.

4.4.2 Dependent, Explanatory, and Control Variables

Dependent Variables: Product Improvement and Campaign Success. To test

H1, we need a variable that measures whether a creator improves the product dur-

ing a campaign or not. Hence, we generate a binary variable, product improvement

Ik, for each campaign k that represents whether the final enhancement level q f k

of the product in campaign k is higher than its initial enhancement level qik. (We

explain how we construct qik and q f k when we discuss level of enhancement be-

low.) Specifically, Ik = 1 if q f k > qik; otherwise, Ik = 0. In our sample, 26% of all

products and 43% of products in successful campaigns were improved during their

campaigns.

To test H2, we create a binary variable, campaign success Sk, for each cam-

paign k that represents whether the total amount pledged Pk at the end of the cam-

paign is greater than or equal to the funding goal Gk (e.g., Mollick 2014, Wei et al.

2020). Specifically, Sk = 1 if Pk ≥ Gk; otherwise, Sk = 0. This measure is impor-

tant for creators to evaluate their success, and it is also consistent with how Kick-

starter evaluates campaigns to analyze the performance of the platform (Kickstarter

2021g). In our sample, 35% of campaigns were successful (excluding cancelled

campaigns).

Level of Enhancement. The NPD literature identifies that product developers typi-

cally design their products by first outlining the core features and then adding more

features (e.g., Ulrich and Eppinger 2016). Products that are more enhanced there-

fore tend to have more features (e.g., Althuizen and Chen 2021). Utilizing this re-

lationship, we measure the initial and final enhancement levels of products through

the number of features by leveraging products’ textual descriptions at the beginning

and end of their campaigns.

Following the prior literature (e.g., Tirunillai and Tellis 2014, Toubia et al.

2019), we use latent Dirichlet allocation (LDA; Blei et al. 2003) to create a proxy

empirical results continue to hold when we treat them as failed campaigns (see §4.4.4).
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for the number of features by extracting topics and their weights in each descrip-

tion. Our approach is as follows. We train the LDA model on 42,564 initial and

final descriptions of 21,380 campaigns in our sample. (We discuss the details of the

LDA model in Appendix F.1.) For each description, we multiply the description’s

topic weights by the description length (in words) to get the number of words asso-

ciated with a particular topic. In line with the prior literature (e.g., Blei et al. 2003,

Griffiths and Steyvers 2004), we consider a topic to be present in a description if it

is associated with at least ten words. (Our empirical results continue to hold when

we use different thresholds; see §4.4.4.) Then, in each campaign k, we measure

the product’s initial enhancement level qik as the number of topics in its initial de-

scription and the product’s final enhancement level q f k as the number of topics in

its final description. For example, the initial enhancement level of the HAIZE nav-

igation device discussed in §4.1 is calculated as 14, whereas its final enhancement

level is calculated as 19, consistent with the fact that it was improved during its

campaign. (See Figure F.1 in Appendix F.1 for the initial and final descriptions of

this product.) In our sample, the average initial enhancement level is 9.02 and the

average final enhancement level is 9.59. As we need both qik and q f k to calculate Ik,

we exclude 196 campaigns which only have either an initial or a final description

after pre-processing (see Appendix F.1).

Control Variables. In our empirical models, we include several controls for cam-

paign and creator characteristics. Specifically, we control for the category of each

campaign (i.e., technology or design; we set design as the base category in em-

pirical models) because the initial enhancement level of a product can differ across

categories. Also, we control for each campaign’s funding goal (natural logarithm of

goal in US dollars) and duration (in days) (e.g., Mollick 2014, Blaseg et al. 2020).

These variables enable us to control for the scale of a project because, for example,

we can expect the goal to be higher and/or the duration of the campaign to be longer

for a larger scale project. Additionally, we control for the median pledge price (in

US dollars) of each campaign and the delivery time (the number of months between

the last delivery date and the end of the campaign), which are also linked to the
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scale of the project.15

In our analysis, we derive the enhancement level of products from their textual

descriptions. Because these descriptions can also include videos and pictures as

well as a section in which creators discuss various risks associated with their cam-

paigns, we control for the number of videos, the number of pictures, and risk-section

length (in words) (e.g., Blaseg et al. 2020). We include additional control variables

to take into account various creator-related factors that may affect the likelihood of

product improvement or campaign success. First, we control for creator experience

in terms of the number of previous campaigns launched by a creator. Second, we

control for whether the creator is an individual or not, which we define as follows.

If the majority of personal pronouns in the product description are singular and the

creator is not an organization with legal name (e.g., Ltd, Inc), the creator is an in-

dividual; if not, the creator is not an individual. Finally, we control for the average

level of competition during each campaign as follows. For each category and each

day, we calculate the number of concurrent campaigns and the number of new cus-

tomers,16 and we then divide these two variables to obtain “campaign–customer”

ratio. Then, for each campaign, we control for the average campaign–customer

ratio during the campaign.

4.4.3 Model Specification

Our empirical strategy relies on probit models and an instrumental variable (IV)

approach to address potential endogeneity concerns.

Probit Models. Because our dependent variables, product improvement Ik and cam-

paign success Sk, are binary, we use probit models to test H1 and H2. Let Xk be the

vector of control variables for campaign k. First, to test the nonlinear (first increas-

ing and then decreasing) relationship between initial enhancement level qik on prod-

uct improvement Ik in H1, we include both qik and (qik)
2, and obtain the following

15Our additional analysis indicates that the median pledge price is a good proxy for the pledge
price of the product in each campaign, but our empirical results hold when we control for the mean
pledge price in each campaign.

16On December 19, 2013, the number of new customers is zero in both categories due to a server
error, so we replace the number of new customers on this day with the average number of customers
in each category.
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Figure 4.4: 30-day moving average of products’ initial enhancement levels by campaign
start dates.

probit model (Probit Model 1):

Ik = β0 +β1qik +β2(qik)
2 +βX Xk + vk.

Next, to test the nonlinear (increasing with diminishing returns after some initial

enhancement level) relationship between initial enhancement level qik on campaign

success Sk in H2, we include both qik and (qik)
2, and obtain the following probit

model (Probit Model 2):

Sk = β0 +β1qik +β2(qik)
2 +βX Xk + vk.

Instrumental Variable. Although we control for campaign and creator character-

istics, there may still be unobserved factors that can simultaneously affect initial

enhancement level qik in campaign k and product improvement Ik as well as cam-

paign success Sk. To address this problem and any potential measurement errors, we

use an exogenous shock to the level of product enhancement that is required before

a Kickstarter campaign can be launched. Specifically, on June 3, 2014, Kickstarter

introduced a new policy in which the campaign requirements were relaxed (Kick-

starter 2021d). As Figure 4.4 illustrates, this exogenous shock leads to a substantial

decrease in the average initial enhancement level of products. Using this exogenous

shock as an instrument allows us to isolate the impact of the initial enhancement

level on our outcome variables.17

17A concern may be that the relaxation of rules simultaneously leads to an increase in the number
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To use this instrument in our IV models, we create a binary variable, before

relaxation of rules Bk, where Bk = 1 if campaign k is launched before June 3, 2014,

and Bk = 0 otherwise. Since we focus on campaigns launched between July 2013

and February 2016, we have comparable time periods before and after the instru-

ment. This also enables us to avoid a confounding event on February 2, 2016, when

Kickstarter started selecting curated campaigns (Kickstarter 2021c). Note that the

F–statistic in the regression of the initial enhancement level on Bk is 900.10, which

indicates that our IV satisfies the relevance condition.

IV Models. In our empirical analysis, we aim to analyze the nonlinear relationship

between an endogenous explanatory variable and a binary dependent variable, so

using a standard two-stage least squares (2SLS) approach would be problematic.

Thus, we implement the instrumental variable using a control function approach

(Wooldridge 2010, 2015), a two-step approach that allows us to condition out the

variation in unobserved variables that depends on the endogenous variable, and

hence the remaining variation in the endogenous variable is independent of the error

(Petrin and Train 2010).

To test H1 with the IV model, we use the following procedure as explained

in Wooldridge (2015) (for an example in the operations management literature, see

Chan et al. 2021). In the first stage, we regress the initial enhancement level qik

on the instrumental variable Bk and control variables in an ordinary least-squares

model. We then use the predicted residuals ûk of the first-stage regression in the

second-stage probit model whose dependent variable is product improvement Ik

(Wooldridge 2015). Because ûk is an estimate from the first stage, which adds extra

variation in the second stage (Petrin and Train 2010), we also use a nonparametric

bootstrap to obtain valid standard errors in the second stage (Wooldridge 2010,

2015). For H1, we obtain the IV model (IV Model 1) with the following first- and

of campaigns and thereby reduces each campaign’s likelihood of success. This would violate the
exclusion restriction, by which an instrument cannot affect an outcome variable directly but only
through the instrumented explanatory variable. To satisfy the exclusion restriction, we include the
level of competition as an additional control variable. The instrument is then independent of cam-
paign success, conditional on the explanatory variable and the level of competition.
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Table 4.2: Descriptive statistics of variables in the empirical models (n = 18,173).

2 

Note. The minimum value of the natural logarithm of the goal (in US dollars) is negative because the minimum value of the goal is one  
Canadian dollar. Our empirical results continue to hold when we exclude 324 campaigns where the goal (in US dollars) is smaller than 
the 1st percentile ($168) or larger than the 99th percentile ($500,000). 

Variables Mean Standard deviation Minimum Maximum 
Product improvement 0.26 0.44 0 1 
Campaign success 0.35 0.48 0 1 
Initial enhancement level 9.02 8.11 0 48 
Goal (ln) 9.48 1.64 -0.28 18.52 
Duration 34.63 10.5 1 61 
Pledge price 174.95 535.09 0 10000 
Delivery time 4.27 5.03 0 70 
Videos 0.26 0.83 0 26 
Pictures 11.08 12.11 0 119 
Risk-section length 141.64 119.95 8 4981 
Creator experience 0.18 0.78 0 21 
Individual 0.31 0.46 0 1 
Competition 0.16 0.04 0.05 0.54 
Before relaxation of rules 0.22 0.41 0 1 

 

second-stage regressions:

qik = α0 +α1Bk +αX Xk +uk, and

Ik = β0 +β1qik +β2(qik)
2 +β3ûk +β4(ûk)

2 +βX Xk + vk.

To test the nonlinear relationship between qik and Ik, we include both (qik)
2 and

(ûk)
2 in the second-stage regression (Wooldridge 2015, page 437).18 Similarly, to

test H2, we obtain the IV model (IV Model 2) with the following first- and second-

stage regressions:

qik = α0 +α1Bk +αX Xk +uk, and

Sk = β0 +β1qik +β2(qik)
2 +β3ûk +β4(ûk)

2 +βX Xk + vk.

18Note that there is no forbidden regression problem in our model because we do not directly plug
predicted values of qik from the first stage in the nonlinear second-stage regression (cf. Angrist and
Pischke 2009). Instead, we implement control function approach, which was developed as a solution
to the forbidden regression problem (Wooldridge 2010, 2015, Petrin and Train 2010), and hence we
use predicted residuals ûk.
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4.4.4 Results

Tables 4.2 and 4.3 show the descriptive statistics and correlations (we exclude 3,011

cancelled campaigns). We report no issue of multicollinearity. All the results are

presented in Table 4.4. The effects of control variables on our outcome variables in

both models are as expected. For example, compared to teams, individual creators

are less likely to improve their products and their campaigns are less likely to be

successful.

Results of Probit Models. In Probit Model 1, the coefficient of initial enhance-

ment level qik is positive and significant (γ1 = 0.072, p < 0.01) and the coefficient

of (qik)
2 is negative and significant (γ2 = −0.002, p < 0.01). As Figure 4.5(a)

illustrates, this result supports H1. In Probit Model 2, the coefficient of initial en-

hancement level qik is positive and significant (γ1 = 0.088, p < 0.01) and the co-

efficient of (qik)
2 is negative and significant (γ2 = −0.002, p < 0.01). As Figure

4.5(b) illustrates, this result shows that as the initial enhancement level increases,

the likelihood of campaign success first increases but then decreases. Hence, this

result does not support H2.

Results of IV Models. We next discuss the results of the IV models (see Table 4.4).

The second stage of IV Model 1 shows the results for H1. While the coefficient

of initial enhancement level qik is positive and significant (γ1 = 0.103, p < 0.01),

the coefficient of (qik)
2 is negative and significant (γ2 = −0.002, p < 0.01). We

also calculate the turning point as qik = 23.12 and its 95% confidence interval as

(19.46,27.33), and both the turning point and its confidence interval are within the

data range (e.g., Haans et al. 2016, Tan and Netessine 2019). As Figure 4.5(c)

illustrates, this result indicates that as the initial enhancement level increases, the

likelihood of product improvement first increases and then decreases, supporting

H1.



4.4. Empirical Models and Analysis 115

Ta
bl

e
4.

4:
R

es
ul

ts
of

pr
ob

it
an

d
IV

m
od

el
s.

1 

 
  

  
Pr

ob
it 

M
od

el
 1

 
Pr

ob
it 

M
od

el
 2

 
Fi

rs
t S

ta
ge

 o
f I

V
 M

od
el

s 
1 

an
d 

2 
Se

co
nd

 S
ta

ge
 o

f I
V

 
M

od
el

 1
 

Se
co

nd
 S

ta
ge

 o
f I

V
 

M
od

el
 2

 
  

  
Pr

od
uc

t i
m

pr
ov

em
en

t 
C

am
pa

ig
n 

su
cc

es
s 

In
iti

al
 e

nh
an

ce
m

en
t l

ev
el

 
Pr

od
uc

t i
m

pr
ov

em
en

t 
C

am
pa

ig
n 

su
cc

es
s 

In
iti

al
 e

nh
an

ce
m

en
t l

ev
el

 
.0

72
**

* 
.0

88
**

* 
 

.1
03

**
* 

.1
29

**
* 

  
 

(.0
04

) 
(.0

04
) 

 
(.0

09
) 

(.0
1)

 
In

iti
al

 e
nh

an
ce

m
en

t l
ev

el
	×

 
In

iti
al

 e
nh

an
ce

m
en

t l
ev

el
  

  
-.0

02
**

* 
-.0

02
**

* 
 

-.0
02

**
* 

-.0
02

**
* 

  
 

(.0
00

) 
(.0

00
) 

 
(.0

00
) 

(.0
00

) 
C

at
eg

or
y:

 T
ec

hn
ol

og
y 

.0
59

**
* 

.0
25

 
1.

00
4*

**
 

.0
26

 
-.0

16
 

  
 

(.0
23

) 
(.0

21
) 

(.1
04

) 
(.0

25
) 

(.0
22

) 
G

oa
l (

ln
) 

-.0
06

 
-.3

31
**

* 
.5

79
**

* 
-.0

23
**

* 
-.3

54
**

* 
  

 
(.0

08
) 

(.0
08

) 
(.0

34
) 

(.0
09

) 
(.0

09
) 

D
ur

at
io

n 
.0

03
**

* 
-.0

02
* 

-.0
19

**
* 

.0
03

**
* 

-.0
01

 
  

 
(.0

01
) 

(.0
01

) 
(.0

05
) 

(.0
01

) 
(.0

01
) 

Pl
ed

ge
 p

ri
ce

 
0 

0*
**

 
0 

0 
0*

**
 

  
 

(.0
00

) 
(.0

00
) 

(.0
00

) 
(.0

00
) 

(.0
00

) 
D

el
iv

er
y 

tim
e 

.0
02

 
-.0

05
**

 
.0

11
 

.0
02

 
-.0

05
**

 
  

 
(.0

02
) 

(.0
02

) 
(.0

1)
 

(.0
02

) 
(.0

02
) 

Vi
de

os
 

.0
15

 
-.0

05
 

.6
96

**
* 

-.0
06

 
-.0

32
**

 
  

 
(.0

12
) 

(.0
12

) 
(.0

89
) 

(.0
14

) 
(.0

13
) 

Pi
ct

ur
es

 
.0

13
**

* 
.0

33
**

* 
.2

96
**

* 
.0

04
 

.0
22

**
* 

  
 

(.0
01

) 
(.0

01
) 

(.0
06

) 
(.0

03
) 

(.0
03

) 
Ri

sk
-s

ec
tio

n 
le

ng
th

 
0*

**
 

0*
**

 
.0

15
**

* 
0 

0*
* 

  
 

(.0
00

) 
(.0

00
) 

(.0
01

) 
(.0

00
) 

(.0
00

) 
C

re
at

or
 e

xp
er

ie
nc

e 
.0

2 
.2

57
**

* 
.2

03
**

* 
.0

18
 

.2
57

**
* 

  
 

(.0
15

) 
(.0

23
) 

(.0
62

) 
(.0

15
) 

(.0
23

) 
In

di
vi

du
al

 
-.1

4*
**

 
-.3

57
**

* 
-.0

4 
-.1

4*
**

 
-.3

6*
**

 
  

 
(.0

24
) 

(.0
2)

 
(.1

07
) 

(.0
24

) 
(.0

2)
 

C
om

pe
tit

io
n 

-1
.2

74
**

* 
-2

.0
56

**
* 

-2
.5

43
* 

-.5
95

**
 

-1
.1

63
**

* 
  

 
(.2

50
) 

(.2
83

) 
(1

.4
05

) 
(.3

03
) 

(.3
27

) 
Be

fo
re

 re
la

xa
tio

n 
of

 ru
le

s 
 

 
3.

51
3*

**
 

 
 

  
 

 
 

(.1
53

) 
 

 
Re

si
du

al
s 

 
 

 
-.0

31
**

* 
-.0

4*
**

 
 

 
 

 
(.0

09
) 

(.0
09

) 
Re

si
du

al
s×

Re
si

du
al

s 
  

 
 

 
 

0 
0*

 
  

 
 

 
 

(.0
00

) 
(.0

00
) 

C
on

st
an

t 
-1

.0
4*

**
 

2.
26

1*
**

 
-2

.2
92

**
* 

-1
.0

95
**

* 
2.

19
2*

**
 

  
 

(.0
84

) 
(.0

74
) 

(.3
66

) 
(.0

87
) 

(.0
78

) 
W

al
d 
𝜒!

 
14

90
.1

2 
40

34
.9

4 
13

27
9.

55
 

14
95

.5
0 

40
01

.2
0 

ps
eu

do
 𝑅

! 
.0

56
 

.2
04

 
.3

99
 

.0
57

 
.2

06
 

O
bs

er
va

tio
ns

 
18

17
3 

18
17

3 
18

17
3 

18
17

3 
18

17
3 

N
on

pa
ra

m
et

ri
c 

bo
ot

st
ra

p 
st

an
da

rd
 e

rr
or

s (
10

0 
re

pl
ic

at
io

ns
) i

n 
pa

re
nt

he
se

s. 
**

* 
p<

.0
1,

 *
* 

p<
.0

5,
 *

 p
<

.1
 



4.4. Empirical Models and Analysis 116

0
.1

.2
.3

.4

Pr
ed

ic
te

d 
Pr

od
uc

t I
m

pr
ov

em
en

t

0 4810 20 30 40

Initial Enhancement Level

(a) Probit Model 1.
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(b) Probit Model 2.
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(c) IV Model 1.
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(d) IV Model 2.

Figure 4.5: Predicted likelihood of product improvement and campaign success.

The second stage of IV Model 2 shows the results for H2. While the coefficient

of initial enhancement level qik is positive and significant (γ1 = 0.129, p < 0.01),

the coefficient of (qik)
2 is negative and significant (γ2 = −0.002, p < 0.01). We

also calculate the turning point as qik = 26.01 and its 95% confidence interval as

(22.15,29.36), and both the turning point and its confidence interval are within the

data range. As Figure 4.5(d) illustrates, this result shows that as the initial enhance-

ment level increases, the likelihood of campaign success first increases but then

decreases. Thus, like Probit Model 2, IV Model 2 does not support H2. In §4.5, we

discuss a possible explanation for this relationship between the initial enhancement

level and campaign success. Table 4.4 also shows that in the second stage of both

IV models, the coefficients of residuals obtained from the first-stage model are neg-

ative and significant. Significant residuals confirm a possible endogeneity problem

and support our use of an IV (Wooldridge 2010).

Robustness Check. To check the robustness of our empirical results, we also run

spline regressions, which use knots to capture the different impact of an explanatory

variable for different intervals (e.g., Kesavan et al. 2014). We try various spline
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regressions for the second-stage estimations in both IV models, and we find that

the coefficient of the first spline is positive and significant and the coefficient of the

second spline is negative and significant (see Table F.1 in Appendix F.3), supporting

our results above.

Additionally, we run our empirical models for the following cases (see Ap-

pendix F.3 for details). First, to have equal time periods before and after the in-

strument, we exclude campaigns launched after April 28, 2015, and we show the

robustness of our empirical findings by analyzing 11,764 campaigns. Second, we

observe that in some campaigns, the number of topics in the final description of

a product is slightly lower than in the initial description, often because of the de-

crease in the length of the description. When we exclude these campaigns and

analyze 17,005 campaigns, our results continue to hold. Third, we treat cancelled

campaigns as failed campaigns, and show the robustness of our findings by analyz-

ing 21,184 campaigns. Fourth, as we explain in Appendix F.1, we train the LDA

model with 50 topics, in line with the literature. Our results continue to hold when

we set the number of topics to 20% above or below 50 in the LDA model and when

we set the threshold to 20% above or below 10 words when counting the number

of topics in each description. Finally, when testing H1, we control for the average

competition in the first week of each campaign instead of the average competition

during the campaign to avoid timing problem, and we show that our results hold.

4.5 Revised Theoretical Model and Analysis

Our empirical results do not support H2, and suggest that P(success) first increases

and then decreases with the initial enhancement level. This discrepancy between

the normative theory and empirical findings may suggest some behavioral effects.

