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Reinforcement learning is a subtype of machine learning in which a virtual agent, functioning within a set of 
predefined rules, aims to maximise a specified outcome or reward. This agent can consider multiple variables and 
many parallel actions at once to optimise its reward, thereby solving complex, sequential problems. Clinical decision 
making requires physicians to optimise patient outcomes within a set practice framework and, thus, presents 
considerable opportunity for the implementation of reinforcement learning-driven solutions. We provide an overview 
of reinforcement learning, and focus on potential applications within ophthalmology. We also explore the challenges 
associated with development and implementation of reinforcement learning solutions and discuss possible 
approaches to address them.

Introduction
Over the past decade, machine learning has ushered in a 
new era of medical research—one centred on big data 
and computational solutions to previously intractable 
health-care issues.1,2 Machine learning has been applied 
to an array of health-care problems, from evaluation of 
diagnostic radiology images to identification of clinical 
trial participants.3,4 Within ophthalmology specifically, 
machine learning has found extensive use in evaluating 
ophthalmic imaging—from the identification of 
glaucoma medications from photographs of eye drop 
bottles, to subspecialty retina practice, where deep 
learning has shown promise in evaluating optical 
coherence tomography scans to determine when to make 
referrals to specialists.5,6

All these implementations centre on a form of machine 
learning called supervised learning, in which an 
algorithm is given both a task and what are known as 
ground truth labels. For instance, in the application of 
deep learning to the identification of glaucoma 
medications from photographs of eye drop bottles, the 
algorithm is provided with a training set of data in which 
photographs of eye drop bottles are labelled with the 
associated medication. However, clinical decision 
making is not always as linear or univariate as in this 
example, and often, clinicians are required to make 
treatment decisions on scarce and incomplete 
information. To address such health-care problems, 
researchers have turned to reinforcement learning, a 
subset of machine learning in which a virtual intelligent 
agent carries out actions according to a predefined set of 
rules to optimise a specified reward.

Reinforcement learning agents make decisions using a 
policy, which is a dynamic strategy intended to optimise 
the reward outcome. As the reward outcome is 
maximised, the agent’s decision making is reinforced 
until an optimal policy is identified, a process that often 
requires trial-and-error and many policy iterations. 
Computation of these iterations is typically accomplished 
by solving a Markov decision process, involving variables 
for the state, action, and reward function, as well as a 
discount factor, for reducing the value of increasingly 

temporal outcomes (figure 1, 2).7 Reinforcement learning 
is particularly well suited to complex tasks analogous to 
clinical decision making because agents are capable of 
taking actions on incomplete training and can perform 
sequential steps to optimise the reward.8–10 Although 
supervised learning pipelines might also be able to 
complete tasks from incomplete data by imputation, 
such substitutions are not always accurate and might 
lead to incorrect decision making.11,12 Moreover, rewards 
for reinforcement learning agents can be sparsely 
defined and, given the sequential nature of their 
interaction with the preset environment, reinforcement 
learning algorithms can address the problem of 
correlating immediate action with delayed outcomes. For 
example, a reinforcement learning agent designed to 
optimise the reward of completing a video game quest 
would not necessarily know whether immediate actions 
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Figure 1: Schematic representation of the reinforcement learning process
Reinforcement learning involves actions taken by an agent on the basis of a 
predefined policy, continuously adjusted by input from the environment state in 
an effort to maximise reward. Figure created using BioRender.com.
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bring it closer to this sparsely defined reward. However, 
sequential actions and self-play would allow it to optimise 
its completion of the required task.

Outside of medicine, reinforcement learning has been 
used in tasks stereotypically considered to be within the 
realm of artificial intelligence in its mainstream definition. 
For instance, reinforcement learning algorithms have 
been trained to play video games (and beat their human 
competitors), develop frameworks for autonomous 
vehicles, and create lifelike robots.13–15 In fact, researchers 
in machine learning at DeepMind (London, UK) have 
recently posited that reinforcement learning itself might 
be sufficient for creating an artificial general intelligence.16 
In some ways then, reinforcement learning might be 
considered to be classical conditioning of an artificial 
general intelligence, whereby optimisation of a reward 
drives the completion of a complex processing task.

