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Abstract—This paper investigates the secure and efficient e-
health data transmission problem in a simultaneously trans-
mitting and reflecting (STAR) reconfigurable intelligent surface
(RIS) assisted Internet of Medical Things (IoMT) network. The
STAR-RIS is employed to safeguard the patients’ telemedicine
against eavesdroppers in the whole space. The joint active and
passive beamforming is developed to maximize the secrecy energy
efficiency (SEE), taking into account the imperfect channel state
information (CSI) of all channels. By approximating the semi-
infinite inequality constraints with S-procedure and general sign-
definiteness, the reformulated problem is solved by an alternating
optimization framework. Simulation results reveal that: 1) STAR-
RIS can achieve more noteworthy SEE gain for IoMT networks
than conventional reflecting-only RIS; 2) The equal time splitting
mode of STAR-RIS is preferable for low power domain, while the
energy splitting mode achieves the best performance when the
downlink power is sufficient; 3) The accuracy of CSI estimation
and the bit resolution power consumption are crucial to reap the
SEE benefits offered by STAR-RIS.

Index Terms—Internet of Medical Things, reconfigurable in-
telligent surface, robust beamforming, secure communication.

I. INTRODUCTION

Internet of Medical Things (IoMT) networks enable remote

monitoring and diagnosis of the homebound patients by using

wireless communication technologies to transmit telemedicine

data [1]. Spurred by economic and privacy concerns, energy

efficiency and information security are of crucial importance

for IoMT networks. The existing security techniques for IoMT

networks mainly rely on application layer and transport layer

encryption. For instance, the authors of [2] considered using

the datagram transport layer security protocol to satisfy data

confidentiality and privacy requirements, while the constrained

application protocol and transport layer security version 1.3

were suggested in [3]. However, since decryption involves

solving mathematical problems, these encryption protocols

will be compromised to adversaries with powerful calculat-

ing ability. To this end, physical layer security (PLS), as a

complement to higher-layer encryption techniques, may hold

the key to offer reliable and efficient medical responses.

Owing to its capability of modifying the propagation envi-

ronment, reconfigurable intelligent surface (RIS) is particularly

appealing in various PLS technologies [4]. Specifically, the

RIS consisting of low-cost passive elements can work stably

without dedicated energy supply. With the aid of a software-

programmable controller connected to the RIS, the signals
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from different paths can be coherently combined at the legit-

imate receivers to enhance the desired signal, or destructively

at the malicious eavesdroppers (Eves) to avoid information

leakage. Enlightened by the benefits of integrating RISs into

secure and energy efficient communication, RIS-assisted com-

munications have attracted increasing attention [4]–[6]. The

adoption of RISs for energy saving was envisioned and its

realistic power consumption model was developed in [4]. The

authors of [5] presented a power-efficient scheme to minimize

the transmit power subject to the secrecy constraint. Moreover,

assuming imperfect channel state information (CSI) of Eves,

an energy efficiency maximization problem was studied in [6].

However, these researches assume that RISs can only serve the

transmitters and receivers located at the same side. Obviously,

this geographical constraint gravely restricts the effectiveness

of RISs, and even incurs serious performance loss.

Recently, an upgraded version of RISs, termed simultane-

ously transmitting and reflecting RISs (STAR-RISs) has been

proposed in [7]. In addition to inheriting the beneficial features

of RISs, STAR-RISs have the following unique advantages: 1)

Given their simultaneous control of transmitted and reflected

signals, STAR-RISs are able to provide a full space smart radio

environment; 2) By offering more degrees-of-freedoms (DoFs)

for signal manipulation, STAR-RISs allow higher design flex-

ibility [8]. Intuitively, a question is raised: Can STAR-RISs
achieve more reliable data transmission and higher energy
efficiency for IoMT networks than conventional reflecting-only

RISs? To the best of our knowledge, there is a paucity of work

that considered the application of RISs to IoMT networks, not

to mention the integration of STAR-RISs.