Specifically, when enhancing the product, a creator may end up with a too complex

or too advanced product, which can overwhelm customers (e.g., Mick and Fournier

1998) or can lead to customer anxiety (e.g., Castaño et al. 2008, Goodman and

Irmak 2013). To factor in such behavioral effects, we incorporate a cost of b · q2
f

into each customer’s utility, where b > 0, and this cost discounts the value that each
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Figure 4.6: The impact of qi on P(improve) and P(success). The setting is the same as in
Figure 4.3 where b = 0.1.

customer receives from the product enhancement.19 Specifically, we modify the

utility function of customer j (∈ {1,2}) in §4.3 as follows:

U j = v j(q f −b ·q2
f )− p, where q f = qi or q f = qi +qu. (4.2)

Note that when we omit behavioral effects, i.e., the behavioral cost parameter b =

0, this model boils down to our original model in §4.3. Considering U j in (4.2),

we use the same approach in §4.3 to analyze the impact of qi on P(improve) and

P(success), and obtain the following proposition.20

Proposition 3 (a) There exists a threshold qi (≥ 0) such that when the initial en-

hancement level qi ≤ qi, P(improve) = (qi+qu)−b(qi+qu)
2−p

(qi+qu)−b(qi+qu)2 , which is increasing in

qi if and only if b(qi +qu)< 0.5. Furthermore, there exists qi (∈ R+∪{+∞}) such

that when qi > qi, P(improve) = 0.

(b) There exist thresholds q′i (≥ 0) and q′′i (∈ R+∪{+∞}) such that P(success) is

increasing in qi < q′i and P(success) is decreasing in qi > q′′i .

As Figure 4.6 illustrates, Proposition 3(a) extends Proposition 1 to the case where

U j is as in (4.2). In this case, as qi increases, P(improve) first increases and may

then decrease before P(improve) = 0. More importantly, Proposition 3(b) shows

that P(success) increases with the initial enhancement level qi when qi is below a

certain threshold, and that P(success) decreases with qi when qi is above a certain

19Although we incorporate this cost for the final enhancement level q f to have the impact of qi
and qu on the customer’s utility consistent, notice that this approach leads to an inverted U-shaped
relationship between qi and the customer’s utility, as predicted in empirical analysis.

20In §4.5 and §4.6, we assume that q f −bq2
f − p > 0, where q f = qi (respectively, q f = qi +qu),

to avoid trivial cases where even a customer with maximum valuation does not pledge when there is
no improvement (respectively, there is an improvement).
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threshold; see Figure 4.6. (Note that in Figure 4.6, thresholds q′i and q′′i in Propo-

sition 3(b) overlap.) The reason is that, although each customer’s utility increases

with qi up to some point, too large an increase in qi reduces each customer’s util-

ity, and it thus becomes less likely that customers will pledge. Therefore, when

we consider the customer’s utility in (4.2), our theoretical predictions and empirical

observations become consistent.

Proposition 3(b) has the following interesting implication for crowdfunding

practice. As we discuss in §4.1, Kickstarter experts suggest enhancing the product

as much as possible before campaign launch (Kickstarter 2021e) by assuming that

a more enhanced product is more likely to be successful. However, we show that

this assumption does not necessarily hold. Instead, to run a successful campaign, a

creator should avoid enhancing the product too much before the campaign as it can

overwhelm customers or can lead to customer anxiety.

4.6 Optimal Level of Enhancement at Campaign

Launch

So far, to answer our first two research questions (Q1) and (Q2), we have considered

the case in which the initial enhancement level qi is exogenously given. We now

consider the optimal initial enhancement level to answer our last research question

(Q3). For this analysis, we use our revised model in §4.5 as it yields predictions

that are consistent with our empirical observations in §4.4.4.

We build on the backward induction argument presented in §4.3.1 to derive

the sub-game perfect equilibrium. When customer j’s utility U j is as in (4.2), the

creator improves the product during the campaign for any qi if and only if

I ≡ p2(1−b(2qi +qu))

qi(qi +qu)(1−b(qi +qu))(1−bqi)

− c
(

2qi +qu −
p

(1−b(qi +qu))(1−bqi)

)
≥ 0. (4.3)

This condition is analogous to the one in (4.1). Given this condition, in Stage 0 of
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(a) Ci = 0.05. (b) Ci = 0.01.

Figure 4.7: The creator’s ex-ante expected profit Π in Stage 0 as a function of qi. The
left-hand side of the figures represents qi’s which lead to improvement (i.e.,
I ≥ 0) and the right-hand side represents qi’s which lead to no improvement
(i.e., I < 0). The setting is the same as in Figure 4.6(a).

our revised model, the creator decides on qi that maximizes the following profit:

Π =


(

1− p
(qi+qu)−b(qi+qu)2

)2 (
2p−2c(qi +qu)

2)−Ciqi, if I ≥ 0,(
1− p

qi−bq2
i

)2 (
2p−2cq2

i
)
−Ciqi, otherwise.

(4.4)

Let q∗i and q∗f be the optimal initial and final enhancement levels of the product

respectively, where q∗f = q∗i +qu or q∗f = q∗i , depending whether I ≥ 0 or I < 0 under

q∗i . To analyze whether it is always optimal for the creator to enhance the product as

much as possible before the campaign (i.e., q∗i = q∗f ), we make the following mild

assumption.

Assumption 1 qu −bq2
u − p > 0 and p− cq2

u > 0.

This assumption ensures that the cost of an improvement during a campaign can be

recovered at least under zero initial enhancement so that making an improvement is

an option for the creator. Under Assumption 1, we analyze the relationship between

q∗i and q∗f in the following proposition.

Proposition 4 For any b (≥ 0), there exists a threshold Ci (≥ 0) such that if Ci >Ci,

then q∗i = q∗f −qu.

As we discuss in §4.1, experts on crowdfunding campaigns suggest that products

should be enhanced as much as possible before campaigns (i.e., q∗i = q∗f ), yet Propo-

sition 4 shows that this is not the optimal strategy for a creator when Ci is above a
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threshold.21 The intuition is as follows. As Ci increases, it becomes more costly

for the creator to increase qi. Thus, to save on the initial investment cost, the cre-

ator prefers setting q∗i = q∗f −qu and improves the product during the campaign, as

Figure 4.7(a) illustrates. Note that this result continues to hold even when there is

no behavioral effect that leads the customer’s utility to decrease with qi, i.e., when

b = 0. This result suggests that if enhancing the product fully before launching a

campaign would entail significant additional costs for the creator, it may be better

to go ahead with a basic version of a product and improve it during the campaign,

even though this may decrease the chances of the campaign being successful. These

additional costs might relate to market research, concept generation, design rework,

or engineering changes. We also illustrate in Figure 4.7(b) that when Ci is small,

the creator enhances the product fully (i.e., q∗i = q∗f ) without leaving any room for

further improvements during the campaign.

4.7 Discussion and Conclusion
Crowdfunding is more than just an effective financing instrument for entrepreneurs.

One of its key advantages, which has received cursory attention from the crowd-

funding literature, is that it enables creators to improve their products in response

to customer feedback (Mollick 2014, Cornelius and Gokpinar 2020). To take ad-

vantage of this, a creator may launch a crowdfunding campaign for a basic version

of a product (i.e., product with fewer features), leaving room for it to be improved.

However, if the product appears too basic, customers may not pledge and the cam-

paign may thus fail. Keen to investigate this key trade-off, we study how the initial

enhancement level of a product affects the likelihood of it being improved during

a campaign and the chances of the campaign being successful, and we ultimately

analyze whether a creator should enhance a product as much as possible before

launching a crowdfunding campaign.

Inspired by both crowdfunding practice and literature (e.g., Hu et al. 2015,

Belavina et al. 2020, Chakraborty and Swinney 2021), we construct a parsimo-

21Our additional analysis shows that when b = 0, q∗i = q∗f −qu if and only if Ci >Ci. Otherwise,
q∗i = q∗f .
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nious game-theoretical model of reward-based, all-or-nothing crowdfunding that

takes into account the creator’s product improvement decision. We obtain the fol-

lowing results. Although one might expect that more enhanced products are less

likely to be improved since this will increase the creator’s production cost, we show

that this is only true when there is extensive initial enhancement. In contrast, when

there is relatively little initial enhancement, the likelihood of product improvement

increases with the initial enhancement level, because customers are then more likely

to pledge and to leave comments. We also show the intuitive result that as the initial

enhancement level increases, the likelihood of campaign success increases, but at a

decreasing rate when the initial enhancement level is high.

We test these theoretical predictions using a unique data set from Kickstarter.

Our empirical findings support the predicted relationship between the initial en-

hancement level (i.e., number of features) and the likelihood of product improve-

ment. More interestingly, although our theoretical model intuitively predicts that the

likelihood of campaign success will increase with the initial enhancement level, our

empirical finding does not support this prediction. Instead, we show that the like-

lihood of campaign success at first increases but then, counterintuitively, decreases

with the initial enhancement level. This can be because a highly enhanced product

can be too complex or too advanced, which can overwhelm customers (e.g., Mick

and Fournier 1998) or may lead to customer anxiety (e.g., Castaño et al. 2008). This

result suggests that to run a successful campaign, the creator should avoid enhanc-

ing the product too much before the campaign.

Building on these results, we test the experts’ recommended strategy of en-

hancing the product as much as possible before the campaign, and we show that

this strategy is not always optimal. Instead, when customer involvement can reduce

the product development costs—such as for market research, concept generation,

design rework, or engineering changes—it can be better for the creator to go ahead

with a simple version of a product and make improvements to it during the cam-

paign, even though this may decrease the chances of the campaign being successful.

Our results not only contribute to the crowdfunding literature, but also add to
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the NPD literature (cf. Krishnan and Ulrich 2001, Loch and Kavadias 2008), as we

revisit the debate around flexible approaches in product development and the role of

customer feedback. Specifically, we point out that unlike traditional product devel-

opment approaches (e.g., Bhattacharya et al. 1998, Thomke and Reinertsen 1998),

crowdfunding enables a creator to improve a product based on customer feedback

before committing to any production. Although this approach comes with a risk of

campaign failure, our results suggest that it can still be better for the creator to leave

scope to refine the product based on customer feedback during the campaign.

Our study is a first step towards analyzing creators’ product development and

improvement decisions in crowdfunding campaigns, so it naturally has some lim-

itations that provide opportunities for future research. First, when analyzing how

the initial enhancement level of a product affects a campaign’s chances of success,

we measure this by comparing the funds raised at the end of the campaign to the

funding goal. Although this measure is consistent with our theoretical model and

appropriate for the purpose of our study, it would also be interesting to analyze the

impact of the initial enhancement level of a product on the likelihood of it being de-

livered to customers (i.e., a successful product launch). This analysis would require

a more comprehensive data set that includes product launch information. Second,

inspired by practice, in our theoretical model, we consider customer comments as

providing a motivation for the creator to improve the product during the campaign,

and we focus on the creator’s decisions on the initial enhancement level of a product

and whether to improve it during the campaign. However, an interesting direction

for future research would be to focus in detail on customers’ pledging and com-

menting decisions. Finally, our study focuses on reward-based crowdfunding, but it

would also be interesting to analyze the impact of the initial enhancement level of

a product in equity-based crowdfunding where customer and creator dynamics can

be quite different.



Chapter 5

Conclusions

Online crowdsourcing and crowdfunding platforms have changed the way how

firms, organizations, and entrepreneurs manage innovation. While crowdsourcing

platforms enable established firms and organizations to look beyond their bound-

aries for innovative solutions, crowdfunding platforms enable entrepreneurs to raise

funds and collect feedback for their innovative ideas from the crowd. Although the

economic value generated on these platforms is highly dependent on operational

decisions of firms, organizations, and entrepreneurs, some of these decisions have

received limited attention from the literature on platform operations. This thesis

contributes to the literature and practice by addressing this gap between the theory

and practice.

Specifically, in Chapter 2, I study the contest organizer’s decisions on the con-

test duration and award scheme. Analyzing a game-theoretical model, I show how

the organizer should decide on the contest duration given different contest charac-

teristics and provide an explanation for why giving multiple awards is so common

in practice. In Chapter 3, I study the impact of team collaboration in innovation

contests, motivated by the mixed policies adopted by crowdsourcing platforms.

Analyzing game-theoretical models of innovation contests under both individual

submissions and team submissions, I identify conditions under which the organizer

and solvers can benefit from team collaboration and show that on crowdsourcing

platforms, team collaboration is more likely to lead to better outcomes than as in

traditional innovation settings. In Chapter 4, I study entrepreneurs’ product de-
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velopment and improvement decisions in crowdfunding campaigns. Analyzing a

game-theoretical model and testing its predictions empirically, I show that both the

chances of campaign success and the likelihood of product improvement during a

campaign first increase but then decrease with the product’s initial level of enhance-

ment, and it is not always best strategy to enhance products as much as possible

before a campaign.

This thesis provides many opportunities for future research about innovation

management on online platforms. In Chapter 2, I use a static model o capture the

first-order effects and primary trade-offs in contests organized on crowdsourcing

platforms such as InnoCentive and Topcoder. An interesting research avenue can

be to study the relationship between the contest duration and feedback policies by

using a dynamic model. By analyzing a dynamic model, one can also study the im-

pact of the contest duration on solvers’ participation and effort decisions over time.

In Chapter 3, I focus on the organizer’s decision on whether to encourage or discour-

age team collaboration and do not study solvers’ team formation process. For future

work, it would be interesting to conduct an experimental study to understand how

solvers form teams to generate solutions to different types of problems on crowd-

sourcing platforms. In Chapter 4, campaign success is defined as whether the total

amount pledged reaches the funding goal by the end of the campaign. Although this

measure is consistent with the theoretical model and how Kickstarter defines cam-

paign success, an interesting research direction would be to use a broader definition

of success, such as whether the product is delivered to customers or product sales on

platforms like Amazon after the campaign. Finally, I hope that this research encour-

ages researchers to combine theoretical analysis, empirical analysis, and large-scale

textual data analysis.



Appendix A

Proofs of Chapter 2

Proof of Lemma 1. For any ei ≡
∫ T

0 θ(t)ηi(t)dt and T , agent i can optimally allo-

cate her effort over the contest duration by solving the following cost-minimization

problem:

min
ηi

∫ T

0
cηi(t)bdt, s.t. ei −

∫ T

0
θ(t)ηi(t)dt = 0. (A.1)

Let µe be the Lagrange multiplier of the constraint in (A.1). Then, the equi-

librium per-time effort η∗
i (t) and the optimal Lagrange multiplier µ∗

e (≥ 0)

satisfy the Kuhn-Tucker conditions, which are cbη∗
i (t)

b−1 − µ∗
e θ(t) = 0 and

µ∗
e

(
ei −

∫ T
0 θ(t)η∗

i (t)dt
)
= 0. Thus, η∗

i (t) =
(

µ∗
e θ(t)
cb

) 1
b−1 and µ∗

e = cb
(

ei
τ(T )

) 1
b−1 ,

and hence η∗
i (t) = eiθ(t)

1
b−1 τ(T )−1 and agent i’s cost ψ(ei,T ) = ceb

i τ(T )1−b.

Therefore, since b > 1, ∂ψ(ei,T )
∂ei

= cbeb−1
i τ(T )1−b > 0 and ∂ 2ψ(ei,T )

∂e2
i

= cb(b −

1)eb−2
i τ(T )1−b > 0. Also, ∂ψ(ei,T )

∂T = ceb
i (1− b)τ(T )−bτ ′(T ) < 0 since b > 1 and

τ ′(T ) = θ(T )
b

b−1 > 0.

Proof of Lemma 2. From (2.5), e∗ =
(xA

cb

) 1
b−1 τ(T ). Substituting e∗ into (2.6)-(2.8)

yields

max
T

exp(−δT )

((
xA
cb

) 1
b−1

τ(T )+E
[
ξ̃

N
(1)

])
−A, (A.2)

s.t. − A
N
+ c
(

xA
cb

) b
b−1

τ(T )+F ≤ 0. (A.3)

Suppose that Π is non-monotonic. Let µ be the Lagrange multiplier of the constraint

in (A.3). T ∗ and the optimal Lagrange multiplier µ∗(≥ 0) satisfy the following
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Kuhn-Tucker conditions:

exp(−δT ∗)

[(
xA
cb

) 1
b−1 (

−δτ(T ∗)+ τ
′(T ∗)

)
−δE

[
ξ̃

N
(1)

]]
−µ

∗c
(

xA
cb

) b
b−1

τ
′(T ∗) = 0,

(A.4)

µ
∗

(
−A

N
+ c
(

xA
cb

) b
b−1

τ(T )+F

)
= 0. (A.5)

Suppose that µ∗ > 0. From (A.5), the optimal contest duration

T ∗ = T = τ
−1

(
A−NF

cN

(
xA
cb

) −b
b−1
)

. (A.6)

Using this equation to simplify (A.4) yields

µ
∗ = exp(−δT ∗)

[(
−δb(A−NF)

NxA
+

(
xA
cb

) 1
b−1

τ
′(T ∗)

)
−δE

[
ξ̃

N
(1)

]]
×

c−1
(

xA
cb

) −b
b−1

(τ ′(T ∗))−1.

µ∗ > 0, so T ∗ satisfies (A.6) if δ < δ1 ≡
τ ′
(

τ−1
(

A−NF
cN ( xA

cb )
−b
b−1

))
(Ax

cb )
1

b−1

b(A−NF)
NxA +E

[
ξ̃ N
(1)

] . Note that

δ1 > 0 since τ ′(T ) = θ(T )
b

b−1 > 0 for any T , E
[
ξ̃ N
(1)

]
> 0, F < A/N, and x > 0 by

Lemma 6 of Appendix B.

Suppose that µ∗ = 0. exp(−δT ∗) > 0, so from (A.4), the optimal contest

duration T ∗ = T̂ satisfies

τ
′(T̂ )−δτ(T̂ ) = δE

[
ξ̃

N
(1)

](xA
cb

) −1
b−1

. (A.7)

T ∗ = T̂ should satisfy (A.3). Plugging τ(T ∗) = τ ′(T ∗)
δ

−E
[
ξ̃ N
(1)

](xA
cb

) −1
b−1 into (A.3)

gives δ ≥ δ1. Thus, T ∗ = T̂ if δ ≥ δ1. Let −→γ ≡ (γ(1),γ(2), ...,γ(N)) and

Φ(−→γ )≡
τ ′
(

τ−1
(

A−NF
cN

(xA
cb

) −b
b−1

))(Ax
cb

) 1
b−1

b(A−NF)
NxA +E

[
ξ̃ N
(1)

] −δ . (A.8)

Then, for any distribution of awards −→γ , if Φ(−→γ ) > 0, then T ∗ is characterized by

(A.6); and if Φ(−→γ )≤ 0, then T ∗ is characterized by (A.7) when Π is non-monotonic

in T . Also, when Π is monotonic in T , T ∗ is always characterized by (A.6) because
∂Π

∂T > 0.
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Proof of Theorem 1. (a) Given a scale parameter α(> 0), we have

E
[
ξ̂

N
(1)

]
= E

[
αξ̃

N
(1)

]
= αE

[
ξ̃

N
(1)

]
, (A.9)

N

∑
j=1

ÎN
( j)γ( j) =

1
α

N

∑
j=1

IN
( j)γ( j) =

x
α
. (A.10)

Suppose that δ < δ1 under a given −→
γ and for some α . Then, Φ(−→γ ) > 0 from

(A.8). By the continuity of Φ, in a sufficiently small neighborhood of α , we

still have Φ(−→γ ) > 0. Thus, from (A.6), under the scale parameter α , T ∗[α] =

τ−1
(

A−NF
cN

(xA
cb

) −b
b−1 α

b
b−1

)
. Then, since τ ′(T ∗[α]) = θ(T ∗[α])

b
b−1 > 0, for any

δ < δ1, ∂T ∗[α]
∂α

=
A−NF

cN ( xA
cb )

−b
b−1 b

b−1 α
1

b−1

τ ′(T ∗[α]) > 0.

(b) Suppose that θ(t) = exp(ρt) and δ < δ1 under a given −→
γ for some ρ . Then,

the optimal contest duration T ∗ = T = b−1
bρ

log
(

bρ

b−1
A−NF

cN

(xA
cb

) −b
b−1 +1

)
and ∂T ∗

∂ρ
=

b−1
bρ2

[
1− exp

(
−bρT ∗

b−1

)
− bρT ∗

b−1

]
. By L’Hopital’s rule, limρ→0

∂T ∗

∂ρ
< 0. Let P = bρ

b−1 .

Then, for any ρ ̸= 0, ∂T ∗

∂ρ
< 0 if and only if

bρT ∗

b−1
+ exp

(
−bρT ∗

b−1

)
= PT ∗+ exp(−PT ∗)> 1. (A.11)

For any ρ > 0 (i.e., P> 0), ∂ (PT ∗+exp(−PT ∗))
∂P = T ∗−T ∗ exp(−PT ∗)> 0. Also, when

ρ = 0 (i.e., P = 0), we have 0+exp(0) = 1. Thus, for any ρ > 0 (i.e., P > 0), (A.11)

is satisfied, so ∂T ∗

∂ρ
< 0. Finally, for any ρ < 0 (i.e., P < 0), ∂ (PT ∗+exp(−PT ∗))

∂P =

T ∗−T ∗ exp(−PT ∗)< 0. Since 0+ exp(0) = 1, for any ρ < 0 (i.e., P < 0), (A.11)

is satisfied, so ∂T ∗

∂ρ
< 0. Thus, T ∗ is decreasing in ρ .

Proof of Proposition 1. (a) Suppose that for some α , δ > δ1 under a given

distribution of awards −→
γ . Then, Φ(−→γ ) < 0 from (A.8). By the continuity of Φ,

in a sufficiently small neighborhood of α , we still have Φ(−→γ ) < 0. From (A.9),

E
[
ξ̂ N
(1)

]
= αE

[
ξ̃ N
(1)

]
; and from (A.10), ∑

N
j=1 ÎN

( j)γ( j) =
x
α

. Then, from (A.7), T ∗ un-

der α is characterized by θ(T ∗[α])
b

b−1 −δ
∫ T ∗[α]

0 θ(t)
b

b−1 dt = δαE
[
ξ̃ N
(1)

]( xA
αcb

) −1
b−1 .