Within medicine, reinforcement learning has been 
used in areas where clinical decisions are on a long-
temporal scale, or where supervision is not possible. For 
instance, reinforcement learning algorithms have been 
developed to manage patients with sepsis in the intensive 
care unit, titrate propofol infusion during anaesthesia, 
optimise breast cancer screening, treat patients with 
epilepsy, manage patients with diabetes, and monitor 
and treat patients with HIV infection.17–22 Notably, 
applications of reinforcement learning to ophthalmology 
are unexplored. Here, we provide an overview of potential 
uses of reinforcement learning in contemporary ophthal
mology and discuss the challenges associated with 
implementation and actionable solutions to move the 
field forward.

Applications of reinforcement learning in 
ophthalmology
Chronic disease monitoring and treatment
Perhaps the most apparent and readily scalable imple
mentation of reinforcement learning in ophthalmology 
is in the management of chronic ocular diseases. A 
substantial portion of patient volume in modern 
ophthalmology clinics is devoted to management of 
chronic illnesses, such as diabetic retinopathy, age-
related macular degeneration, uveitis, and glaucoma.23 
These diseases also carry a substantial economic burden 
and require intensive cognitive and time effort from 
clinicians to manage.24 For these reasons, reinforcement 
learning algorithms offer a potential solution to stream
line patient care and improve the equity of valuable 
clinical resources. For example, in the care of age-related 
macular degeneration and diabetic retinopathy, a 
reinforcement learning algorithm could be developed 
with a reward of a decrease in subretinal or intraretinal 
fluid on optical coherence tomography, or improvement 
in functional outcomes such as vision. In these instances 
there could be three possible decisions as outcomes: 
inject or do not inject with anti-vascular endothelial 
growth factor (VEGF); choice of medication if injecting; 
and when the clinician should see the patient in follow-
up (figure 3). Such an algorithm might not only optimise 
treatment of patients beyond conventional treat-and-
extend protocols, but it might also tailor treatment to 
each individual patient’s disease process. Similarly, in 
the setting of glaucoma, a decrease in intraocular 
pressure or, more specifically, a set intraocular pressure 
value, could be outlined as a reward for a reinforcement 
learning algorithm, with actions including the addition 
of different topical therapies and, possibly, considerations 
for micro-invasive glaucoma surgery or traditional 
filtering procedures.

Analysis of ophthalmic imaging
Contemporary ophthalmology involves the use of 
multiple imaging modalities, such as optical coherence 
tomography, fundus photography, fundus auto
fluorescence, fluorescein angiography, and visual fields, 
and the breadth of data captured continues to expand. 
Reinforcement learning solutions might be implemented 
to assist ophthalmologists with image segmentation to 
improve efficiency in the clinic by highlighting relevant 
pathology and disease progression.25 Although supervised 
learning models have been developed to assist with 
ophthalmic image segmentation, such implementations 
require large volumes of training data with pixel-level 
ground truth labels. Moreover, accurate labelling of 
training datasets requires substantial human clinician 
hours and might not be scalable in real-world settings. 
However, reinforcement learning models have shown 
potential ability to conduct image segmentation with far 
fewer pixel-level labels than their supervised learning 
counterparts. In fact, in an autonomous driving 

Figure 2: Comparison of reinforcement learning, supervised learning, and unsupervised learning
A Venn diagram outlining the key features of the three major subtypes of machine learning.
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implementation, a reinforcement learning model 
required 30% fewer labels than a conventional supervised 
learning model.26 Such leaps might accelerate the 
development of intelligent image-based diagnostic and 
monitoring systems for ophthalmology and expedite 
their real-world usage.

Intelligent ophthalmic surgery systems
Reinforcement learning also offers ophthalmologists 
potential for enhancements in all stages of ophthalmic 
surgery, from preoperative planning to postoperative 
management. Similar to reinforcement learning 
algorithms managing chronic ocular conditions, an 
automated model could aid in identifying the optimal 
time to pursue surgery on the basis of previous patient 
outcomes. Intraoperatively, surgical decision making is 
complex, multifactorial, and not always amenable to 
supervision. Reinforcement learning models might have 
a role in automating ophthalmic surgery, from simple 
warning mechanisms to avoid intraoperative compli
cations to completely autonomous robotic surgery.

Intraocular surgery, usually taking place under a surgical 
microscope, affords the ability to collect large volumes of 
surgical video footage from a relatively stable viewpoint. 

