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Abstract
The availability of genomic data is essential to progress in
biomedical research, personalized medicine, etc. However, its
extreme sensitivity makes it problematic, if not outright impos-
sible, to publish or share it. As a result, several initiatives have
been launched to experiment with synthetic genomic data, e.g.,
using generative models to learn the underlying distribution of
the real data and generate artificial datasets that preserve its
salient characteristics without exposing it.

This paper provides the first evaluation of both utility and
privacy protection of six state-of-the-art models for generat-
ing synthetic genomic data. We assess the performance of the
synthetic data on several common tasks, such as allele popu-
lation statistics and linkage disequilibrium. We then measure
privacy through the lens of membership inference attacks, i.e.,
inferring whether a record was part of the training data. Our
experiments show that no single approach to generate synthetic
genomic data yields both high utility and strong privacy across
the board. Also, the size and nature of the training dataset
matter. Moreover, while some combinations of datasets and
models produce synthetic data with distributions close to the
real data, there often are target data points that are vulnerable
to membership inference. Looking forward, our techniques
can be used by practitioners to assess the risks of deploying
synthetic genomic data in the wild and serve as a benchmark
for future work.

1 Introduction
Progress in genome sequencing has paved the way towards
preventing, diagnosing, and treating several diseases and con-
ditions. Much of this progress is dependent on the avail-
ability of genomic data. Consequently, numerous initiatives
have been established to support and encourage genomic data
sharing. For example, the International HapMap Project [42]
helped identify common genetic variations and study their
involvement in human health and disease, while the 1000
Genomes Project [1] created a catalog of human variation and
genotype data. Funding agencies, e.g., the National Institutes
of Health (NIH), increasingly often make data sharing a re-
quirement to fund grant applications [46].

Data sharing in genomics is crucial to enable progress in
Precision Medicine [21]. However, this inherently conflicts
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with the need to protect individuals’ privacy. Genomic data
contains sensitive information related to heritage, predispo-
sition to diseases, phenotype traits, etc., making it hard to
anonymize [23]. Hiding “sensitive” portions of the genome
is not effective, as they can still be inferred via high-order cor-
relation models [54].1

As a result, genomics researchers have begun to investi-
gate the possibility of releasing synthetic datasets rather than
real/anonymized data [52]. This follows a general trend in
healthcare; for instance, the National Health Service (NHS) in
England has recently concluded a project focused on releasing
synthetic Emergency Room (“A&E”) records [45]. Basically,
the idea is to use generative models to learn to generate sam-
ples with the same characteristics—more precisely, with very
close distributions—as the real data. In other words, rather
than releasing data of actual individuals, entities share artifi-
cially generated data so that the statistical properties of the
original data are preserved, but minimizing the risk of mali-
cious inference of sensitive information [15].

Generative Models and Genomics. In particular, previous
work has experimented with both statistical and generative
models. Samani et al. [54] propose an inference model based
on the recombination rate, which can also be used to generate
new synthetic genomic samples. Yelmen et al. [71] use Gen-
erative Adversarial Models (GANs) and Restricted Boltzmann
Machines (RMBs) to mimic the distribution of real genomes
and capture population structures. Finally, Killoran et al. [36]
use ad-hoc training techniques for GANs and architectures for
computer vision tasks.

Technical Roadmap. Prior work on synthetic genomic data
(Section 3) has not evaluated the privacy guarantees they pro-
vide and only evaluated utility from the shallow point of view
of the statistical fidelity provided by the generative model. To
address this gap, we introduce a novel evaluation methodol-
ogy and perform a series of experiments geared to quantify
both the utility and the privacy of six state-of-the-art models
used to generate human genomic synthetic data.

Our analysis unfolds along two main axes:

1. Utility. We focus on several, very common computa-
tional tasks on genomic data, measuring how well gen-
erative models preserve summary statistics (e.g., allele
frequencies, population statistics) or linkage disequilib-
rium (see Section 4). We also compute the Kologorov-
Smirnov(KS) test on the main metrics discussed as a non-

1For a thorough review of privacy threats in genomics, please see [4, 44, 67].
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parametric test.

2. Privacy. We mount membership inference attacks [29],
having an attacker infer whether a target record was part
of the real data used to train the model producing the syn-
thetic dataset, as opposed to releasing the real dataset (see
Section 5). In the process, we also introduce a novel
attack where the adversary only has partial information
for a target individual (Section 5.2). We choose to study
MIA as it is one of the most studied attacks mounted for
both genomics data and machine learning, however, it has
never been studied in the context of synthetic genomic
data.

Main Findings. Overall, our evaluation shows that there is
no single approach for generating genomic synthetic data that
performs well across the board, both in terms of utility and
privacy. Among other things, we find that:

• A high-order correlation model specifically build for ge-
nomic data (Recomb) has the best utility metrics for small
datasets but does so at the cost of privacy, even against
weaker adversaries who only have partial information
available.

• The RBM model has a better performance with increasing
dataset sizes, both in terms of utility and privacy, as tar-
gets get stronger privacy protection when synthetic data
is generated using a larger training set.

• Releasing synthetic datasets does not provide robust pro-
tection against membership inference attacks. We find
cases where releasing the synthetic dataset sometimes of-
fers better protection against membership inference at-
tacks. However, because of the randomness introduced
by the generative models, one cannot meaningfully pre-
dict a target’s susceptibility to privacy attacks without fix-
ing the training set and quantifying the respective privacy
loss/gain for all targets in the set.

2 Preliminaries
In this section, we introduce background information about
genomics, and tools used to generate synthetic data, then, we
present the privacy metrics and datasets used in our evaluation.

2.1 Genomic Primer
Genomes and Genes. The genome represents the entirety of
an organism’s hereditary information. It is encoded in DNA:
each DNA strand comprises four chemical units, called nu-
cleotides, represented by the letters A, C, G, and T. The hu-
man genome consists of approximately 3 billion nucleotides
packaged into thread-like structures called chromosomes. The
genome includes both the genes and the non-coding sequences
of the DNA. The former determine specific traits, character-
istics, or control activity within an organism. We refer to the
group of genes inherited from a single parent as a haplotype.
An allele is a different variation of a gene; any individual in-
herits two alleles for each gene, one from each of their parents.

The genotype consists of the alleles that an organism has for a
particular characteristic.

SNPs and SNVs. About 99.5% of the genome is shared
among all humans; the rest differs due to genetic variations.
Single nucleotide polymorphisms (SNPs) are the most com-
mon type of genetic variation. They occur at a single position
in the genome and at least 1% of the population. SNPs are
usually biallelic and can be encoded by {0, 1, 2}, with 0 de-
noting a combination of two major (i.e., common) alleles, 2
a combination of two minor alleles, and 1 a combination of a
major and a minor allele (which is also referred to as a het-
erozygous SNP). Single nucleotide variants (SNVs) are single
nucleotide positions in the genomic DNA at which different
sequence alternative exists [17].

Recombination Rate (RR). Recombination is the process of
determining the frequency with which characteristics are in-
herited together. The RR is the probability that a transmitted
haplotype constitutes a new combination of alleles different
from that of either parental haplotype [14].

Genome-Wide Association Studies (GWAS). GWAS are
hypothesis-free methods for identifying associations between
genetic regions and traits. A typical GWAS looks for common
variants in several individuals, both with and without a trait,
using genome-wide SNP arrays [16, 43].

2.2 Membership Inference Attacks
Genomics. A well-understood privacy threat in genomics is
determining whether the data of a target individual is part of
an aggregate genomic dataset or mixture. This is known as a
membership inference attack (MIA) [29, 66, 74]. The ability
to infer the presence of an individual’s data in a dataset consti-
tutes an inherent privacy leak whenever the dataset has some
sensitive attributes. For instance, if a mixture includes DNA
from patients with a specific disease, learning that a person is
part of that mixture exposes their health status.

In general, genomic data contains extremely sensitive infor-
mation about individuals; hence, MIAs against genomic data
prompt severe privacy threats, including denial of life/health
insurance, revealing predisposition to diseases, ancestry, etc.