Let Ω = θ(T ∗[α])
b

b−1 −δ
∫ T ∗[α]

0 θ(t)
b

b−1 dt −δE
[
ξ̃ N
(1)

]( xA
αcb

) −1
b−1 = 0. Then, for any

δ > δ1,

∂T ∗[α]

∂α
=−

∂Ω

∂α

∂Ω

∂T ∗[α]

=
δ

b
b−1α

1
b−1 E

[
ξ̃ N
(1)

](xA
cb

) −1
b−1

b
b−1θ(T ∗[α])

1
b−1 θ ′(T ∗[α])−δθ(T ∗[α])

b
b−1

< 0
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if and only if θ ′(T ∗[α])
θ(T ∗[α]) <

δ (b−1)
b . Note that this condition is satisfied when Π is non-

monotonic in T and unimodal as Lemma 7 in Appendix B shows. Thus, T ∗ = T̂

decreases with α .

(b) Suppose that θ(t) = exp(ρt) and δ > δ1 under a given −→
γ for some ρ . Let

P = bρ

b−1 . Then, ∂T ∗

∂ρ
> 0 if and only if ∂T ∗

∂P > 0. From (A.7), T ∗ = T̂ can be

calculated as

θ(T ∗)
b

b−1 −δ

∫ T ∗

0
θ(t)

b
b−1 dt =

δ

P
+ exp(PT ∗)

[
1− δ

P

]
= δE

[
ξ̃

N
(1)

](xA
cb

) −1
b−1

.

(A.12)

Using implicit function theorem, ∂T ∗

∂P =
δ

[P−δ ]
(1−exp(PT ∗))−PT ∗ exp(PT ∗)

P2 exp(PT ∗)
. limP→0

∂T ∗

∂P >

0 by L’Hopital’s rule. Note that ρ < δ (b−1)
b , i.e., P − δ < 0, when Π is non-

monotonic in T and unimodal as Lemma 7 in Appendix B shows. Thus, ∂T ∗

∂P > 0 if

and only if

δ (1− exp(PT ∗))−PT ∗ exp(PT ∗)(P−δ )< 0. (A.13)

Suppose that ρ < 0 (i.e., P < 0). From (A.12), since δE
[
ξ̃ N
(1)

](xA
cb

) −1
b−1 > 0, δ

P +

exp(PT ∗)
[
1− δ

P

]
> 0, which means exp(PT ∗)(P− δ ) < −δ when P < 0. Thus,

we have

δ (1− exp(PT ∗))−PT ∗ exp(PT ∗)(P−δ )< δ (1− exp(PT ∗))+δPT ∗

= δ (1− exp(PT ∗)+PT ∗) .

Because 1−exp(0)+0 = 0 and ∂ (1−exp(PT ∗)+PT ∗)
∂P =−T ∗ exp(PT ∗)+T ∗ > 0 when

P< 0, δ (1− exp(PT ∗)+PT ∗)< 0 when P< 0. Thus, when ρ < 0 (i.e., P< 0), the

condition in (A.13) is satisfied, and hence ∂T ∗

∂ρ
> 0. Next, suppose that ρ > 0 (i.e.,

P> 0). From (A.12), δ

P +exp(PT ∗)
[
1− δ

P

]
> 0, which means exp(PT ∗)(P−δ )>

−δ when P > 0. Thus, we have

δ (1− exp(PT ∗))−PT ∗ exp(PT ∗)(P−δ )< δ (1− exp(PT ∗))+δPT ∗

= δ (1− exp(PT ∗)+PT ∗) .

Because 1−exp(0)+0 = 0 and ∂ (1−exp(PT ∗)+PT ∗)
∂P =−T ∗ exp(PT ∗)+T ∗ < 0 when

P > 0, δ (1− exp(PT ∗)+PT ∗) < 0 when P < 0. Thus, when ρ > 0 (i.e., P > 0),



130

the condition in (A.13) is satisfied, and hence ∂T ∗

∂ρ
> 0. Thus, T ∗ = T̂ increases with

ρ .

Proof of Theorem 2. (a) Let Φ(−→γ ) be defined as in (A.8). We have two cases.

Case 1: Suppose that Φ(1,0,0, ...,0)≤ 0 (i.e., δ ≥ δWTA
1 ) and Π is non-monotonic

in T under the WTA award scheme. Then, by Lemma 8 of Appendix B, Π is non-

monotonic in T for any −→
γ , and hence for any −→

γ such that Φ ≤ 0, T ∗ = T̂ , which

satisfies (A.7). By Lemma 8, the WTA award scheme yields a larger Π than any −→
γ

such that Φ ≤ 0. Also, for any −→
γ such that Φ > 0, T ∗ = T as in (A.6); and for any

−→
γ , Π under T is always less than and equal to Π under T̂ . Also, since the WTA

award scheme yields a larger Π than any −→
γ under T̂ , it yields a larger Π than any

−→
γ such that T ∗ = T . Thus, the WTA award scheme is optimal.

Case 2: Suppose that Φ(1,0,0, ...,0)≤ 0 (i.e., δ ≥ δWTA
1 ) and Π is monotonic un-

der the WTA award scheme or suppose that Φ(1,0,0, ...,0) > 0 (i.e., δ < δWTA
1 ).

Let −→γm ≡ (γm
(1),γ

m
(2), ...,γ

m
(N)). Any −→

γ1 ̸= (1,0,0, ...,0) such that Φ(−→γ1 ) < 0 and Π is

non-monotonic cannot be optimal because by the continuity of Φ and the continuity

of ∂Π

∂T , we can find −→
γ2 such that Φ(−→γ2 )< 0, Π is non-monotonic, and ∑

N
j=1 IN

( j)γ
2
( j) >

∑
N
j=1 IN

( j)γ
1
( j); and −→

γ2 yields a larger Π by Lemma 8 of Appendix B. Thus, without

loss of optimality, we restrict attention to −→
γ such that Φ(−→γ ) < 0 and Π is mono-

tonic or any −→
γ such that Φ(−→γ ) ≥ 0. Then, T ∗ = T = τ−1

(
A−NF

cN

(xA
cb

) −b
b−1

)
from

(A.6), and Π under T ∗ is

Π = exp

(
−δτ

−1

(
A−NF

cN

(
xA
cb

) −b
b−1
))(

b(A−NF)

ANx
+E

[
ξ̃

N
(1)

])
−A. (A.14)

As −→γ = (γ(1),γ(2), ...,γ(N)) affects Π only through x, the first derivative of Π with

respect to x

∂Π

∂x
= exp

(
−δτ

−1

(
A−NF

cN

(
xA
cb

) −b
b−1
))

b(A−NF)

ANx2 ×[
δ (τ−1)′

(
A−NF

cN

(
xA
cb

) −b
b−1
)

b
(b−1)

(
xA
cb

) −1
b−1
(

b(A−NF)

ANx
+E

[
ξ̃

N
(1)

])
−1

]
.

(A.15)
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Let

∆(x)≡ b−1
b

τ ′
(

τ−1
(

A−NF
cN

(xA
cb

) −b
b−1

))(xA
cb

) 1
b−1

b(A−NF)
ANx +E

[
ξ̃ N
(1)

] , (A.16)

and δ̂0 ≡ maxx ∆(x). Then, for any δ > δ̂0, ∂Π

∂x > 0 for any x. Also, let δ 0 ≡ ∆(IN
(1)).

Then, for any δ < δ 0, ∂Π

∂x

∣∣∣
x=IN

(1)

< 0. Note that δ̂0 > 0 and δ 0 > 0 because τ ′(T ) =

θ(T )
b

b−1 > 0 for any T , E
[
ξ̃ N
(1)

]
> 0, F < A/N, and x > 0 by Lemma 6 of Appendix

B.

Suppose that δ > δ̂0, but the WTA award scheme is not optimal. Then, under

an optimal distribution of awards (γ∗(1),γ
∗
(2),...,γ

∗
(N)), there exists l(> 1) such that

γ∗(l) > 0 and γ∗( j) ≥ γ∗( j+1) for all j ∈ {1,2, ...,N − 1}. Let k = max{l|γ∗(l) > 0}.

Consider a perturbation where the k-th award is shifted to the winner award by

keeping other awards the same, i.e., γ̂(k) = γ∗(k) − γ∗(k) = 0 and γ̂(1) = γ∗(1) + γ∗(k).

After the perturbation, we still have γ̂( j) ≥ γ̂( j+1) for all j ∈ {1,2, ...,N −1}, and x

increases as IN
(1)(γ

∗
(1)+γ∗(k))+∑

k−1
j=2 IN

( j)γ
∗
( j) > ∑

k
j=1 IN

( j)γ
∗
( j) by Lemma 6 of Appendix

B. Thus, the organizer’s profit Π increases after the perturbation since ∂Π

∂x > 0 when

δ > δ̂0. This contradicts the optimality of (γ∗(1),γ
∗
(2), ...,γ

∗
(N)), so the WTA award

scheme is optimal when δ > δ̂0.

Suppose that δ < δ 0, but the WTA award scheme is optimal. Consider a pertur-

bation where γ̂(1)= 1−ε , γ̂(2)= ε , and ε(> 0) is small. As Φ(1,0,0, ...,0)> 0 and Φ

is continuous, we can find a sufficiently small ε such that Φ(γ̂(1), γ̂(2),0,0, ...,0)> 0.

After the perturbation, the change in Π is

Π
∆ = exp

−δτ
−1

A−NF
cN


(

IN
(1)(1− ε)+ IN

(2)ε
)

A

cb


−b

b−1


×

 b(A−NF)

AN
(

IN
(1)(1− ε)+ IN

(2)ε
) +E

[
ξ̃

N
(1)

]
− exp

−δτ
−1

A−NF
cN

(
IN
(1)A

cb

) −b
b−1
(b(A−NF)

ANIN
(1)

+E
[
ξ̃

N
(1)

])
.

Since IN
(2) − IN

(1) < 0 by Lemma 6 of Appendix B, limε→0
Π∆

ε
> 0 when δ < δ 0.
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Thus, the perturbation improves Π under T ∗, which contradicts the optimality of

the WTA award scheme.

Combining cases 1 and 2, let δ 0 ≡ min{δ̂0,δ
WTA
1 } when Π is non-monotonic

in T under the WTA award scheme, and let δ 0 ≡ δ̂0 when Π is monotonic in T

under the WTA award scheme. If δ > δ 0, the WTA award scheme is optimal; and

if δ < δ 0, giving multiple awards is optimal. Also, noting that the WTA award

scheme maximizes x by Lemma 6, ∆(x) in (A.16) is increasing in x, and hence

δ̂0 = maxx ∆(x) = ∆(IN
(1)) = δ 0 when

∂τ ′
(

τ−1
(

A−NF
cN

(xA
cb

) −b
b−1

))
∂x

=
NF −A

cNx

(
xA
cb

) −b
b−1 θ ′ (T)

θ
(
T
) (A.17)

is sufficiently large because ( xA
cb )

1
b−1

b(A−NF)
ANx +E

[
ξ̃ N
(1)

] is increasing in x. Thus, there exists

M ≥ 0 such that if θ ′(T )
θ(T ) ≤ M for any x, δ 0 =

b−1
b δ1 = δ 0, and hence δ 0 = δ 0 = δ0.

(b) Suppose that θ(t) = exp(ρt). Then, ∂δ 0
∂ρ

= b−1
b

b(A−NF)

ANIN
(1)

+

(
IN
(1)A

cb

) 1
b−1

b(A−NF)

ANIN
(1)

+E
[
ξ̃ N
(1)

] > 0, so the

result follows.

Proof of Proposition 2. We construct an optimal distribution of awards

(γ∗(1),γ
∗
(2), ...,γ

∗
(N)) that satisfies the conditions in the proposition. Suppose that

θ ′(T )
θ(T ) ≤ M for any −→

γ = (γ(1),γ(2), ...,γ(N)), where M(≥ 0) is defined as in The-

orem 2. In this case, as discussed in the proof of Theorem 2, ∆(x) in (A.16) is

increasing in x, and hence δ 0 = δ 0 = δ0. For any A, the organizer chooses T ∗ and

x∗ ≡ ∑
L
j=1 IN

( j)γ
∗
( j) by solving his profit-maximization problem in (2.6)-(2.8).

Let x(1/K) ≡ ∑
K
j=1 IN

( j)/K for any K ∈ {1,2, ...,N}, let δ0,K ≡ ∆(x(1/K)) for

any K ∈ {1,2, ...,N − 1}, and let δ0,N ≡ max{0,∆(x(1/N))}. Because x(1/K)

is decreasing in K by Lemma 6 of Appendix B and ∆(x) is increasing in

x, we have δ0,K < δ0,K−1 for any K ∈ {2,3, ...,N}. Note that δ0,1 = δ0 =

∆(IN
(1)). From (2.7), e∗ =

(xA
cb

) 1
b−1 τ(T ), where τ(T ) is increasing in T , so Π =

exp(−δT )
((xA

cb

) 1
b−1 τ(T )+E

[
ξ̃ N
(1)

])
−A. From Theorem 1, when δ ≤ δ1, T ∗ = T

for any −→
γ , and hence under (γ∗(1),γ

∗
(2), ...,γ

∗
(N)), we also have T ∗ = T . Also, from
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(A.15) and (A.16), when δ > δ0,N = ∆(0), ∂Π

∂x

∣∣∣
T=T ,x=0

> 0, and hence x∗ is inte-

rior under T = T . Thus, the Kuhn-Tucker conditions are necessary for optimality.

Let µ be the Lagrange multiplier of (2.8). Then, the Kuhn-Tucker conditions are

given by (A.4)-(A.5) evaluated at x = x∗ and by Aτ(T )
(b−1)

(
x∗A
cb

) 1
b−1
[

exp(−δT ∗)
x∗A −µ∗

]
=

0. Thus, we have µ∗ = exp(−δT ∗)
x∗A > 0, so T ∗ = T = τ−1

(
A−NF

cN

(xA
cb

) −b
b−1

)
from (A.5). Plugging µ∗ and T ∗ into (A.4) yields −δ

(
b(A−NF)

NAx∗ +E
[
ξ̃ N
(1)

])
+

b−1
b

(
x∗A
cb

) 1
b−1

τ ′
(

τ−1
(

A−NF
cN

(
x∗A
cb

) −b
b−1
))

= 0, i.e., −δ +∆(x∗) = 0 from (A.16).

When δ = δ0,N , −δ0,N +∆(0) = 0, so (γ∗(1),γ
∗
(2), ...,γ

∗
(N)) = ( 1

N ,
1
N , ...,

1
N ).

Suppose δ ∈ (δ0,N ,δ0). Consider a perturbation where δ is increased by a

sufficiently small εδ . Then, x∗ increases by εx∗ = ∆−1(δ + εδ )−∆−1(δ ). Thus,

any perturbation of γ∗( j) that increases x∗ by εx∗ leads to an optimal distribution

of awards under δ + εδ . Consider the perturbation where γ∗(N) changes by ε(N) =

εx∗
− 1

N−1 ∑
N−1
j=1 IN

( j)+IN
(N)

and γ∗( j) changes by ε( j) =−ε(N)/(N−1) for j ∈ {1,2, ...,N−1}.

This perturbation increases x∗ by εx∗ . Note that − 1
L−1 ∑

L−1
j=1 IN

( j)+ IN
(L) < 0 for any

L ∈ {2, ...,N} since IN
( j) ≥ IN

( j+1) for any j ∈ {1,2, ...,N−1} by Lemma 6. Thus, this

perturbation reduces γ∗(N) while increasing γ∗( j) for all j ∈ {1,2, ...,N − 1}. When

δ increases up to δ0,N−1, since −δ0,N−1 + ∆(x(1/(N − 1))) = 0, γ∗( j) =
1

N−1 for

all j ∈ {1,2, ...,N − 1} and γ∗(N) = 0. As δ increases up to δ0, we can repeat

the same process by setting ε(L) =
εx∗

− 1
L−1 ∑

L−1
j=1 IN

( j)+IN
(L)

and ε( j) = −ε(L)/(L− 1) for

j ∈ {1,2, ...,L − 1} when there are L non-zero awards. Therefore, for any K ∈

{2,3, ...,N −1}, when δ ∈ (δ0,K,δ0,K−1), γ∗( j) = 0 for all j ∈ {K +1,K +2, ...,N},

γ∗( j) is increasing in δ for all j ∈ {1,2, ...,K − 1}, and γ∗(K) is decreasing in δ . As

a side note, when M = 0, θ ′(T )
θ(T ) ≤ 0, and hence from (A.17), ∆(0) ≤ 0. Thus,

δ0,N = max{0,∆(0)}= 0.

Proof of Proposition 3. Suppose that δ = 0. Then, Π =
(xA

cb

) 1
b−1 τ(T )+E

[
ξ̃ N
(1)

]
−

A. Thus, the Kuhn-Tucker conditions (where µ(≥ 0) is the Lagrange multiplier of
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(A.3)) are as follows:(
xA∗

cb

) 1
b−1

τ
′(T ∗)−µ

∗c
(

xA∗

cb

) b
b−1

τ
′(T ∗) = 0. (A.18)

1
A∗(b−1)

(
xA∗

cb

) 1
b−1

τ(T ∗)−1−µ
∗

[
− 1

N
+

b
A∗(b−1)

c
(

xA∗

cb

) b
b−1

τ(T ∗)

]
= 0.

(A.19)

µ

[
−A∗

N
+ c
(

xA∗

cb

) b
b−1

τ(T ∗)+F

]
= 0. (A.20)

From (A.18), µ∗ = b
xA∗ > 0, and hence from (A.20), τ(T ∗) = A∗−NF

Nc

(
xA∗

cb

) −b
b−1 .

Plugging µ∗ and τ(T ∗) into (A.19) yields A∗ =
√

bF
x , and hence T ∗ =

τ−1

(√
bF
x −NF
Nc

(
1
c

√
xF
b

) −b
b−1

)
. Note that limT→∞ Π = ∞, but T ∗ is bounded by

the participation condition (A.3). Thus, under T ∗, Π = b(A−NF)
ANx +E

[
ξ̃ N
(1)

]
−A, and

hence limA→∞ Π = −∞. Therefore, Kuhn-Tucker conditions above are necessary

for optimality.

(a) Under the scale parameter α , T ∗ = τ−1

(√
αbF

x −NF
Nc

(
1
c

√
xF
αb

) −b
b−1

)
and

A∗ =
√

αbF
x . Since τ−1 is increasing and the terms inside τ−1 are increasing in

α , ∂T ∗

∂α
> 0. Also, ∂A∗

∂α
= 1

2

√
bF
αx > 0.

(b) Suppose that θ(t) = exp(ρt). A∗ is independent of ρ , so Theorem 1(b) directly

follows.

Proof of Proposition 4. Suppose that δ = 0. (a) Π =
(xA

cb

) 1
b−1 τ(T )+E

[
ξ̃ N
(1)

]
−A.

Since ∂τ(T )
∂T > 0, we have ∂Π

∂T > 0 for any N, and hence T ∗ = T as in Lemma 2.

Under T ∗ = T , the organizer’s profit

Π =
b(A−NF)

ANx
+E

[
ξ̃

N
(1)

]
−A. (A.21)

Thus, the organizer decides on N∗ to maximize Π in (A.21). Let Π[α] be the orga-

nizer’s profit under α . Then, N∗ that maximizes Π[α] = αb(A−NF)
ANx +αE

[
ξ̃ N
(1)

]
−A

maximizes Π[α]+A
α

, which is independent of α . Thus, N∗ does not depend on α , and

hence by Theorem 1, T ∗ increases with α .

(b) Suppose that θ(t) = exp(ρt). Then, Π in (A.21) does not depend on ρ . Thus,
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N∗ does not depend on ρ , and hence by Theorem 1, T ∗ decreases with ρ .

Proof of Proposition 5. (a) Let δ
∗
0 = maxN∈{2,3,...,N} δ 0[N], where δ 0[N] is

the threshold defined in Theorem 2(a) when there are N participants. Let −→γ1 ≡

(γ1
(1),γ

1
(2), ...,γ

1
(N)), where γ1

(1) < 1; N∗,−→γ1 and N∗,WTA be the optimal number of

participants under −→
γ1 and the WTA award scheme, respectively. When δ > δ

∗
0,

δ ≥ δ 0|N=N∗,−→γ1 , so Π under the WTA award scheme is larger than Π under −→γ1 by

Theorem 2. Since Π under the WTA award scheme and N∗,WTA is larger than Π un-

der the WTA award scheme and N∗,−→γ1 , Π under the WTA award scheme and N∗,WTA

is larger than Π under −→γ1 and N∗,−→γ1 . Thus, for any δ > δ
∗
0, the WTA award scheme

is optimal when the organizer sets N∗ and T ∗. Next, let δ
∗
0 = minN∈{2,...,N} δ 0[N],

where δ 0[N] is the threshold defined in Theorem 2(a) under N participants. When

N = N∗,WTA, for any δ < δ
∗
0 ≤ δ 0[N

∗,WTA], there exists −→γ1 with γ1
(1) < 1 such that

Π under the WTA award scheme is smaller than Π under −→γ1 . Since Π under −→γ1 and

N∗,−→γ1 is larger than Π under −→γ1 and N∗,WTA, it is also larger than Π under the WTA

award scheme and N∗,WTA. Thus, for any δ < δ
∗
0, giving multiple awards is optimal

under N∗ and T ∗.

(b) Suppose θ(t) = exp(ρt). By Theorem 2(b), δ 0[N] is increasing in ρ , so is δ
∗
0.

(c) When δ < δ 0[N
∗], T ∗ = T under N∗ for any x, and hence Π is as in (A.14).

Thus, we have

∂Π

∂x

∣∣∣∣
N=N∗

=
∂Π

∂x

∣∣∣∣
N=N∗

+
∂Π

∂N

∣∣∣∣
N=N∗

∂N
∂x

∣∣∣∣
N=N∗

= exp

(
−δτ

−1

(
A−N∗F

cN∗

(
xA
cb

) −b
b−1
))

b(A−N∗F)

AN∗x2 ×[
δ (τ−1)′

(
A−N∗F

cN∗

(
xA
cb

) −b
b−1
)

b
(b−1)

(
xA
cb

) −1
b−1
(

b(A−N∗F)

AN∗x
+E

[
ξ̃

N∗

(1)

])
−1

]
.

