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A B S T R A C T   

This paper interrogates the intersections between bubble dynamics and classical nucleation theory (CNT) to-
wards constructing a model that describes intermediary nucleation events between the extrema of cavitation and 
boiling. We employ Zeldovich’s hydrodynamic approach to obtain a description of bubble nuclei that grow 
simultaneously via hydrodynamic excitation by the acoustic field and vapour transport. By quantifying the 
relative dominance of both mechanisms, it is then possible to discern the extent to which viscosity, inertia, 
surface tension and vapour transport shape the growth of bubble nuclei through non-dimensional numbers that 
naturally arise within the theory. 

The first non-dimensional number Φ2
1/Φ2 is analogous to the Laplace number, representing the balance be-

tween surface tension and inertial constraints to viscous effects. The second non-dimensional number δ repre-
sents how enthalpy transport into the bubble can reduce nucleation rates by cooling the surrounding liquid. This 
formulation adds to the current understanding of ultrasound bubble nucleation by accounting for bubble dy-
namics during nucleation, quantifying the physical distinctions between “boiling” and “cavitation” bubbles 
through non-dimensional parameters, and outlining the characteristic timescales of nucleation according to the 
growth mechanism of bubbles throughout the histotripsy temperature range. 

We observed in our simulations that viscous effects control the process of ultrasound nucleation in water-like 
media throughout the 0–120 ◦C temperature range, although this dominance decreases with increasing tem-
peratures. Enthalpy transport was found to reduce nucleation rates for increasing temperatures. This effect be-
comes significant at temperatures above 30 ◦C and favours the creation of fewer nuclei that are larger in size. 
Conversely, negligible enthalpy transport at lower temperatures can enable the nucleation of dense clusters of 
small nuclei, such as cavitation clouds. We find that nuclei growth as modelled by the Rayleigh-Plesset equation 
occurs over shorter timescales than as modelled by vapour-dominated growth. This suggests that the first stage of 
bubble nuclei growth is hydrodynamic, and vapour transport effects can only be observed over longer timescales. 
Finally, we propose that this framework can be used for comparison between different experiments in bubble 
nucleation, towards standardisation and dosimetry of protocols.   

1. Introduction 

In previous papers, we have discussed how ultrasound nucleation 
pressure thresholds strongly depend on the medium’s local temperature. 
Therefore, it is possible to use a temperature-dependent activity factor to 
harmonise theoretical CNT predictions and experimental data of ultra-
sound nucleation in the 1 – 2 MHz frequency range [1]. In this 
approximation, we assumed that nucleation takes place at the bottom 
most of an acoustic tensile wave, during a fraction of the acoustic period 
given as ΔtN = 1

10f that is sufficiently small to approximate nucleation 
rates as an isobaric, isothermal process. This model suggested that at 

room or physiological temperatures, the acoustic pressure significantly 
affects the rate at which bubbles nucleate. Conversely, nucleation rates 
increase up to 20 orders of magnitude between 60 and 100 ◦C, where the 
liquid’s temperature is the driving parameter of the process [2], due to 
an increasing vapour pressure and a decreasing surface tension at high 
temperatures. 

The theory derived in [1,2] is a thermodynamic theory, which con-
siders vapour transport as the sole mechanism involved in nuclei 
growth. Although that model can predict spatial–temporal trends of 
bubble nucleation within focused acoustic fields, it is skewed towards 
highlighting the energetic requirements of nucleation via the surface 

* Corresponding author. 
E-mail address: m.deandrade@ucl.ac.uk (M.O. de Andrade).  

Contents lists available at ScienceDirect 

Ultrasonics Sonochemistry 

journal homepage: www.elsevier.com/locate/ultson 

https://doi.org/10.1016/j.ultsonch.2022.106091 
Received 10 May 2022; Received in revised form 20 June 2022; Accepted 4 July 2022   

mailto:m.deandrade@ucl.ac.uk
www.sciencedirect.com/science/journal/13504177
https://www.elsevier.com/locate/ultson
https://doi.org/10.1016/j.ultsonch.2022.106091
https://doi.org/10.1016/j.ultsonch.2022.106091
https://doi.org/10.1016/j.ultsonch.2022.106091
http://creativecommons.org/licenses/by/4.0/


Ultrasonics Sonochemistry 88 (2022) 106091

2

tension term in detriment of the effects of bubble radial dynamics. 
Therefore, the questions that this model cannot answer regard the 
common physical mechanisms of bubble growth between ultrasound 
cavitation [3–7] and boiling bubble nucleation [8–12], and how these 
mechanisms act as functions of temperature. This is because, in most 
practical applications, bubble growth is jointly determined by hydro-
dynamic oscillations caused by the acoustic pressure and thermal effects 
controlled by the liquid temperature such as vapour and gas transport 
[13]. 

A fundamental understanding of bubble nucleation is essential for 
the design of procedures that rely on the appearance and sustained ac-
tivity of bubbles in a liquid medium, or to avoid the nucleation of 
bubbles when it is undesirable or hazardous. Focused ultrasound is an 
area where bubble nucleation is applied to create localised mechanical 
damage in soft tissue, via a technique named histotripsy. Histotripsy is a 
method where the ultrasound-induced nucleation and activity of bub-
bles inflicts mechanical injury to a focal volume whilst avoiding damage 
to overlying layers of tissue [14]. 

There are two broad categories of histotripsy which relate to the 
mechanism driving bubble nucleation. On the one hand, boiling histo-
tripsy [15,16] takes place at high temperatures in the presence of 
acoustic shockwaves of about − 16 MPa peak negative pressure [1,2]. On 
the other hand, cavitation histotripsy, usually classified as cavitation 
cloud [17], shock-scattering [18] or intrinsic threshold [7] histotripsy, 
occurs at physiological temperatures with peak-negative focal pressures 
around − 30 MPa within as little as two ultrasound cycles. In-depth re-
views of histotripsy and bubble dynamics can be found in [14,19,20]. 

Cavitation-based histotripsy techniques are remarkably repeatable 
when peak-negative pressure magnitudes surpass the liquids nucleation 
pressure threshold. In the intrinsic threshold method, a single bubble 
appears at the ultrasound focus [21], and the cavitating volume grows 
proportionally to the volume of the focal zone that surpasses the 
nucleation pressure threshold [22]. It has been observed that bubble 
maximum sizes are not strictly proportional to the magnitude of the 
peak-negative focal pressure, and that further increases in the magni-
tude of the incoming tensile wave will result in a greater number of 
bubbles nucleated within the focal zone [23]. After the growth stage of 
the bubbles is completed, they collapse inertially under ambient pres-
sure [19,23], unless residual internal gas content increases their 
longevity which is then controlled by passive diffusion [24], which 
caused histotripsy bubbles in tissue phantoms and a murine tumour 
model to be detectable via chirp-coded excitation up to 250 ms after 
sonication [25,26]. 