Machine Learning. MIAs have also been studied in the con-
text of machine learning to infer whether or not a target data
point was used to train a target model. This has been done both
for discriminative [11, 30, 38, 41, 51, 53, 55] and generative
models [11, 24, 26]. Inferring training set membership might
yield serious privacy violations. For instance, if a model for
drug dose prediction is trained using data from patients with
a certain disease, or synthetic health images are produced by
a generative model trained on patients’ images, learning that
data of a particular individual was part of the training set leaks
information about that person’s health. Overall, MIAs are also
used as signals that access to a target model is “leaky” and can
be a gateway to additional attacks [24]. This is the main reason
we choose MIA as our leading privacy metric while deferring
the quantification of other attacks (e.g., attribute inference or
reconstruction attacks) to future work.
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2.3 Privacy Gain (PG) from Synthetic Data
Release

Our main privacy evaluation metric is denoted as Privacy Gain
(PG), first proposed in [59]. The PG quantifies the privacy
advantage obtained by a target t, vis-à-vis an MIA adversary,
when a synthetic dataset is published instead of the real data.

MIA Training (Algorithm 1). The adversary is trained as
follows. First, we take a reference dataset (which may or may
not overlap with the real data used to generate the synthetic
dataset) and use it to generate a synthetic dataset (lines 1–6).
This dataset is labeled as 0, i.e., it does not include the target
record (line 7). The target record is added to the dataset (line
8), and synthetic data is generated from the new dataset, which
includes the target record; this dataset is labeled as 1 (lines
10-13). These models are referred to as generative shadow
models. Finally, the adversary uses the synthetic datasets to
train a classifier (line 14), which distinguishes whether or not
the target was used to train a generative model.

PG Estimation (Algorithm 2). We estimate the PG for a fixed
target record and input dataset as follows. First, the algorithm
takes the target training set and generates ns synthetic datasets
without the target record (lines 1–4). Then, the target record
is added to the training set, and ns of synthetic datasets are
generated from this dataset (lines 5–9). Then, the adversary
trains their attack model MIATrain (line 10). Finally, the PG
for a target t is computed as PGt = 1−MIAt(Stest)

2 , where
MIAt(Stest) =

∑
Si∈Stest

Pr[MIAt(Si)=1]
2∗ns

(lines 11–12).
Put simply, the PG quantifies the difference between the

probability that an attacker correctly identifies that the target
record belongs to the real dataset and that that the attacker cor-
rectly identifies that the target record was used in training a
generative model that outputs a synthetic dataset.

PG Values. The PG ranges between 0, when publishing the
synthetic dataset leads to the same privacy loss as publishing
the real dataset (i.e., MIAt(Stest) = 1) and 0.5, when publish-
ing the synthetic dataset perfectly protects the target from MIA
(i.e., MIAt(Stest)=0). This means that PG = 0.25 when the
probability of the adversary inferring whether or not a target is
part of the training set used to generate the synthetic dataset is
the same as random guessing (i.e., MIAt(Stest) = 0.5).

Dimensionality Reduction. To reduce the effects of high di-
mensionality, the attacker first maps the synthetic data to a
lower feature space. This helps detect the influence of the
target record on the training dataset. We experiment with
four different feature sets, as done in [59]: namely, a naive
feature set, which encodes the number of distinct categories
plus the most and least frequent category for each attribute, a
histogram, which computes the frequency counts for each at-
tribute, a correlation, which encodes pairwise correlations be-
tween attributes, and an ensemble feature set, which combines
all the previously mentioned feature sets.

2.4 Datasets
Our evaluation uses data from two projects: HapMap [42] and
the 1000 Genome Project [1]. More specifically, we use 1,000

SNPs from chromosome 13 from the following datasets:

1. CEU Population (HapMap). Samples from 117 Utah res-
idents with Northern and Western European ancestry, re-
leased in phase 2 of the HapMap project.

2. CHB Population (HapMap). Samples from 120 Han Chi-
nese individuals from Beijing, China.

3. 1,000 Genomes. Samples from 2,504 individuals from 26
different populations released from phase 3 of the 1000
Genomes project.

3 Synthetic Data Approaches in
Genomics

In this section, we provide an overview of the state-of-the-art
models for generating synthetic genomic data. In particular,
we discuss the Recombination model presented by Samani et
al. [54], the RBM and GAN models proposed by Yelmen et
al. [71], and the WGAN model from Killoran et al. [36]. We
also introduce and consider two other “hybrid” models.

Recombination Model (Recomb). Samani et al. [54] pro-
pose the use of a recombination model as an inference method
for quantifying individuals’ genomic privacy. This statisti-
cal model is based on a high-order SNV correlation that re-
lates linkage disequilibrium patterns to the underlying recom-
bination rate. [54] shows how to use this method to generate
synthetic samples and perform Principal Component Analysis
(PCA). The recombination model yields a distribution closer
to the real data than models using only linkage disequilibrium
and allele frequencies. The model uses a “genetic map,” which
includes the recombination rate. This is provided with the
dataset for the HapMap datasets, but not for the 1000 genomes
data. For the latter, we use the scripts from [47] to generate the
genomic map.

Restricted Boltzmann Machines (RBMs). RBMs [58] are
generative models geared to learn a probability distribution
over a set of inputs. RBMs are shallow, two-layer neural nets:
the first is known as the “visible” (on input) layer and the sec-
ond as the hidden layer. The two layers are connected via a
bipartite graph, i.e., every node in the visible layer is con-
nected to every node in the hidden one, but no two nodes in the
same group are connected, allowing for more efficient training
algorithms. The learning procedure consists of maximizing
the likelihood function over the visible variables of the model.
The RBM models re-create data in an unsupervised manner
through many forward and backward passes between the lay-
ers, corresponding to sampling from the learned distribution.
The output of the hidden layer passes through an activation
function, which becomes the input for the former.

As mentioned, Yelmen et al. [71] use RBMs to generate syn-
thetic genomic data. In our evaluation, we follow the same
RBM settings as [71]. More specifically, we use a ReLu acti-
vation function, with the visible layer having the same size as
the input we considered (1,000 features) and with the number
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Algorithm 1 MIATrain [59]
Input: A generative model GM(), the target record t, a reference

dataset R of size n, the number of synthetic test sets ns of size
m, and the number k of shadow models.

Output: MIAt()
1: for i = 1, · · · , k do
2: Ri ∼ Rn

3: fi ∼ GM(Ri)
4: for j = 1, · · · , ns do
5: Sm

j ∼ fi
6: Strain ← Strain ∪ Sm

j

7: ltrain ← ltrain ∪ 0

8: R′
i ← Ri ∪ t

9: f ′
i ∼ GM(R′

i)
10: for j = 1, · · · , ns do
11: Sm

j ∼ f ′
i

12: Strain ← Strain ∪ Sm
j

13: ltrain ← ltrain ∪ 1

14: MIAt()←Classifier(Strain, ltrain)

Algorithm 2 MIAGain [59]
Input: A generative model GM(), the target record t, the target train-

ing set Rt
out of size n, the size m of the synthetic dataset, the

number ns of synthetic test sets, a reference dataset Ra, the num-
ber k of shadow models.

Output: PGt

1: fout ∼ GM(Rt
out)

2: for i = 1, · · · , ns do
3: Si ∼ fm

out

4: Stest ← Stest ∪ Si

5: Rt
in ← Rt

out ∪ t
6: fin ∼ GM(Rt

in)
7: for i = 1, · · · , ns do
8: Si ∼ fm

in

9: Stest ← Stest ∪ Si

10: MIAt()← MIATrain(GM(), t, Ra, n,m, ns, k)
11: MIAt(Stest) =

∑
Si∈Stest

Pr[MIAt(Si) = 1]/2ns

12: PGt ← (1−MIAt(Stest))/2

of hidden nodes set to 100. The learning rate is set to 0.01, the
batch size to 32, and we iterate over 2,000 epochs.

Generative Adversarial Networks (GANs). A GAN is an
unsupervised deep learning model consisting of two neural
networks, a generator and a discriminator, which “compete”
against each other. During training, the generator’s goal is to
produce synthetic data, and the discriminator evaluates them
against real data samples to distinguish the synthetic from the
real samples. The training objective is to learn the data dis-
tribution so that the data samples produced by the generator
cannot be distinguished from real data by the discriminator.

We use the GAN approach also proposed by Yelmen et
al. [71], mirroring their experimental settings. That is, the gen-
erator model consists of an input layer with latent dimension
set to 600 and two hidden layers, of sizes 512 and 1,024, re-
spectively. The discriminator consists of an input layer with a
size equal to the number of SNPs evaluated (1,000) and two
hidden layers of sizes 512 and 256, respectively, and an output
layer of size 1. The output layer for the generator uses tanh as
an activation function, and the output layer for the discrimina-
tor uses the sigmoid activation function. We compile both the
generator and discriminator using the Adam optimization and
binary cross-entropy as the loss function.