Let ∆∗(x) be ∆(x) in (A.16) under N∗. Then, ∂Π

∂x

∣∣∣
N=N∗

> 0 if δ > ∆∗(x). We have

minN ∆(x) ≤ ∆∗(x) ≤ maxN ∆(x), limx→0 ∆(x) = limx→0
b−1

b
θ ′(T)
θ(T)

, and limx→0 T =

∞ for any N. Thus, limx→0 minN ∆(x) = limx→0 maxN ∆(x) = ∆(0), which is defined

in Proposition 2. Thus, by the Squeeze Theorem, limx→0 ∆∗(x) = ∆(0). Noting that

δ0,N = max{0,∆(0)}, when δ > δ0,N , ∂Π

∂x

∣∣∣
N=N∗,x=0

> 0, and hence giving multiple
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unequal awards is optimal.



Appendix B

Additional Analysis of Chapter 2

B.1 Asymmetric Pure-Strategy Nash Equilibrium
In this section, we discuss the robustness of our results when considering asym-

metric pure-strategy Nash equilibria. In the following lemma, we show that when

N = 2, any pure-strategy Nash equilibrium is symmetric, and hence all our results

under symmetric Nash equilibria follow.

Lemma 1 Let e∗i be agent i ∈ {1,2}’s equilibrium effort. Then, e∗1 = e∗2.

Proof. We first suppose that e∗1 > 0 and e∗2 > 0. Then, given that agent 2 exerts her

equilibrium effort e∗2, agent 1’s utility when exerting effort e1 is

U(e1,T ) = A(1− γ(1))+A(2γ(1)−1)
∫

s∈Ξ

H(e1 − e∗2 + s)h(s)ds− c(e1)
b
τ(T )1−b −F .

Evaluating the first derivative of U1(e1,T ) with respect to e1 at e1 = e∗1 yields

∂U(e1,T )
∂e1

∣∣∣∣
e1=e∗1

= A(2γ(1)−1)
∫

s∈Ξ

h(e∗1 − e∗2 + s)h(s)ds− cb(e∗1)
b−1

τ(T )1−b = 0.

(B.1)

Similarly, noting that P(e2 + ξ̃2 > e1 + ξ̃1) = 1−P(e1 + ξ̃1 > e2 + ξ̃2), given that

agent 1 exerts her equilibrium effort e∗1, agent 2’s utility when exerting e2 can be

written as

U(e2,T ) = A(1− γ(1))+A(2γ(1)−1)×[
1−

∫
s∈Ξ

H(e∗1 − e2 + s)h(s)ds
]
− c(e2)

b
τ(T )1−b −F .
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Evaluating the first derivative of U2(e2,T ) with respect to e2 at e2 = e∗2 gives

∂U2(e2,T )
∂e2

∣∣∣∣
e2=e∗2

=−A(2γ(1)−1)
∫

s∈Ξ

h(e∗1−e∗2+s)h(s)ds−cb(e∗2)
b−1

τ(T )1−b = 0.

(B.2)

From (B.1) and (B.2), agent 1’s and agent 2’s equilibrium efforts are

e∗1 = e∗2 =
(

A(2γ(1)−1)
∫

s∈Ξ
h(e∗1 − e∗2 + s)h(s)ds
cb

) 1
b−1

τ(T ).

Thus, there does not exist an asymmetric pure-strategy Nash equilibrium where

e∗1 > 0 and e∗2 > 0.

We next suppose that e∗1 > 0 and e∗2 = 0. Then, ∂U2(e2,T )
∂e2

∣∣
e2=0 = −A(2γ(1)−

1)
∫

s∈Ξ
h(e∗1 + s)h(s)ds ≤ 0. Thus, γ(1) = 0.5 because

∫
s∈Ξ

h(e∗1 + s)h(s)ds > 0.

However, when e∗2 = 0 and γ(1) = 0.5, ∂U1(e1,T )
∂e1

∣∣∣∣
e1=e∗1

= −cb(e∗1)
b−1τ(T )1−b ̸= 0

for e∗1 > 0. Thus, by symmetry, there does not exist an asymmetric pure-strategy

Nash equilibrium such that e∗1 > 0 and e∗2 = 0 or e∗2 > 0 and e∗1 = 0.

We next discuss the case where N > 2. Specifically, we are interested in

whether an asymmetric equilibrium emerges when there is no symmetric one (i.e.,

T > T ) and how this asymmetric pure-strategy Nash equilibrium changes with T .

For ease of illustration, we focus on the WTA award scheme. Let e∗i be agent i’s

equilibrium effort. Given that all other agents j ∈ {1,2, ...,N}\ i exert their equilib-

rium effort e∗j , agent i determines her effort ei to maximize her expected utility

U(ei,T ) = A
∫

s∈Ξ
∏

j∈{1,2,...,N}\i
H(ei − e∗j + s)h(s)ds− ceb

i τ(T )1−b −F.

Let I(e∗i |e∗j ̸=i)≡
∫

s∈Ξ ∑ j∈{1,2,...,N}\i h(e∗i −e∗j + s)h(s)∏k∈{1,2,...,N}\{i, j}H(e∗i −e∗k +

s)ds. Evaluating the first-derivative of Ui(ei,T ) with respect to ei at ei = e∗i yields

AI(e∗i |e∗j ̸=i)− cb(e∗i )
b−1

τ(T )1−b = 0 for all i ∈ {1,2, ...,N}. (B.3)

In the following lemma, we show that for a sufficiently large T , the agent’s par-

ticipation condition is violated. Thus, consistent with our finding in §2.4, T ∗ is

bounded even when δ = 0.

Lemma 2 There exists T a such that when the contest duration T > T a, an agent’s

participation condition is violated under a solution to (B.3).
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Proof. Let P(e∗i |e∗j ̸=i)≡
∫

s∈Ξ ∏ j∈{1,2,...,N}\i H(e∗i −e∗j +s)h(s)ds. In equilibrium, all

agents choose to participate in the contest if and only if the following participation

condition is satisfied:

AP(e∗i |e∗j ̸=i)− c

(
AI(e∗i |e∗j ̸=i)

cb

) b
b−1

τ(T )−F ≥ 0 for all i ∈ {1,2, ...,N}. (B.4)

Since AP(e∗i |e∗j ̸=i) ≤ A, as T approaches ∞, agent i’s participation condition is vi-

olated unless I(e∗i |e∗j ̸=i) approaches 0 because τ(T ) approaches ∞. Suppose that

limT→∞ I(e∗i |e∗j ̸=i) = 0. Then, there should exist ek such that k ̸= i and ek approaches

∞ as T approaches ∞. As ek approaches ∞ and agent k’s expected award is bounded

by A, her participation condition is violated. So, for any solution to (B.3), the

agent’s participation condition is violated for a sufficiently large T .

An important implication of Lemma 2 is that even if an asymmetric pure-strategy

Nash equilibrium emerges when T > T , the agent’s participation still becomes an

issue as T increases. Thus, we next study whether a patient organizer has an in-

centive to increase the contest duration T up to T a where the agent’s participation

condition binds, consistent with the effort-participation tradeoff in §2.4. As it is

analytically intractable to analyze the impact of T on the organizer’s profit Π un-

der an asymmetric pure-strategy Nash equilibrium, we conduct an extensive nu-

merical analysis. We take θ(t) = θ , and randomly generate 10,000 instances. In

each instance, we randomly select parameters according to our numerical analysis

setting in footnote 14 (in addition, we select N from Uniform(2,10) and θ from

Uniform(0,5)). To focus on the case where there is no symmetric pure-strategy

Nash equilibrium, we randomly generate T from Uniform(T ,1.05T ); and to focus

on the case of a patient organizer, we assume that the discount factor δ = 0. In

each random instance, we solve (B.3) numerically. Because the symmetric equi-

librium effort in (2.5) is a solution to (B.3), to prevent the numerical solver from

getting stuck in this symmetric solution, we randomize the initial solutions that

we feed to the solver. In 672 instances, we obtain a “valid” asymmetric solution

where the sum of squared deviations of agents’ first-order conditions from zero(
i.e., ∑

N
i=1

(
AI(e∗i |e∗j ̸=i)− cb(e∗i )

b−1τ(T )1−b
)2 )

is less than 10−15. (In 250 of
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these instances, all agents’ utilities are non-negative, so there exists an asymmet-

ric solution that satisfies (B.3) and the participation condition (B.4).) To check if

Π increases with T at each of these 672 instances, we incrementally increase T to

1.0001T , 1.001T , 1.01T , and 1.1T , and check if Π increases. We observe that in

all of these 672 instances, Π increases with T . Thus, we conclude that under an

asymmetric pure-strategy Nash equilibrium, the organizer’s profit Π increases with

the contest duration T when the organizer is patient, and hence by Lemma 2, the

agent’s participation condition drives the optimal contest duration.

B.2 Mixed-Strategy Nash Equilibrium
In this section, we consider the case where agents play mixed strategies. For ease

of illustration and following the contest literature (e.g., Hu and Wang 2020, Mihm

2010, Seel 2018, Bimpikis et al. 2019), we assume that N = 2. Each agent i ∈ {1,2}

participates in the contest with probability pi ∈ [0,1], and exerts effort ei if both

agents participate, and exerts zero effort otherwise. We derive the equilibrium using

the best-response argument in a two-stage game. In the second stage, if both agents

participate, each agent exerts e∗ as in (2.5). In the first stage, given that the other

agent participates in the contest with the equilibrium probability of participation p∗

and both agents exert e∗, agent i decides on pi (∈ [0,1]) to maximize her expected

utility

Ui(pi) = pi p∗
[

A
2
− c(e∗)b

τ(T )1−b −F
]
+ pi(1− p∗)[A(1)−F ]. (B.5)

The second component in (B.5) (i.e., pi(1− p∗)[A(1)−F ]) is always non-negative,

so whenever the first component (i.e., pi p∗
[A

2 − c(e∗)bτ(T )1−b −F
]
) is also non-

negative, the best-response of the agent is to set p∗ = 1. Thus, the agent plays a

non-pure strategy (i.e., p∗ < 1) only if she gets negative utility when both agents

participate. The following lemma formally shows this result.

Lemma 3 For any A(1),A(2), and T such that
A(1)+A(2)

2 − c(e∗)bτ(T )1−b −F ≥ 0,

p∗ = 1.

Proof. Suppose that
A(1)+A(2)

2 − c(e∗)bτ(T )1−b −F ≥ 0. When agent i chooses to
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'

(a) T ∗.

'

1

0.86

(b) p∗. (c) Π∗.

Figure B.1: (a) T ∗ under γ(1) = 1, (b) p∗ under γ(1) = 1, (c) Π∗ under γ(1) = 1 and
(γ(1),γ(2)) = (0.95,0.05) when agents play mixed strategies. The setting is
the same as Figure 2.1.

participate in the contest, she gets a nonnegative utility. However, when the agent

does not participate, she gets zero utility. Therefore, she cannot improve her utility

by reducing pi, and hence p∗ = 1.

Given e∗ and p∗, the organizer’s profit Π = exp(−δT )(p∗)2
(

e∗+E
[
ξ̃ 2
(1)

])
−

(p∗)2(A(1)+A(2))−2p∗(1− p∗)A(1). The following corollary extends Lemma 2.

Corollary 1 (a) When Π is non-monotonic, T ∗ = T̂ for any δ ≥ δ1, and each

agent’s equilibrium probability of participation p∗ = 1. (b) There exists δ ′
1(≤ δ1)

such that for any δ < δ ′
1, T ∗ > T and p∗ < 1.

Proof. (a) When Π is non-monotonic, by Lemma 2, T ∗ = T̂ for any δ ≥ δ1, and

hence T ∗ = T̂ as in (A.7) and A
2 − c(e∗)bτ(T ∗)1−b −F ≥ 0. Thus, by Lemma 3,

p∗ = 1.

(b) Suppose that δ < δ1 or Π is monotonic. For agent i ∈ {1,2}, given p j = p∗j

for j ̸= i, taking the first derivative of Ui(pi) with respect to pi and evaluating it at

pi = p∗i yields ∂Ui(pi)
∂ pi

∣∣∣∣
pi=p∗i

= p∗j

[
A
2 − c

(xA
cb

) b
b−1 τ(T )−F

]
+(1− p∗j)[A(1)−F ] = 0.

Thus, agent 1’s and agent 2’s equilibrium probabilities of participation are

p∗1 = p∗2 = p∗ ≡
A(1)−F

A(1)−A/2+ c
(xA

cb

) b
b−1 τ(T )

. (B.6)

When T ∗ = T as in (A.6), p∗ = 1 from (B.6), and since p∗ decreases with T , p∗ < 1

if only if T ∗ > T .

Since limT→∞ p∗ = 0, limT→∞ Π = 0. Thus, T ∗(> T ) is interior, and hence
∂Π

∂T

∣∣
T=T ∗ = 0 is necessary for optimality. The first derivative of the organizer’s
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profit Π with respect to T is

∂Π

∂T
= exp(−δT )

[(
2p∗

∂ p∗

∂T
−δ (p∗)2

)(
e∗+E

[
ξ̃

N
(1)

])
+(p∗)2 ∂e∗

∂T

]
+

∂ p∗

∂T

[
A(1)(2p∗−2)−2p∗A(2)

]
.

Under T in (A.6), p∗ = 1. Thus, a sufficient condition for p∗ < 1 is that ∂Π

∂T

∣∣
T=T > 0.

We have

∂Π

∂T

∣∣∣∣
T=T

= exp(−δT )
[(

2
∂ p∗

∂T

∣∣∣∣
T=T

−δ

)(
e∗+E

[
ξ̃

N
(1)

])
+

∂e∗

∂T

∣∣∣∣
T=T

]
−2

∂ p∗

∂T

∣∣∣∣
T=T

A(2) > 0

if
(

2 ∂ p∗
∂T

∣∣∣
T=T

−δ

)(
e∗+E

[
ξ̃ N
(1)

])
+ ∂e∗

∂T

∣∣∣
T=T

≥ 0, i.e., δ ≤
2 ∂ p∗

∂T

∣∣∣
T=T

(
e∗+E

[
ξ̃ N
(1)

])
+ ∂e∗

∂T

∣∣∣
T=T

e∗+E
[
ξ̃ N
(1)

]
since ∂ p∗

∂T

∣∣∣
T=T

< 0. Thus, for any δ < δ ′
1, ∂Π

∂T

∣∣
T ∗=T > 0, and hence T ∗ > T and

p∗ < 1.

T being larger than T has the following opposing effects on Π. It improves Π by

increasing e∗, but it reduces Π by decreasing p∗ and discounting the organizer’s

payoff more. When δ = 0, the organizer still limits T to balance the positive effect

of a larger e∗ and the negative effect of a smaller p∗. Thus, the effort-participation

tradeoff we identify in §2.4 persists when agents play mixed strategies, and this

tradeoff drives T ∗ for the patient organizer. Supplementary to Corollary 1, Figures

B.1(a) and B.1(b) illustrate that for δ ∈ [δ ′
1,δ1], T ∗ = T and p∗ = 1 because negative

effects of a smaller p∗ and more discounting outweigh the positive effect of a larger

e∗.

We next discuss the robustness of Theorem 1. When T ∗ = T and p∗ = 1,

Theorem 1 directly applies. The following corollary extends Theorem 1(a) to the

case where T ∗ > T and p∗ < 1. To analyze a patient organizer while retaining

analytical tractability, we assume that δ = 0 and θ(t) = θ as in the innovation-

contest literature (e.g., Hu and Wang 2020, Mihm 2010).

Corollary 2 There exists α such that T ∗ is increasing in α > α .

Proof. Suppose that δ = 0 and θ(t) = θ . By Corollary 1, p∗ < 1, and under the
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scale parameter α , the optimal contest duration T ∗[α] that solves ∂Π

∂T

∣∣
T=T ∗[α]

= 0 is

T ∗[α] =

(
α(A(1)−F)θb

xA +2A(1)

)(
A(1)−A/2

)
−4
(
A(1)−F

)
A(1)−2

(
A(1)−F

)(
αE
[
ξ̃ N
(1)

]
−A
)

α
−1
b−1 2

(
A(1)−F

)
θ
( xA

cb

) 1
b−1 −

(
α

−1
b−1

(A(1)−F)θb
xA +2A(1)α

−b
b−1

)
c
( xA

cb

) b
b−1

.

The first derivative of T ∗[α] with respect to α is

∂T ∗[α]

∂α
=

(
(A(1)−F)θb

xA

)(
A(1)−A/2

)
−2
(
A(1)−F

)
E
[
ξ̃ N
(1)

]
α

−1
b−1 2

(
A(1)−F

)
θ
(xA

cb

) 1
b−1 −

(
α(A(1)−F)θb

xA +2A(1)

)
cα

−b
b−1
(xA

cb

) b
b−1

+
1

(b−1)

(
(A(1)−F)θb

xA

)(
A(1)−A/2

)
−2
(
A(1)−F

)
E
[
ξ̃ N
(1)

]
α

−1
b−1 2

(
A(1)−F

)
θ
(xA

cb

) 1
b−1 −

(
α(A(1)−F)θb

xA +2A(1)

)
cα

−b
b−1
(xA

cb

) b
b−1

+

(
(A(1)−F)θb

xA

)(
A(1)−A/2

)
−2
(
A(1)−F

)
E
[
ξ̃ N
(1)

]
(

α
−1

b−1 2
(
A(1)−F

)
θ
(xA

cb

) 1
b−1 −

(
α(A(1)−F)θb

xA +2A(1)

)
cα

−b
b−1
(xA

cb

) b
b−1

)2×

[
−
(

2A(1)α
−b
b−1

)
c
(

xA
cb

) b
b−1
]

.

limα→∞
∂T ∗[α]

∂α
> 0, so by continuity, there exists α such that T ∗ is increasing in any

α > α .

We next discuss how our results about the award scheme extend to the case where

agents play mixed strategies. From Corollary 1(a) and Figure B.1(b), we can also

deduce that when δ > δ ′
1, p∗ = 1, and hence Theorem 2(a) directly apply. To ana-

lyze the case where p∗ < 1, we conduct an extensive numerical analysis. We show

that for a sufficiently small δ , the WTA award scheme is not optimal.1 For instance,

Figure B.1(c) illustrates that up to some threshold on δ , Π∗ is larger under the

award scheme (0.95A,0.05A) than Π∗ under the WTA award scheme. The intuition

is similar to Theorem 2(a). Specifically, offering multiple awards increases p∗, and

hence allows the organizer to set a longer T to elicit a larger expected effort from

agents. Opposed to this positive effect, a longer T also leads to more discounting.

1We take θ(t) = exp(ρt), and randomly generate 10,000 instances where p∗ < 1. In each in-
stance, we select parameters according to our numerical analysis setting in footnote 14 (and we
select δ from Uniform(0,0.0001)). We observe that in all instances, Π is larger under the award
scheme (0.95A,0.05A) than Π under the WTA award scheme.
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When δ is small, the former positive effect dominates the latter negative effect,

so offering multiple awards is optimal, as in Theorem 2(a). Also, from Figures

B.1(b) and B.1(c), we can deduce that as δ decreases, it first becomes optimal to

give multiple awards, and then as δ keeps decreasing, it becomes optimal to set

T ∗ > T such that agents play non-pure strategies. Thus, δ 0, below which giving

multiple awards is optimal, does not change when agents can play mixed strategies,

and hence even giving multiple awards is more likely to be optimal as ρ increases,

as in Theorem 2(b). Finally, in our numerical analysis, we also observe that when

giving multiple awards is optimal, giving unequal awards is almost always better

than giving equal awards, as in Proposition 2.

B.3 Existence of Pure-Strategy Nash Equilibrium
In this section, we provide sufficient conditions for e∗ in (2.5) to be a pure-strategy

Nash equilibrium under T . We first show sufficient conditions for an interim prop-

erty in the following lemma, and then use this property in the main result of this

section.
Lemma 4 Suppose that ∂ 2Ui(ei,T )

∂e2
i

∣∣∣
ei=e

< 0 for some e and b > 2. For any ei > e,

when F is sufficiently large or when α is sufficiently small, we have ∂ 2Ui(ei,T )
∂e2

i
< 0.

Proof. Under the scale parameter α , given that all other agents exert equilib-

rium efforts e∗, from (2.8) and T in (A.6), the second derivative of agent i’s utility

Ui(ei,T ) with respect to ei is

∂ 2Ui(ei,T )
∂e2

i
=

N

∑
j=1

∂ 2PN
( j)[ei,e∗]

∂e2
i

(
A( j)

α2

)
− cb(b−1)eb−2

i

(
A−NF

cN

)1−b( xA
αcb

)b

.

Suppose that ∂ 2Ui(ei,T )
∂e2

i
< 0 for some ei = e, but there exists ê > e such that

∂ 2Ui(ei,T )
∂e2

i
≥ 0 for ei = ê. Then, ∂ 2Ui(ei,T )

∂e2
i

∣∣
ei=ê >

∂ 2Ui(ei,T )
∂e2

i

∣∣
ei=e, i.e.,

N

∑
j=1

[
∂ 2PN

( j)[ei,e∗]

∂ (ei)2

∣∣∣∣
ei=ê

−
∂ 2PN

( j)[ei,e∗]

∂ (ei)2

∣∣∣∣
ei=e

]
A( j)

α2

> b(b−1)
[
(ê)b−2 − (e)b−2

](A−NF
N

)1−b( xA
αb

)b

. (B.7)
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Suppose that b > 2. Since ê > e, the right-hand side of (B.7) approaches ∞ as F

approaches A/N. Thus, when F is sufficiently large, (B.7) cannot be satisfied. Also,

as α approaches 0, the right-hand side of (B.7) approaches ∞ faster than the left-

hand side of (B.7) (when the left-hand side of (B.7) is positive). Thus, regardless

of the sign of the left-hand side of (B.7), when α is sufficiently small, (B.7) cannot

be satisfied. Therefore, for any ei > e, when F is sufficiently large or when α is

sufficiently small, we have ∂ 2Ui(ei,T )
∂e2

i
< 0.

The following lemma shows that when the property in Lemma 4 holds for any

e, e∗ in (2.5) is a pure-strategy Nash equilibrium under T .