Alternatively, boiling bubble nucleation usually happens following 
millisecond non-linear heat deposition due to the absorption of shock-
waves [27]. The ultrasound focal volume transforms mechanical energy 
into heat until the temperature-dependent nucleation threshold equals 
the peak-negative ultrasound pressure at the focus, causing the 
appearance of a boiling bubble [2]. Numerical studies of boiling bubbles 
show that they can grow from nano to millimetre sizes by vapour and gas 
transport across their surface [9,28,29]. Their fully developed behaviour 
might also selectively induce mechanical damage to the parenchyma 
whilst sparing vascular tissue [30]. 

High-speed camera imaging of boiling bubble nucleation and growth 
in transparent tissue-mimicking phantoms shows that both processes of 
cavitation and boiling occur during boiling histotripsy [11]. In addition, 
there is evidence that the constructive interactions of the pressure waves 
reflected by boiling bubbles with the incoming acoustic field can create 
pre-focal regions of negative pressure that surpass the medium’s 
nucleation pressure threshold, resulting in a cavitation cloud in the 
frontal side of the focus [31]. These tensile pressure regions have been 
observed in both linear and non-linear simulations of acoustic reflection 
from a vapour bubble [11,31]. 

Herein, we analyse the role of thermal, inertial, surface tension and 
viscous effects in ultrasound-induced bubble nucleation. We employ a 
hydrodynamic formulation of classical nucleation theory, where the 

dynamics of spherical bubbles are considered by including the Rayleigh- 
Plesset [32] equation into the kinetic terms of a CNT model. This model 
is based on the hydrodynamic approach of Zeldovich developed in 1942 
[33], further developed by Kagan and discussed in detail by Blander and 
Katz [34,35], but, to the best of our knowledge, never investigated in the 
context of ultrasound nucleation in histotripsy. 

2. Mathematical modelling 

Our previous models of ultrasound nucleation [1,2] were based on 
the Szilard model, where nucleation is thought to be a series of reactions 
between monomers (n = 1 molecule bubble embryos) and polymers 
(n > 1 molecule bubble embryos). This results in a steady-state nucle-
ation rate that carries the assumption that bubble embryos can only 
grow from the evaporation of the surrounding liquid phase. In such a 
case, the nucleation rate is given by: 

Jss =
ρl

m

̅̅̅̅̅̅̅
2σ
πm

√

exp( − ΔG*), (1) 

where ρl = ρl(T) [kg • m− 3] is the liquid density, and m [kg] the 
molecular mass. ΔG* [J] is the free energy barrier for nucleation given in 
terms of the size of the critical nucleus as ΔG* = W*

kBT = 4
3kBT πσr*2 [ND]. In 

this equation σ = σ(T) [J • m− 2] is the liquid’s surface tension, Pv and 

Pl[Pa] are, respectively, the vapour and acoustic pressure, ζ = 1 −
(

ρv
ρl

)
+

1
2

(
ρv
ρl

)2
[ND], is a correction for nonideality defined in terms of the 

temperature-dependent density of water in the vapour ρv and liquid ρl 
phases. The radius of critical nuclei is then given by the Laplace equation 
of mechanical equilibrium r* = 1

ζ
2σ

Pv − Pl 
[m], T [K] is the liquid’s tem-

perature, and kB [J • K− 1] is Boltzmann’s constant. 
The critical point of nucleation is a set of thermodynamic conditions 

in which the internal pressure of a nucleus exactly balances the pressure 
applied by the liquid and surface tension Pv = Pl +

2σ
ζr*. Therefore, any 

pair of pressure Pl and temperature T such that Pl = PN
l (T) is a critical 

point. As discussed in detail in [1,2], the temperature-dependent 
nucleation pressure threshold PN

l has the form: 

PN
l = Pv −

1
ζ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
16πσ3

3kBTln
( J0V0ΔtN

Σ

)

√

. (2) 

In this equation, Σ is the number of critical nuclei formed in a volume 

V0 during a time interval ΔtN of the acoustic wave, and J0 =
ρl
m

̅̅̅̅̅
2σ
πm

√
. 

The factor ρl
m in Eq. (1) accounts for the availability of monomers for 

bubble nucleation. This means that intrinsic thermal fluctuations of the 
system continuously create small nuclei which can trigger nucleation 
upon growing to a certain critical size r*. From a thermodynamic point 
of view, these nuclei are transient, short-lived formations that happen 
due to the molecular movement in the liquid, which has a characteristic 
magnitude of kBT. These events happen randomly in space and time, 
meaning that in any liquid, even at equilibrium, there are short-lived 
fluctuations in density that can be understood as bubble embryos. If 
one averages the number of fluctuations of all sizes that take place 
within a long observation window and divides this by the volume under 
investigation, the result is a spatially-averaged equilibrium distribution 
of nuclei C(n, t) = Cn(t). 

In a real nucleating system, nuclei will have an unknown distribution 
Z(n, t) ≡ Zn(t) that might be different to Cn(t). The Szilard model es-
tablishes that the derivative ∂Zn

∂t is simply the rate of arrivals at the size n 
subtracted by the rate of departures from size n. Let us denote 
f(n, t) ≡ fn, as the rate at which n-sized embryos gain one vapour 
molecule, and g(n, t) ≡ gn, as the rate that n-sized embryos lose one 
vapour molecule. This leads to the Master Equation of Nucleation [36], 
an expression of the form. 
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dZn

dt
= fn− 1Zn− 1 + gn+1Zn+1 − (fn + gn)Zn. (3) 

This equation means that the rate of arrivals at the size n will be 
given by the forward rate of n − 1 sized nuclei growing into n added to 
the backward rate of n+1 sized nuclei shrinking into n. The rate of 
departures is given by n sized nuclei either growing or shrinking away 
from n. It would be difficult to establish the transition rates fn and gn 

individually, so we make use of a property of the equilibrium distribu-
tion. In equilibrium sizes are conserved [33,36], therefore fnCn =

gn+1Cn+1 and fn− 1Cn− 1 = gnCn. By using thesse approximations for gn, 
[27] shows that Eq. (3) assumes the differential form: 

∂Zn(t)
∂t

=
∂
∂n

{

fn(t)Cn(t)
∂
∂n

[
Zn(t)
Cn(t)

]}

=
∂
∂n

{

fn(t)Cn(t)

[
1

Cn(t)
∂Zn(t)

∂n
− Zn(t)

[
1

Cn(t)

]2∂Cn(t)
∂n

]}

= −
∂
∂n

{

Zn(t)vn − fn(t)
∂Zn(t)

∂n

}

(4) 

This equation uses the equilibrium distribution of nuclei as a refer-
ence for calculating the true distribution of nuclei Zn(t) that might differ 
from Cn(t), where the advective term in n is given by vn =

fn(t) ∂
∂n [lnCn(t)] ≡ Dn

∂
∂n [lnCn(t)]. The full steady-state solution of Eq. (4) 

was discussed in detail by [36], resulting in an expression much like Eq. 
(1). 