Moreover, newer microscope systems incorporate three-
dimensional (3D) optics, allowing for collection of 3D 
video, with excellent delineation of tissue depth 
intraoperatively. Reinforcement learning models could be 
trained by use of such 3D surgical video databases and the 
movement of instruments encoded similar to a video 
game, with specific stages (eg, capsulorhexis or epiretinal 
membrane peeling) encoded as rewards. Such systems 
could be developed to optimise policies that result in 
favourable surgical outcomes and then built into modern 
operating microscopes to show an indicator light or 
audible warning when a surgeon moves an instrument in 
a manner that differs from the optimal policy. Additional 
variables, such as data taken from intraoperative real-time 
optical coherence tomography, could also be incorporated 
into these algorithms to provide high-fidelity policies, 
based not only on movement of instruments and surgical 
steps, but also on patient physiology. Unlike supervised 
learning implementations, such systems would require 
far fewer labelled data and be able to complete sequential 
steps within one algorithm instead of multiple algorithms. 
Moreover, such systems offer the potential for improving 
training of junior doctors and fellows to reduce early 
surgical complications, as well as of novice surgeons in 

Figure 3: Schematic representation of a reinforcement learning policy for diabetic retinopathy
A reinforcement learning policy for treatment of diabetic retinopathy incorporating patient optical coherence tomography data and additional variables in 
determining when to treat or extend the treatment time. Figure created using BioRender.com. VEGF=vascular endothelial growth factor.
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low-resource settings, and would be a boon for global 
health organisations such as Orbis to greatly expand their 
reach and mission. Not with the intent of replacing 
surgeons, reinforcement learning systems would be used 
to augment the surgeon’s experience and procedural 
safety profile. However, further in the future, with 
concomitant advancements in robotics technology, such 
reinforcement learning systems could facilitate the use of 
intelligent surgery systems capable of highly delicate 
operations independent of human input, with 
reproducible, consistent outcomes.

Challenges to implementation of reinforcement 
learning in ophthalmology
Although reinforcement learning offers powerful 
capabilities for ophthalmologists, both in the clinic and 
the operating room, implementation of solutions is not 
without challenges. The potential hurdles of integration 
of reinforcement learning solutions into clinical practice 
have been explored extensively in the literature and carry 
important lessons for both ophthalmologists and for 
researchers who are working to develop use cases.7,10,27

The absence of separate training and evaluation 
environments in the real world
One of the most substantial limitations of reinforcement 
learning for applications in health care is the inability to 
explore potential policies in the real environment. It is 
unethical to pilot untested reinforcement policies that 
could lead to patient harm in the clinical realm, and 
thus, researchers are limited by training of reinforcement 
learning algorithms using previous observational data 
only. To minimise the potential for harm to patients, 
reinforcement learning models could be trained in a 
graded fashion, similar to modern medical training. In 
such a scenario, a surgical model, for example, would 
first begin operating on simulated eyes, either in the 
operating room or in virtual reality. Next, the model 
could advance to cadaveric eyes and then to completing 
specific steps of a surgery on a live patient under 
supervision. Completing all this testing could be 
requisite for advancing to finally completing full 
procedures on live patients. Such training could be 
coupled with off-policy evaluation on a validation dataset 
and would offer the safety of a largely patient-free 
environment, but with the caveat that not all policy 
actions might be completely tested. Importantly, it 
should be considered that such approaches might 
incorporate bias into algorithm policies that are inherent 
within the training and validation datasets, and thus 
limit the creativity of the algorithm in optimising its 
reward.28 Conceivably then, although a reinforcement 
learning algorithm could optimise treatment of patients 
with age-related macular degeneration or movement of 
surgical instruments, it would be unable to develop an 
entirely new treatment strategy or surgical manoeuvre. 
Careful consideration of biases within datasets is also 

essential to ensuring algorithms produce effective and 
equitable policies.