Recombination RBM (Rec-RBM). To overcome issues
caused by low numbers of training samples, we propose a hy-
brid approach between the Recomb and the RBM models. We
use the former to generate extra samples, which we then use,
together with the real data samples, to train the RBM model
with the same parameters as before. We do so to explore
whether having more data points to train the model improves
the utility of the synthetic data.

Recombination GAN (Rec-GAN). Like Rec-RBM, we use
the Recomb model to generate extra training samples for the
GAN model, using the same parameters as before. Again,
we want to study whether having a larger dataset available for
training improves the synthetic data output’s overall utility.

Wasserstein GAN (WGAN). Killoran et al. [36] propose an
alternative GAN model by treating DNA sequences as a hybrid
between natural language and computer vision data. The se-
quences are one-hot encoded, the GAN is based on a WGAN
architecture trained with a gradient penalty [22], and both
the generator and discriminator use convolutional neural net-
works [37] and a residual architecture [25], which includes
skip connections that jump over some layers. The authors also
propose a joint method combining the GAN model with an ac-
tivation maximization design [40, 57, 73] to tune the sequences
to have desired properties. However, we do not include the
joint model in our evaluation, as we focus on a range of statis-
tics instead of a single desired property.

In our evaluation, we use the WGAN model with the default
parameters from the implementation in [35]. The generator
consists of an input layer with a dimension of the latent space
set to 100, followed by a hidden layer with a size 100 times
the length of the sequence (1,000), which is then reshaped to
(length of the sequence, 100), followed by 5 resblocks. Finally,
there is a 1-D convolutional layer followed by the output layer,
which uses softmax. The discriminator has a very similar ar-
chitecture but in a different order – i.e., it starts with the input
layer to which the one-hot sequences are fed, that is followed
by the 1-D convolutional layer, then the 5 resblocks, followed
by the reshape layer and the output layer of size 1. We per-
form 5 discriminator updates for every generator update. Both
the generator and discriminator use Adam optimization, and
their learning rates are set to 0.0001, while a gradient penalty
adjusts the loss as mentioned. We use a batch size of 64. For
more details please refer to Appendix A.

4 Utility Evaluation
This section presents a comprehensive utility evaluation of the
synthetic data generated by the models introduced in Section 3.
We look at common summary statistics used in genome-wide
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Figure 1: Major allele frequencies for synthetic data generated by the models, plotted against the real data.

association studies, aiming to assess the accuracy loss due to
the use of synthetic datasets. We choose summary statistics
as our main utility evaluation metrics since prior work shows
that they provide a good starting point for assessing the utility
of synthetics genomic data [7, 48]. While high(er) granular-
ity may be required in some biomedical applications, if most
generative models do not accurately replicate the high-level
statistics of the real data, then it is extremely unlikely they
would provide reasonable accuracy on single sequences. More
specifically, we analyze how well data generated by the gener-
ative models preserve allele frequencies, population statistics,
and linkage disequilibrium. We also compute the KS two-
sample test [27] for the goodness of fit on the most relevant
metrics in each subsection for each real dataset vs. the syn-
thetic data.

4.1 Allele Statistics
Major Allele Frequency (MAF). In population genetics, the
major allele frequency (MAF) is routinely used to provide
helpful information to differentiate between common and rare
variants in the population, as it quantifies the frequency at
which the most common allele occurs in a given population.
We start our utility analysis by comparing MAFs in the syn-
thetic data vs. the real data.

In Fig. 1, we plot the MAF at each position for the real
datasets and the synthetic samples, over the CEU and CHB
populations, and the 1000 Genomes dataset. For CEU/CHB
(Fig. 1a–1b),the Recomb and WGAN replicate best the allele
frequencies in the real data. On the other hand, GAN and Rec-
GAN fail to do so, and in fact, the generated samples seem
random. Even though not as close to the real frequencies as
Recomb, the RBM model performs better than the GAN and
Rec-GAN models. In fact, RBM further improves when com-
bined with Recomb (see Rec-RBM).

For 1000 Genomes (Fig. 1c), Recomb’s MAF distribution

5



Models CEU CHB 1000 Geno
D p-value D p-value D p-value

MAF

Recomb 0.04 0.36 0.03 0.53 0.008 0.99
RBM 0.47 <0.001 0.33 <0.001 0.06 0.03
GAN 0.37 <0.001 0.52 <0.001 0.58 <0.001
Rec-RBM 0.31 <0.01 0.23 <0.01 0.08 <0.1
Rec-GAN 0.54 <0.001 0.61 <0.001 0.863 0
WGAN 0.10 <0.001 0.14 <0.1 0.28 0.82

SFS

Recomb 0.07 0.89 0.07 0.89 0.18 <0.1
RBM 0.34 <0.001 0.28 <0.001 0.12 0.44
GAN 0.40 <0.001 0.41 <0.001 0.23 <0.01
Rec-RBM 0.26 <0.01 0.23 <0.01 0.06 0.99
Rec-GAN 0.64 <0.001 0.58 <0.001 0.25 <0.01
WGAN 0.09 0.79 0.18 <0.1 0.19 <0.1

% Heterozygous Samples

Recomb 0.19 0.47 0.29 <0.001 0.32 <0.001
RBM 0.64 <0.001 0.70 <0.001 0.13 0.34
GAN 0.90 <0.001 1.00 <0.001 0.57 <0.001
Rec-RBM 0.99 <0.001 1.00 <0.001 0.40 <0.001
Rec-GAN 0.55 <0.001 0.68 <0.001 0.52 <0.001
WGAN 0.17 <0.1 0.39 <0.001 0.45 <0.001

Linkage Disequilibrium

Recomb 0.11 <0.001 0.12 <0.001 0.31 0
RBM 0.61 0 0.69 0 0.08 <0.001
GAN 0.07 <0.001 0.09 <0.001 0.86 0
Rec-RBM 0.40 0 0.41 0 0.38 0
Rec-GAN 0.23 0 0.21 0 0.91 0
WGAN 0.10 <0.001 0.09 <0.001 0.53 0

Table 1: Two-sample (real vs. synthetic data) Kolmogorov-Smirnov
test performed on the the main utility summary statistics presented in
Section 4.

is also similar to the real data’s. However, RBM and Rec-
RBM both display MAFs close to the real data, whereas,
even with more training samples available, the GAN and Rec-
GAN models still seem to produce random results. Moreover,
WGAN does not match the MAF distribution for this popula-
tion as closely. Overall, the difference in the MAF distribu-
tions across datasets is likely due to fewer samples available
for the HapMap populations than the 1000 Genomes. To fur-
ther support our findings, we also compute the KS two-sample
test [27] on the statistics presented in this section (see Table 1).
The test compares the agreement between the cumulative dis-
tributions of two independent samples. If the resulting D value
is low, and the p-value is high, we cannot reject the null hy-
pothesis (i.e., there is no difference between the distributions).
For every two-samples test, the 95% critical value is approxi-
mately 0.195 (as we have 100 samples in each dataset), so we
can reject the null hypothesis (that there is no difference be-
tween the distributions) for all synthetic data above this value.
For the CEU and CHB populations, we cannot reject the null
hypothesis for samples generated by the Recomb and WGAN.,
whereas for the 1000 Genomes dataset we cannot reject the

null hypothesis for Recomb, RBM and Rec-RBM.

Alternate Allele Correlation (AAC). To evaluate whether the
real and synthetic data are genetically different, in Appendix
Fig. 12, we plot the alternate allele correlation (AAC). The
more similar the two populations are, the closer the SNPs
should be to the diagonal, as in the leftmost plots, where we
have the real data against itself. The strongest AAC is with the
synthetic data generated by Recomb. On the opposite side of
the spectrum, the synthetic data generated by GAN and Rec-
GAN have weak correlations. For the CEU and CHB popula-
tions, Rec-RBM yields stronger AACs than simple RBM and
the WGAN. For the 1000 genomes dataset (Fig. 12c), there is
a strong correlation between the alternate alleles for the real
data and Recomb, RBM, Rec-RBM, and WGAN.