Aroused by the above discussions, we investigate the trade-

off between the secrecy and energy consumption in a STAR-

RIS assisted IoMT network. The contributions of this paper are

as follows: 1) We conceive the deployment of STAR-RIS in the

IoMT network to secure telemedicine data transmission. From

a practical point of view, the homebound patients (Bobs) are

distributed on both sides of STAR-RIS in the presence of Eves,

while all channel information is assumed to be imperfect. 2)

We formulate a secrecy energy efficiency (SEE) maximization

problem by designing the active and passive beamforming. The

proposed robust design ensures that the achievable date rate

at each Bob is no less than its minimum rate requirement for

all possible channel error realizations. 3) Simulation results

verify the SEE advantages of the proposed IoMT system over

conventional RIS counterparts. The impacts of the maximum

transmit power, the number of STAR-RIS elements and the

CSI uncertainty (CSIU) on the SEE are shown numerically.
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Fig. 1. System model of a STAR-RIS assisted secrecy IoMT network.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider a STAR-RIS assisted

IoMT network, where the hospital base station (HBS) sends

telemedicine information to two homebound Bobs in the

presence of two Eves. The transmission and reflection spaces

are simultaneously served by STAR-RIS and both spaces have

one Bob and one Eve. The sets of Bobs and Eves are denoted

by K= {Ur, Ut} and E = {Er, Et}, respectively. The STAR-

RIS composes of M elements and the HBS is equipped with

N antennas, while Bobs and Eves are all single-antenna.

Following the energy splitting (ES) protocol, each STAR-

RIS element is simultaneously operated in the transmission

mode (χ = t) and the reflection mode (χ = r) [7]. We de-

note uχ =
[√

βχ
1 e

jθχ
1,
√
βχ
2 e

jθχ
2, . . . ,

√
βχ
Mejθ

χ
M

]T ∈ C
M×1,

∀m ∈ M= {1, 2, . . . ,M} as the transmission and reflection

vectors, where
{√

βχ
m ∈ [0, 1]

}
and

{
θχm ∈ [0, 2π)

}
denote

the amplitude and phase shifts coefficients of the m-th element

operating in χ ∈ {r, t} modes, respectively. If Bob or Eve is

located at the reflection space, we have uχ = ur; otherwise

uχ = ut. The phase shifts of each element can be indepen-

dently adjusted, while the amplitude coefficients are coupled

due to the law of energy conservation, i.e., βt
m+βr

m = 1, ∀m.

The above constraints on STAR-RIS coefficients are given by

Rβ,θ=
{
βχ
m, θχm|

∑
χ
βχ
m=1;βχ

m∈ [0, 1]; θχm∈ [0, 2π)
}
. (1)

Let fk and sk be the active beamforming vector and the

desired signal for Bob k, ∀k ∈ K, respectively, where

E[|sk|2] = 1. Accordingly, the received signals at Bob k and

Eve e, ∀e ∈ E are respectively given by

yk = h̄k

∑
k
fksk + nk, ye = h̄e

∑
k
fksk + ne, (2)

where nk ∼CN (0, σ2) and ne ∼CN (0, σ2) are the noises at

Bob k and Eve e with zero mean and variance σ2, respectively.

Moreover, h̄k and h̄e are the combined channel gains from the

HBS to Bob k and Eve e, respectively written as

h̄k = hH
k + uH

χGk, h̄e = hH
e + uH

χGe, (3)

where Gk = diag(gH
k )Hb ∈ C

M×N , Ge = diag(gH
e )Hb ∈

C
M×N denote the cascaded links between the HBS and Bob

k and between the HBS and Eve e, respectively. In addition,

hH
k ∈ C

1×N , gH
k ∈ C

1×M , Hb ∈ C
M×N , hH

e ∈ C
1×N and

gH
e ∈ C

1×M are the channels from the HBS to Bob k, from

the STAR-RIS to Bob k, from the HBS to STAR-RIS, from the

HBS to Eve e, and from the STAR-RIS to Eve e, respectively.
We assume that all Bobs are the intended users of Eves.