The influence of vapour pressures over nucleation decreases at lower 
temperatures and might become insignificant compared to very large 
tensile pressures at play in ultrasound nucleation [2]. Therefore, we 
implement a hydrodynamic model in order to accurately account for the 
growth of bubble nuclei in the low-temperature range. At these tem-
peratures, bubble behaviour is highly sensitive to changes in the pres-
sure field Pl(t), but also limited by the liquid’s viscosity. This means that 
there is no one-to-one relationship between the number of vapour 
molecules inside a bubble and its radius. For example, a bubble with n 
internal vapour molecules will not have a unique radius r, but rather 
oscillate around an equilibrium value. In this paper, we bridge this gap 
by applying the approach of Zeldovich [33] to approximate the 
continuous size distribution rn⇄rn+1 in the radial coordinate r instead of 
the discrete transition n⇄n+1 in the size coordinate n. This will allow us 
to obtain the building blocks of a nucleation rate that accounts for how 
radial oscillations of a bubble nucleus affect its growth. 

2.1. The generalised Zeldovich equation 

We now wish to change the variables of Eq. (4) so that it uses the 
bubble radius as an independent variable. It is critical to notice that as a 
bubble embryo transitions from a size n to n + 1, the differential in 
question is Δn = 1 in the discrete coordinate system n. However, Δn is 
equivalent to an unknown number of radial variations dr in the 
continuous coordinate r. One can then assume that the transition from n 
to n + 1, or from n to n − 1 has a fundamental length scale lr =

r(n+1) − r(n), where r(n) is a relationship derived from the ideal gas 
law. This length scale is useful in changing the independent variables of 
Equation (4) from n to r, resulting in. 

∂Z(r, t)
∂t

=
∂
∂r

{

frl2
r Cr

∂
∂r

[
Z(r, t)
C(r, t)

]}

=
∂
∂r

{

DrC(r, t)
∂
∂r

[
Z(r, t)
C(r, t)

]}

, (5) 

where Dr ≡ frl2r has units of a diffusion coefficient. The Zeldovich 
model in Equation (4) employs Zn(t) as a probability mass function 
(PMF) of a discrete distribution of nuclei sizes. Differently to Eq. (4), 
Equation (5) employs Z(r, t) as a probability density function (PDF) of a 
continuous distribution of nuclei sizes. As a PDF, Z(r, t) has a central 
value r that changes as a function of time through the derivative dr

dt. This 
distribution is advected with velocity vr = f(dr

dt, r,⋯) and diffuses in the r 
coordinate with coefficient Dr. 

It is now interesting to obtain the central value r of the hydrodynamic 
distribution Z(r,t), via the rate dr

dt. This will inform us of the mean radius 
of bubbles in the distribution, and whether the mean value is growing or 
shrinking as a function of time. We can approximate the expected value r 
as the centre of mass of Z(r, t) as: 

r(t) =
∫+∞

− ∞

Z(r, t)rdr

⎛

⎝
∫+∞

− ∞

Z(r, t)dr

⎞

⎠

− 1

(6) 

where 
∫+∞

− ∞
Z(r, t)dr = NT is the total number of nuclei at any t. We 

assume that this quantity is conserved if there are no bubble–bubble 
interactions. Zeldovich [33] has shown that the time-evolution of the 
mean size of nuclei in the distribution obeys the equation. 

dr
dt

=
1

NT

∫
Z(r, t)
C(r, t)

∂
∂r

[DrC(r, t) ]dr ≈ Dr
d
dr

[lnC(r, t) ] (7) 

We can now develop Eq. (5) to obtain mathematical clarity on the 
role of the diffusive D and advective v terms in this equation: 

∂Z(r, t)
∂t

=
∂
∂r

{

DrC(r, t)
∂
∂r

[
Z(r, t)
C(r, t)

]}

=
∂
∂r

{

DrC(r, t)

[
1

C(r, t)
∂Z(r, t)

∂r
− Z(r, t)

[
1

C(r, t)

]2∂C(r, t)
∂r

]}

= −
∂
∂r

{

Z(r, t)vr − Dr
∂Z(r, t)

∂r

}

. (8) 

Equation (8) models the convection of Z(r, t) with advective term 
vr ≡

dr
dt = Dr

∂
∂r [lnC(r, t) ] and diffusion coefficient Dr. 

There are two factors at play in changing Z. The first, is that these 
embryos have a certain drift velocity vr that causes the average nucleus 
radius r to grow when vr > 0, to shrink when vr < 0, and to stay at the 
same size when vr = 0. This is to say that during nucleation, all nuclei in 
the distribution grow at a mean rate defined by vr and this drift velocity 
translates the concentration Z horizontally as shown in Fig. 1. The sec-
ond important factor is that by subjecting the nuclei population to a 
pressure Pl and a temperature T one might cause a diffusion in nucleus 
sizes with coefficient D. That is, the pressure field might make nuclei 
oscillate around their equilibrium radius. If the radius of nuclei oscillates 
about their equilibrium value, the width of the concentration Z(r, t) is 
constantly changed as the radius of every nucleus oscillates by ±dr. 

Although centre of the distribution Z can be calculated via Eqs. (6) 
and (7), Eqs. (4) and (8) reveal how the spread of this distribution 
changes in time. Here, the unifying intersection between hydrodynamic 
and thermodynamic behaviour is given by D and v as. 

Dn =
vn

∂
∂n [lnC(n, t) ]

= −
kBTṅ

dW
dn

= −
kBTṅ

(
dn
dr

)

dW
dr

(9.1)  

Dr =
vr

∂
∂r [lnC(r, t) ]

= −
kBTṙ

dW
dr

(9.2) 

The most important feature of these expressions is that there is no 
advection of the nuclei population at the critical point, where dW

dr = dW
dn =

0, hence ṅ = ṙ = 0. Eqs. (9.1) and (9.2) also tell us that the diffusion in 
nuclei size represented by D is proportional to the velocity at which the 
distribution travels the (r, t) or (n, t) planes, and that size diffusion will 
be largest for bubbles with high wall velocities. 

In both cases of vapour and hydrodynamic growth, Eqs. (9.1) and 
(9.2) are a natural extension of the formula obtained by Einstein for the 
diffusion of a solute in a liquid solvent. Most importantly, there is a 
singularity in D*. Since the variable r changes at much shorter timescales 
than n, it is of interest to check how radial changes affect the vapour flux. 
This is done by evaluating the critical diffusivity in Eq. (9.1) as a limit 
with respect to the critical radius by using L’Hôpital’s rule. 
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D* = lim
r→r*

D =
kBT

(
dṅ
dr

)*( dn
dr

)*

(
d2W
dr2

)* , (10) 

where 
(

dn
dr

)
is obtained from the ideal gas law. 

2.1.1. Nuclei growth by vapour and enthalpy transport 
The rate of vapour transport ṅ = ∂n

∂t can be modelled in the presence 
of heat transfer from the liquid into the bubble as [34]. 