Site Frequency Spectrum (SFS). Another summary statistic
that captures essential information about the underlying dis-
tribution of the allele frequencies of a given set of SNPs in a
population or sample is the SFS [18, 19]. Basically, it provides
a histogram whose size depends on the number of sequenced
individuals. In Fig. 13, we plot the scaled folded SFS, which
is the distribution of counts of minor alleles in a sample cal-
culated over all segregating sites. We scale this value so that
a constant value is expected across the spectrum for neutral
variation and constant population size, which yields the best
visual comparisons. If the distribution of allele frequencies for
the synthetic samples matches that of the real data, we would
expect to see the two spectra aligned.

With the HapMap populations (Fig. 13a– 13b), Rec-GAN
suggests an excess of rare variants for a minor allele frequency
around 0.1. Whereas GAN seems to generate data closer to a
neutral expectation, i.e., the synthetic dataset describes a more
stable population. Similarly, for the 1000 Genomes (Fig. 13c),
Rec-GAN has an excess of rare variants for a minor allele fre-
quency less than 0.1, and this is also displayed, at a lower
scale, by the GAN-generated data. After computing the KS-
two sample test, we cannot reject the null hypothesis for the
samples generated by the Recomb and the WGAN models, for
both CEU and CHB populations. We reject the null hypothesis
for the 1000 Genomes dataset for synthetic data generated by
the GAN and Rec-GAN.

4.2 Population Statistics
Next, we study population statistics to determine how close to
the real dataset is the synthetic data. In particular, we look
at the percentage of heterozygous variants, the fixation index,
and the Euclidean Genetic Distance.

Heterozygosity. The condition of having two different alle-
les at a locus is denoted as heterozygosity. The percentage of
heterozygous variants is commonly used in population stud-
ies, as a low percentage of heterozygous variants implies less
diversity in the population. In Fig. 2a–2b, we plot the percent-
age of heterozygous variants in each sample for the CEU/CHB
populations, comparing the real statistics (blue/leftmost bars)
vs. those computed on the synthetic data. From a visual
inspection, both CEU and CHB datasets, the Recomb and
WGAN samples yield a similar distribution to the real data.
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Figure 2: Percentage of heterozygous variants in each sample in the dataset for CEU, CHB populations, and the 1000 Genomes dataset.

However, when computing the KS statistic, we find that we
cannot reject the null hypothesis only for those two models
for the CEU datasets, and we reject the null hypothesis for all
synthetic datasets generated from the CHB dataset.

For the GAN and RBM, the percentage of heterozygous
samples decreases, suggesting that both models produce more
homozygous variants. Moreover, even though for the major
allele frequencies, Rec-RBM produces variants with statistics
closer to the real data, the percentage of heterozygous variants
turns out to be the lowest for both populations. By contrast,
Rec-GAN produces a higher percentage of heterozygous vari-
ants than GAN, even though the major allele frequencies are
not aligned with the original samples. With the 1000 Genomes
(Fig. 2c), the % of heterozygous samples in the real data is
lower across all samples. Once again, and in line with previ-
ous results, GAN and the Rec-GAN significantly deviate from
the %s of heterozygous samples found in the real data. In fact,
in Fig. 2d, we remove the GAN and the Rec-GAN models
in order to take a closer look at the other models; with more
data samples, the samples generated yield percentages of het-

erozygous samples relatively similar to the real data. For this
dataset, the only model for which we cannot reject the null
hypothesis is the RBM.

Fixation Index (FST ). Another way to assess how different
are groups of populations from each other is to use the fix-
ation index [28]. It provides a comparison of differences in
allele frequency, with values ranging from 0 (not different) to
1 (completely different/no alleles in common). In Fig. 3, we
compare the FST values for the real data against the synthetic
samples. For illustration purposes, we also include FST of the
real data against itself, which obviously yields FST = 0.

Recomb is once again the closest to the real data, which
confirms the alignment from Fig. 1 of the allele frequencies of
the synthetic recombination data with the real data. The FST

value for the synthetic data produced by RBM is, for both CEU
and CHB populations, less than 0.10; however, the hybrid Rec-
RBM model further reduces this value to less than 0.04, and so
does WGAN. For both populations, data generated by GAN
and Rec-GAN has the highest FST , although, for the CHB
population, the latter increases it, and for the CEU population

7



CEU CHB 1000 Genomes

0.0

0.1

0.2

0.3

0.4
F S

T

Real vs Real
Real vs Recomb
Real vs RBM
Real vs GAN
Real vs Rec-RBM
Real vs Rec-GAN
Real vs WGAN

Figure 3: Fixation index values (FST ) for the CEU and CHB popu-
lations, and the 1000 Genomes dataset.

reduces it. Finally, for the 1000 genomes, Recomb, RBM, and
Rec-RBM all have FST close to the real data. While still hav-
ing a low FST , WGAN has a slightly higher value. Whereas,
with GAN and Rec-GAN, FST significantly deviates from the
real data, even with the increased number of samples of this
dataset.

Euclidean Genetic Distance (EGD). Since the fixation index
does not easily allow for pairwise comparisons among popu-
lations, in Appendix Fig. 14, we plot the Euclidean Genetic
Distance (EGD) between the samples in each dataset. EGD is
routinely used as a measure of divergence between populations
and shows the number of differences, or mutations, between
two populations; a distance of 0 means there is no difference
in the results, i.e., there is an exact match. From Fig. 14a–14b,
where the EGD on the diagonal is 0, we observe that, for both
CEU and CHB populations, the synthetic samples generated
by GAN are closer to each other than by the other models.
Rec-GAN generates samples with EGD close to 0, suggesting
that there are very few differences between them and samples
with a distance of around 30. As for the other population statis-
tics, Recomb generates samples that match the differences ob-
served in the real data the closest for both populations. For
RBM, the samples generated have fewer differences than the
real data. Perhaps more interestingly, Rec-RBM yields sam-
ples with a higher divergence than the real data; this can be a
consequence of the low percentage of heterozygous samples
found in the synthetic samples generated by this model (recall
Fig. 2). The samples from WGAN match some of the differ-
ences observed in the real data, but the model also yields a few
samples with a higher divergence.

Finally, for the 1000 Genomes (Fig. 14c), all samples in the
real data have closer EGDs between each other. In fact, the
samples generated by RBM yield a similar pattern in the EGD
distances. Although Recomb, Rec-RBM, and WGAN do too,
they exhibit a lower distance, on average, between samples. As
for CEU/CHB populations, GAN and Rec-GAN models fail to
capture the differences between samples.

4.3 Linkage Disequilibrium (LD) Analysis
Linkage disequilibrium (LD) captures the non-random associ-
ation of alleles at two or more positions in a general popula-

tion – i.e., those alleles do not occur randomly with respect
to each other. In Genome-Wide Association Studies, LD al-
lows researchers to optimize genetic studies, e.g., by prevent-
ing genotyping SNPs that provide redundant information [9].
In Fig. 4, we plot the r2 value for LD based on the Rogers-
Huff method [50]. This ranges from 0 (there is no LD between
the 2 SNPs) to 1 (the SNPs are in complete LD, i.e., the two
SNPs have not been separated by recombination and have the
same allele frequencies).

For CEU and CHB populations, RBM generates samples
that display a stronger LD than the real data. With more train-
ing samples, Rec-RBM yields a weaker LD but still stronger
than the real data for both models. On the other side of the
spectrum, for Rec-GAN, the LD for the synthetic data is the
weakest. For the 1000 Genomes, we find a stronger LD be-
tween the real samples than with the other two datasets. RBM
generates samples that are almost indistinguishable from the
real data in terms of LD. The LD in the synthetic datasets gen-
erated by Recomb, Rec-RBM, and WGAN have lower correla-
tions than RBM, with GAN and Rec-GAN both failing to pre-
serve the LD. In this case, the non-parametric KS test yields
more surprising results for both the CEU and CHB popula-
tions. We find that we cannot reject the null hypothesis for
samples generated by Recomb, GAN and WGAN. This im-
plies that, even though the GAN model does not preserve well
the allele frequencies or the population statistics, it manages to
preserve the correlations between alleles.

For the 1000 Genomes data, the only generative models that
yields samples which cannot be rejected under the null hypoth-
esis is the RBM.

4.4 Takeaways
Our utility evaluation shows that there are only a handful
of cases where generative models produce synthetic genomic
data with high utility on popular tasks.