Lemma 5 Suppose that for all e such that ∂ 2Ui(ei,T )
∂e2

i

∣∣∣
ei=e

< 0, we have ∂ 2Ui(ei,T )
∂e2

i
< 0

when ei > e. Then, Ui(ei,T ) is pseudo concave. Thus, e∗ in (2.5) is a pure-strategy

Nash equilibrium under T .

Proof. Suppose that for all e such that ∂ 2Ui(ei,T )
∂e2

i

∣∣∣
ei=e

< 0, we have ∂ 2Ui(ei,T )
∂e2

i
< 0

when ei > e. First, we have ∂Ui(ei,T )
∂ei

∣∣∣
ei=0

= ∑
N
j=1

∂PN
( j)[ei,e∗]

∂ei
A( j)

∣∣∣∣
ei=0

> 0 and

limei→∞Ui(ei,T ) = −∞, so there should exist some ei such that ∂Ui(ei,T )
∂ei

< 0 and
∂ 2Ui(ei,T )

∂e2
i

< 0. So, there exists a threshold e0(≥ 0) such that for any ei < e0,
∂ 2Ui(ei,T )

∂e2
i

≥ 0; and for any ei > e0, ∂ 2Ui(ei,T )
∂e2

i
< 0. So, we should have ∂Ui(ei,T )

∂ei
> 0

for any ei < e0, and there should exist another threshold e00(> e0) such that for any

ei < e00, ∂Ui(ei,T )
∂ei

> 0; and for any ei > e00, ∂Ui(ei,T )
∂ei

< 0. Thus, Ui(ei,T ) is unimodal

with mode e00, and has a unique critical (maximum) point, so it is pseudo concave.

Therefore, the first-order condition of the agent’s utility-maximization problem in

(2.7) is sufficient for optimality. Since e∗ in (2.5) satisfies this first-order condition,

e∗ is the solution to the agent’s utility-maximization problem in (2.7). As e∗ under

T also satisfies (2.8), e∗ is a pure-strategy Nash equilibrium under T .

B.4 Additional Results
Lemma 6 IN

( j) ≥ IN
( j+1) for any j ∈ {1,2, ...,N −1}. Furthermore, ∑

N
j=1 IN

( j)γ( j) ≥ 0

under any distribution of awards (γ(1),γ(2), ...,γ(N)) such that γ(1) ≥ γ(2) ≥ ...≥ γ(N).
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Proof. Let W N
( j)(s) =

(N−1)!
(N− j)!( j−1)!H(s)N− j(1−H(s)) j−1. From (2.4), integration by

parts yields

IN
( j) = θ

∫
s∈Ξ

(
W N

( j)

)′
(s)h(s)ds = θ lim

s→s
W N

( j)(s)h(s)−
∫

s∈Ξ

W N
( j)(s)h

′(s)ds.

hN
( j)(s) =

N!
(N− j)!( j−1)!(1−H(s)) j−1H(s)N− jh(s), so W N

( j)(s) =
hN
( j)(s)

Nh(s) . Letting w j ≡

lims→s
hN
( j)(s)
N , we have IN

( j)−IN
( j+1)=(w j−w j+1)+

1
N
∫

s∈Ξ

[
hN
( j+1)(s)−hN

( j)(s)
]

h′(s)
h(s) ds,

∀ j ∈ {1,2, ...,N −1}.

Noting that w1 ≥ 0 and w j = 0 for any j ∈ {2,3, ...,N}, integration by parts

yields

IN
( j)− IN

( j+1) ≥
1
N

(
lim
s→s

[
HN
( j+1)(s)−HN

( j)(s)
] h′(s)

h(s)
−
∫

s∈Ξ

[
HN
( j+1)(s)−HN

( j)(s)
](h′(s)

h(s)

)′
ds
)
,

for all j ∈{1,2, ...,N−1}. Because h is log-concave, lims→s

[
HN
( j+1)(s)−HN

( j)(s)
]

h′(s)
h(s) =

0 and
(

h′(s)
h(s)

)′
≤ 0. Also, HN

( j+1)(s)−HN
( j)(s) ≥ 0 since ξ̃ N

( j) first-order stochasti-

cally dominates ξ̃ N
( j+1) for any j ∈ {1,2, ...,N − 1}. Thus, IN

( j)− IN
( j+1) ≥ 0 for any

j ∈ {1,2, ...,N − 1}. Let k = max{ j|IN
( j) ≥ 0}. Because IN

( j)− IN
( j+1) ≥ 0 for any

j ∈ {1,2, ...,N −1}, we have

N

∑
j=1

IN
( j)γ( j)≥

k

∑
j=1

IN
( j)γ(k)+

N

∑
j=k+1

IN
( j)γ(k)= γ(k)

N

∑
j=1

IN
( j)= γ(k)

N

∑
j=1

∂PN
( j)[ei,e∗]

∂ei

∣∣∣∣
ei=e∗

= 0.

Lemma 7 When Π is non-monotonic in T and unimodal, θ ′(T̂ )
θ(T̂ )

< δ (b−1)
b .

Proof. When Π is non-monotonic in T and unimodal, Π is unimodal with mode

T ∗ = T̂ by Lemma 2, and hence ∂Π

∂T < 0 when T > T̂ . This is possible only when
∂ 2Π

∂T 2

∣∣∣
T=T̂

< 0 since ∂Π

∂T

∣∣∣
T=T̂

= 0. Thus, we should have ∂ 2Π

∂T 2

∣∣∣
T=T̂

< 0. The second

derivative of Π with respect to T is

∂ 2Π

∂T 2 = exp(−δT )×(
−δ

[(
xA
cb

) 1
b−1 (

−δτ(T )+ τ
′(T )

)
−δE

[
ξ̃

N
(1)

]]
+

[(
xA
cb

) 1
b−1 (

−δτ
′(T )+ τ

′′(T )
)])

,

and hence ∂ 2Π

∂T 2

∣∣∣
T=T̂

= exp(−δT )
(xA

cb

) 1
b−1 (−δτ ′(T )+ τ ′′(T )). Thus, ∂ 2Π

∂T 2

∣∣∣
T=T̂

< 0
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if and only if −δτ ′(T )+τ ′′(T )< 0, i.e., θ ′(T̂ )
θ(T̂ )

< δ (b−1)
b . When θ(t) = exp(ρt), this

condition becomes ρ < δ (b−1)
b .

Lemma 8 Let −→γm = (γm
(1),γ

m
(2), ...,γ

m
(N)), and −→

γ1 and −→
γ2 be such that ∑

N
j=1 IN

( j)γ
1
( j) <

∑
N
j=1 IN

( j)γ
2
( j), Φ ≤ 0 under −→γ1 and −→

γ2 , and Π is non-monotonic in T under −→γ2 . Then,

Π is also non-monotonic in T under −→γ1 , and Π under T ∗ is smaller under −→γ1 than

that under −→γ2 .

Proof. Since Π is non-monotonic in T under −→
γ2 , there exists some T = Ṫ such

that ∂Π

∂T

∣∣∣
T=Ṫ

= exp(−δ Ṫ )
[(xA

cb

) 1
b−1
(
−δτ(Ṫ )+ τ ′(Ṫ )

)
−δE

[
ξ̃ N
(1)

]]
< 0. Because

x under −→γ1 is smaller than x under −→γ2 , ∂Π

∂T

∣∣∣
T=Ṫ

< 0 under −→γ1 , and hence, Π is also

non-monotonic in T under −→γ1 . Thus, given −→
γ1 or −→γ2 , T ∗ = T̂ . Noting that ∂Π

∂T

∣∣∣
T=T̂

=

0, ∂Π

∂x

∣∣∣
T=T̂

= ∂Π

∂x

∣∣∣
T=T̂

+ ∂Π

∂T

∣∣∣
T=T̂

∂T
∂x

∣∣∣
T=T̂

= exp(−δ T̂ )
(( A

cb

) 1
b−1 τ(T̂ )x

2−b
b−1

b−1

)
> 0.

Then, since x under −→γ1 is smaller than x under −→γ2 , Π under T ∗ = T̂ is smaller given
−→
γ1 than Π given −→

γ2 .
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Proofs of Chapter 3

Proof of Proposition 1. (a) We first show that e∗,τ < e∗. From (3.4) and (3.11),

e∗,τ < e∗ if

Lτ
N
n

=
N −n

n(N −1)

∫
∞

−∞

(N −1)G(s)N−2g(s)2ds < LN =
∫

∞

−∞

(N −1)H(s)N−2h(s)2ds.

Recall that ξi follows Normal(0,σ2), where h(s) and H(s) are ξi’s density function

and distribution function, respectively; and ξ τ
ti follows Normal(µB,σ

2+σ2
B), where

g(s) and G(s) are ξ τ
ti ’s density function and distribution function, respectively. Let

z = s/σ . Then, we have

LN =
∫

∞

−∞

(N −1)H(s)N−2h(s)2ds =
∫

∞

−∞

h(s)dH(s)N−1

=
1

σ
√

2π

∫
∞

−∞

exp
(
−s2/(2σ

2)
)

dH(s)N−1 =
1

σ
√

2π

∫
∞

−∞

exp
(
−z2/2

)
dH(σz)N−1.

Let F(z) be the distribution function of the standard normal distribution

and IN ≡ 1√
2π

∫
∞

−∞
exp
(
−z2/2)

)
dF(z)N−1 for any N. Noting that H(σz) =

1
2

[
1+ erf

(
σz

σ
√

2

)]
= 1

2

[
1+ erf

(
z√
2

)]
=F(z), we have LN = 1

σ
√

2π

∫
∞

−∞
exp
(
−z2/2)

)
dF(z)N−1 =

IN
σ

. Similarly, letting w ≡ s−µB√
σ2+σ2

B
, we have

Lτ
N
n

=

(
N −n

n(N −1)

)
1√

σ2 +σ2
B

√
2π

∫
∞

−∞

exp

(
−

(
(s−µB)

2/(2
(√

σ2 +σ2
B

)2
))

dG(s)N−1

=

(
N −n

n(N −1)

)
1√

σ2 +σ2
B

√
2π

∫
∞

−∞

exp
(
−w2/2)

)
dF(w)N−1 =

(
N −n

n(N −1)

)
IN√

σ2 +σ2
B

.
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Since N−n
n(N−1) < 1 and

√
σ2 +σ2

B < σ , Lτ
N
n =

(
N−n

n(N−1)

)
IN√

σ2+σ2
B
< LN = IN

σ
, and

hence e∗,τ < e∗.

We next show that (e∗,τ − e∗) is decreasing in σB and constant in µB. From

(3.4) and (3.11),

e∗,τ − e∗ =
(

AIN

cb

) 1
b−1

( N −n
n(N −1)

) 1
b−1 1

(
√

σ2 +σ2
B)

1
b−1

− 1

σ
1

b−1

 . (C.1)

Thus, (e∗,τ − e∗) is decreasing in σB and constant in µB.

(b) We first show that mτ
N > mN . Letting z = s/σ and EN be the expected value of

the maximum of N independent standard normal random variables, we have

mN =
∫

∞

−∞

sH(s)N−1h(s)ds =
∫

∞

−∞

σzH(σz)N−1h(σz)d(σz)

= σ
2
∫

∞

−∞

zH(σz)N−1h(σz)dz = σ
2
∫

∞

−∞

zF(z)N−1 1
σ
√

2π
exp
(
−z2/2

)
dz = σEN .

Similarly, mτ
N =

∫
∞

−∞
sG(s)N−1g(s)ds = µB+

√
σ2 +σ2

BEN . Since σB > 0 and µB ≥

0, mτ
N > mN . Furthermore, we have

mτ
N −mN = µB +EN

(√
σ2 +σ2

B −σ

)
, (C.2)

which is increasing in σB and µB.

Proof of Theorem 1. From (3.21), (C.1), and (C.2), we have

Π
∗,τ −Π

∗ =

(
AIN

cb

) 1
b−1

( N −n
n(N −1)

) 1
b−1 1

(
√

σ2 +σ2
B)

1
b−1

− 1

σ
1

b−1

+µB

+EN

(√
σ2 +σ2

B −σ

)
.

(a) Suppose µB = 0. Then, we have limσB→∞(Π
∗,τ −Π∗) = ∞, and hence there

exists σB (> 0) such that when σB > σB, Π∗,τ > Π∗. Also, limσB→0(Π
∗,τ −Π∗) =(

AIN
cb

) 1
b−1
((

N−n
n(N−1)

) 1
b−1 −1

)
σ

−1
b−1 < 0 because N−n < nN−n. Thus, there exists

σB (> 0) such that when σB < σB, Π∗,τ < Π∗.

(b) Suppose σB → 0. Then, Π∗,τ −Π∗ =
(

AIN
cb

) 1
b−1
((

N−n
n(N−1)

) 1
b−1 −1

)
σ

−1
b−1 +µB.

The first term is negative since N − n < nN − n. Thus, we have limµB→0(Π
∗,τ −

Π∗)< 0, limµB→∞(Π
∗,τ −Π∗) = ∞, and ∂ (Π∗,τ−Π∗)

∂ µB
= 1 > 0. Therefore, there exists

µB (> 0) such that if µB ≥ µB, Π∗,τ ≥ Π∗; otherwise, Π∗,τ < Π∗. Also, we have
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limσ→0(Π
∗,τ −Π∗) =−∞, limσ→∞(Π

∗,τ −Π∗) = µB ≥ 0, and

∂ (Π∗,τ −Π∗)

∂σ
=

1
b−1

σ
−b
b−1

(
AIN

cb

) 1
b−1
(

1−
(

N −n
n(N −1)

) 1
b−1
)

> 0.

Thus, there exists σ (> 0) such that if σ ≥ σ , Π∗,τ ≥ Π∗; otherwise, Π∗,τ < Π∗.

Therefore, if σ ≥ σ or µB ≥ µB, Π∗,τ ≥ Π∗, otherwise, Π∗,τ < Π∗.

Proof of Corollary 1. This result is directly follows from Proposition 1(a).

Proof of Proposition 2. (a) From (3.4) and (3.18), we have

ne∗,τ − e∗ =
(

A
cb

) 1
b−1
[

n
(

1
n

(
N
n
−1
)∫

∞

−∞

G(s)
N
n −2g(s)2ds

) 1
b−1

−
(∫

∞

−∞

(N −1)H(s)N−2h(s)2ds
) 1

b−1
]
.

Recall that ξi follows Normal(0,σ2), where h(s) and H(s) are ξi’s density function

and distribution function, respectively; ξ τ
t follows Normal(µB,σ

2+σ2
B), where g(s)

and G(s) are ξ τ
t ’s density function and distribution function, respectively; and IN =

1√
2π

∫
∞

−∞
exp
(
−z2/2)

)
dF(z)N−1 for any N. Following the approach in the proof of

Proposition 1(a), we have

ne∗,τ − e∗ =
(

A
cb

) 1
b−1

n

 IN/n

n
√

σ2 +σ2
B

 1
b−1

−
(

IN

σ

) 1
b−1

 . (C.3)

We have limσB→∞(ne∗,τ − e∗) = −
( A

cb

) 1
b−1
(

IN
σ

) 1
b−1

< 0, limσB→0(ne∗,τ −

e∗) =
( A

cb

) 1
b−1

[
n
(

IN/n
nσ

) 1
b−1 −

(
IN
σ

) 1
b−1
]

, and ∂ (ne∗,τ−e∗)
∂σB

< 0. Noting that

limb→∞

(
n
(

IN/n
nσ

) 1
b−1 −

(
IN
σ

) 1
b−1
)

= n− 1 > 0, there exists σ ′
B (≥ 0) and b(> 1)

such that when b > b, ne∗,τ > e∗ if and only if σB < σ ′
B. Also, ne∗,τ − e∗ is

decreasing in σB and constant in µB.

(b) Following the approach in the proof of Proposition 1(b), we have

mτ

N/n −mN = µB +

(√
σ2 +σ2

BEN/n −σEN

)
. (C.4)

We have limµB→∞(mτ

N/n − mN) = ∞, limµB→0(mτ

N/n − mN) < 0 if and only if
√

σ2+σ2
B

σ
< EN

EN/n
, and

∂ (mτ

N/n−mN)

∂ µB
> 0. Thus, there exists µ ′

B (≥ 0) such that mτ
N >mN

if µB > µ ′
B; otherwise, mτ

N ≤ mN . Furthermore, we have limσB→∞(mτ

N/n−mN) =∞,
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limσB→0(mτ

N/n −mN) < 0 if and only if µB < σ
(
EN −EN/n

)
, and

∂ (mτ

N/n−mN)

∂σB
> 0.

Thus, there exists σ ′′
B (≥ 0) such that mτ

N > mN if σB > σ ′′
B ; otherwise, mτ

N/n ≤ mN .

Also, (mτ

N/n −mN) is increasing in σB and µB.

Proof of Theorem 2. From (3.23), (C.3), and (C.4), we have

Π
∗,τ −Π

∗ =

(
A
cb

) 1
b−1

n

 IN/n

n
√

σ2 +σ2
B

 1
b−1

−
(

IN

σ

) 1
b−1

+µB

+

(√
σ2 +σ2

BEN/n −σEN

)
.

(a) Suppose µB = 0. Then, limσB→∞(Π
∗,τ − Π∗) = ∞, and hence there ex-

ists σB (> 0) such that if σB > σB, Π∗,τ > Π∗. Also, limσB→0(Π
∗,τ − Π∗) =

σ
−1
b−1
( A

cb

) 1
b−1

[
n
(

IN/n
n

) 1
b−1 − (IN)

1
b−1

]
+σ

(
EN/n −EN

)
. Thus, limσB→0,σ→0(Π

∗,τ −

Π∗) = ∞ if n
(

IN/n
n

) 1
b−1 − (IN)

1
b−1 > 0 (i.e., b > b from Proposition 2(a)), and

limσB→0,σ→∞(Π
∗,τ −Π∗) = −∞ because EN/n < EN . Therefore, there also exist

σB (> 0), σ (> 0), and σ (> 0) such that when σB < σB, σ < σ , and b > b,

Π∗,τ > Π∗; and when σB < σB and σ > σ , Π∗,τ < Π∗.

(b) Suppose σB → 0. Then, Π∗,τ −Π∗ = σ
−1
b−1
( A

cb

) 1
b−1

[
n
(

IN/n
n

) 1
b−1 − (IN)

1
b−1

]
+

µB + σ
(
EN/n −EN

)
. Thus, limµB→∞(Π

∗,τ − Π∗) = ∞, and ∂ (Π∗,τ−Π∗)
∂ µB

= 1 > 0.

Thus, there exists µB (≥ 0) such that if µB > µB, Π∗,τ > Π∗; otherwise, Π∗,τ ≤ Π∗.

Furthermore, we have limσ→∞(Π
∗,τ −Π∗) = −∞ since EN/n −EN < 0, and

limσ→0(Π
∗,τ −Π∗) = ∞ if n

(
IN/n

n

) 1
b−1 − (IN)

1
b−1 > 0 (i.e., b > b from Proposition

2(a)). Thus, there exist σ (> 0) and σ (> 0) such that when σ < σ and b > b,

Π∗,τ > Π∗; and when σ > σ , Π∗,τ < Π∗. Therefore, if µB > µB, or σ < σ and

b > b, Π∗,τ > Π∗; and if µB < µB and σ > σ , Π∗,τ < Π∗.

Proof of Proposition 3. U∗,τ >U∗ if and only if

e∗,τ − e∗ =
(

A
cb

) 1
b−1


 IN/n

n
√

σ2 +σ2
B

 1
b−1

−
(

IN

σ

) 1
b−1

< 0,

which is always satisfied because
IN/n

n
√

σ2+σ2
B
<

IN/n
nσ

< IN
σ

, i.e.,
IN/n
IN

< n.
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Proof of Proposition 4. (a) e∗,τ = n
−1
b−1

(
ALτ

N
cb

) 1
b−1 in (3.13) decreases with n.

(b) mτ
N in (3.13) does not change with team size n.

(c) U∗,τ = A
N − c(e∗,τ)b increases with n because e∗,τ decreases with n.

Proof of Proposition 5. (a)

We have limb→∞ ne∗,τ = limb→∞ n
b−2
b−1

(
ALτ

N/n
cb

) 1
b−1

= n, which increases with n.

Therefore, ne∗,τ increases with n when b is sufficiently large.

(b) mτ

N/n in (3.20) decreases with team size n as the expected value of the maximum

of N/n random variables decreases with n.

(c) U∗,τ in (3.19) increases with n because e∗,τ =
(

ALτ

N/n
ncb

) 1
b−1

decreases with n.

Proof of Proposition 6. From (3.6) and (3.33), we have

Π
∗,τ −Π

∗ = n
b−2γ

(b−1)γ

(
ALτ

N/n

cb

) 1
b−1

−
(

ALN

cb

) 1
b−1

+mτ

N/n −mN

=

(
A
cb

) 1
b−1

n
b−2γ

(b−1)γ

 IN/n√
σ2 +σ2

B

 1
b−1

−
(

IN

σ

) 1
b−1

+µB

+

(√
σ2 +σ2

BEN/n −σEN

)
(a) Suppose µB = 0. Then, limσB→∞(Π

∗,τ − Π∗) = ∞, and hence there ex-

ists σB (> 0) such that if σB > σB, Π∗,τ > Π∗. Also, limσB→0(Π
∗,τ − Π∗) =

σ
−1
b−1
( A

cb

) 1
b−1

[
n

b−2γ

(b−1)γ
(
IN/n

) 1
b−1 − (IN)

1
b−1

]
+σ

(
EN/n −EN

)
. Thus, limσB→0,σ→0(Π

∗,τ −

Π∗)=∞ if n
b−2γ

(b−1)γ
(
IN/n

) 1
b−1 −(IN)

1
b−1 > 0 (i.e., b> b since limb→∞

(
n

b−2γ

(b−1)γ
(
IN/n

) 1
b−1 − (IN)

1
b−1

)
=

n
1
γ − 1 > 0), and limσB→0,σ→∞(Π

∗,τ −Π∗) = −∞ because EN/n < EN . Therefore,

there also exist σB (> 0), σ (> 0), and σ (> 0) such that when σB < σB, σ < σ ,

and b > b, Π∗,τ > Π∗; and when σB < σB and σ > σ , Π∗,τ < Π∗.