Then the achievable rate of Bob k and the eavesdropping rate

of Eve e to decode sk are respectively given by

Rk = log2

(
1 +

|h̄kfk|2
|h̄kfk̄|2 + σ2

)
, ∀k, (4a)

Re
k = log2

(
1 +

|h̄efk|2
|h̄efk̄|2 + σ2

)
, ∀k, e, (4b)

where k̄, k ∈ K, k �= k̄. On this basis, the sum secrecy rate

(SSR) of the system is given by Rs =
∑

k

[
Rk−

∑
e R

e
k

]+
,

where [x]+ =max{x, 0}. We omit [·]+ in the following due

to the non-negative nature of the optimal secrecy rate.
In practice, various factors such as channel estimation and

quantization errors would lead to outdated and coarse CSI. To

this end, we adopt the bounded CSI model to characterize the

uncertainties of CSI, given by [9]

hk = ĥk +�hk, Gk = Ĝk +�Gk, (5a)

Ωk = {‖�hk‖2≤ ξk, ‖�Gk‖F≤ ζk}, (5b)

he = ĥe +�he, Ge = Ĝe +�Ge, (5c)

Ωe = {‖�he‖2≤ ξe, ‖�Ge‖F≤ ζe}, (5d)

where ĥk and Ĝk are the estimations of hk and Gk, respec-

tively. �hk and �Gk are the channel estimation errors of

hk and Gk, respectively. The continuous set Ωk collects all

possible channel estimation errors, with ξk and ζk denoting

the radii of the uncertainty regions known at the HBS. ĥe,

Ĝe, �he and �Ge are defined similarly.

B. Problem Formulation
Our objective is to maximize the SEE while satisfying the

secrecy and power constraints. Based on the secrecy capacity,

the SEE is defined as the ratio of the SSR over the total power

consumption [6]. Here, the total power dissipated to operate

the considered system includes the HBS transmit power and

the hardware static power P0 can be modeled as [4]

P = ς
∑

k
‖fk‖22+P0, (6)

where ς is a constant reflecting the power amplifier efficiency,

P0 = PB + 2PU +MPr(b), with PB, PU and Pr(b) denoting

the static power consumed by the HBS, each Bob and each

phase shifter having b-bit resolution, respectively.
Armed with these definitions, by jointly designing the active

beamforming F={fk|∀k} and the passive beamforming U=
{uχ|∀χ}, the SEE maximization problem is formulated as

max
F,U

∑
k

(
Rk −∑

e R
e
k

)
ς
∑

k‖fk‖22+P0
(7a)

s. t.
∑

k
‖fk‖22≤ Pmax, (7b)

βχ
m, θχm ∈ Rβ,θ, ∀χ,m, (7c)

Rk ≥ Ck, Ωk, ∀k, (7d)

Re
k ≤ Ce

k, Ωe, ∀k, e, (7e)

where constraint (7b) represents that the total transmit power

cannot exceed the budget Pmax, and constraint (7c) speci-

fies the range of the reflection and transmission coefficients.



Moreover, constraint (7d) guarantees that the minimum rate

requirement Ck is satisfied at Bob k, and Ce
k in (7e) denotes

the maximum tolerable information leakage to Eve e for eaves-

dropping sk. In particular, constraints (7d) and (7e) ensure that

the SSR is bounded from below by Rs≥
∑

k

[
Ck−

∑
e C

e
k

]+
.

Note that the operation [·]+ is omitted in the objective function

(7a) since we can set Ck ≥ ∑
e C

e
k such that Rk is always

greater or equal to
∑

e R
e
k.

We notice that problem (7) is hard to be solved directly due

to the following reasons: 1) Compared to reflecting-only RISs,

the newly introduced transmission and reflection coefficients

are intricately coupled with the other variables; 2) Constraint

(7c) is highly non-convex as each phase shifter is limited to the

unit magnitude; 3) The CSI estimation error is considered in

all involved channels, resulting in infinitely many non-convex

constraints (7d) and (7e). To sum up, problem (7) is a non-

convex problem, and is non-trivial to solve optimally.

III. PROPOSED SOLUTIONS

To solve problem (7) efficiently, we firstly reformulate it

to an equivalent problem through introducing slack variables,

which paves the way for decomposing the coupling variables.

Next, relying on the S-procedure and sign-definiteness, we

transform the semi-definite constraints into the tractable forms.

Then, the alternating optimization (AO) strategy is utilized to

divide problem (25) into two subproblems.