Inherent delays in real-world systems
Reinforcement learning algorithms are also susceptible 
to system delays, so-called because most real systems 
involve delays in sensing, actuation, or reward feedback 
because the manifestation of an action’s effect might be 
on a long temporal scale. For example, within ophthal
mology, this is most easily conceptualised in the 
management of patients with age-related macular degen
eration, for which a reinforcement learning algorithm 
might make a decision to treat a patient with anti-VEGF 
but does not realise its reward until the next optical 
coherence tomography image is viewed at the following 
appointment. To address this problem, developers of the 
algorithm could consider assigning weighted credit to 
past actions undertaken by the model that are determined 
to be useful for predicting the future, such as previous 
optical coherence tomography images showing a 
reduction in subretinal or intraretinal fluid, associated 
with disease improvement.29 Reinforcement learning 
algorithms are also limited by the partial observability 
and non-stationarity of the clinical environment. Within 
ophthalmology, clinicians are limited by the patient data 
immediately available. In patients with age-related 
macular degeneration, those data might be only an 
optical coherence tomography image and fundus photo; 
in patients with glaucoma, those data might be an optical 
coherence tomography image and intraocular pressure; 
and intraoperatively, those data might be only the surgical 
field. All these environments are also dynamic; that is, 
disease processes are continuous and multifactorial, and 
surgical procedures are non-stationary. To address this 
problem, reinforcement learning algorithms could be 
given access to additional sensors with which to guide 
decision making. For instance, in addition to a patient’s 
intraocular pressure in glaucoma management, the 
algorithm might have access to all intraocular pressure 
values in that specific patient’s demographic, or the 
algorithm might be trained with all surgical video footage 
beyond the specific surgery the algorithm has been 
designed for, both of which could be used as sensors to 
inform iterative play within the confines of the specific 
disease or procedural environment. Crucially, this access 
to and incorporation of additional sensors might add to 
another problem with the implementation of 
reinforcement learning—one of appropriate credit and 
reward assignment. Although in many environments in 
ophthalmology a reward is easily defined as a quantifiable 
medical outcome (eg, lower intraocular pressure in 
patients with glaucoma), this is not always the case. 
Within surgical reinforcement learning algorithms, 
careful evaluation of all intraoperative movements, with 
appropriate credit assignment given with successful 
completion of specific steps, requires substantial surgeon 
investment of time, and might be heterogeneous across 

For more on Orbis see https://
www.orbis.org/ 
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surgeons. Assignment of credit in association with 
memory, as described above, is also an important 
consideration because the prognostic factors of many 
chronic ocular diseases are poorly defined and difficult to 
implement, even in routine clinical practice.

Exploration versus exploitation
In addition to system delays, reinforcement learning 
agents are also affected temporally by their inherent focus 
on optimising reward. In this pursuit, agents might often 
engage in actions that obtain reward in the short term, 
without consideration of long-term implications to the 
environment. For instance, a reinforcement learning 
policy implemented for the management of diabetic 
retinopathy might choose to always inject patients with an 
anti-VEGF medication, to optimise a short-term reward of 
reduction in subretinal fluid on optical coherence 
tomography as learned from previous iterations. However, 
such policies might not recognise when disease control 
has been achieved and thus continuously expose patients 
to the potential for iatrogenic injury and achieve a state of 
diminishing returns. To minimise exploitation-driven 
actions by a reinforcement learning agent, rewards could 
be more specifically defined to capture the multifactorial 
nature of disease amelioration. In the instance of diabetic 
retinopathy, such rewards could encapsulate not only 
reduction of subretinal fluid on imaging, but also 
improvement or stability in visual acuity and minimisation 
of complications associated with therapy. Assigning 
corresponding weights to these factors would promote 
decision making that favours exploration to a long-term 
reward versus exploitation of short-term variables.

Explainability
Implementation of reinforcement learning algorithms is 
also limited by the ability to provide system operators 
with explainable policies. Because reinforcement 
learning algorithms can perform sequential decision 
making, there is an element of a black box encountered 
with their use. Ophthalmologists implementing rein
forcement learning algorithms in routine patient care 
will need to be well informed of the nature of specific 
policies used by the algorithm, not only to improve the 
integration of the algorithms into clinical practice, but 
also to allow clinicians to act as a safeguard should an 
algorithm suggest a potentially dangerous action in its 
endeavour to maximise reward. Finally, and perhaps 
most importantly, with explainability challenges come 
difficulties in evaluating the safety and efficacy of 
reinforcement learning policies. Because there is no 
equivalent or standard-of-care algorithm to compare 
reinforcement learning algorithms with, and observers 
are not aware of real-time inputs, it is difficult to evaluate 
reinforcement learning algorithms without randomised 
trials. Thus, implementation of reinforcement learning 
solutions into clinical practice requires rigorous 
evaluation studies, and algorithms should be piloted 

extensively against existing human physicians to 
appropriately assess clinical performance.

Conclusions
As machine learning solutions move from the research 
realm into routine clinical practice, ophthalmology stands 
to experience another revolution.30 Reinforcement 
learning offers ophthalmologists the potential to optimise 
chronic disease management, increase the equity of 
valuable clinical resources, improve surgical outcomes, 
and facilitate the training of the next generation of 
surgeons. Nonetheless, reinforcement learning is not 
without its limitations, and careful consideration of the 
challenges associated with its implementation will ensure 
that we are able to reinvent not only the diagnosis of 
ocular diseases, but also their medical and surgical 
management.
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