(b) Suppose σB → 0. Then, we have

Π
∗,τ −Π

∗ = σ
−1
b−1

(
A
cb

) 1
b−1
[

n
b−2γ

(b−1)γ
(
IN/n

) 1
b−1 − (IN)

1
b−1

]
+µB +σ

(
EN/n −EN

)
.

limµB→∞(Π
∗,τ −Π∗) = ∞, and ∂ (Π∗,τ−Π∗)

∂ µb
= 1 > 0. Thus, there exists µB (≥ 0) such

that if µB > µB, Π∗,τ > Π∗; otherwise, Π∗,τ ≤ Π∗.
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Furthermore, we have limσ→∞(Π
∗,τ −Π∗) = −∞ since EN/n −EN < 0, and

limσ→0(Π
∗,τ −Π∗) = ∞ if n

b−2γ

(b−1)γ
(
IN/n

) 1
b−1 − (IN)

1
b−1 > 0. Thus, there exist σ (>

0) and σ (> 0) such that when σ < σ and b > b, Π∗,τ > Π∗; and when σ > σ ,

Π∗,τ < Π∗. Therefore, if µB > µB, or σ < σ and b > b, Π∗,τ > Π∗; and if µB < µB

and σ > σ , Π∗,τ < Π∗.

(c) Π∗,τ = n
b−2γ

(b−1)γ

(
ALτ

N/n
cb

) 1
b−1

+ mτ

N/n decreases with γ because
∂

(
b−2γ

(b−1)γ

)
∂γ

=

−b
(b−1)γ2 < 0.

Proof of Proposition 7. U∗,τ >U∗ if and only if

(e∗,τ)b − (e∗)b =An
1
γ
−2Lτ

N/n

cb


b

b−1

−
(

ALN

cb

) b
b−1

=

(
A
cb

) 1
b−1
[(

n
1
γ
−2LN/n

) 1
b−1 − (LN)

1
b−1

]
< 0.

This is satisfied when LN > n
1
γ
−2Lτ

N/n. We have limγ→0+ n
1
γ
−2 = ∞ and n

1
γ
−2 is

decreasing in γ . Therefore, there exists γ such that U∗,τ >U∗ if and only if γ > γ .



Appendix D

Additional Analysis of Chapter 3

D.1 Correlated Random Variables
In our main analysis, we consider the case where ξ B

ti and ξti are independent for

each team member i in team t. In the following corollary, we extend Theorem 1 and

Corollary 1 to the case where ξ B
ti and ξti are correlated for each team member i in

team t, and hence ξ τ
ti(= ξ B

ti +ξti) follows Normal(µB,σ
2 +σ2

B +2ρσσB), where ρ

is the correlation.

Corollary 3 Theorem 1 continues to hold when ξ B
ti and ξti are correlated for each

team member i in team t.

Proof. From Π∗ in (3.6) and Π∗,τ in (3.13), we have

Π
∗,τ −Π

∗ =

(
AIN

cb

) 1
b−1

( N −n
n(N −1)

)
1√

σ2 +σ2
B +2ρσσB

− 1
σ

 1
b−1

+µB

+EN

(√
σ2 +σ2

B +2ρσσB −σ

)
.

Suppose µB = 0. Then, we have limσB→∞(Π
∗,τ −Π∗) = ∞, and hence there ex-

ists σB (> 0) such that when σB > σB, Π∗,τ > Π∗. Also, limσB→0(Π
∗,τ −Π∗) =(

AIN
cb

) 1
b−1
((

N−n
n(N−1) −1

)
1
σ

) 1
b−1

< 0 because N − n < nN − n. Thus, there exists

σB (> 0) such that when σB < σB, Π∗,τ < Π∗.

Suppose σB → 0 and µB > 0. Because limσB→0

√
σ2 +σ2

B +2ρσσB =

limσB→0

√
σ2 +σ2

B = σ , the rest of the proof is the same as the proof of Theorem
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1(b).

In the following corollary, we extend Theorem 2 to the case where ξ B
t and ξt

are correlated for each t, and hence ξ τ
t (= ξ B

t + ξt) follows Normal(µB,σ
2 +σ2

B +

2ρσσB), where ρ is the correlation.

Corollary 4 Theorem 2 continues to hold when ξ B
t and ξt are correlated for each

team t.

Proof. From Π∗ in (3.6) and Π∗,τ in (3.20), we have

Π
∗,τ −Π

∗ =

(
A
cb

) 1
b−1

n

 IN/n

n
√

σ2 +σ2
B +2ρσσB

 1
b−1

−
(

IN

σ

) 1
b−1

+µB

+

(√
σ2 +σ2

B +2ρσσBEN/n −σEN

)
.

Suppose µB = 0. Then, we have limσB→∞(Π
∗,τ −Π∗) = ∞, and hence there ex-

ists σB (> 0) such that if σB > σB, Π∗,τ > Π∗. Also, limσB→0(Π
∗,τ − Π∗) =

σ
−1
b−1
( A

cb

) 1
b−1

[
n
(

IN/n
n

) 1
b−1 − (IN)

1
b−1

]
+σ

(
EN/n −EN

)
. Thus, limσB→0,σ→0(Π

∗,τ −

Π∗) = ∞ if n
(

IN/n
n

) 1
b−1 − (IN)

1
b−1 > 0 (i.e., b > b), and limσB→0,σ→∞(Π

∗,τ −Π∗) =

−∞ because EN/n < EN . Therefore, there also exist σB (> 0), σ (> 0), and σ (> 0)

such that when σB < σB, σ < σ , and b > b, Π∗,τ > Π∗; and when σB < σB and

σ > σ , Π∗,τ < Π∗.

Suppose σB → 0. Because limσB→0

√
σ2 +σ2

B +2ρσσB = limσB→0

√
σ2 +σ2

B =

σ , the rest of the proof is the same as the proof of Theorem 2(b).

D.2 Complementary Tasks
We consider the case where there are two complementary tasks to be performed to

develop a solution to the organizer’s problem, and in the case of team submissions,

the team size is two. As in §3.5.3, we assume a single output shock ξi for each

solver i (follows Normal(0,σ2), where where h(s) and H(s) are density function

and distribution function, respectively); and for each team t, a single output shock

ξt (follows Normal(0,σ2)) related to the problem and a single interaction shock ξ B
t

(follows Normal(µB,σ
2
B)) generated through team members’ interactions. Recall
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from §3.3.2 that the team’s overall output shock ξ τ
t = ξ B

t + ξt , where ξ τ
t follows

Normal(µB,σ
2 +σ2

B) and g(s) and G(s) are ξt’s density function and distribution

function, respectively.

We first consider the case of individual submissions. As there are two comple-

mentary tasks, we derive PN [ei,e∗] as follows:

PN [ei,e∗] = P{yi > y j,∀ j ∈ N \{i}}= P{min{ei/2,ei/2}+ξi

> min{e∗/2,e∗/2}+ξ j,∀ j ∈ N \{i}}=
∫

∞

−∞

H (s+ ei/2− e∗/2)N−1 h(s)ds.

By considering the first-order condition of (3.3) under PN [ei,e∗], we obtain e∗ =(
ALN
2cb

) 1
b−1 and U∗ = A

N −c
(

ALN
2cb

) b
b−1 , and the organizer’s expected profit in equilib-

rium as follows:

Π
∗=E

[
max
i∈N

{yi}−A
]
=min{e∗/2,e∗/2}+E

[
max
i∈N

{ξi}
]
−A=

1
2

(
ALN

2cb

) 1
b−1

+mN−A.

We next consider the case of team submissions. We derive team t’s probability of

winning Pτ

N/2 [e
τ
ti,e

∗,τ ] as follows:

Pτ

N/2 [e
τ
ti,e

∗,τ ] = P{yτ
t > yτ

k ,∀ k ∈ T \{t}}

= P{min{eτ
ti,e

∗,τ}+ξ
τ
t > min{e∗,τ ,e∗,τ}+ξ

τ
k ,∀ k ∈ T \{t}}

= P{min{eτ
ti,e

∗,τ}+ξ
τ
t > e∗,τ +ξ

τ
k ,∀ k ∈ T \{t}}

=


∫

∞

−∞
G(s+ eτ

ti − e∗,τ)
N
2 −1 g(s)ds if eτ

ti ≤ e∗,τ∫
∞

−∞
G(s)

N
2 −1 g(s)ds if eτ

ti > e∗,τ

By taking the first-order condition of (3.17) under Pτ

N/2 [e
τ
ti,e

∗,τ ], we derive e∗,τ =(
ALτ

N/2
2cb

) 1
b−1

and U∗,τ = A
N − c

(
ALτ

N/2
2cb

) b
b−1

, and the organizer’s expected profit in

equilibrium as follows:

Π
∗,τ = E

[
max
t∈T

{yτ
t }−A

]
= min{e∗,τ ,e∗,τ}+E

[
max
t∈T

{ξ
τ
t }
]
−A

=

(
ALτ

N/2

2cb

) 1
b−1

+mτ

N/2 −A.

In the following corollary, we extend Theorem 2 to the case where there are two

complementary tasks to be performed to develop a solution to the organizer’s prob-

lem.



D.3. Existence of Equilibrium 157

Corollary 5 (a) Suppose µB = 0. Then, for any σ , there exists σB such that Π∗,τ >

Π∗ if σB > σB. Furthermore, there exist thresholds σB, σ , and σ such that when

σB < σB and σ < σ , Π∗,τ > Π∗; and when σB < σB and σ > σ , Π∗,τ < Π∗.

(b) Suppose σB → 0. Then, there exist thresholds µB, σ , and σ such that Π∗,τ > Π∗

if µB > µB or σ < σ ; and Π∗,τ < Π∗ if µB < µB and σ > σ .

Proof. We have

Π
∗,τ −Π

∗ =

(
A
cb

) 1
b−1


 IN/2

2
√

σ2 +σ2
B

 1
b−1

− 1
2

(
IN

2σ

) 1
b−1

+µB

+

(√
σ2 +σ2

BEN/2 −σEN

)
.

Suppose µB = 0. Then, we have limσB→∞(Π
∗,τ −Π∗) = ∞, and hence there ex-

ists σB (> 0) such that if σB > σB, Π∗,τ > Π∗. Also, limσB→0(Π
∗,τ − Π∗) =

σ
−1
b−1
( A

cb

) 1
b−1

[(
IN/2

2

) 1
b−1 − 1

2

(
IN
2

) 1
b−1
]
+σ

(
EN/2 −EN

)
. Thus, limσB→0,σ→0(Π

∗,τ −

Π∗) = ∞ because IN/2 > IN , and limσB→0,σ→∞(Π
∗,τ −Π∗) = −∞ because EN/2 <

EN . Therefore, there also exist σB (> 0), σ (> 0), and σ (> 0) such that if σB < σB

and σ < σ , Π∗,τ > Π∗, and if σB < σB and σ > σ , Π∗,τ < Π∗.

Suppose σB → 0. Then, Π∗,τ −Π∗ = σ
−1
b−1
( A

cb

) 1
b−1

[(
IN/2

2

) 1
b−1 − 1

2

(
IN
2

) 1
b−1
]
+

µB + σ
(
EN/n −EN

)
. Thus, limµB→∞(Π

∗,τ − Π∗) = ∞, and ∂ (Π∗,τ−Π∗)
∂ µb

= 1 > 0.

Thus, there exists µB (≥ 0) such that if µB > µB, Π∗,τ > Π∗; otherwise, Π∗,τ ≤

Π∗. Furthermore, we have limσ→∞(Π
∗,τ −Π∗) = −∞ since EN/n −EN < 0, and

limσ→0(Π
∗,τ −Π∗) = ∞ because IN/2 > IN . Thus, there exist σ (> 0) and σ (> 0)

such that if σ < σ , Π∗,τ > Π∗; and if σ > σ , Π∗,τ < Π∗. Therefore, if µB > µB or

σ < σ , Π∗,τ > Π∗; and if µB < µB or σ > σ , Π∗,τ < Π∗. We also want to note that

in this case, when σB → 0, the team-effort contribution e∗,τ is always larger than the

solver-effort contribution e∗/2 because
(

IN/2
2

) 1
b−1

> 1
2

(
IN
2

) 1
b−1 .

D.3 Existence of Equilibrium
In this section, we provide sufficient conditions for e∗ in (3.4), e∗,τ in (3.11), and

e∗,τ in (3.18) to be pure-strategy Nash equilibria. Specifically, in the following

lemma, we first show sufficient conditions for interim properties on the individual
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solver’s utility U = APN [ei,e∗]− ceb
i in (3.3) and the team member’s utility Uτ =

A
n Pτ

N [eτ
ti,e

∗,τ ]− c(eτ
ti)

b in (3.10) and (3.17). Then, we use these properties to show

that U in (3.3), Uτ in (3.10), and Uτ in (3.17) are unimodal.

Lemma 9 (a) Suppose that ∂ 2U
∂e2

i

∣∣∣
ei=e

< 0 for some e and b > 2. When b or c or σ

is sufficiently high, ∂ 2Ui[ei,e∗]
∂e2

i
< 0 for any ei > e.

(b) Suppose that Uτ is as in (3.10) and ∂ 2Uτ
i

∂ (eτ
ti)

2

∣∣∣
eτ

ti=e
< 0 for some e and b > 2. When

b or c or σ or σB is sufficiently high, ∂ 2Uτ
i

∂ (eτ
ti)

2 < 0 for any eτ
i > e.

(c) Suppose that Uτ is as in (3.17) and ∂ 2Uτ
i

∂ (eτ
ti)

2

∣∣∣
eτ

ti=e
< 0 for some e and b > 2. When

b or c or σ or σB is sufficiently high, ∂ 2Uτ
i

∂ (eτ
ti)

2 < 0 for any eτ
i > e.

Proof. (a) The second derivative of solver i’s utility U with respect to ei is

∂ 2U
∂e2

i
= A

∂ 2PN [ei,e∗]
∂e2

i
− cb(b−1)(ei)

b−2.

Suppose that ∂ 2U
∂e2

i
< 0 for some ei = e, but there exists ê > e such that ∂ 2U

∂e2
i
≥ 0 for

ei = ê. Then, ∂ 2U
∂e2

i

∣∣
ei=ê >

∂ 2U
∂e2

i

∣∣
ei=e, i.e.,

A

[
∂ 2PN [ei,e∗]

∂e2
i

∣∣∣∣
ei=ê

− ∂ 2PN [ei,e∗]
∂e2

i

∣∣∣∣
ei=e

]
> cb(b−1)

[
(ê)b−2 − (e)b−2

]
. (D.1)

Suppose that b > 2. Since ê > e, the right-hand side of (D.1) approaches ∞ as b or c

approaches ∞. Thus, when b or c is sufficiently high, (D.1) cannot be satisfied. Let

x = s+ ei − e∗. Then, the second derivative of PN [ei,e∗] with respect to ei is

∂ 2PN [ei,e∗]
∂e2

i
= (N −1)

∫
∞

−∞

(N −2)H (s+ ei − e∗)N−3 h(s+ ei − e∗)2 h(s)ds

+(N −1)
∫

∞

−∞

H (s+ ei − e∗)N−2 h′ (s+ ei − e∗)h(s)ds

= (N −1)
(

1
σ
√

2π

)3

×
∫

∞

−∞

(N −2)
[

1
2

[
1+ erf

(
x

σ
√

2

)]]N−3

exp
(
−x2/(2σ

2)
)2

exp
(
−s2/(2σ

2)
)

ds

+(N −1)
−2x

2σ3
√

2π
×∫

∞

−∞

[
1
2

[
1+ erf

(
x

σ
√

2

)]]N−2

exp
(
−x2/(2σ

2)
)

exp
(
−s2/(2σ

2)
)

ds.
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The left-hand side of (D.1) approaches 0 as σ approaches ∞, and hence when σ is

sufficiently high, (D.1) cannot be satisfied because the right-hand side of (D.1) is

positive. Therefore, when b or c or σ is sufficiently high, ∂ 2U
∂e2

i
< 0 for any ei > e.

(b) The second derivative of team member i’s utility Uτ in (3.10) with respect to eτ
ti

is

∂ 2Uτ

∂ (eτ
ti)

2 =

(
A
n

)
∂ 2Pτ

N [eτ
ti,e

∗,τ ]

∂ (eτ
ti)

2 − cb(b−1)(eτ
ti)

b−2.

Suppose that ∂ 2Uτ

∂ (eτ
ti)

2 < 0 for some eτ
ti = e, but there exists ê > e such that ∂ 2Uτ

∂ (eτ
ti)

2 ≥ 0

for eτ
ti = ê. Then, ∂ 2Uτ

∂ (eτ
ti)

2

∣∣
eτ

ti=ê >
∂ 2Uτ

∂ (eτ
ti)

2

∣∣
eτ

ti=e, i.e.,

A
n

[
∂ 2Pτ

N [eτ
ti,e

∗,τ ]

∂ (eτ
ti)

2

∣∣∣∣
eτ

ti=ê
−

∂ 2Pτ
N [eτ

ti,e
∗,τ ]

∂ (eτ
ti)

2

∣∣∣∣
eτ

ti=e

]
> cb(b−1)

[
(ê)b−2 − (e)b−2

]
.

(D.2)

Suppose that b > 2. Since ê > e, the right-hand side of (D.2) approaches ∞ as b or c

approaches ∞. Thus, when b or c is sufficiently high, (D.2) cannot be satisfied. Let

x = s+ei−e∗−µB and σx =
√

σ2 +σ2
B. Then, the second derivative of Pτ

N [eτ
ti,e

∗,τ ]

with respect to eτ
ti is

∂ 2Pτ
N [eτ

ti,e
∗,τ ]

∂ (eτ
ti)

2 = (N −n)
∫

∞

−∞

(N −2)H (s+ eτ
ti − e∗,τ)N−3 h(s+ eτ

ti − e∗,τ)2 h(s)ds

+(N −n)
∫

∞

−∞

H (s+ eτ
ti − e∗,τ)N−2 h′ (s+ eτ

ti − e∗,τ)h(s)ds

= (N −n)
(

1
σx
√

2π

)3

×
∫

∞

−∞

(N −2)
[

1
2

[
1+ erf

(
x

σx
√

2

)]]N−3

exp
(
−x2/(2σ

2
x )
)2

exp
(
−s2/(2σ

2
x )
)

ds

+(N −n)
−2x

2σ3
x
√

2π
×

∫
∞

−∞

[
1
2

[
1+ erf

(
x

σx
√

2

)]]N−2

exp
(
−x2/(2σ

2
x )
)

exp
(
−s2/(2σ

2
x )
)

ds.

The left-hand side of (D.1) approaches 0 as σ or σB approaches ∞, and hence when

σ or σB is sufficiently high, (D.1) cannot be satisfied because the right-hand side of

(D.1) is positive. Therefore, when b or c or σ or σB is sufficiently high, ∂ 2Uτ

∂ (eτ
ti)

2 < 0

for any eti > e.
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(c) Following the same steps in (b), we show that when the team member’s utility

Uτ is as in (3.17), if b or c or σ or σB is sufficiently high, ∂ 2Uτ

∂ (eτ
ti)

2 < 0 for any eti > e.

The following lemma shows that when the properties in Lemma 9 hold for any

e, e∗ in (3.4), e∗,τ in (3.11), and e∗,τ in (3.18) are pure-strategy Nash equilibria.

Lemma 10 (a) Suppose that for all e such that ∂ 2U
∂e2

i

∣∣∣
ei=e

< 0, ∂ 2U
∂e2

i
< 0 when ei > e.

Then, U is unimodal. Thus, e∗ in (3.4) is a pure-strategy Nash equilibrium.

(b) Suppose that Uτ is as in (3.10) and for all e such that ∂ 2Uτ

∂ (eτ
ti)

2

∣∣∣
eτ

ti=e
< 0, ∂ 2Uτ

∂ (eτ
ti)

2 < 0

when eτ
ti > e. Then, Uτ is unimodal. Thus, e∗,τ in (3.11) is a pure-strategy Nash

equilibrium.

(c) Suppose that Uτ is as in (3.17) and for all e such that ∂ 2Uτ

∂ (eτ
ti)

2

∣∣∣
eτ

ti=e
< 0, ∂ 2Uτ

∂ (eτ
ti)

2 < 0

when eτ
ti > e. Then, Uτ is unimodal. Thus, e∗,τ in (3.18) is a pure-strategy Nash

equilibrium.

Proof. (a) Suppose that for all e such that ∂ 2U
∂e2

i

∣∣∣
ei=e

< 0, we have ∂ 2U
∂e2

i
< 0 when

ei > e. First, we have ∂U
∂ei

∣∣∣
ei=0

= A∂PN [ei,e∗]
∂ei

> 0 and limei→∞U = −∞, and hence

there should exist some ei such that ∂U
∂ei

< 0 and ∂ 2U
∂e2

i
< 0. Thus, there exists a

threshold e0(≥ 0) such that for any ei < e0, ∂ 2U
∂e2

i
≥ 0; and for any ei > e0, ∂ 2U

∂e2
i
< 0.

Hence, we should have ∂U
∂ei

> 0 for any ei < e0, and there should exist another

threshold e00(> e0) such that for any ei < e00, ∂U
∂ei

> 0; and for any ei > e00, ∂U
∂ei

< 0.

Therefore, the solver’s utility U is unimodal with mode e00, and hence the first-

order condition of the solver’s utility-maximization problem in (3.3) is sufficient

for optimality. Thus, e∗ is the best-response to the solver’s utility-maximization

problem, and hence a pure-strategy Nash equilibrium.

(b)-(c) Suppose that for all e such that ∂ 2Uτ

∂ (eτ
ti)

2

∣∣∣
eτ

ti=e
< 0, we have ∂ 2Uτ

∂ (eτ
ti)

2 < 0 when

eτ
ti > e. First, we have ∂Uτ

∂eτ
ti

∣∣∣
eτ

ti=0
= 0 and limeτ

ti→∞Uτ =−∞, and hence there should

exist some eτ
ti such that ∂Uτ

∂eτ
ti
< 0 and ∂ 2Uτ

∂ (eτ
ti)

2 < 0. Thus, there exists a threshold

e0(≥ 0) such that for any eτ
ti < e0, ∂ 2Uτ

∂ (eτ
ti)

2 ≥ 0; and for any eτ
ti > e0, ∂ 2Uτ

∂ (eτ
ti)

2 < 0.