To begin with, we introduce the slack variables ψ and ρ,

and transform the original problem (7) into

max
F,U,ψ,ρ

ψ (8a)

s. t. Rs ≥ ψρ, (8b)

P ≤ t, (8c)

(7b)− (7e). (8d)

Obviously, constraint (8c) is a convex set, because it can be

expressed as a second-order cone (SOC) representation:

ρ− P0 + ς

2ς
≥

∥∥∥∥∥
[
ρ− P0 − ς

2ς
, fTt , fTr

]T∥∥∥∥∥
2

. (9)

In order to track the convexity of constraint (8b), we introduce

the slack variable set r= {rk, rek|∀k, e}, satisfying Rk = rk
and Re

k = rek. Furthermore, we employ the successive convex

approximation (SCA) method to address the non-convex term

ψρ. Specifically, using the first-order Taylor series (FTS), ψρ
can be upper bounded by ψρ ≤ (ψρ)

ub
= ψρ(�)+ψ(�)ρ−

ψ(�)ρ(�), where (ψ(�), ρ(�)) denotes the feasible point in the

�-th iteration. Then problem (8) is rewritten as

max
F,U,ψ,t,r

ψ (10a)

s. t. Rk ≥ rk, Ωk, ∀k, (10b)

Re
k ≤ rek, Ωe, ∀k, e, (10c)

rk ≥ Ck, ∀k, (10d)

rek ≤ Ce
k, ∀k, e, (10e)∑

k
(rk−

∑
e
rek) ≥ (ψρ)

ub
, ∀k, e, (10f)

(7b), (7c), (9). (10g)

Now the main difficulty in problem (10) is the semi-definite

constraints (10b) and (10c). To this end, we construct finite

linear matrix inequalities (LMIs) equivalent to them as follows.

A. Semi-Infinite Constraint Transformation

With the aid of the slack variable set η = {ηk, ηek|∀k, e},

constraints (10b) and (10c) are respectively rewritten as

|h̄kfk|2 ≥ ηk(2
rk − 1), Ωk, ∀k, (11a)

|h̄kfk̄|2 + σ2 ≤ ηk, Ωk, ∀k, (11b)

|h̄efk|2 ≤ ηek(2
rek − 1), Ωe, ∀k, e, (11c)

|h̄efk̄|2 + σ2 ≥ ηek, Ωe, ∀k, e. (11d)

Given the uncertainty of CSI, the constraints in (11) all have

infinite possibilities. To tackle constraint (11a), we first derive

its linear approximation in the following proposition.

Proposition 1: Denoting (F(�),U(�)) as the optimal solu-
tions obtained in the �-th iteration, constraint (11a) can be
equivalently linearized by

xH
k Akxk + 2Re{aHk xk}+ ak ≥ ηk(2

rk − 1), Ωk, ∀k, (12)

where the introduced coefficients xk, Ak, ak and ak are given
as (13) at the bottom of the next page.

Proof: Based on the FTS, a lower bound of the convex

term |h̄kfk|2 can be expressed as the right-hand of (14) at the

bottom of the next page. Moreover, by substituting (5a) into

(14) and performing further mathematical transformations, we

can obtain (12) and the proof is completed.

Although constraint (11a) is transformed into more tractable

linear form in (12), there are still an infinite number of such

LMIs in (12). To facilitate derivation, we resort to the S-

procedure to further convert them into a manageable form.

Lemma 1: (S-procedure [10]) Let a quadratic function
fj(x), x∈C

N×1, j∈J ={0, 1, . . . , J}, be defined as

fj(x) = xHAjx+ 2Re{aHj x}+ aj , (15)

where Aj ∈ H
N , aj ∈ C

N×1, and aj ∈ R. Then the condition
{fj(x) ≥ 0}Jj=1 ⇒ f0(x) ≥ 0 holds if and only if there exist
υj ≥ 0, ∀j ∈ J such that[

A0 a0
aH0 a0

]
−

∑J

j=1
υj

[
Aj aj
aHj aj

]
� 0. (16)

Since ‖�hk‖2≤ ξk is equivalent to �hH
k �hk ≤ ξ2k, we

can express Ωk in terms of the quadratic expression as

Ωk �
{

xH
k C1xk − ξ2k ≤ 0,

xH
k C2xk − ζ2k ≤ 0.