ṅ =
A(r)(Pv − P′

)

(1 + δ)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2πmkBT

√ (11) 

where the non-dimensional factor (1+δ) [ND] accounts for a 
decrease in the influx ṅ of molecules caused by enthalpy transport. 
Vapour transport into the bubble creates an enthalpy flux across the 

surface area A(r). The enthalpy of vapour is higher than that of liquid 
water, thus causing vapour to carry heat from the liquid into the bubble 
core. This transport decreases the temperature T around the bubble, and 
this change is captured by the non-dimensional quantity δ [34]: 

δ =

̅̅̅̅̅̅̅̅̅̅
2kB

πmT

√ (
ΔHv

kBT

)2( σ
λb

)
, (12) 

where λ is the thermal conductivity of the liquid [W • m− 1 • K− 1], 

ΔHv [J] is the enthalpy of vaporisation of water, and b =
P′
− Pl
P′ [ND] is the 

order of magnitude of the underpressure caused by the ultrasound wave 
in comparison to the nucleus internal pressure P′. The case where vapour 
carries insignificant heat through the bubble surface arises as the limit 
lim
δ→0

ṅ. 

Fig. 1. Schematic of the evolution of a nuclei distribution within the Szilard model (A.1, A.2, and A.3), where nuclei grow one molecule at a time and nuclei sizes are 
a discrete variable n compared to the evolution of a distribution within the Zeldovich model (B.1, B.2, and B.3) where nuclei grow hydrodynamically and nuclei sizes 
are a continuous variable r. The center of mass of the continuous distribution of nuclei is given by Eq. (6), and the width of the distribution is a measure of the 
diffusivity given by Eq. (10). 
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2.1.2. Nuclei growth by radial oscillations 
To model the hydrodynamic growth of nuclei, Eq. (10) is evaluated 

with the Rayleigh-Plesset equation in conjunction with Eq. (11). The 
Rayleigh-Plesset equation establishes that the difference in pressure 
ΔP = P′

− Pl within and outside of a spherical bubble in an isothermal, 
incompressible liquid is given as [37]: 

P′

= Pl +
2σ
r
+ ρlrr̈+

3
2

ρlṙ
2 + 4η ṙ

r
, (13) 

where η = η(T) [Pa • s] is the liquid’s temperature-dependent vis-
cosity, ṙ is the bubble wall’s velocity and r̈ is its acceleration. Assuming 
that length scales of r are much smaller than the ultrasound wavelenght, 
we make the approximation ∂Pl

∂r = 0. We then employ the chain rule as 
r̈ = ∂ṙ

∂r
∂r
∂t to take the derivative of Eq. (13) with respect to r and evaluate it 

at the critical size, noticing that Eqs. 9 and 10 impose the boundary 
condition ṙ = 0 when r = r*. Therefore: 

We are interested in solutions for all critical sizes r* that must also 
satisfy thermodynamic equilibrium [1,2]. By restricting our solutions to 

those where P′ *
≈ Pv we can make sure that size oscillations are purely 

driven by hydrodynamic forces, since this is a point of zero vapour flux 
[34]. By taking the derivative of ṅ with respect to r at the critical size r* 

and removing vanishing terms: 
(

dṅ
dr

)*

=
A*

(1 + δ)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2πmkBT

√

{
2σ
r*2 − 4η 1

r*

(
dṙ
dr

)*

− ρLr*
[(

dṙ
dr

)* ]2
}

. (15) 

This model can be closed by using an ideal gas law, such that ṅ can be 
obtained in terms of the bubble radius and its derivatives in time [34]. 
The time derivative of an ideal gas law then takes the form. 

ṅ =
∂
∂t

(
4
3

πr3 P′

kBT

)

. (16) 

The most significant limitations of an ideal gas law regard the effect 
of interactions between gas molecules, and the capacity to model liquid 
behaviour. Herein, the ideal gas law is used solely to model vapour 
phases, discarding the need for a thermodynamic account of the liquid 
phase. Moreover, an account of the effects of nonideality in gases is 
given by [35], where the authors find these to be negligible for the cases 
of boiling and condensation. By taking the derivative of Eq. (16) with 
respect to r, replacing Eq. (16) for ∂P′

∂r then evaluating at the critical size 
yields the expression outlined by: 

2.1.3. The effects of surface tension, inertia and viscosity 

We can now equate Eqs. (17) and (15), and define Γ = (1+δ)
̅̅̅̅̅̅̅
2πm
kBT

√
[s 

• m− 1] and X =
( 1

4
)
Γr*( dṙ

dr
)* [ND] as auxiliary variables. This yields a 

third-order hydrodynamic model that is written as a first-order non- 
linear differential equation of the third degree: 

Φ2

Φ2
1

X3 +

(
8
9

)(
1

Φ1
+

27
32

Φ2

Φ2
1

)

X2 +

(
2
3

)(
3 − b
bΦ2

1
+

1
Φ1

)

X −
1

2Φ2
1
= 0, (18) 

where the non-dimensional parameters Φ1 and Φ2 are defined as. 

σT
6η =

1
Φ1

, (19) 

and. 

16ρlr*

3σΓ2 = Φ2. (20) 

Upon analysis of Eqs. (19) and (20), one will notice that Φ1 is a non- 
dimensional function of the Reynolds number Re =

ρvL
η , therefore, it is 

possible to characterise Φ1 as a metric of the effects of viscosity over 
inertia in nucleating bubbles. Similarly, Φ2 is a non-dimensional func-
tion of the Weber number We =

ρv2L
σ , therefore it is possible to charac-

terise Φ2 as a ratio between the fluid’s inertia and its surface tension. In 
the case where inertia is an important component, both Re and We as-
sume large values and the process needs to account for inertial terms. 

We can now make mathematical analogy with another fundamental 
non-dimensional number of fluid dynamics, the Laplace number La =

(Re)2
We , noticing that the ratio Φ2

Φ2
1 

is a non-dimensional function of the 

Laplace number. In terms of the Reynolds, Weber and Laplace numbers, 
Eq. (18) becomes: 

La X3 +

(
8
9

)(

Re+
27
32

La
)

X2 +

(
2
3

)(

Re23 − b
b

+Re
)

X −
1
2

Re2 = 0.

(21)  

2.1.4. Viscosity-dominated nucleation 
The Laplace number is a measure of the surface and inertial forces as 

compared to the viscous forces in a bubbly flow. If the Laplace number is 
much greater than 1, it means that both surface tension and inertia 
dominate over viscous forces. Conversely, viscous forces dominate over 
both inertia and surface tension when La < 1. Therefore, it is possible to 
approximate the limit where viscosity is the dominant parameter by 
assuming that La→0 and thus Φ2

Φ2
1
→0 [34]. Eq. (21) then then is approx-

imated by second-order polynomial where Y ≈ X at the limit of viscosity 
controlled nucleation Φ2

Φ2
1
→0: 

Y2 +

(
3

4Φ1

)(
3 − b

b
+Φ1

)

Y −
9

16Φ1
= 0. (22)  

2.2. The timescales of nucleation 

We should note that cavitation-based histotripsy and boiling histo-
tripsy take place at different timescales. Most notably, the intrinsic 
pressure threshold method for histotripsy is known to take place at very 

(
dP′

dr

)*

=

{

−
2σ
r2 + 4η

[[
1
r

(
dṙ
dr

)

−
ṙ
r2

] ]

+ ρL

[(
dṙ
dr

ṙ
)

+ r
d2 ṙ
dr2 ṙ + r

(
dṙ
dr

)2
]

+ 3ρLṙ
(

dṙ
dr

)}

r*

= −
2σ
r*2 + ρlr

*
[(

dṙ
dr

)* ]2

+ 4η 1
r*

(
dṙ
dr

)*

. (14)   

(
dṅ
dr

)*

=
4π

3kBT

{

3Plr*2
(

dṙ
dr

)*

+ 4σr*
(

dṙ
dr

)*

+ 4ηr*2
[(

dṙ
dr

)* ]2

+ ρlr
*4
[(

dṙ
dr

)* ]3
}

. (17)   
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short insonation periods within two cycles of the acoustic wave 
[5,7,19,21,38] for ultrasound frequencies around 1 MHz. Conversely, 
boiling histotripsy takes place after several cycles (greater than1000) of 
the acoustic wave at the point where appreciable heat deposition has 
taken place [10,14,15,39]. 