Hence, we should have ∂ 2Uτ

∂ (eτ
ti)

2 ≥ 0 for any eτ
ti < e0, and there should exist another

threshold e00(> e0) such that for any eτ
ti < e00, ∂ 2Uτ

∂ (eτ
ti)

2 ≥ 0; and for any eτ
ti > e00,
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∂ 2Uτ

∂ (eτ
ti)

2 < 0. Therefore, Uτ is unimodal with mode e00, and hence the first-order

condition of the team member’s utility-maximization problem in (3.10) and (3.17)

is sufficient for optimality. Thus, e∗,τ is the best-response to the team member’s

utility-maximization problem, and hence a pure-strategy Nash equilibrium.



Appendix E

Proofs of Chapter 4

Proof of Lemma 1. From (4.1), suppose that p2

qi(qi+qu)
−c(2qi+qu− p)≥ 0. Then,

the creator’s expected profit is as follows:

Π = P
(

v1 ≥ max
{

p
qi +qu

,
p2

qi(qi +qu)

})
︸ ︷︷ ︸

customer 1 pledges and makes a comment

× (E.1)

P
(

v2 ≥
p

qi +qu

)
︸ ︷︷ ︸

customer 2 pledges

(2p−2c(qi +qu)
2)−Ciqi

=

(
qi +qu − p

qi +qu

)2

(2p−2c(qi +qu)
2)−Ciqi. (E.2)

In this case, P(improve) = qi+qu−p
qi+qu

and P(success) =
(

qi+qu−p
qi+qu

)2
. Next, suppose

that p2

qi(qi+qu)
−c(2qi+qu− p)< 0. Then, the creator’s expected profit is as follows:

Π =

(
qi − p

qi

)2

(2p−2cq2
i )−Ciqi. (E.3)

In this case, P(improve) = 0 and P(success) =
(

qi−p
qi

)2
.

Proof of Proposition 1. The first derivative of the left hand-side of the condition

in (4.1) is

∂

(
p2

qi(qi+qu)
− c(2qi +qu − p)

)
∂qi

=− p2(2qi +qu)

(qi(qi +qu))2 −2c < 0,

and we have limqi→0
p2

qi(qi+qu)
− c(2qi +qu − p) = ∞ and limqi→∞

p2

qi(qi+qu)
− c(2qi +

qu − p) =−∞. Thus, there exists qi (≥ 0) such that p2

qi(qi+qu)
− c(2qi +qu − p)≥ 0,

and hence q f = qi + qu if and only if qi ≤ qi. Also, from Lemma 1, customer
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1 pledges and makes a comment with probability qi+qu−p
qi+qu

, which is increasing in

qi. Thus, the ex-ante probability that the creator improves the product during the

campaign is

P(improve) =
(

qi +qu − p
qi +qu

)
·1{ p2

qi(qi+qu)
−c(2qi+qu−p)≥0

}. (E.4)

Therefore, if qi ≤ qi, P(improve) is increasing in qi; otherwise, P(improve) = 0.

Remark 1 When limqi→p
p2

qi(qi+qu)
− c(2qi +qu − p) = p

(p+qu)
− c(p+qu)> 0, i.e.,

c< p
(p+qu)2 , we have qi > 0. Also, when c≥ p

(p+qu)2 , qi = 0, and hence P(improve)=

0 for any qi.

Proof of Proposition 2. Recall that q f = qi or q f = qi +qu depending on whether

there is an improvement or not. In both cases, the first derivative of P(success)

with respect to qi is ∂P(success)
∂qi

= 2p
q2

f

(
q f−p

q f

)
. Since q f ≥ qi > p, ∂P(success)

∂qi
>

0. Also, in both cases, the second derivative of P(success) with respect to qi is
∂ 2P(success)

∂q2
i

= 2
(
−2p

q3
f
+ 3p2

q4
f

)
, and ∂ 2P(success)

∂q2
i

> 0 if and only if q f <
3p
2 . Recall

from the proof of Proposition 1, q f = qi+qu if and only if qi ≤ qi. Therefore, when

qi > qi = max{qi,
3p
2 }, P(success) is concave in qi.

Proof of Proposition 3. We first identify sub-game perfect equilibrium strategies.

When customer k’s utility function is as in (4.2), in the fourth stage, if q f = qi+qu,

customer 2 pledges with probability (qi+qu)−b(qi+qu)
2−p

(qi+qu)−b(qi+qu)2 ; and if q f = qi, customer 2

pledges with probability qi−bq2
i −p

qi−bq2
i

. In the third stage, the creator decides whether to

improve the product by comparing

Π
I =

(
(qi +qu)−b(qi +qu)

2 − p
(qi +qu)−b(qi +qu)2

)(
2p−2c(qi +qu)

2)−Ciqi, and

Π
NI =

(
qi −bq2

i − p
qi −bq2

i

)(
2p−2cq2

i
)
−Ciqi.

Thus, the creator improves the product if and only if ΠI ≥ ΠNI , i.e.,

I ≡ p2(1−b(2qi +qu))

qi(qi +qu)(1−b(qi +qu))(1−bqi)
− c
(

2qi +qu −
p

(1−b(qi +qu))(1−bqi)

)
≥ 0.

(E.5)

In the second stage, when customer 1 pledges, she decides whether to make a
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comment or not by comparing

UC
1 =

(
(qi +qu)−b(qi +qu)

2 − p
(qi +qu)−b(qi +qu)2

)(
v1((qi +qu)−b(qi +qu)

2)− p
)

and

UNC
1 =

(
qi −bq2

i − p
qi −bq2

i

)(
v1(qi −bq2

i )− p
)

.

Thus, customer 1 makes a comment if and only if UC
1 ≥ UNC

1 , i.e., v1 ≥
p2

(qi−bq2
i )((qi+qu)−b(qi+qu)2)

. In the first stage, when customer 1 anticipates an im-

provement (i.e., I ≥ 0), customer 1 decides whether to pledge or not by comparing

UP
1 =

(
(qi +qu)−b(qi +qu)

2 − p
(qi +qu)−b(qi +qu)2

)(
v1((qi +qu)−b(qi +qu)

2)− p
)

and UNP
1 = 0.

So, customer 1 pledges if v1 ≥ p
(qi+qu)−b(qi+qu)2 . When (E.5) holds (i.e., I ≥ 0), she

pledges and makes a comment if

v1 ≥ max
{

p2

(qi −bq2
i )((qi +qu)−b(qi +qu)2)

,
p

(qi +qu)−b(qi +qu)2

}
=

p
(qi +qu)−b(qi +qu)2 . (E.6)

Note that the equality in (E.6) holds because p
qi−bq2

i
< 1. So, when I ≥ 0, customer 1

makes a comment whenever she pledges. In the first stage, when I < 0, customer 1

decides whether to pledge or not by comparing UP
1 =

(
qi−bq2

i −p
qi−bq2

i

)(
v1(qi −bq2

i )− p
)

and UNP
1 = 0. Thus, customer 1 pledges if and only if v1 ≥ p

qi−bq2
i
.

(a) From (E.5), as limqi→0+ I = ∞, there exists qi (≥ 0) such that when qi ≤

qi, P(improve) = (qi+qu)−b(qi+qu)
2−p

(qi+qu)−b(qi+qu)2 from (E.6). In this case, ∂P(improve)
∂qi

=

p(1−2b(qi+qu))
((qi+qu)−b(qi+qu)2)2 > 0 if and only if b(qi + qu) < 0.5. Also, as limqi→∞ I = −∞,

there exists qi (∈ R∪{+∞}) such that when qi > qi, P(improve) = 0.

(b) When both q f = qi and q f = qi +qu, the probability of success is P(success) =(
q f−bq2

f−p

q f−bq2
f

)2

. The first derivative of P(success) with respect to qi is ∂P(success)
∂qi

=

2
(

qi−bq2
f−p

q f−bq2
f

)(
p(1−2bq f )(
q f−bq2

f

)2

)
. Thus, in both cases, when bq f < 0.5, P(success) is

increasing in qi; and when bq f > 0.5, P(success) is decreasing in qi. From the

proof of Proposition 3(a), when qi < qi, q f = qi + qu. Thus, when qi < q′i =

min{qi,0.5/b−qu}, P(success) is increasing in qi. Also, since q f = qi for qi > qi,

when qi > q′′i = max{qi,0.5/b}, P(success) is decreasing in qi.
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Proof of Proposition 4. From (4.4), the creator’s profit Π with improvement

under qi = q∗f −qu is larger than the creator’s profit Π without improvement under

qi = q∗f . This is because in the former case, the creator saves Ciqu. When there is

an improvement, i.e., I ≥ 0, the creator’s profit

Π(qi) =

(
1− p

(qi +qu)−b(qi +qu)2

)2 (
2p−2c(qi +qu)

2)−Ciqi. (E.7)

Note that by Assumption 1, Π(0) > 0 and also note that Π(qi) ≤ 0 under any qi

such that qi+qu−b(qi+qu)
2 < p because no customer pledges under such qi. Thus,

without loss of optimality, we can restrict attention to {qi ≥ 0|qi+qu−b(qi+qu)
2 ≥

p}, which is a compact set. In this region, Π is continuous, so by Weierstrass

Theorem, there exists a global maximizer q∗i of Π in (E.7). Because q∗i is a max-

imizer, we have Π(q∗i ) ≥ Π(0) > 0. Furthermore, for any qi ≥ 2p/Ci, we have

Π(qi) ≤ 2p −Ciqi ≤ 0 since P(success) =
(

1− p
(qi+qu)−b(qi+qu)2

)2
< 1. Thus,

we should have q∗i < 2p/Ci. Because limCi→∞ 2p/Ci = 0, limCi→∞ 0 = 0, and

0 ≤ q∗i < 2p/Ci, by Squeeze Theorem, limCi→∞ q∗i = 0.

By Assumption 1, limqi→0 I > 0, and hence there exists qi such that I > 0 for

any qi < qi. Also, as limCi→∞ q∗i = 0, there exists Ci such that q∗i < qi and hence I > 0

for any Ci >Ci. Therefore, it is optimal for the creator to make an improvement and

set q∗i = q∗f −qu whenever Ci >Ci.



Appendix F

Additional Analysis of Chapter 4

F.1 Details of LDA Model

In this section, we discuss the details of the LDA method (Blei et al. 2003). The

LDA method assumes that each document can be represented as a mixture of topics

and each topic can be represented as a mixture of words. So, taking a corpus of

documents as an input, the LDA method outputs the distribution of topics in each

document and the distribution of words in each topic. The distribution of topics in

each document is a vector of weights, where the weight of each topic represents

how intensively the topic is used in the document. Similarly, the distribution of

words in each topic represents the frequency of words. As product descriptions

on campaign pages include explanation of product features, the LDA method is

suitable for extracting topics related to these features from product descriptions

(e.g., Tirunillai and Tellis 2014, Toubia et al. 2019).

To train the LDA model, we start with 43,536 initial and final descriptions

of products in 21,768 campaigns. Following the standard practice (e.g., Tirunillai

and Tellis 2014, Toubia et al. 2019), we first pre-process descriptions (e.g., remove

stop words, remove descriptions that contain less than ten words and that are not

written in English, and stem words). We then fit the LDA model on the corpus

of the remaining 42,564 descriptions (from 21,380 campaigns, 196 of which only

have a single description after pre-processing) using the standard hyperparameters

of α = 1 and β = 0.01 (e.g., Steyvers and Griffiths 2007, Toubia et al. 2019, Ghose



F.2. Cost of Commenting 167

et al. 2019), where α and β are parameters of the prior Dirichlet distributions of

topics in documents and words in topics, respectively (Blei et al. 2003). Following

the rule of α = 50/T , where T is the number of topics, (e.g., Steyvers and Griffiths

2007, Tirunillai and Tellis 2014), we set the number of topics to 50. From the

trained LDA model, we obtain weights of words in each of 50 topics and weights

of topics in each of 42,564 descriptions; all weights are positive. See Figure F.1 for

an example.

HAIZE is a new type of navigation system designed for urban cyclists. It works like a magic 
compass that, instead of pointing north, points to the destination you set in our app. HAIZE 
leaves you free to choose your own route through the city. It also makes your ride safer by 
letting you keep your phone in your pocket. HAIZE can easily be attached to any bike and is 
small and built-to-last so that you can always bring it with you. Our companion app will be 
available for both Android- and iOS-based smartphones. HAIZE is easy to use. Simply attach 
it to your bike, set the destination in our companion app, put your phone away and let HAIZE 
guide you. Its simple LED-based display will point you in the right direction and let you know 
the distance to your destination. You can select between two different modes of navigation. 
The compass mode points you in the direction of your final destination and lets you explore 
along the way. The navigation mode sets a specific route and gives you turn-by-turn directions. 
Check out the video of HAIZE in action: Check out this video of HAIZE and our app: HAIZE 
is stripped down to the essence, both the led-based display and the aluminium body combine 
simplicity with usability. The HAIZE led-display gives you all the information you need at a 
glance; direction and distance. HAIZE lets you focus on the road and explore the city. If you 
are interested in additional details about your trip, you can always check the app after your 
ride. Here you will find stats about your trips and saved routes. The rubber band integrated in 
the HAIZE body allows you to easily attach it on any bike and keep HAIZE comfortably in 
your pocket when leaving your bike on the street. The body of HAIZE has been created using 
machined anodized aluminium, making it both sturdy and stylish. The magnetometer tracks the 
direction to the destination The accelerometer and gyroscope are used to determine HAIZEs 
position The light sensor is used to regulate the LED brightness to accommodate different 
lighting conditions The battery with 300mAh delivers 2 weeks of normal usage and can be 
easily recharged using a micro usb connection HAIZE is connected to our app via a low power 
bluetooth 4.0 connection As you can see there is a lot of technology packed into HAIZE...  
 

Existing 
Topic 

0.058*"control" + 0.052*"smart" + 0.037*"sensor" + 0.030*"home" + 0.021*"mode" + 
0.021*"button" + 0.019*"connect" + 0.017*"set" + 0.017*"remot" + 0.017*"monitor" 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Excerpt from the initial description where words corre-
sponding to an existing topic are highlighted.

HAIZE is minimalist navigation device for urban cyclists. It is designed focusing on high 
quality materials, style and simplicity. HAIZE works like a magic compass that, instead of 
pointing north, points to the destination you set in our app. HAIZE leaves you free to choose 
your own route through the city. It also makes your ride safer by letting you keep your phone 
in your pocket. If you feel like sticking to the main roads HAIZE also offers turn-by-turn 
navigation. WHY YOU NEED ONE? 2 navigation modes: "turn-by-turn mode" and "compass 
mode" Self-regulating LED display for perfect day and night-time visibility Sturdy and high-
quality materials Can be used on any bike Wristband to use HAIZE while running, hiking or 
geo-caching HAIZE is easy to use. Simply attach it to your bike, set the destination in our 
companion app, put your phone away and let HAIZE guide you. Its simple LED-based display 
will point you in the right direction and let you know the distance to your destination. You can 
select between two different modes of navigation. The compass mode points you in the 
direction of your final destination and lets you explore along the way. The navigation mode 
sets a specific route and gives you turn-by-turn directions. Check out the video of HAIZE in 
action: Check out this video of HAIZE and our app: HAIZE is stripped down to the essence, 
both the led-based display and the aluminium body combine simplicity with usability. HAIZE 
is made out of aeronautic-grade sandblasted aluminium and shockproof glass. A tested and 
durable combination that stands out from the first moment. To know a direction you don\'t need 
to get distracted processing numbers or symbols on a screen. The HAIZE led-display gives you 
all the information you need at a glance; direction and distance in a simple and intuitive way. 
HAIZE lets you focus on the road and explore the city. If you are interested in additional details 
about your trip, you can check them in the app. There you will find stats about your trips and 
saved routes. HAIZE automatically regulates the brightness of the LEDs to work perfectly 
under any light condition. It will help you navigate the city no matter what time of the day! 
The elastic band integrated in the HAIZE body allows you to easily attach it on any bike and 
keep HAIZE comfortably in your pocket when leaving your bike on the street. And it always 
stays in place! HAIZE was originally designed for urban cycling. But many of our backers 
wanted to use it in other situations. That is why we decided to give every backer a wristband 
to bring HAIZE along to any activity. Be it for hiking, running, or geo-caching. And of course 
finding your way back to last years perfect mushroom spot. HAIZE will be able to guide you 
to the best spots while wandering freely. And you can be confident about getting back to the 
basecamp no matter how many turns you make. The HAIZE wristband is made from high 
quality silicone and fits perfectly around the aluminum case, allowing you to take HAIZE 
everywhere. The magnetometer tracks the direction to the destination The accelerometer and 
gyroscope are used to determine HAIZEs position The light sensor is used to regulate the LED 
brightness to accommodate different lighting conditions The battery with 300mAh delivers 2 
weeks of normal usage and can be easily recharged using a micro usb connection HAIZE is 
connected to our app via a low power bluetooth 4.0 connection As you can see there is a lot of 
technology packed into HAIZE...  
 

Existing 
Topic 

0.058*"control" + 0.052*"smart" + 0.037*"sensor" + 0.030*"home" + 0.021*"mode" + 
0.021*"button" + 0.019*"connect" + 0.017*"set" + 0.017*"remot" + 0.017*"monitor" 

Added 
Topic 

0.059*"materi" + 0.038*"weight" + 0.032*"high" + 0.030*"durabl" + 0.027*"surfac" + 
0.023*"made" + 0.022*"blade" + 0.021*"strong" + 0.020*"strength" + 0.020*"resist" 

 
 
 
 
 
 

(b) Excerpt from the final description where words correspond-
ing to an existing topic and an added topic are highlighted.

Figure F.1: Initial and final descriptions of the product HAIZE with examples of an “exist-
ing” topic that is available in the initial description and an “added” topic that is
added to the final description. Tables below excerpts illustrate the most relevant
ten words with their weights in these topics.

F.2 Cost of Commenting
In this section, we consider the case where customer 1 incurs cost of d (> 0) when

she makes a comment. Suppose that condition (4.1) holds so that customer 1 an-

ticipates an improvement. Then, customer 1 decides whether to make a comment

or not by comparing UC
1 when she makes a comment and UNC

1 when she does not
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make a comment, where

UC
1 =

(
qi +qu − p

qi +qu

)
(v1(qi +qu)− p)−d and UNC

1 =

(
qi − p

qi

)
(v1qi − p) .

Thus, customer 1 makes a comment if and only if UC
1 ≥UNC

1 , i.e., v1 ≥ p2

qi(qi+qu)
+ d

qu
.

Suppose that v1 ≥ p2

qi(qi+qu)
+ d

qu
. Then, in the first stage, customer 1 decides whether

to pledge or not by comparing UP
1 when she pledges and UNP

1 when she does not

pledge, where

UP
1 =

(
qi +qu − p

qi +qu

)
(v1(qi +qu)− p)−d and UNP

1 = 0.

Thus, customer 1 pledges if UP
1 ≥ UNP

1 , i.e., v1 ≥ p
qi+qu

+ d
qi+qu−p , and hence cus-

tomer 1 pledges and makes a comment if v1 ≥max
{

p2

qi(qi+qu)
+ d

qu
, p

qi+qu
+ d

qi+qu−p

}
.

Next, suppose that v1 <
p2

qi(qi+qu)
+ d

qu
. Then, customer 1 decides whether to pledge

or not by comparing UP
1 =

(
qi−p

qi

)
(v1qi − p) and UNP

1 = 0. Thus, customer 1

pledges if and only if v1 ≥ p
qi

. Therefore, customer 1 pledges but does make a

comment if p
qi
≤ v1 ≤ p2

qi(qi+qu)
+ d

qu
. Finally, suppose that condition (4.1) is vio-

lated. Then, customer 1 pledges if and only if v1 ≥ p
qi

. We characterize all possible

outcomes of this model in the following lemma.

Lemma 11 (a) Suppose that p2

qi(qi+qu)
− c(2qi +qu − p)≥ 0.

(i) Suppose that 1 ≥ p
qi+qu

+ d
qi+qu−p ≥ p2

qi(qi+qu)
+ d

qu
.

P(success) =
(

1− p
qi +qu

− d
qi +qu − p

)(
1− p

qi +qu

)
. (F.1)

(ii) Suppose that p
qi+qu

+ d
qi+qu−p < p2

qi(qi+qu)
+ d

qu
≤ 1.

P(success)=
(

1− p2

qi(qi +qu)
− d

qu

)(
1− p

qi +qu

)
+

(
p2

qi(qi +qu)
+

d
qu

− p
qi

)(
1− p

qi

)
.

(F.2)

(iii) Suppose that p
qi+qu

+ d
qi+qu−p ≤ 1 < p2

qi(qi+qu)
+ d

qu
.

P(success) =
(

1− p
qi

)2

. (F.3)

(b) Suppose that p2

qi(qi+qu)
− c(2qi +qu − p)< 0.

P(success) =
(

1− p
qi

)2

. (F.4)
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Proof of Lemma 11. Overall, there are four possible cases:

Case (a). Suppose that p2

qi(qi+qu)
−c(2qi+qu− p)≥ 0 such that the creator is willing

to improve the product further if customer 1 makes a comment.

Case (a-i). Suppose that 1 ≥ p
qi+qu

+ d
qi+qu−p ≥ p2

qi(qi+qu)
+ d

qu
such that customer

1 makes a comment whenever she pledges. (Note that when p
qi+qu

+ d
qi+qu−p > 1,

customer 1 never pledges.) In this case, the creator’s expected profit is as follows:

Π =

(
1− p

qi +qu
− d

qi +qu − p

)(
1− p

qi +qu

)
(2p−2c(qi +qu)

2)−Ciqi.

So, in this case probability of campaign success is as in (F.1).