∀k, (17)

where C1 =
[
IN 0
0 0

]
and C2 =

[
0 0
0 IMN

]
. Then

according to Lemma 1, the implication (17)⇒(12) holds if

and only if there exist υh
k ≥ 0 and υG

k ≥ 0 such that[
Ak + υh

kC1 + υG
k C2 ak

aHk Qk

]
� 0, ∀k, (18)

where Qk = ak − ηk(2
rk−1)− υh

kξ
2
k − υG

k ζ
2
k .

Using the same method, constraint (11d) is rewritten as[
Ae

k + υe,h
k C1 + υe,G

k C2 aek
(aek)

H
Qe

k

]
� 0, ∀k, e, (19)



where υe,h
k , υe,G

k ≥0, Qe
k = aek−ηek+σ2−υe,h

k ξ2e−υe,G
k ζ2e . Ae

k,

aek and aek are obtained by replacing fk with fk̄, f
(�)
k with f

(�)

k̄
,

ĥk with ĥe, and Ĝk with Ĝe in Ak, ak and ak, respectively.

About constraint (11b), by applying the Schur’s complement

Lemma [11], considering the uncertainty in hk and Gk, and

denoting πk=((ĥH
k +uH

χ Ĝk)fk̄)
∗, (11b) can be recast as (20)

at the bottom of this page. To deal with the multiple complex

valued uncertainties involved in (20b), we formally introduce

the general sign-definiteness lemma as follows.

Lemma 2: (General sign-definiteness [12]) Given matrices
A and {Ej ,Fj}Jj=1 with A = AH, the semi-infinite LMI

A �
∑J

j=1

(
EH

j GjFj + FH
j G

H
j Ej

)
, ∀j, ‖Gj‖F ≤ ξj , (21)

holds if and only if there exist �j ≥ 0, ∀j, such that⎡⎢⎢⎢⎣
A−∑J

j=1 �jF
H
j Fj −ξ1E

H
1 · · · −ξJE

H
J

−ξ1E1 �1I · · · 0
...

...
. . .

...

−ξJEJ 0 · · · �JI

⎤⎥⎥⎥⎦ � 0. (22)

Afterwards, by applying Lemma 2, the equivalent LMIs of

constraint (20b) can be expressed as⎡⎢⎢⎣
Tk π∗

k 01×N 01×N

πk 1 ξkf
H
k̄

ζkf
H
k̄

0N×1 ξkfk̄ �h
kIN 0N

0N×1 ζkfk̄ 0N �G
k IN

⎤⎥⎥⎦ � 0, ∀k, (23)

where �h
k , �G

k ≥ 0 are the introduced slack variables, and

Tk=ηk−σ2−�h
k

∑
m βχ

m−�G
k . Similarly, with �e,h

k , �e,G
k ≥

0, it is possible to rewrite (11c) as the following finite LMIs⎡⎢⎢⎣
T e
k (πe

k)
∗ 01×N 01×N

πe
k 1 ξef

H
k ζef

H
k

0N×1 ξefk �e,h
k IN 0N

0N×1 ζefk 0N �e,G
k IN

⎤⎥⎥⎦ � 0, ∀k, e, (24)

where T e
k = ηek(2

rek − 1) − �e,h
k

∑
m βχ

m − �e,G
k and πe

k =

((ĥH
e + uH

χ Ĝe)fk)
∗. Eventually, reformulating problem (10)

by replacing constraints (10b) and (10c) with the LMIs (18),

(19), (23) and (24) yields the following problem

max
F,U,Δ

ψ (25a)

s. t. (7b), (7c), (9), (10d)− (10f), (25b)

(18), (19), (23), (24), (25c)

υh
k , υ

G
k , υ

e,h
k , υe,G

k ≥ 0, ∀k, e, (25d)

�h
k , �

G
k , �

e,h
k , �e,G

k ≥ 0, ∀k, e, (25e)

where Δ= {ψ, ρ, r,η,υ,�} denotes the set of all auxiliary

variables, with υ = {υh
k , υ

G
k , υ

e,h
k , υe,G

k |∀k, e} and � =

{�h
k ,�

G
k , �

e,h
k , �e,G

k |∀k, e}.