The Recomb model, which is based on high-order SNV cor-
relations, generates synthetic data preserving most statistical
properties displayed by the real data, even when few samples
are available. We get better utility when the genetic map is
included with the data rather than generated from the existing
data. This conclusion is also supported by the fact that we can-
not reject the null hypothesis for this model for most statistics
analyzed (with the exception of the percentage of heterozy-
gous samples for the CHB).

With RBM, more training samples improve the quality of
the synthetic data, as evidenced by the difference between the
HapMap populations and the 1000 Genomes dataset.

We also find that when few samples are available for train-
ing, the hybrid Rec-RBM model approach helps improve the
quality of samples compared to just RBM, but the samples are
not as close to the real data as for Recomb. This is clear from
the utility of the synthetic data on the two smaller HapMap
datasets. For the 1000 genomes, it is not surprising that Rec-
RBM’s performance is worse than RBM since Recomb does
not generate as “useful” samples as for the other two datasets.
Finally, the GAN and the Rec-GAN models generate sam-
ples with the lowest utility, regardless of the number of sam-
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Figure 4: Pairwise Linkage Disequilibrium for Real vs. Synthetic Samples.

ples available for training. However, even though the allele
and population statistics are now well preserved, our non-
parametric test showcases that the correlations between alleles
are preserved for the LD. In contrast to the other GAN models
studied, the data generated by WGAN preserves most statisti-
cal properties of the real data.

Overall, our analysis exposes the limitations, in terms of sta-
tistical utility, of using generative machine learning models to
produce synthetic genomic data.

5 Privacy Evaluation
Next, we quantify the privacy provided by synthetic data by
evaluating its vulnerability to Membership Inference Attacks
(MIAs). More precisely, we compute the Privacy Gain, PG,
obtained by releasing a synthetic dataset instead of the real
data (see Section 2.3). Recall that if the synthetic data does not
hide nor give any additional information to an MIA attacker,
PGt, for a target record t, should have a value of around 0.25.

We present experiments for both a “standard” MIA and a
novel attack, which we denote as MIA with partial informa-
tion. The latter essentially assumes that the adversary only has
access to partial data from the target sequence. We exclude
GAN and Rec-GAN from the evaluation since they yield poor
utility performance, so there is not really any point in evaluat-
ing their privacy.

Throughout our evaluation, we randomly choose 10 targets
from each dataset across 10 test runs. In each run, we fix the
target and sample a new training cohort. We train the attack
classifier using 5 shadow models, using 100 synthetic training
sets for each of them. We then compute the PG on 100 syn-

thetic datasets, with a split of 50 sets generated from a training
set including the target and 50 sets generated without. Finally,
we report the PG for each test and each target as the average
PG across all synthetic datasets tested.

5.1 Privacy Gain Under Membership
Inference Attack

Threat Model. We assume that the adversary has access to the
target, to the synthetic datasets, as well as public datasets with
similar distribution to the original data (which may or may not
include the target) for training his shadow models. The goal
of the adversary is to identify whether the target sequence was
used for training the model that generated the synthetic dataset.
This could lead to the leakage of additional information about
the target, as for example if a synthetic dataset of cancer pa-
tients is released and the adversary can identify that the target
is part of the training set, it would lead to exposing the cancer
status of the target.

We use three adversarial classifiers: K-Nearest Neighbor
(KNN), Logistic Regression (LogReg), and Random Forest
(RandForest). We use four feature sets, as described in Sec-
tion 2.3: Naive ( FNaive), Histogram ( FHist ), Correlations
( FCorr), and an Ensemble feature set ( FEns).

5.1.1 HapMap Populations

In Fig. 5, we report the PG value for targets randomly chosen
from the two HapMap populations.

KNN. For CEU, using KNN (Fig. 5a, left), we find that over
74% of the targets in the synthetic dataset generated by Re-
comb have a PG lower than the random baseline (0.25) for
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Figure 5: Privacy Gain (PG) of different models over the two HapMap populations.

the Ensemble, Correlations, and Histogram feature sets. With
RBM, there are between 84% and 88% of the targets, depend-
ing on the feature set, that have a PG of 0.25; in other words,
for these targets, the adversary’s probability of inferring their
presence in the training set is the same as random guessing.
However, between 10% and 15% of the targets have no PG
at all, whereas there are between 1% and 4% of the targets,
depending on the feature set, for which the synthetic data per-
fectly protects the target from MIA (PG=0.5). With Rec-RBM,
at least 59% of the targets have a PG of 0.25 under the four fea-
ture sets. With WGAN, at least 48% of the targets have a PG
of 0.25, depending on the feature set.

For the CHB population (Fig. 5b, left), we find that over
60% of the targets generated by the Recomb, with all features,
have PG below the random guess baseline. With RBM, be-
tween 89% and 97% of targets have PG of exactly 0.25 across
all feature sets, i.e., the synthetic dataset generated by the
RBM for these targets does not hide nor give new information
to the attacker about their membership to the synthetic dataset.
Interestingly, for the Correlations feature set, no target has PG
lower than 0.25. As for the CEU population, about 50% of the
targets across all feature sets have a PG of 0.25 for data from
Rec-RBM and at least 47% of targets from WGAN.

LogReg. Using LogReg, both Recomb and RBM have the
lowest PG among all attack classifiers for both HapMap pop-
ulations. For CEU (Fig. 5a, middle), using the Histogram fea-
ture set, 94% (resp., 96%) of the targets from Recomb (resp.,
RBM) have PG below 0.25, which is the random guess base-
line. Under Correlations, 99% (resp., 97%) of the targets in
Recomb (resp., RBM) have PG below 0.25, while, for the En-
semble feature set, 96% (resp., 98%) of the targets from Re-
comb (resp., RBM) have PG below 0.25. With Rec-RBM, we
find that between 52% and 56% of the targets across all fea-
ture sets have PG above 0.25, and with WGAN, between 50%
and 57% of the targets across all feature sets have PG above

0.25. Moreover, for the Rec-RBM and WGAN-generated data,
no target consistently has a lower PG than the random guess
baseline across all test runs.

For CHB (Fig. 5b, middle), with synthetic data generated by
Recomb, the average PG is below the random baseline (0.25)
for 99% of the targets in the Histogram feature set, 97% for
Correlations, and 96% for Ensemble. For RBM, 79% of the
targets in the Histogram feature set have a PG below 0.25. Un-
der the Ensemble feature set, 84% of the targets have PG below
0.25. For synthetic data generated by Rec-RBM, we find that
54% of the targets from the Histogram and Ensemble feature
sets have PG lower than 0.25, and 46% have PG over 0.25.
For the Naive and Correlations feature sets, respectively, 45%
and 47% of the targets have PG lower than the random guess
baseline. For WGAN-generated data, the Correlations feature
set yields most targets (55%) with PG<0.25.

RandForest. When using RandForest as the attack classifier
on data from the CEU population (Fig. 5a, right), with RBM-
generated data, 73% of the targets from both Correlation and
Histogram feature sets have lower PG than the random base-
line. This is for 69% and 62% of the targets with, respectively,
Ensemble and Naive feature sets. For the synthetic data gen-
erated by Rec-RBM, about 51% of targets have a PG of over
0.25, and 49% of the targets have PG of less than 0.25 across
all feature sets. For WGAN, between 46% and 59% of the
targets from all feature sets have a PG less than the random
guess baseline (0.25), with the Correlations feature set having
the least percentage of vulnerable targets (59%).

For CHB (Fig. 5b, right), the lowest privacy gain for the
samples generated by Recomb: over 79% of all targets for each
of the four feature sets have PG lower than the random base-
line. For the synthetic samples from RBM, 71%, 61%, and
53% of the targets under the Naive, Histogram, respectively,
Ensemble feature sets have PG lower than 0.25. However, for
the Correlations feature sets, we find that 55% of the targets
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Figure 6: Privacy Gain (PG) of RBM over the 1000 Genomes dataset.

have a PG of 0.25, meaning that those targets are protected
from MIA. For the synthetic samples generated by Rec-RBM,
54% of the targets from the Histogram and Ensemble feature
sets and 47 and 45% of the targets from the Correlations and
Naive, respectively, have PG lower than 0.25. Finally, for the
WGAN, we find that between 44% and 53% of the targets have
PG>0.25 across all four feature sets. To give a better idea of
different trade-offs between utility and privacy, we also plot
the PG vs. the FST (see Section 4.2) for all the models pre-
sented in Appendix D.