As noted by [40], after the ultrasound focal volume is brought to a 
metastable state, the system requires some time τ to achieve the steady- 
state nucleation rate Jss. The approach of a steady-state process is 
fundamentally dependent on the timescales required to establish a size 
distribution of nuclei Z(r, t) with values of r ranging from zero up to r* 

when starting with a pure fluid. In most practical cases, the time of 
occurrence of the first supercritical nucleus after the system has been 
brought to a metastable can be thought as the combination of three 
timescales: the nucleation time-lag τ, the time ΔtN taken to form one 
critical nucleus for a steady-state nucleation rate Jss in a volume V0, and 
the time it takes for a nucleus to grow up to detectable dimensions tG, for 
example, the relationships discussed in [41]. 

Originally, Zeldovich modelled τ as a Fourier-type number for the 

process of nucleation such that τ∝(r* − r)2

D* [33]. Similar approximations of 
the time-lag of nucleation have been obtained within one to two orders 
of magnitude of that obtained by Zeldovich. The determination of a 
precise form for τ depends on specific approximations that one makes 
when obtaining a transient solution to Eq. (8), as shown in [42,43]. 
Herein, we employ the simpler approximation of Kashchiev [36] given 
by: 

τ ≈
10
D*. (23) 

Calculating τ as a function of pairs of pressure and temperature (PN
l ,

T) via D*(PN
l ,T) will allow us to estimate the contributions of individual 

mechanisms in nucleation such as viscosity, inertia, vapour, and 
enthalpy transport to the overall timescales of the process. 

2.3. Numerical methodology 

The results shown in Figs. 2, 3, 6 and 7 are generated were generated 
for water in the temperature range 0 – 120 ◦C and pressure range − 40 to 
0 MPa, with an increment ΔT = 1 [◦C] and ΔPl = 5 [kPa]. Since these 
quantities are not directly employed in solving differential equations, 
the resolution of the grid is set according to the desired numerical res-
olution. Furthermore, all results that are presented as critical are 
calculated at the pressure–temperature pairs (PN

l , T), where PN
l is the 

temperature-dependent nucleation pressure threshold of water opti-
mised for ultrasound nucleation as obtained in Eq. (2). The fact that PN

l 
depends on temperature means that although both pressure and 

temperature are thermodynamic variables of an experiment, the model 
has the liquid temperature as the sole degree of freedom. 

The International Association for the Properties of Water and Steam 
(IAPWS) formulation was employed to calculate water’s physical 
properties. Physical constants and expressions for thermodynamic 
properties of water were taken from the 1995 release by the IAPWS [44] 
and related subsequent releases. The free energy of nucleation and 
nucleation pressure thresholds PN

l were calculated with the modified 
surface for ultrasound-induced nucleation discussed in detail in [1,2]. 
We have assumed an average timescale of ΔtN = 1

2×107 for nucleation to 
take place at the bottom of the peak-negative pressure of a 2 MHz his-
totripsy shockwave. This was shown to be an average time that produces 
small error in PN

l in the frequency range 1 – 2 MHz, as discussed in [2]. 
We would like to bring the attention of the reader that in [1,2] we 

discuss how the agreement between Eq. (2) and experimental results as 
listed in Table 3 is subject to approximating σ with an effective value σE 

that is a function of temperature in the free energy term ΔG*. This 
approximation was based on the approach of [5,45] when analysing 
bubble nucleation data. One important subtlety in the work of [46] 
suggests that this type of approximation is, in theory, not restricted to 
the surface tension itself, but rather an approximation made for the free 
energy barrier ΔG*. Differently from [5,45], the work in [46] did not 
intend to harmonise theoretical and experimental results, but rather 

Fig. 2. Values of the ratio Φ2
1/Φ2 across the histotripsy pressure and temper-

ature range. Higher values of Φ2
1/Φ2 indicate that viscous effects dominate over 

the joint effects of surface tension and inertia. 

Fig. 3. Values of log10δ across the histotripsy pressure and temperature range. 
Positive values of log10δ indicate that enthalpy transport at the bubble surface 
decreases the total number of bubbles nucleated because thermal energy is 
redirected onto making existing critical bubbles larger. 

Table 1 
Boiling histotripsy experimental parameters at around 100 ◦C.  

Reference f(MHz) Tissue p+(MPa) p− (MPa) 

[27] 2.158 Ex vivo bovine liver 36 9 
Ex vivo bovine heart 70 12 

[47] 2.158 Ex vivo bovine liver 67 12 
[48] 2.158 Ex vivo bovine heart 67 12 

Tissue-mimicking gel 76 13.5 
[49] 2.158 Ex vivo bovine heart 73 12 

Ex vivo bovine liver 73 12 
[50] 1.1 Ex vivo porcine liver 

In vivo rat liver 
74 14.4 

2.0 101 16.7 
[51] 2.0 In vivo rat liver 94 15 

101 17 
[11] 2.0 Tissue-mimicking gel 85.4 15.6 
[52] 1.5 In vivo carcinoma Eker rat 85 17 

100 20 
[53] 1.5 In vivo porcine kidney and liver 80 12–18 
[54] 2.0 Human breast adenocarcinoma 85 14 
[8] 2 Tissue-mimicking gel 89.1 14.6 

3.5 72.4 13.8 
5 69.2 12.5  
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formulate a description of ΔG* that vanishes at the spinodal limit of 
water. Therefore, the calculations shown in this paper assume that σ is 
the scaled surface tension σE = ΨEσ obtained in [2] and used to calcu-
late PN

l according to Eq. (2) throughout this work. 
By solving Eq. (2) to obtain the temperature-dependent nucleation 

pressure threshold, one can calculate the value of r* as discussed in 
[1,2]. These results are used to calculate critical values of δ,Φ1 and Φ2 as 
described by Eqs. (12), 19 and 20, enabling the evaluation of D* via Eq. 
(10), and of τ via Eq. 24. In sum, Eq. (18) can be solved numerically to 
obtain values of X for the third-order approximation, that includes the 
effects of inertial forces. Likewise, Eq. (22) can be solved numerically to 
obtain values of the second-order approximation Y. The solution of Eqs. 
(18) and (22) will yield multiple results, and only the largest real-valued 
solutions are considered for analysis. 