Case (a-ii). Suppose that p
qi+qu

+ d
qi+qu−p < p2

qi(qi+qu)
+ d

qu
≤ 1 such that customer 1

may not make a comment although she pledges. In this case, the creator’s expected

profit is as follows:

Π =

(
1− p2

qi(qi +qu)
− d

qu

)(
1− p

qi +qu

)
(2p−2c(qi +qu)

2)

+

(
p2

qi(qi +qu)
+

d
qu

− p
qi

)(
1− p

qi

)
(2p−2cq2

i )−Ciqi.

So, in this case probability of campaign success is as in (F.2).

Case (a-iii). Suppose that p
qi+qu

+ d
qi+qu−p ≤ 1 < p2

qi(qi+qu)
+ d

qu
such that customer

1 never makes a comment although she may pledge. In this case, the creator’s

expected profit is as follows:

Π = P
(

v1 ≥
p
qi

)
·P
(

v2 ≥
p
qi

)
(2p−2cq2

i )−Ciqi =

(
1− p

qi

)2

(2p−2cq2
i )−Ciqi.

So, in this case probability of campaign success is is as in (F.3).

Case (b). Suppose that p2

qi(qi+qu)
− c(2qi + qu − p) < 0 such that the creator is not

willing to improve the product further. In this case, the creator’s expected profit is

as follows:

Π =

(
1− p

qi

)2

(2p−2cq2
i )−Ciqi.

So, in this case probability of campaign success is as in (F.4).

We numerically analyze these cases according to the setting where we select

p from Uniform(0,1), c from Uniform(0,0.01), qu from Uniform(0,0.5), and cost of

commenting d from Uniform(0,0.01). Taking the average of randomly generated
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10,000 instances, we show that our theoretical predictions hold.
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F.3 Robustness Checks
In this section, we provide results of probit and IV models for robustness checks

that we discuss in §4.4.4.

Table F.1: Spline regressions for second-stage estimations in IV models.

 Second Stage of IV Model 1 
Product improvement 

Second Stage of IV Model 2 
Campaign success 

Initial enhancement level (≤ 30) 0.053*** 0.073*** 
 (0.008) (0.008) 
Initial enhancement level (> 30) -0.115*** -0.056** 
 (0.029) (0.023) 
Residuals -0.036*** -0.046*** 
 (0.008) (0.009) 
Competition -0.572 -1.095*** 
 (0.365) (0.336) 
Technology 0.006 -0.041 
 (0.024) (0.025) 
Goal (ln) -0.022*** -0.344*** 
 (0.008) (0.009) 
Duration 0.003*** -0.001 
 (0.001) (0.001) 
Videos -0.007 -0.035*** 
 (0.014) (0.013) 
Pictures 0.003 0.021*** 
 (0.002) (0.003) 
Risk-section length -0.000 -0.000** 
 (0.000) (0.000) 
Pledge price 0.000 0.000*** 
 (0.000) (0.000) 
Delivery time 0.001 -0.006** 
 (0.002) (0.003) 
Creator experience 0.021* 0.268*** 
 (0.012) (0.025) 
Individual -0.148*** -0.360*** 
 (0.024) (0.021) 
Constant -0.929*** 2.292*** 
 (0.083) (0.088) 
Observations 18,173 18,173 

Nonparametric bootstrap standard errors (100 replications) in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1 
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Table F.2: Equal time periods before and after IV.

1 

 
    Probit Model 1 Probit Model 2 First Stage of IV Models 

1 and 2 
Second Stage of IV 

Model 1 
Second Stage of IV 

Model 2 
    Product improvement Campaign success Initial enhancement level Product improvement Campaign success 

Initial enhancement level .071*** .089***  .086*** .138*** 
   (.005) (.005)  (.017) (.016) 
Initial enhancement level	× 
Initial enhancement level    

-.002*** -.002***  -.002*** -.003*** 

   (.000) (.000)  (.000) (.000) 
Competition -1.569*** -2.472*** -9.545*** -1.22** -1.044* 
   (.322) (.314) (2.015) (.597) (.57) 
Category: Technology .075*** .003 1.289*** .06* -.058 
   (.024) (.026) (.133) (.036) (.037) 
Goal (ln) -.01 -.325*** .691*** -.018 -.357*** 
   (.009) (.011) (.043) (.014) (.016) 
Duration .004*** -.002* -.022*** .004*** -.001 
   (.001) (.001) (.006) (.001) (.001) 
Videos .025 -.028 .705*** .016 -.06*** 
   (.016) (.019) (.143) (.02) (.023) 
Pictures .015*** .032*** .328*** .011** .017*** 
   (.001) (.002) (.009) (.005) (.006) 
Risk-section length 0*** 0** .013*** 0 0* 
   (.000) (.000) (.001) (.000) (.000) 
Pledge price 0 0*** 0 0 0*** 
   (.000) (.000) (.000) (.000) (.000) 
Delivery time .003 -.002 .013 .003 -.002 
   (.003) (.003) (.012) (.003) (.003) 
Creator experience .058** .329*** .322*** .055** .319*** 
   (.026) (.033) (.12) (.026) (.034) 
Individual -.186*** -.388*** -.093 -.185*** -.387*** 
   (.032) (.029) (.129) (.032) (.029) 
Before relaxation of rules   2.758***   
     (.209)   
Residuals    -.012 -.046*** 
    (.016) (.016) 
Residuals×Residuals       0* .001** 
      (.000) (.000) 
Constant -.959*** 2.32*** -1.838*** -1*** 2.19*** 
   (.106) (.108) (.49) (.109) (.114) 
Observations 11764 11764 11764 11764 11764 
pseudo 𝑅! .06 .187 .416 .061 .189 
Nonparametric bootstrap standard errors (100 replications) in parentheses. 
*** p<.01, ** p<.05, * p<.1  
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Table F.3: Campaigns where final enhancement level is greater than or equal to initial en-
hancement level.

1 

 
    Probit Model 1 Probit Model 2 First Stage of IV Models 

1 and 2 
Second Stage of IV 

Model 1 
Second Stage of IV 

Model 2 
    Product improvement Campaign success Initial enhancement level Product improvement Campaign success 

Initial enhancement level .078*** .09***  .106*** .13*** 
   (.004) (.004)  (.009) (.01) 
Initial enhancement level	× 
Initial enhancement level    

-.002*** -.002***  -.002*** -.003*** 

   (.000) (.000)  (.000) (.000) 
Competition -1.294*** -2.117*** -1.574 -.676** -1.284*** 
   (.24) (.296) (1.33) (.274) (.373) 
Category: Technology .059** .035 .965*** .03 -.003 
   (.025) (.026) (.095) (.026) (.029) 
Goal (ln) -.006 -.334*** .571*** -.022** -.356*** 
   (.007) (.008) (.032) (.009) (.009) 
Duration .003*** -.002** -.016*** .004*** -.002 
   (.001) (.001) (.004) (.001) (.001) 
Videos .028** -.007 .681*** .009 -.032** 
   (.014) (.015) (.101) (.015) (.015) 
Pictures .015*** .035*** .298*** .006** .024*** 
   (.001) (.001) (.006) (.003) (.003) 
Risk-section length 0*** 0*** .015*** 0 0 
   (.000) (.000) (.001) (.000) (.000) 
Pledge price 0 0*** 0 0 0*** 
   (.000) (.000) (.000) (.000) (.000) 
Delivery time .003 -.005** .011 .002 -.005** 
   (.002) (.002) (.009) (.002) (.002) 
Creator experience .017 .255*** .221*** .015 .254*** 
   (.013) (.026) (.063) (.013) (.026) 
Individual -.145*** -.34*** -.009 -.146*** -.343*** 
   (.026) (.029) (.098) (.027) (.028) 
Before relaxation of rules   3.606***   
     (.145)   
Residuals    -.029*** -.039*** 
    (.008) (.01) 
Residuals×Residuals       0 0* 
      (.000) (.000) 
Constant -1.066*** 2.257*** -2.679*** -1.107*** 2.203*** 
   (.07) (.079) (.369) (.073) (.08) 
Observations 17005 17005 17005 17005 17005 
pseudo 𝑅! .074 .211 .398 .074 .212 
Nonparametric bootstrap standard errors (100 replications) in parentheses. 
*** p<.01, ** p<.05, * p<.1  
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Table F.4: Treating cancelled campaigns as failed campaigns.

1 

 
    Probit Model 1 Probit Model 2 First Stage of IV Models 

1 and 2 
Second Stage of IV 

Model 1 
Second Stage of IV 

Model 2 
    Product improvement Campaign success Initial enhancement level Product improvement Campaign success 

Initial enhancement level .07*** .086***  .103*** .123*** 
   (.004) (.004)  (.007) (.008) 
Initial enhancement level	× 
Initial enhancement level    

-.002*** -.002***  -.002*** -.002*** 

   (.000) (.000)  (.000) (.000) 
Competition -.898*** -1.763*** -1.678 -.386 -1.046*** 
   (.238) (.253) (1.118) (.241) (.291) 
Category: Technology .054** .027 1.031*** .026 -.011 
   (.021) (.019) (.092) (.022) (.02) 
Goal (ln) -.005 -.329*** .6*** -.02** -.351*** 
   (.007) (.008) (.032) (.008) (.008) 
Duration .003*** -.003*** -.014*** .003*** -.003*** 
   (.001) (.001) (.005) (.001) (.001) 
Videos .018* -.018 .723*** -.002 -.043*** 
   (.01) (.011) (.084) (.011) (.013) 
Pictures .009*** .027*** .287*** .001 .016*** 
   (.001) (.001) (.006) (.002) (.003) 
Risk-section length 0*** 0*** .016*** 0** 0** 
   (.000) (.000) (.001) (.000) (.000) 
Pledge price 0 0*** 0 0 0*** 
   (.000) (.000) (.000) (.000) (.000) 
Delivery time .001 -.005** .007 .001 -.005** 
   (.002) (.002) (.009) (.002) (.002) 
Creator experience .016 .154*** .177*** .014 .153*** 
   (.01) (.016) (.042) (.01) (.017) 
Individual -.152*** -.336*** -.072 -.153*** -.337*** 
   (.023) (.024) (.101) (.023) (.024) 
Before relaxation of rules   3.562***   
     (.134)   
Residuals    -.028*** -.037*** 
    (.007) (.008) 
Residuals×Residuals       .001*** 0* 
      (.000) (.000) 
Constant -1.086*** 2.218*** -2.738*** -1.139*** 2.167*** 
   (.078) (.085) (.366) (.075) (.087) 
Observations 21184 21184 21184 21184 21184 
pseudo 𝑅! .049 .177 .399 .051 .178 
Nonparametric bootstrap standard errors (100 replications) in parentheses. 
*** p<.01, ** p<.05, * p<.1  
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Table F.5: When the number of topics is set to 40 in LDA Model.

1 

 
    Probit Model 1 Probit Model 2 First Stage of IV Models 

1 and 2 
Second Stage of IV 

Model 1 
Second Stage of IV 

Model 2 
    Product improvement Campaign success Initial enhancement level Product improvement Campaign success 

Initial enhancement level .074*** .103***  .114*** .147*** 
   (.005) (.005)  (.011) (.011) 
Initial enhancement level	× 
Initial enhancement level    

-.003*** -.003***  -.003*** -.003*** 

   (.000) (.000)  (.000) (.000) 
Competition -1.189*** -2.033*** -2.338* -.379 -1.166*** 
   (.257) (.286) (1.272) (.317) (.331) 
Category: Technology .022 .033 .693*** -.007 .003 
   (.022) (.021) (.095) (.024) (.022) 
Goal (ln) -.007 -.334*** .534*** -.027*** -.356*** 
   (.008) (.008) (.031) (.009) (.009) 
Duration .003*** -.002* -.018*** .004*** -.001 
   (.001) (.001) (.004) (.001) (.001) 
Videos .002 -.006 .609*** -.021 -.03** 
   (.012) (.012) (.077) (.014) (.013) 
Pictures .012*** .033*** .266*** .002 .022*** 
   (.001) (.001) (.005) (.003) (.003) 
Risk-section length 0*** 0*** .013*** 0* 0** 
   (.000) (.000) (.001) (.000) (.000) 
Pledge price 0* 0*** 0 0* 0*** 
   (.000) (.000) (.000) (.000) (.000) 
Delivery time 0 -.005** .008 0 -.005* 
   (.002) (.002) (.009) (.002) (.002) 
Creator experience .009 .256*** .163*** .008 .258*** 
   (.012) (.023) (.056) (.012) (.023) 
Individual -.155*** -.359*** -.097 -.153*** -.359*** 
   (.021) (.02) (.092) (.021) (.019) 
Before relaxation of rules   3.245***   
     (.132)   
Residuals    -.04*** -.043*** 
    (.01) (.01) 
Residuals×Residuals       0 .001** 
      (.000) (.000) 
Constant -1.028*** 2.192*** -1.086*** -1.138*** 2.078*** 
   (.08) (.075) (.318) (.085) (.082) 
Observations 18173 18173 18173 18173 18173 
pseudo 𝑅! .044 .206 .411 .045 .207 
Nonparametric bootstrap standard errors (100 replications) in parentheses. 
*** p<.01, ** p<.05, * p<.1  
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Table F.6: When the number of topics is set to 60 in LDA Model.

1 

 
    Probit Model 1 Probit Model 2 First Stage of IV Models 

1 and 2 
Second Stage of IV 

Model 1 
Second Stage of IV 

Model 2 
    Product improvement Campaign success Initial enhancement level Product improvement Campaign success 

Initial enhancement level .066*** .073***  .095*** .116*** 
   (.004) (.004)  (.008) (.009) 
Initial enhancement level	× 
Initial enhancement level    

-.002*** -.002***  -.002*** -.002*** 

   (.000) (.000)  (.000) (.000) 
Competition -.944*** -2.088*** -2.833* -.287 -1.128*** 
   (.257) (.281) (1.578) (.313) (.328) 
Category: Technology .017 .019 1.239*** -.018 -.031 
   (.018) (.021) (.114) (.021) (.023) 
Goal (ln) -.008 -.328*** .608*** -.025*** -.352*** 
   (.007) (.008) (.037) (.009) (.009) 
Duration .003*** -.002* -.022*** .003*** -.001 
   (.001) (.001) (.005) (.001) (.001) 
Videos .014 -.004 .732*** -.006 -.032** 
   (.013) (.012) (.1) (.015) (.013) 
Pictures .013*** .034*** .319*** .004 .021*** 
   (.001) (.001) (.006) (.002) (.003) 
Risk-section length 0*** 0*** .016*** 0 0** 
   (.000) (.000) (.001) (.000) (.000) 
Pledge price 0 0*** 0* 0 0*** 
   (.000) (.000) (.000) (.000) (.000) 
Delivery time .003 -.005** .016 .002 -.005** 
   (.002) (.002) (.011) (.002) (.002) 
Creator experience .016 .259*** .199*** .015 .26*** 
   (.012) (.023) (.068) (.012) (.024) 
Individual -.143*** -.357*** .063 -.146*** -.364*** 
   (.027) (.02) (.115) (.027) (.02) 
Before relaxation of rules   3.74***   
     (.166)   
Residuals    -.028*** -.041*** 
    (.007) (.008) 
Residuals×Residuals       0** 0** 
      (.000) (.000) 
Constant -1.035*** 2.309*** -3.2*** -1.071*** 2.266*** 
   (.083) (.074) (.412) (.083) (.077) 
Observations 18173 18173 18173 18173 18173 
pseudo 𝑅! .061 .201 .391 .062 .203 
Nonparametric bootstrap standard errors (100 replications) in parentheses. 
*** p<.01, ** p<.05, * p<.1  
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Table F.7: When the threshold is set to 8 while counting the number of topics.

1 

 
    Probit Model 1 Probit Model 2 First Stage of IV Models 

1 and 2 
Second Stage of IV 

Model 1 
Second Stage of IV 

Model 2 
    Product improvement Campaign success Initial enhancement level Product improvement Campaign success 

Initial enhancement level .068*** .081***  .106*** .116*** 
   (.004) (.004)  (.009) (.009) 
Initial enhancement level	× 
Initial enhancement level    

-.002*** -.002***  -.002*** -.002*** 

   (.000) (.000)  (.000) (.000) 
Competition -.983*** -2.021*** -3.273** .036 -1.131*** 
   (.256) (.287) (1.599) (.313) (.33) 
Category: Technology .031 .029 1.026*** -.012 -.007 
   (.02) (.021) (.118) (.023) (.022) 
Goal (ln) -.001 -.335*** .695*** -.027*** -.358*** 
   (.007) (.008) (.04) (.008) (.009) 
Duration .003*** -.002* -.021*** .003*** -.001 
   (.001) (.001) (.006) (.001) (.001) 
Videos .014 -.007 .777*** -.015 -.031** 
   (.011) (.012) (.095) (.014) (.013) 
Pictures .011*** .033*** .34*** -.002 .022*** 
   (.001) (.001) (.006) (.003) (.003) 
Risk-section length 0*** 0*** .017*** 0** 0** 
   (.000) (.000) (.002) (.000) (.000) 
Pledge price 0 0*** 0 0 0*** 
   (.000) (.000) (.000) (.000) (.000) 
Delivery time -.001 -.005** .01 -.001 -.005** 
   (.002) (.002) (.011) (.002) (.002) 
Creator experience .025** .257*** .218*** .024* .258*** 
   (.012) (.022) (.071) (.013) (.023) 
Individual -.172*** -.358*** -.109 -.17*** -.358*** 
   (.022) (.02) (.119) (.023) (.019) 
Before relaxation of rules   4.031***   
     (.163)   
Residuals    -.04*** -.035*** 
    (.008) (.008) 
Residuals×Residuals       0 0 
      (.000) (.000) 
Constant -1.076*** 2.219*** -1.928*** -1.181*** 2.126*** 
   (.071) (.074) (.404) (.077) (.08) 
Observations 18173 18173 18173 18173 18173 
pseudo 𝑅! .051 .206 .411 .053 .207 
Nonparametric bootstrap standard errors (100 replications) in parentheses. 
*** p<.01, ** p<.05, * p<.1  
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Table F.8: When the threshold is set to 12 while counting the number of topics.

1 

 
    Probit Model 1 Probit Model 2 First Stage of IV Models 

1 and 2 
Second Stage of IV 

Model 1 
Second Stage of IV 

Model 2 
    Product improvement Campaign success Initial enhancement level Product improvement Campaign success 

Initial enhancement level .076*** .092***  .123*** .143*** 
   (.004) (.005)  (.01) (.011) 
Initial enhancement level	× 
Initial enhancement level    

-.002*** -.003***  -.003*** -.003*** 

   (.000) (.000) (.000) (.000) (.000) 
Competition -.911*** -2.079*** -2.56** -.025 -1.129*** 
   (.254) (.282) (1.291) (.311) (.329) 
Category: Technology .009 .019 1.017*** -.039* -.031 
   (.019) (.021) (.092) (.022) (.023) 
Goal (ln) .001 -.328*** .495*** -.02** -.352*** 
   (.008) (.008) (.031) (.009) (.009) 
Duration .003*** -.002* -.017*** .004*** -.001 
   (.001) (.001) (.004) (.001) (.001) 
Videos .007 -.004 .613*** -.021 -.032** 
   (.012) (.012) (.08) (.014) (.013) 
Pictures .012*** .034*** .262*** .001 .021*** 
   (.001) (.001) (.005) (.003) (.003) 
Risk-section length 0*** 0*** .013*** 0*** 0** 
   (.000) (.000) (.001) (.000) (.000) 
Pledge price 0 0*** 0* 0 0*** 
   (.000) (.000) (.000) (.000) (.000) 
Delivery time .003 -.005** .01 .003 -.005** 
   (.002) (.002) (.009) (.002) (.002) 
Creator experience .018 .258*** .187*** .015 .258*** 
   (.013) (.023) (.055) (.013) (.023) 
Individual -.14*** -.356*** -.003 -.142*** -.36*** 
   (.025) (.02) (.098) (.025) (.02) 
Before relaxation of rules   3.043***   
     (.139)   
Residuals    -.046*** -.049*** 
    (.009) (.01) 
Residuals×Residuals       .001* .001** 
      (.000) (.000) 
Constant -1.156*** 2.295*** -2.364*** -1.213*** 2.241*** 
   (.092) (.074) (.347) (.094) (.077) 
Observations 18173 18173 18173 18173 18173 
pseudo 𝑅! .056 .203 .389 .057 .204 
Nonparametric bootstrap standard errors (100 replications) in parentheses. 
*** p<.01, ** p<.05, * p<.1  

Table F.9: Control for competition in the first week of each campaign.

1 

 
    Probit Model 1 First Stage of IV Model 1 Second Stage of IV Model 1   
    Product improvement Initial enhancement level Product improvement   

Initial enhancement level .072***  .104***   
   (.004)  (.009)   
Initial enhancement level	× 
Initial enhancement level    

-.002***  -.002***   

   (.000)  (.000)   
Competition -.996*** -2.614** -.499*   
   (.238) (1.293) (.277)   
Category: Technology .053** 1.003*** .023   
   (.023) (.103) (.025)   
Goal (ln) -.006 .58*** -.024***   
   (.008) (.034) (.009)   
Duration .003*** -.019*** .003***   
   (.001) (.005) (.001)   
Videos .014 .697*** -.007   
   (.012) (.089) (.014)   
Pictures .013*** .296*** .003   
   (.001) (.006) (.003)   
Risk-section length 0*** .015*** 0   
   (.000) (.001) (.000)   
Pledge price 0 0 0   
   (.000) (.000) (.000)   
Delivery time .002 .011 .002   
   (.002) (.01) (.002)   
Creator experience .02 .203*** .018   
   (.015) (.062) (.015)   
Individual -.139*** -.037 -.14***   
   (.024) (.107) (.024)   
Before relaxation of rules  3.51***    
    (.15)    
Residuals   -.032***   
   (.008)   
Residuals×Residuals      0   
     (.000)   
Constant -1.082*** -2.277*** -1.107***   
   (.085) (.348) (.086)   
Observations 18173 18173 18173   
pseudo 𝑅! .056 .399 .057   
Nonparametric bootstrap standard errors (100 replications) in parentheses. 
*** p<.01, ** p<.05, * p<.1  
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