5.1.2 1000 Genomes Population

For this dataset, we focus our analysis on the RBM model, as
it generated synthetic data closest to the real data across all
utility metrics evaluated.

Random Target. In Figure 6a, we plot the PG for the synthetic
data generated by RBM for randomly chosen targets. With the
RandForest MIA classifier, we observe that 56%, 75%, 92%,
and 50% of the targets have PG higher than the random guess
baseline (PG≥0.25) for, respectively, Naive, Histogram, Cor-
relations, and Ensemble feature sets. The high percentage of
targets that have a PG≥0.25 for the Correlations suggests that
the impact of a single target in the training dataset of the RBM
on the correlations of the synthetic dataset is minimal.

Then, with the LogReg classifier, we find a high variation
in PG, similar to the HapMap populations in the case of Rec-
RBM. Under the Naive feature set, half of the targets have PG
gain below the random guess baseline. Similarly, 43%, 45%,
and 43% of targets have a PG lower than 0.25 for, respectively,
the Correlations, Histogram, and Ensemble feature sets. Fi-
nally, for the KNN classifier, over 94% of the targets have a
PG of 0.25 across all feature sets.

Outlier Target. To better understand whether or not, with
more training data, a target’s signal in the synthetic dataset
is diluted, we also test an “extreme” outlier case. That is, we
craft an outlier target that has only minor alleles at all posi-
tions. While we are aware that this case would be sporadic in
a real-world scenario, our goal is to observe whether and how
much this impacts PG. To this end, in Figure 6b, we plot the
PG of this outlier case across 10 test runs.

With RandForest, we find that PG is below 0.25 for 8 of the
10 test runs under the Ensemble feature set. In fact, this is the
only combination between attack classifier and feature set for
which a greater percentage of the targets have a lower privacy

gain than in the random target case. For the Naive feature set,
PG is below the random baseline in only 3 of the test runs.
For the Correlations and Histogram feature sets, all test runs
yield PG of 0.25 or above. With LogReg, 4 out of 10 of the
test runs for the Naive, Histogram, and Correlations feature
sets yield PG below 0.25. For Ensemble, this happens for 6
test runs. Finally, with KNN, across all feature sets, PG for all
test runs is 0.25, i.e., the synthetic data does not disclose any
membership information regarding the outlier.

While there are differences across classifiers/feature sets,
the PG is centered around 0.25 for all test runs in the outlier
target setting. This evident from Figure 6b, which implies that,
across all test runs, the accuracy of the MIA is not much better
than random guessing.

5.1.3 Takeaways

The different combinations of datasets, attack classifiers, and
feature sets yield varied results with respect to privacy. This
is due to two main reasons: first, not all classifiers have the
same accuracy on tasks for the same dataset, as shown in pre-
vious work [3]. Second, the features that the generative model
preserves after training will “reflect” in the synthetic data;
thus, this will impact the PG based on the feature extraction
method. On the HapMap populations, while the utility experi-
ments show that Recomb-generated synthetic data is “closest”
to the real data, it does so with a significant privacy loss. The
RBM-generated synthetic data is the most vulnerable under
the LogReg classifier, with at least 70% of the targets across
both populations and all feature sets having PG below the ran-
dom guess baseline. This suggests that, with few data samples
available for training, the RBM model is likely to overfit and
is thus susceptible to MIAs.

For Rec-RBM and WGAN, the attacker cannot reliably pre-
dict membership, i.e., extra samples from the Recomb model
in the training of the Rec-RBM dilute the target’s signal in the
training data. However, for both models, we still find combi-
nations of targets and training sets for the attack classifier for
which PG is significantly lower than the random guess base-
line; i.e., the synthetic data will still expose membership infor-
mation about the respective targets. On the 1000 Genomes, PG
values have a higher variation overall when the target is chosen
randomly from the dataset than for the two smaller HapMap
datasets. The results for RBM confirm our hypothesis that the
target’s influence is diluted within larger datasets. Once again,
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this does not mean that MIAs are not possible for Rec-RBM
and WGAN; it depends on the combination of the target, train-
ing set, attack classifier, and feature set.

However, with an “extreme” outlier (i.e., a target with minor
alleles at all positions), the synthetic data generated by RBM
does not have a big impact on PG. In this case, the PG is actu-
ally close to the random guess baseline across all test runs.

We find that targets get very different levels of privacy pro-
tection, based on the combination of target and training set
used to generate the synthetic data. For a privacy mechanism
to provide good privacy protection, it needs to be predictable,
i.e., all targets should have a privacy gain above the random
guess baseline, which our evaluation shows it is not the case
for the data generated by the models we have evaluated.

5.2 Privacy Gain under Membership Inference
Attack with Partial Information

Next, we introduce a novel attack, which we denote as MIA
with Partial Information (MIA-PI). Basically, we only give the
attacker access to a fraction of SNVs from the target sequence,
chosen at random. The attacker then uses the Recombination
model from [54] as an inference method to predict the rest of
the sequence. Compared to the previous attack, the adversary
trains their (attack) classifier using the sequence inferred from
the partial data. Thus, the PG formula also needs to be adjusted
to account for how likely an adversary is to identify a target
from partial information.

Threat Model. We assume that, similar to the MIA attack, the
adversary has access to the synthetic dataset, as well as public
datasets with similar distribution to the original data (which
may or may not include the target) for training his shadow
models. In contrast with the previous MIA, the adversary does
not obtain access to the full sequence of the target, but only to
a percentage of the SNPs from the target sequence (as for ex-
ample, the victim undertakes some specific genomic tests and
the adversary learns that information about the victim from
the outcome of those tests), as well as public knowledge about
genomic data. The goal of the adversary is to identify if the
partial target sequence was part of the training set which gen-
erated the synthetic data.

PG for MIA-PI. Assuming the attacker has partial informa-
tion t′ as a fraction of the SNVs from t, they first use the Re-
comb model, as an inference algorithm, to predict the rest of
the SNVs from the target sequence, which we denote by tp.
The privacy gain is computed as:

PGt =
MIAtp (Rt)−MIAtp (Stest)

2
, where

MIAtp (Stest) =
∑

Si∈Stest

Pr[MIAtp (Si) = 1]

2 ∗ ns
, and

MIAtp (Rt) =
∑

Ri∈Rt

Pr[MIAtp (Ri) = 1]

2 ∗ ns
.

That is, the privacy gain, in this case, is computed as the differ-
ence between the probability that the attacker, who has partial
information about the target record, correctly identifies that the

target is part of the real dataset versus the target being part of
the training set used to generate the synthetic dataset.

As a result, PG now ranges between -0.5 and 0.5, where
0.5 means that having the real dataset R and the partial in-
formation t′ about the target allows the adversary to infer the
membership of t in R, while the synthetic dataset reduces
the adversary’s chance of success (i.e. MIAtp(Rt) = 1 and
MIAtp(Stest) = 0). A negative PG value means that publish-
ing the synthetic data, instead of the real data, improves the
adversary’s chance to correctly infer membership of the tar-
get t (i.e. MIAtp(Rt) < MIAtp(Stest)). If publishing the
synthetic data does not increase nor decrease the adversary’s
inference powers, we should have PG=0 (i.e. MIAtp(Rt) =

MIAtp(Stest)).

Experiments. From the experiments presented in Section 5.1,
we find that the attack classifier that yields the lowest PG is
Logistic Regression; thus, we only experiment with that one
to ease presentation. In the following, we present the results
of the MIA-PI experiments for the CEU population, focusing
on the Recomb and RBM models (as mentioned, with a Lo-
gReg attack classifier). We do so as these two models yield the
lowest PG in Section 5.1.

Recomb. In Figure 7, we plot the Cumulative Distribution
Function (CDF) of the accuracy of the attack for Recomb when
the adversary has access to the full sequence vs. partial infor-
mation, specifically, a ratio of 0.05, 0.1, and 0.2 of the total
SNVs from the target sequence. Interestingly, even when only
0.05 of the target SNVs are available to the attacker, for 90%
and 91% of the targets from the Histogram and respectively
Ensemble feature sets, the attacker’s accuracy is still above the
random guess baseline (50% accuracy). Our intuition is that
many targets are vulnerable to the attack, even with little par-
tial information, since we use the Recomb model not only for
the attack but also as an inference method to predict the rest of
the sequence.