In addition to the numerical analysis described above, qualitative 
analysis of results was performed by comparing the model’s predictions 
developed herein with experimental results in the literature as presented 
in Tables 1 to 3. 

3. Results 

3.1. The relative importance of viscous, surface tension and inertial effects 
in ultrasound bubble nucleation 

The extent where viscous effects dominate over surface tension and 
inertial effects in ultrasound nucleation can be visualised as a function of 

pressure and temperature in Fig. 2. In this figure, the black solid curve 
represents the ultrasound temperature-dependent nucleation pressure 
threshold as calculated from Eq. (2), and the coloured contours illustrate 
values of the ratio Φ2

1/Φ2. The quantity Φ2
1/Φ2 is analogous to the in-

verse of the Laplace number, where Φ2
1

Φ2
∝La− 1 = 27

4
η2

σρl r*. At values of 
Φ2

1
Φ2

> 1, one can say that viscosity dominates over the joint effects of 
surface tension and inertia in bubble nucleation. 

Fig. 2 shows that the dominance of viscosity is particularly visible at 
low temperatures, indicating that nucleation in cavitation-based histo-
tripsy methods is controlled by the liquid viscosity to a greater extent 
than the hydrodynamic effects of surface tension and inertia at the 
bubble surface. In particular, the ratio Φ2

1/Φ2 stays within the range 200 
– 100 for normothermic temperatures (20 to 40 ◦C) and around histo-
tripsy intrinsic threshold pressures (-40 to − 25 MPa). At higher tem-
peratures, viscous effects are less pronounced, and the ratio Φ2

1/Φ2 stays 
within the range of 25 – 10 around pressure–temperature pairs 
compatible with boiling histotripsy bubble nucleation, from 80 to 120 ◦C 
and from − 5 to − 25 MPa. 

Similarly, the order of magnitude of the effects of heat transport 
given by log10δ is shown as a function of pressure and temperature in 
Fig. 3. In this figure, the black curve represents the ultrasound 
temperature-dependent nucleation pressure threshold as calculated by 
Eq. (2), and the coloured contours illustrate values of the quantity 
log10δ. Positive values of log10δ will indicate extensive influence of 
enthalpy transport across the bubble surface in the nucleation process. 
As proposed by [28], enthalpy transport across the nucleus surface will 
cool down the surrounding liquid. This effect causes the liquid to lose 
supersaturation in the vicinity of critical bubbles via an increase in the 
energy barrier to nucleation ΔG*. This effect will favour the growth of 
the first bubbles to nucleate in detriment of a decrease in the number of 
bubbles nucleated subsequently. 

According to the results shown in Fig. 3, such heat transport effects 
are more pronounced at temperatures above 40 ◦C. In particular, the 
order of magnitude of δ increases by a factor of three in the temperature 
range 60–100 ◦C. Conversely, at temperatures below 40 ◦C, the effects of 
heat transport seem to be negligible, and the order of magnitude of δ 
ranges from 10− 2 to 100. The immediate physical implication of this 
analysis is that nucleation at low temperatures, like cavitation-based 
histotripsy, occurs in a regime where the nucleation of the first few 
nuclei does not hinder the nucleation of subsequent nuclei. This is an 
environment where it is thermodynamically favourable for nucleation to 
occur in densely populated clouds of small bubbles. Conversely, nucle-
ation favours smaller quantities of bubbles of larger size at high 
temperatures. 

3.2. The effects of enthalpy transport 

Figure 4-A illustrates critical values of the constant (δ+1) as a 
function of temperature. These are the values of δ* = δ(PN

l ,T
N) calcu-

lated at pressure–temperature pairs obtained with Eq. (2). This non- 
dimensional term appears in the definition of ṅ because of the effects 
of heat and vapour transport into the bubble nucleus. The enthalpy of 
vapour is higher than that of liquid water, and as water changes from 
liquid to a vapour phase, it absorbs thermal energy from the surround-
ings of the bubble nucleus [34]. It can be observed in Fig. 4-A that this 
effect increases with increasing temperature, which results in a decrease 
in the nucleation rate of vapour bubbles shown in Fig. 4-C. As numerical 
examples, the ratio 1

1+δ takes on values of 0.9664 at 20 ◦C, 0.3996 at 
40 ◦C, 0.0240 at 60 ◦C, and 9.4466 × 10− 5 at 100 ◦C. Fig. 4-C then shows 
that this effect reduces nucleation rates by 60% at 40 ◦C and by over 
99% around 100 ◦C. These results again suggest that dense cavitation 
clouds appearing at low temperatures are a consequence of negligible 
vapour transport into the nuclei population characterised by small 
values of δ. This is a case in which the nucleation of bubbles does not 

Table 2 
Cavitation histotripsy experimental parameters at room temperature.  

Reference f(MHz) Tissue  p− (MPa) 

[55] 0.75 Ex vivo porcine heart  22 
[56] Ex vivo rabbit kidney 22 
[57] Ex vivo canine prostate 20 
[58] 1 Tissue-mimicking gel 19 
[21] 1.1 Distilled water 10% O2  27.4 

Unfiltered water 90% O2 26.2 
Tissue-mimicking gel (5%) 27.3 
- (15%) 28 
Ex vivo canine blood 26.9 
Ex vivo canine blood clot 26.8 
Ex vivo canine kidney 29.4 

[59] 1 In vivo porcine liver 17 
[60] 0.5 Ex vivo canine kidney  28.5 

Ex vivo canine liver 29.3 
Tissue-mimicking gel 24.5 

[61] 1 Blood clot 36  

Table 3 
Temperature-dependent nucleation thresholds in water.  

Reference f(MHz) p− (MPa) Mean 
error (MPa) 

T(◦C) 

[3,5] 
1.1 34 ±1 1 

33 3 
34 5 
32 7 
32 9 
31 11 
31 13 
30 16 
30 20 
28 29 
26 38 
25 48 

[7] 1 29.8 0.7 10 
28.9 0.6 20 
24.7 1.9 40 
21.8 2 60 
17.4 2.4 80 
14.9 3.5 90  
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change the free energy ΔG* available for new bubbles to nucleate. 
Moreover, critical values of the constants Φ1 and Φ2 are plotted as 

functions of temperature in Fig. 4-B. These non-dimensional terms 
originate from the non-linear ordinary differential equations in Eqs. (18) 
and (22), which describe hydrodynamic effects in bubble nucleation. If 
analysed in terms of the Reynolds number Re and the Weber number We, 
these results indicate that viscous forces dominate over inertial forces at 
low temperature, as shown by Φ1∝Re− 1, however Φ2∝We indicates that 
inertial effects overshadow surface tension effects at lower temperature. 
It is important to highlight that the definition of both Φ1 and Φ2 is 
inversely proportional to δ, and the decrease of these quantities at high 
temperatures is likely to be linked to an increase in the extent of 

enthalpy transport effects via high values of δ as shown in Fig. 4-A. More 
information can be drawn from these results by then analysing Fig. 4-D. 
These results show that the dominance of viscosity over both surface 
tension and inertia reduces with increasing temperature. 