Note that problem (25) is still non-convex and challenging

to optimize F and U simultaneously, since they are highly

coupled in parameters such as Ak, ak and πk. To solve it, we

employ the AO strategy to decouple the optimization variables

and transform problem (25) into two subproblems.

B. Active Beamforming Design

For given U, the optimization problem for the design of the

active beamforming F can be formulated as

max
F,Δ

ψ (26a)

s. t. (7b), (9), (10d)− (10f), (26b)

(18), (19), (23), (24), (25d), (25e). (26c)

At this point, it is noticed that all the constraints in problem

(26) are convex except (18). Moreover, its non-convexity arises

from the term ηk2
rk in Qk. To proceed, we leverage the SCA

approach to obtaining approximation. Specifically, for a given

feasible point (η
(�)
k , r

(�)
k ) in the �-th iteration, ηk2

rk is upper

bounded by
(
(rk−r

(�)
k )η

(�)
k ln2+ηk

)
2r

(�)
k . As a result, we can

recast problem (26) as

max
F,Δ

ψ (27a)

s. t. (26b), (19), (23), (24), (25d), (25e), (27b)[
Ak + υh

kC1 + υG
k C2 ak

aHk Q̂k

]
� 0, ∀k,(27c)

xk =
[
�hH

k vecH(�G∗
k)
]H

, Ak = Ãk + ÃH
k − Âk, ak = ãk + âk − āk, ak = 2Re{ãk} − âk, (13a)

Ãk =

[
f
(�)
k

f
(�)
k ⊗ (u

(�)
χ )∗

] [
fHk fHk ⊗ uT

χ

]
, Âk =

[
f
(�)
k

f
(�)
k ⊗ (u

(�)
χ )∗

] [
(f

(�)
k )H (f

(�)
k )H ⊗ (u(�)

χ )T
]
, (13b)

ãk =

[
fk(f

(�)
k )H(ĥk + ĜH

k u
(�)
χ )

vec∗(uχ(ĥ
H
k + (u

(�)
χ )HĜk)f

(�)
k fHk )

]
, âk =

[
f
(�)
k fHk (ĥk + ĜH

k uχ)

vec∗(u(�)
χ (ĥH

k + uH
χ Ĝk)fk(f

(�)
k )H),

]
, (13c)

āk =

[
f
(�)
k (f

(�)
k )H(ĥk + ĜH

k u
(�)
χ )

vec∗(u(�)
χ (ĥH

k + (u
(�)
χ )HĜk)f

(�)
k (f

(�)
k )H),

]
, (13d)

ãk = (ĥH
k + (u(�)

χ )HĜk)f
(�)
k fHk (ĥk + ĜH

k uχ), âk = (ĥH
k + (u(�)

χ )HĜk)f
(�)
k (f

(�)
k )H(ĥk + ĜH

k u
(�)
χ ). (13e)

|h̄kfk|2 ≥ 2Re
{
(hH

k + (u(�)
χ )HGk)f

(�)
k fHk (hk +GH

k uχ)
}− (hH

k + (u(�)
χ )HGk)f

(�)
k (f

(�)
k )H(hk +GH

k u
(�)
χ ). (14)

0 

[
ηk − σ2 π∗

k

πk 1

]
+

[
0

(�hH
k + uH

χ�Gk

)
fk̄

fH
k̄

(�hk +�GH
k uχ
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where Q̂k = ak + ηk − (
(rk − r

(�)
k )η

(�)
k ln2 + ηk

)
2r

(�)
k −

υh
kξ

2
k−υG

k ζ
2
k . Obviously, problem (27) is a convex semidefinite

program (SDP), which can be solved efficiently via the CVX.

C. Passive Beamforming Design

With fixed F, we arrive at the optimization of the trans-

mission and reflection beamforming U. As the non-convex

constraint (18) is also an obstacle to this subproblem, we

utilize the procedure devised above to address it. Armed with

(27c), the subproblem for U is given by

max
U,Δ

ψ (28a)

s. t. (9), (10d)− (10f), (27c), (28b)

(19), (23), (24), (25d), (25e), (28c)∑
χ
βχ
m = 1, βχ

m ∈ [0, 1], ∀χ,m, (28d)

[uχ]m =
√

βχ
mejθ

χ
m , θχm ∈ [0, 2π), ∀χ,m.(28e)

Note that the remaining difficulty for solving problem (28) is

the unit-modulus constraint (28e), which can be handled by

the penalty convex-concave procedure (CCP) method.