To explore how much of the MIA-PI vulnerability is due to
the release of synthetic datasets, and not only by how much
information the attacker has available, in Figure 8, we plot the
CDF of the PG with MIA-PI. In line with the accuracy results,
we find that the PG is greater than 0 for at least 88% of the
targets for all ratios of partial information tested in the case
of the Correlations feature set. However, for the other three
feature sets, releasing the synthetic dataset instead of the real
data decreases the privacy gain (i.e., PG<0) for the majority
of targets. When the adversary has access to just 5% of the
SNVs from the target, there is a negative PG for 61% of the
targets under the Histogram and 62% of the targets under the
Ensemble feature sets. With 10% of the target sequence avail-
able, 54% and 60% of the targets under, respectively, the His-
togram and the Ensemble feature sets have negative PG, and
with 20%, these numbers go up to 64% and 67%. There are
more targets with negative PG with increasing partial infor-
mation available to the attacker for the Naive feature set, i.e.,
59%, 70%, and 84% with, respectively, 5%, 10%, and 20% of
the target sequence available. Overall, this shows that releas-
ing the synthetic dataset instead of the synthetic data does not
mitigate privacy, even when the attacker does not have access
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Figure 7: Accuracy of the Membership Inference Attack with access
to full and partial information (0.05, 0.1, and 0.2 ratio) for Recomb.
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Figure 8: Privacy Gain (PG) for synthetic samples from Recomb.

to the full sequence.

RBM. In Figure 9, we plot the CDF for the accuracy of the
attack for the RBM model for both full and partial informa-
tion about the target record available to the attacker. Across all
feature sets, there is an increase in the accuracy of the attack
with more information available to the attacker, as is expected.
We also look at CDF for the PG in the case of partial informa-
tion available to the attacker in Figure 10. Once again, under
the Naive feature set, increasing the partial information avail-
able to the attacker negatively correlates with the percentage
of targets with a negative PG. Under all other feature sets, for
most targets, releasing the synthetic dataset instead of the real
data yields a positive PG, meaning that releasing the synthetic
dataset instead of the real dataset improves the PG.

Takeaways. We find that not even decreasing the attacker’s
power by only giving him partial information from the tar-
get sequence mitigates privacy for the Recomb-generated syn-
thetic data. This is likely because, using the Recomb model
as both generative and inference model, the adversary’s power
is increased since the feature set extracted from the synthetic
data will be closer to the feature set for the predicted target.

However, in this case, for RBM, we see an increase in the
privacy gained by releasing synthetic data instead of real data.
This implies that, even if the RBM is likely to overfit when few
samples are available for training, it does so on the predicted
sequence of the target rather than on the full sequence and thus
decreases the accuracy of the MIA.

Overall, not even with partial data from the target sequence,
we obtain privacy gain values constantly better than random
guessing, which, as mentioned before, indicates that synthetic
data is not really a reliable privacy defense.

6 Related Work
In this section, we review related work on synthetic data, ge-
nomic privacy, and MIAs against machine learning models.

Synthetic Data Initiatives. In recent years, researchers
have focused on generating synthetic electronic health records
(EHR), aiming to facilitate research in and adoption of ma-
chine learning in medicine. Choi et al. [13] use a combina-

Figure 9: Accuracy of the Membership Inference Attack with access
to full and partial information (0.05, 0.1, and 0.2 ratio) for RBM.
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Figure 10: Privacy Gain (PG) for synthetic samples generated by
RBM.

tion of an autoencoder with a GAN model, called medGAN,
to generate high-dimensional multi-label discrete data. ADS-
GAN [72] uses a quantifiable definition for “identifiability”
combined with the discriminator’s loss to minimize the prob-
ability of patient’s re-identification, while CorGAN [61] com-
bines convolutional GANs and convolutional autoencoders to
capture the correlations between adjacent medical features.
Biswal et al. [8] use variational autoencoder to synthesize se-
quences of discrete EHR encounters and encounter features.

Other initiatives focus on synthetic data modeled on pri-
mary care data [45, 63, 64, 68]. Researchers have also ex-
plored generating synthetic health patient data to detect cancer
and other diseases, e.g., RDP-CGAN [62] combines convo-
lutional GANs and convolutional autoencoders, both trained
with Rényi differential privacy [39].

Specific to genomes is the work presented in Section 3 [36,
54, 71], which we have evaluated in terms of their utility–
privacy tradeoffs.

Privacy in Genomics. Researchers have focused on study-
ing and mitigating privacy risks in genomics. One of the first
attacks on genomic data is the Membership Inference Attack
proposed by Homer et al. [29], showing that an adversary can
infer the presence of an individual’s genotype within a com-
plex DNA mixture. This attack has been improved by Wang
et al. [66] using correlation statistics of a few hundred SNPs.
Then, Im et al. [32] show that the summary information from
genome-wide association studies, such as regression coeffi-
cients, can also reveal an individual’s participation within the
respective study. Membership inference has also been shown
possible in the context of the Beacon network [49, 56, 65], a
federated service that answers queries of the form “does your
data have a specific nucleotide at a specific genomic coordi-
nate?”.

Chen et al. [12] study the effects of differential privacy pro-
tection against membership inference attack on machine learn-
ing for genomic data. However, their study is focused on
privacy leakage via providing access to trained classification
models, whereas we study the privacy leakage from sharing
synthetic datasets.

MIAs against Machine Learning Models. MIAs have long
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been studied in the context of machine learning. Shokri et
al. [55] present the first attack against discriminative models,
aiming to identify whether a data record was used in train-
ing, using an approach based on shadow models. Hui et
al. [30] also propose an attack against discriminative models,
which probes the target model and infers membership directly
from the probes instead of shadow models. Hayes et al. [24]
present the first MIA against generative models like GANs;
they use a discriminator to output the data with the highest
confidence values as the original training data. Hilprecht et
al. [26] study MIAs against both GANs and Variational Au-
toEncoders (VAEs), while Chen et al. [11] propose a generic
MIA model against GANs.

Stadler et al. [59] recently evaluate MIAs in the context of
synthetic data and show that even access to a single synthetic
dataset output by the target model can lead to privacy leak-
age. We re-use their framework for quantifying the privacy
gain when a synthetic dataset is released instead of the real
dataset. However, not only do we do so for a specific con-
text (namely, genomics), but we also measure utility (while
they only study privacy). In fact, there are several distinguish-
ing characteristics between “generic” synthetic data and ge-
nomic data, which makes the evaluation significantly differ-
ent, if not harder; paramount among these is the fact that all
features found in genomic sequences are correlated with each
other, unlike with generic datasets. Finally, we introduce and
measure a novel attack whereby the attacker only has access to
partial genomic information about the target.

7 Conclusion
This paper presented an in-depth measurement of state-of-the-
art methods to generate synthetic genomic data. We did so vis-
à-vis their utility, with respect to several common analytical
tasks performed by researchers and the privacy protection they
provide compared to releasing real data.

High-quality synthetic data must accurately capture the re-
lations between data points; however, this can enable attackers
to infer sensitive information about the training data used to
generate the synthetic data. This was illustrated by the perfor-
mance of the Recomb model on the HapMap datasets: while
it achieves the best utility, it does so at the cost of significantly
reducing privacy.

Discussion. Overall, we found that there is no single method
that outperforms the others for all metrics and all datasets.
While this is perhaps not surprising, we are the first to present
a systematic, re-usable methodology to analyze all kinds of
methods to generate synthetic genomic data. For instance, this
allows us to be the first to show that, unlike what previously
suggested in previous work, models based on a simple GAN
architecture (i.e., GAN and Rec-GAN) are not a good fit for
genomic data. In fact, these provide low (the lowest) utility
across the board. Our methodology also allowed us to shed
light on the influence of the size of the training dataset, es-
pecially in the case of generative models. For example, util-
ity improves wit more samples in the hybrid Rec-RBM for the
smaller HapMap datasets, and the RBM for the 1000 Genomes

dataset; also, we measured a decrease in the number of targets
exposed to membership inference.

We also introduced a new “MIA with partial information,”
which shed light on the fact that not even decreasing the ad-
versary’s power by limiting their knowledge of the target to
partial information fully mitigates the privacy loss. Finally,
our modular evaluation framework paves the way for practi-
tioners, scientists, and researchers to easily build on our work
and assess the risks of deploying synthetic genomic data in the
wild, for a wide range of applications, and serve as a bench-
mark for techniques proposed in the future.
Limitations & Future Work. Our evaluation focuses on ex-
isting generative methods for synthetic genomic data; thus, we
have not engaged in fine-tuning the (hyper-)parameters of the
models evaluated. Moreover, one might argue that the tech-
niques we evaluate were not designed with privacy in mind,
unlike previous work on differentially private generative mod-
els for images or clinical data [2, 6, 10]. That is, it is not en-
tirely surprising that they yield small privacy gains. However,
to the best of our knowledge, no differentially private genera-
tive model has been proposed for genomic data, which is the
focus of our study.