3.3. The mechanisms and timescales of nuclei growth 

In Fig. 5, the critical diffusivity defined in Eq. (10) is calculated along 
(PN

L ,TN) for the mechanisms of vapour and hydrodynamic growth with 
and without the presence of enthalpy transport. In this figure, curves 
shown in black represent values of X, Y and ṅ as given by Eqs. (22), 18, 

Fig. 4. (A) Values of the term (δ + 1) representing the enthalpy flux across the bubble surface over the (PN
l ,T

N) nucleation curve, (B) values of Φ1 and Φ2 over (PN
l ,

TN) (C) percent estimate of the effective value of Jss due to the effect of enthalpy transport, and (D) values of the ratio Φ2
1/Φ2 over the (PN

l ,T
N) curve. 

Fig. 5. Critical diffusivity coefficients for vapour transport, heat transport and 
hydrodynamic growth. Red curves represent nuclei growth in the absence of 
enthalpy transport, whilst black curves represent growth in the presence of 
enthalpy transport. The largest real-valued positive solutions for X and Y from 
Eqs. (18) and (22), respectively, are selected as representing solutions for the 
third and second-order hydrodynamic approaches. 

Fig. 6. Nucleation time-lag for bubble nucleation as controlled by vapour 
transport, heat transport and hydrodynamic growth. Red curves represent 
nuclei growth in the absence of enthalpy transport, whilst black curves repre-
sent growth in the presence of enthalpy transport. 
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and 11 for the case where enthalpy transport is present, characterised by 
δ > 0. Conversely, curves shown in red represent the cases where 
enthalpy transport is neglected, which is characterised by δ = 0. Eq. (18) 
is a third order polynomial, therefore it has at least one real root of X, 
whereas the other two roots might be either a pair of real roots or a pair 
of complex conjugate roots. Moreover, Eq. (22) has one pair of real 
roots, where one is positive, and the other is negative. In this figure, we 
show results for the largest real-valued positive roots of X and Y. In 

accordance to Fig. 4-D, where Φ2
1

Φ2
≫1 throughout the temperature range 

of interest, we can observe that there is no appreciable distinction be-
tween hydrodynamic growth dominated by viscosity and that domi-
nated by inertial effects. 

These results show that hydrodynamic nuclei growth rates are at 
least one order of magnitude greater than growth caused solely by 
vapour transport throughout the temperature range of interest. More-
over, the results illustrated in Fig. 5 show that the mechanism of 
enthalpy transport greatly reduces nuclei growth as given by the critical 
diffusivity in Eq. (10). The critical diffusivity coefficients present a 
turning point around 30 ◦C, which if analysed in conjunction with the 
inflection point in Fig. 4-A, might be interpreted as the point where 
enthalpy transport starts to play a role in nucleation. We can observe 
close agreement between the third and second-order hydrodynamic 
approximations throughout the 0 – 120 ◦C temperature range, regardless 
of the presence of enthalpy transport. This can be explained by the re-

sults shown in Fig. 4-D, showing that the Laplace number Φ2
1

Φ2
≫1 for the 

temperature range considered, and thus viscous effects dominate the 
process. 

Fig. 6 shows the nucleation time-lag as calculated via Eq. (23) for 

each of the mechanisms of nuclei growth considered herein. The 
magnitude of the time-lag of nucleation gives us an indication of the 
mechanism that allows the system to achieve steady-state nucleation 
rates in a shorter time. These results show that the timescales of 
nucleation as induced by hydrodynamic factors are up to two orders of 
magnitude faster than those characteristic to nucleation caused solely by 
vapour transport. These results suggest that the growth of nuclei is 
immediately controlled by hydrodynamic effects caused by the presence 
of an acoustic field. 

As discussed in [40], τ is a fundamental timescale of nucleation, 
which reflects the contributions of the mechanism of nuclei growth to 
the time-dependency of the process. The approximation in Eq. (23) is an 
upper limit to the values of τ, under the common assumption that only 
approximately 10% of critical nuclei can become supercritical and grow 
onto fully developed bubbles. The interpretation of [62] is that τ is a 
measure of the meantime that it takes for a nucleus to undergo a critical 
growth Δ*r such that nucleation occurs. Therefore, this quantity is 
extremely sensitive to the underlying mechanism of nucleus growth 
given by D*. 

More interestingly, Fig. 6 shows that the time-lag of nucleation in-
creases with increasing temperature. Although the nucleation time-lag is 
of the order of nanoseconds at temperatures below 50 ◦C, these time-
scales increase up to microsecond scales at around 100 ◦C. Numerical 
examples of the ratio between the nucleation time-lag and the experi-
ment time ΔtN used to calculate nucleation pressure thresholds in Eq. (2) 
for hydrodynamic nucleation are τ

ΔtN = 8 × 10− 4 at 20 ◦C, 7 × 10− 4 at 
30 ◦C, 1.5 × 10− 3 at 40 ◦C, 5.78 × 10− 2 at 60 ◦C, 5.73 × 10− 1 at 80 ◦C 
and 3.23 at 100 ◦C. These results show not only increasing timescales 

Fig. 7. Values of δ across the histotripsy range of pressures and temperatures.  

M.O. de Andrade et al.                                                                                                                                                                                                                        



Ultrasonics Sonochemistry 88 (2022) 106091

10

with temperature, but also suggest that a transient treatment of nucle-
ation at temperatures above 80 ◦C would yield new information into the 
process of bubble formation at high temperatures. 

3.4. Classifying and comparing different ultrasound nucleation results 

In Fig. 6, the constant δ is compared to histotripsy experimental 
protocols in the literature. It can be observed that all normothermic 
intrinsic pressure threshold histotripsy protocols take place at pressur-
e–temperature pairs where δ ranges from 10− 2 to 100. On the other 
hand, most boiling histotripsy protocols are performed at pressur-
e–temperature pairs where δ ranges from 102 to 105. This is evidence 
that there is considerable vapour and heat transfer into the bubble in 
boiling histotripsy protocols, which, as exemplified by Fig. 4-C, causes a 
decrease in the net number of bubbles nucleated. 

This result agrees with high-speed imaging of boiling histotripsy 
protocols, where boiling bubbles appear in greater size but smaller 
quantities at the distal side of the focal region [11]. On the other hand, 
small values of δ at intrinsic histotripsy pressure–temperature pairs 
suggests that no significant heat transport takes place into the nuclei, 
and these are free to nucleate in higher quantities. Again, this correlates 
with documented experimental results, which report the appearance of 
densely populated clouds of bubbles for intrinsic threshold histotripsy 
[11,63,64]. 