In particular, the auxiliary variable set b = {bχ,m|∀χ,m}
is introduced to linearize constraint (28e), which satisfies

bχ,m=[uχ]
∗
m[uχ]m. Then we can rewrite bχ,m=[uχ]

∗
m[uχ]m

as bχ,m ≤ [uχ]
∗
m[uχ]m ≤ bχ,m. Based on the FTS, the non-

convex part bχ,m ≤ [uχ]
∗
m[uχ]m can be approximated by

bχ,m ≤ 2Re
{
[uχ]

∗
m[u

(�)
χ ]m

} − [u
(�)
χ ]∗m[u

(�)
χ ]m. On this basis,

we penalize these terms which are included in the objective

function (28a), and reformulate problem (28) as

max
U,Δ,b,c

ψ − λ(�)C (29a)

s. t. (28b), (28c), (29b)

[uχ]
∗
m[uχ]m ≤ bχ,m + cχ,m, ∀χ,m, (29c)

2Re
{
[uχ]

∗
m[u(�)

χ ]m
}− [u(�)

χ ]∗m[u(�)
χ ]m

≥ bχ,m − ĉχ,m, ∀χ,m, (29d)∑
χ
bχ,m = 1, bχ,m ≥ 0, ∀χ,m, (29e)

where c = {cχ,m, ĉχ,m|∀χ,m} is the slack variable set im-

posed over modulus constraints. C =
∑

χ

∑
m(cχ,m + ĉχ,m)

is the penalty term, and is scaled by the regularization factor

λ(�), which controls the feasibility of the constraints. λ(�) can

be updated in the �-th iteration by λ(�)=min{ελ(�−1), λmax},

where ε > 1 and λmax is the maximum value introduced to

avoid a numerical problem. Problem (29) is a convex SDP and

can be effectively solved by the existing toolbox.

D. Complexity and Convergence Analysis

Following the AO framework, problem (7) can be solved

by solving problems (27) and (29) in an iterative manner. It

can be observed that these resulting convex problems contain

the LMI, SOC constraints and linear constraints, thus all

problems can be solved by the interior point method [11].

Specifically, by ignoring the non-dominated linear constraints,

the general expression for complexity is provided in [9]. Then

the complexity of solving problems (27) and (29) is given by

OF = O(M3.5N4.5) and OU = O(M4.5N3.5), respectively.

Furthermore, let Iiter denote the number of iterations needed

for the convergence of the proposed AO algorithm, the overall

complexity is given by O(Iiter(OF + OU)). On the other

hand, since each sub-algorithm converges to their individual

sub-optimal solution [9], the objective value of problem (7)

is non-decreasing in each AO iteration, and is upper bounded

by a finite value. Hence, the proposed AO algorithm can be

guaranteed to converge.

IV. SIMULATION RESULTS

In this section, numerical results are provided to verify the

performance of the proposed robust design. We assume that the

HBS and the STAR-RIS are located at (0, 0, 10) and (0, 30, 20)
m, respectively. Bobs and Eves are randomly distributed in

their own circle with the radius of 4 m. Moreover, Bob and Eve

in reflection space are centered on (0, 25, 0) and (15, 25, 0)
m, while the corresponding centers in transmission space are

(0, 35, 0) and (15, 35, 0) m, respectively. We adopt Rician

fading for all channels. To facilitate the presentation, we define

κh
k , κG

k , κh
e and κG

e as the maximum normalized estimation

errors for hk, Gk, he and Ge, e.g., κh
k =

ξk
‖ĥk‖2

. Besides, we

set σ2 =−80 dBm, ς =1, PB =10 dBW, PU =10 dBm [4],

Ck=1.5 bits/s/Hz, and Ce
k=0.6 bits/s/Hz, ∀k, e.

Here, we compare the proposed design with three baselines:

1) Uniform ES (UES), where all ES elements employ the same

transmission and reflection amplitude coefficients, i.e., βχ
m =

βχ, βχ ∈ [0, 1],
∑

χ βχ=1, ∀χ,m [7]; 2) Equal time splitting

(ETS), where the STAR-RIS switches all elements between

two modes in equal orthogonal periods, and the HBS sends

signal to two spaces in different time periods; 3) RIS, where a

reflecting-only RIS and a transmitting-only RIS are deployed

adjacent to each other, and each has M/2 elements.