In fact, prior work has shown that, for precision medicine
applications, the high dimensionality of the data tends to be
a major limitation, resulting in poor utility for differentially
private mechanisms [5, 20, 34, 69, 70]. Differentially private
techniques for GWAS are also known to yield poor accuracy
as the number of features is large, relative to the number of
patients in a study [33]. Nonetheless, we plan to experiment
with the possible adaptation of differentially private models to
genomic data and evaluate them in future work.

Finally, future work should search for, and experiment with,
genomics use cases that have more data points, possibly rely-
ing on further collaborations with biomedical researchers. We
also intend to extend our privacy evaluation to understand how
much the privacy loss stemming from releasing (synthetic)
datasets affects the relatives of those included in the training
set of the corresponding generative models [31, 60].
Acknowledgments. This work was supported by a Google
Faculty Award on “Enabling Progress in Genomic Research
via Privacy Preserving Data Sharing.”
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A WGAN settings
We experimented with training the WGAN models for various
iterations (up to 10,000) and observed that the utility metrics
stabilized after around the 100th iteration. Specifically, it can
be seen that for MAF in the CEU dataset in Fig. 11a train-
ing the WGAN model for more than 100 iterations does not
result in better metrics. The discriminator training and valida-
tion losses converge to the same values around 100th iteration
for all datasets as can be seen in Fig. 11b. Therefore, in our
evaluation we train the WGAN model for 100 iterations, as op-
posed to the 100,000 proposed in the original implementations.
Overall, we believe this could be due to the characteristics of
the datasets as, for example, the sequences in our evaluation
all have a length of 1,000. Killoran et al. [36] experiment with
DNA sequences of length around 50.

B Additional Figures from
Experiments

In this section, we include some additional experiments com-
plementing our utility evaluation presented in Section 4. More
precisely, Figure 12 presents the alternate allele correlation
(AAC) between the real and the synthetic datasets, while in
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Figure 11: WGANs experiments for 100/1,000/10,000 iterations.

Figure 13, we plot the scaled folded Site Frequency Spectrum
(SFS), which is the distribution of counts of minor alleles in
a sample calculated over all segregating sites. Finally, Fig-
ure 14 shows the Euclidean Genetic Distance (EGD) between
the samples in each dataset.

C Principal Component Analysis
(PCA)

Here, we study the difference between synthetic and real data
vis-à-vis a principal component analysis on the corresponding
samples. We extract the first two principal components and
project the real and synthetic datasets on these two components
to show how the synthetic samples are distributed compared to
the real data.

Fig. 15 presents this 2D visualization. Recomb has a close
distribution to the real data for both HapMap populations,
which, according to [54], is because the genetic recombina-
tion model considers all the correlations between SNPs and
builds a higher-order model. For the 1000 Genomes, as for the
other utility metrics studied in Section 4, the GAN and Rec-
GAN models perform quite poorly, generating samples with a
different distribution than the real samples. Therefore, in Fig-
ure 15d, we exclude them in order to take a closer look at the
non-GAN-based models. Here, we can better observe that the
RBM-generated samples have the closest distribution to the
real data. In contrast to the HapMap populations, the samples
from Recomb are all centered around 0 and fail to simulate the
distribution given by the real data, and similar results are in the
case of samples generated by Rec-RBM.

D Privacy Gain vs. FST

To provide a quick visualization of the trade-offs between pri-
vacy and utility, we also plot the FST (see Section 4.2) against

the PG in Figure 16 for the two smaller HapMap Populations.
For this set of experiments, we randomly sample 10 targets
from each dataset. We train a Logistic Regression attack clas-
sifier using 5 shadow models, using 100 synthetic datasets for
each of them. We then compute the PG and FST on 100 syn-
thetic datasets, with a split of 50 sets generated from a train-
ing set including the target and 50 sets generated without. We
report the PG and FST as the average across all targets and
synthetic datasets.

Recall that the lower the FST value the closer the synthetic
samples are to the real data, and PG should be above the ran-
dom guess baseline of 0.25 for the synthetic data to offer better
privacy protection than releasing the real. Put simply, the ideal
“place” in the plots in Figure 16 is the top left.

For the CEU population (Figure 16a), the synthetic Recomb
samples have the best overall utility; however, the average PG
is below 0.25. In line with our utility evaluation, we find that
the hybrid model Rec-RBM model generates samples with a
FST value closer to the real data than the RBM model. In-
terestingly, while for Histogram, Correlation, and Ensemble
feature sets, the PG for the Rec-RBM is close to 0.25, there is
a significant privacy loss for Naive. In contrast, for the sam-
ples generated by the RBM, the Naive yields the highest PG
across all feature sets. The samples generated by the WGAN
also have a FST value close to 0; however, for the Histogram,
Correlation and Ensemble, the PG values are below 0.25.

For CHB (Figure 16b), the utility results are similar to the
CEU population. However, all targets apart from the ones gen-
erated by RecRBM have a lower PG than the CEU population.
This reiterates the fact that one cannot reliably use synthetic
data as a good privacy mechanism, as the value of PG is un-
predictable and can fluctuate based on target and training set
combinations chosen.

17



0 20 40 60 80 100

Alternate allele count, Real

0

20

40

60

80

100

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

0 20 40 60 80 100

Alternate allele count, Recomb

0

20

40

60

80

100
A

lte
rn

at
e 

al
le

le
 c

ou
nt

, R
ea

l

0 20 40 60 80 100

Alternate allele count, RBM

0

25

50

75

100

125

150

175

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

0 20 40 60 80 100

Alternate allele count, GAN

0

20

40

60

80

100

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

0 20 40 60 80 100

Alternate allele count, Rec-RBM

0

20

40

60

80

100

120

140

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

0 20 40 60 80 100

Alternate allele count, Rec-GAN

0

10

20

30

40

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

0 20 40 60 80 100

Alternate allele count, WGAN

0

20

40

60

80

100

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

(a) CEU

0 20 40 60 80 100

Alternate allele count, Real

0

20

40

60

80

100

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

0 20 40 60 80 100

Alternate allele count, Recomb

0

20

40

60

80

100

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

0 20 40 60 80 100

Alternate allele count, RBM

0

25

50

75

100

125

150

175

200

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

0 20 40 60 80 100

Alternate allele count, GAN

0

10

20

30

40

50

60

70

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

0 20 40 60 80 100

Alternate allele count, Rec-RBM

0

20

40

60

80

100

120

140

160

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

0 20 40 60 80 100

Alternate allele count, Rec-GAN

0

10

20

30

40

50

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

0 20 40 60 80 100

Alternate allele count, WGAN

0

20

40

60

80

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

(b) CHB

0 50 100 150 200

Alternate allele count, Real

0

25

50

75

100

125

150

175

200

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

0 50 100 150 200

Alternate allele count, Recomb

0

25

50

75

100

125

150

175

200

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

0 50 100 150 200

Alternate allele count, RBM

0

25

50

75

100

125

150

175

200

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

0 50 100 150 200

Alternate allele count, GAN

0

5

10

15

20

25

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

0 50 100 150 200

Alternate allele count, Rec-RBM

0

25

50

75

100

125

150

175

200

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

0 50 100 150 200

Alternate allele count, Rec-GAN

0

5

10

15

20

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

0 50 100 150 200

Alternate allele count, WGAN

0

20

40

60

80

100

120

140

160

A
lte

rn
at

e 
al

le
le

 c
ou

nt
, R

ea
l

(c) 1000 Genomes

Figure 12: Alternate allele correlation for the CEU population, the CHB population, and the 1000 Genomes dataset.
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Figure 13: Frequency spectrum analysis for the CEU population, the CHB population, and the 1000 Genomes dataset.
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Figure 14: Pairwise Euclidean Genetic Distance (EGD) between individuals.
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Figure 15: 2D Principal Component Analysis (PCA) visualization of the real and synthetic sequences.
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Figure 16: Fixation index values vs Privacy gain for the HapMap populations.
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