Finally, Fig. 7 shows values of the ratio Φ2
1/Φ2 as compared to his-

totripsy protocols. These results show Φ2
1/Φ2 assumes values within the 

range 200 – 100 when bubble nucleation occurs within the pressure 
range from − 40 to − 20 MPa, indicating that the liquid’s viscosity plays a 

significant effect in nucleation at these pressure–temperature pairs. 
Conversely, when bubble nucleation takes place within the pressures 
ranging from − 20 to 0 MPa and temperatures within 80 to 120 ◦C, Φ2

1/

Φ2 assumes values between 25 and 10, indicating that the liquid’s vis-
cosity has a less pronounced effect in bubble nucleation at higher tem-
peratures. Concerning histotripsy, these results indicate that the liquid’s 
viscosity plays a significant effect in defining nucleation pressure 
thresholds for cavitation-based histotripsy approaches, and this effect is 
less critical for boiling histotripsy. 

3.5. Overview of the model, limitations, and directions for future work 

In this paper, we have applied the hydrodynamic theory of nucle-
ation developed by Zeldovich and furthered by Kagan and Blander into 
analysing the role of thermal and hydrodynamic constraints on the 
growth of bubbles in ultrasound nucleation using histotripsy as case- 
study. The Zeldovich theory is one that circumvents the need for hav-
ing a priori information on the initial distribution of bubbles by ana-
lysing how the size distribution of nuclei Z(r, t) evolves in time as 
compared to the equilibrium distribution of nuclei C(r, t) from liquid 
kinetics. This is a convenient mathematical framework since it is 
applicable to distributions of all sizes and shapes if one can establish a 
relationship between the nuclei population under consideration to an 
equilibrium population of nuclei. 

The present work furthers our understanding in ultrasound bubble 
nucleation by relating the direct effects of ultrasound pressure fields 
characterised by the drift v to near-equilibrium effects characterised by 
the critical diffusivity D in terms of the liquid’s temperature. This allows 

Fig. 8. Values of Φ2
1/Φ2 across the histotripsy range of pressures and temperatures.  
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us to construct a fundamental set of equations which yields non- 
dimensional measures of the relative effects of constraints such as vis-
cosity, inertia, surface tension and enthalpy transport in bubble nucle-
ation. When compared to documented experimental data in bubble 
nucleation and histotripsy, these metrics outline well-defined parameter 
windows where nucleation takes place via equivalent mechanisms. The 
immediate implication of these results is that metrics such as Eqs. (12), 
19 and 20 can be used to compare the equivalence and similarity of 
protocols for ultrasound bubble nucleation in water. 

It is important to outline that amongst all constraints analysed for 
bubble nucleation, the surface tension of bubble nuclei is the only one 
that is present in the two fundamental components of nucleation, acting 
both as a kinetic term and an energetic term. The surface tension acts as 
an energetic term because it is very closely related to the energy barrier 
that needs to be overcome such that nucleation takes place, given by 
ΔG* in Eq. (2). Alternatively, the surface tension affects the kinetics of 
bubble nucleation because it is an active term in determining both the 
radial dynamics of bubbles as given by the Rayleigh-Plesset equation in 
Eq. (13), and the extent to which enthalpy transport decreases vapor-
isation rates into bubble nuclei via Eq. (12). Therefore, it is important to 
highlight that, although the viscosity of the surrounding liquid is the 
dominant factor with respect to the growth of bubble nuclei, the surface 
tension remains the most critical parameter in nucleation, because the 
nucleation rate depends on it exponentially as shown in Eq. (1). 

Finally, we hope to clarify to the reader that the present model is 
based on several models present in the literature, many times developed 
as local approximations. For example, as discussed in [1,2], our ther-
modynamic model of bubble nucleation assumes an isobaric and 
isothermal liquid, so that the work of nucleation can be constructed via 
the Gibbs free energy potential. For this assumption to be valid, the 
nucleation pressure threshold described by Eq. (2) is obtained within 
one tenth of the acoustic cycle (approximately 50 ns), such that the 
pressures and temperatures in the surrounding liquid can be considered 
constant. Furthermore, the derivation of the nucleation time-lag as-
sumes that although the true distribution of nucleus sizes Z(r, t) might be 
different to C(r, t), their ratio is somehow constant as outlined in [43], 
where the definition of τ is, in fact, a statement of the domain where this 
assumption is valid. 

Future work might build up on these results by investigating tran-
sient nucleation in ultrasound in the context of the models given by 
[40,42,43], analysing the time-evolution of nucleation with respect to 
the ultrasound waveform Pl(t). Since the definition of Eqs. (4) and (8) 
allow for general nuclei distributions, this model might also be appli-
cable to investigate acoustic propagation in bubbly flows where there is 
a direct relationship between the bubble population and the local 
pressure field. Moreover, an interesting possibility for validation of our 
results would be to employ models of bubble dynamics in ultrasound 
pressure fields [29,39] for a large window of temperature-dependent 
parameters to investigate whether there are visible trends of bubble 
dynamics associated with the two main regimens of nuclei growth dis-
cussed herein. 

4. Conclusions 

A hydrodynamic model for ultrasound-induced bubble nucleation 
was obtained by including the effects of the liquid’s viscosity and inertia 
via the Rayleigh-Plesset equation in a classical nucleation theory model. 
In addition, the effects of heat transport into the bubble were accounted 
for by including a model of enthalpy transport across the bubble surface. 
This approach was instrumental in calculating the critical diffusivity of 
nucleation, which affects the rate at which bubbles nucleate and grow in 
ultrasound pressure and temperature fields. 

With the hydrodynamic approach considered herein, it is possible to 
classify bubble nucleation concerning its dominant mechanism. Bubble 
nucleation at temperatures below 30 ◦C is shown to be largely 

dependent on the liquid’s viscosity, with negligible influence of inertial 
effects or heat transport. On the other hand, bubble nucleation at high 
temperatures has a much weaker dependence on viscous constraints in 
the liquid and is mainly controlled by heat transport into the bubble. 

The timescales of nucleation as outlined by this model are in quali-
tative agreement with those of boiling and cavitation histotripsy re-
ported in the literature. The fundamental timescale of nuclei growth, 
namely the nucleation time-lag τ, increases with increasing temperature 
and is of the order of one microsecond at boiling temperatures (100 ◦C) 
and of the order of nanoseconds at room temperatures, in agreement 
with our previous modelling of the histotripsy process. We find that the 
timescales for hydrodynamic growth, as imposed by the radial oscilla-
tions of critical nuclei, are at least two orders of magnitude smaller than 
those that are characteristic of vaporisation-dominated growth. This 
means that bubble nuclei first grow via hydrodynamic factors, which are 
supplemented by vapour transport over longer timescales. 

Notably, the enthalpy transport effect is a feasible explanation of the 
mechanism involved in the formation of cavitation clouds in ultrasound- 
induced nucleation. At higher temperatures, vapour flux into the bubble 
reduces the temperature of its surroundings because the enthalpy of 
vapour is greater than the enthalpy of liquid water. This cooling effect 
decreases the supersaturation around boiling bubbles, which then 
appear in greater size and smaller quantities. Conversely, negligible 
enthalpy transport at temperatures below 30 ◦C leads to higher nucle-
ation rates of smaller bubbles, resulting in the nucleation of clusters of 
small gas pockets, where a local nucleation event does not affect the 
likelihood of nucleation in its surroundings. 
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