Fig. 2 depicts the achievable SEE versus the maximum

transmit power Pmax. It is intuitive that the SEE of all the

schemes increase first with Pmax and eventually saturate. The

reason is that the SEE maximization reduces to the SSR maxi-

mization for low Pmax, and using full power is optimal. While

the power availability is sufficient, further increase of the SSR

generates repaid elevation of energy consumption. Thus, the

optimal strategy for large Pmax is maintaining the power equal

to the finite maximizer of the SEE. Another observation is

that ETS is preferable for low Pmax, while ES achieves the

best for high Pmax. The reason behind this is twofold. On

the one hand, the interference-free transmission implemented

by ETS facilitates the legitimate rate improvement at limited

power. However, for larger Pmax, the inter-cluster interference

brought by ES can be used to deteriorate the reception of Eves,

thereby enhancing the SEE. On the other hand, since ETS only

serves one side in each instant, there is always an Eve not

suppressed by STAR-RIS. As a result, ETS suffers from more

severe performance loss than ES, UES or even RIS.

Regarding the performance comparison between ES and

UES, ES and RIS, as illustrated in Fig. 2, ES performs

better than the two. This is because compared with ES which

employs independent amplitude and phase shift models, UES

and RIS have limited control of reflection and transmission
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coefficients. Specifically, UES employs the group-wise ampli-

tude control, while RIS employs fixed element-based mode

selection. In comparison, by adjusting phase shift coefficients

in an element-wise manner, ES can fully exploit the DoFs

available at each element to enhance the desired signal, miti-

gate inter-user interference and inhibit bilateral eavesdropping.

Additionally, this phenomenon can also be explained by the

fact that both UES and RIS are special cases of ES.

Fig. 3 characterizes the SEE versus the number of elements

M for different bit resolution power consumption Pr(b). As

clearly shown, when Pr(b) = 10 mW, all designs exhibit the

same trend that the SEE performance continues to increase

with M . This indicates that this value of Pr(b) is quite

small, and the increase of M will not cause significant energy

consumption cost. Indeed, the extra spatial DoFs offered by the

large-scale STAR-RIS can provide a stronger cascaded channel

for Bobs but substantially suppress information leakage. Un-

fortunately, for higher values of Pr(b), the STAR-RIS power

consumption becomes one of the dominant items of energy

efficiency. As such, the SEE starts decreasing even for a small-

to-moderate M value. In other words, there exists a trade-off

between the secure performance benefit of deploying the large

scale STAR-RIS and its power consumption. Furthermore, it is

evident that the ES STAR-RIS assisted system achieves larger

SEE than RISs counterparts, which again demonstrates the

superiority of the proposed system design.

Fig. 4 illustrates the obtained SEE under ES versus the

number of the transmit antennas N and the number of ele-

ments M under different CSIUs. We set κh = κh
k= κh

e and

κG=κG
k=κG

e . In Fig. 4, for the cases with fixed N , the SEE

under low CSIU, e.g., κh=0.2, κG={0.2, 0.3}, increases with

an increment of M . This is in agreement with Fig. 3. However,

when κG=0.4, the SEE starts to decrease with the increase of

M . This reveals that, a serious channel estimation error will

be introduced with a larger M under high-level CSIU, which

hinders the improvement of SEE as M grows. By contrast,

when fixing M , the SEE still raises steadily as N grows

even at higher CSIU. The reason is that, more DoFs to the

active beamforming are offered by the increase of N , which

is enough to compensate for the channel estimation error.

V. CONCLUSION

This paper studied the secure and efficient telemedicine

communication in the STAR-RIS aided IoMT networks. Con-

sidering the imperfect CSI, we formulated a non-convex SEE

maximization problem by jointly designing the active and pas-

sive beamforming. A robust resource allocation algorithm was

developed by invoking AO, SCA and penalty CCP methods.

Numerical results verified the superiority of STAR-RISs and

provided helpful insights for the practical system design.
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