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Abstract: Certain weather conditions are inadvertently related to increased population of various
mosquitoes. In order to predict the burden of mosquito populations in the Global South, it is
imperative to integrate weather-related risk factors into such predictive models. There are a lot of
online open-source weather platforms that provide historical, current and future weather forecasts
which can be utilised for general predictions, and these electronic sources serve as an alternate option
for weather data when physical weather stations are inaccessible (or inactive). Before using data
from such online source, it is important to assess the accuracy against some baseline measure. In this
paper, we therefore evaluated the accuracy and suitability of weather forecasts of two parameters
namely temperature and humidity from the OpenWeatherMap API (an online weather platform) and
compared them with actual measurements collected from the Brazilian weather stations (INMET). The
evaluation was focused on two Brazilian cites, namely, Recife and Campina Grande. The intention
is to prepare an early warning model which will harness data from OpenWeatherMap API for
mosquito prediction.

Dataset: https://figshare.com/s/08449337eb8194848c72 (accessed on 21 July 2022)

Dataset License: CC BY 4.0
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1. Background and Summary

Certain meteorological parameters are risk factors for increased mosquito presence
and, thus, are needed for integration into such early warning detection system. The use of
statistical forecasts of meteorological indicators of the likes of temperature, humidity, atmo-
spheric pressure and many more, in near- or real-time, are made by collecting as much data
as possible about the existing state of the atmosphere. Generally, this information is often
applied to many avenues of research for understanding their impacts on other ecosystems,
environmental and anthropogenic processes [1–5]. This information can be pulled from
online digital sources, such as automatic weather stations, satellite and remote sensing,
and through open source weather channels that are online via Application Programming
Interfaces (APIs) [6,7].

From an epidemiological perspective, with regional focus on the Global South where
most tropical illnesses are endemic, these meteorological indicators play an immense
role in the areas of neglected tropical diseases as risk factors for spreading parasitic
illnesses such as soil-transmitted helminths, Onchocerciasis, Lymphatic Filariasis and
Schistosomiasis [8–10]. These weather parameters play a substantial role in vector- or
mosquito-borne diseases and are prominent risk factors for illnesses such as Malaria, West
Nile Virus and Yellow Fever. The impact of these weather factor plays in two ways: (1) they
create an environment or climate that is conducive and habitable for such vectors to thrive
(i.e., environmental suitability) [11,12]; and (2) it allows vectors to breed in dwellings
inhabited by humans and animals thereby posing a threat to humans [13,14].

In the context of mosquito surveillance and monitoring in vulnerable human popula-
tions in Brazil, one of the most sought-after tools is the early warning detection system and
prediction of increased mosquito population to support the effort of environmental health
officers to pre-emptively combat the burden of mosquito-borne arboviruses. The models
developed for such tasks are usually either mechanistic (i.e., compartment or differential
equations) models, or spatial spatiotemporal models for inferential purposes, which allows
for adjustments for other risk factors, temporality and spatial structure. Such an early
warning system can be integrated into a smartphone and web application. Therefore, and
to this end, researchers from the University College London’s Centre for Digital Public
Health and Emergencies (London, UK) are working together with Brazilian academics and
stakeholders from the Federal University of Pernambuco (Recife, State of Pernambuco,
Brazil), Federal University of Campina Grande (Campina Grande, State of Paraiba, Brazil),
University of São Paulo (State of São Paulo, Brazil) and Brazilian environmental agencies
to design and develop such application [15–20] for it to be piloted in two major cities in the
Northeast Brazil that were hit hard by the 2015/16 Zika virus epidemic, namely, Recife [21]
and Campina Grande [22]. In this context, considerations are taken for the selection of
weather-related risk factors which will be integrated into the application (containing the
GPS of properties as well as property-level physical, environmental characteristics and
indicators for socioeconomic deprivation and anthropogenic activities collected by agents)
to make spatial prediction of current and future lead-time occurrence of mosquitoes. The
meteorological parameters obtained from local weather stations from the Brazilian National
Institute of Meteorology (INMET) provide historical and current weather data to include in
geostatistical models (e.g., spatiotemporal Bayesian or general additive models (GAMs)) for
early warning detection of mosquito populations [23,24]. Weather forecast-based sources,
such as the OpenWeatherMap API, also provide through an API large amounts of data for
the current time (analysis) and for future days based on real-time generated forecasts [25].
Both sources, i.e., INMET and OpenWeatherMap API, are being considered for integration
into the smartphone and web application that will be developed. Before doing so, we must
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evaluate the accuracy and suitability of the OpenWeatherMap API resource versus the
INMET database, since the former is a recent resource.

The next section describes the methodology for assessing the accuracy for a selected
set of meteorological parameters (namely, mean temperature and relative humidity only)
by making comparisons between OpenWeatherMap API and INMET. Here, we will first
see how representative the two sources are by assessing the residual difference between
the current INMET observations and those of OpenWeatherMap API. A second analysis
will also examine the forecast errors within OpenWeatherMap API by comparing those
at 1-day, 2-day, 3-day and 4-day against the current measurements (i.e., 0-day) (so as
to detect any evidence of forecast drift with the lead-times). Both analyses will take
into consideration two broader seasons (i.e., Rainy and Dry). The analysis uses data
from two cities, namely, Recife and Campina Grande. The main reasons why we have
restricted the analysis to these two cities is the fact that Recife and Campina Grande are two
study areas we are currently engage with now. We are conducting collaborative research
with the environmental health agencies at these two study cities to combat mosquito-
arborviruses, and we intend to develop an early warning system for mosquito population
outbreaks. Hence, we are channelling various data streams, especially those that are
weather related variables. Thus, we endeavour to compare how similar OpenWeatherMap
is with some baseline (i.e., INMET) which the former provides lead time forecast and while
the latter provides historical measure, which both, in turn, can be harnessed for such early
warning predictions.

2. Methods

In this section, we describe in detail how the datasets were extracted from two elec-
tronic meteorological sources: OpenWeatherMap API (or OpenWeather Global Services)
and the Brazilian National Institute of Meteorology (in Portuguese: Instituto Nacional de
Meteorologia, INMET), for the two cities in Northeast Brazil. Here, we used data from
1 May 2020 to 28 March 2021 (as this is where we have data available at the time, when we
carried out the API extraction from OpenWeatherMap). For Recife, it should be noted that
March, April, May, June, July and August were defined as the period of Raining season;
while the remaining months were defined as the period of Dryness [26]. Campina Grande,
on the other hand, experiences shorter periods of rain during March, April, May and June
(whereas the remaining months are dry) [27].

2.1. Data Records
2.1.1. Dataset 1: OpenWeatherMap API

The OpenWeatherMap API is an online meteorological service which provides weather
data that includes forecasts and current analysis data to researchers and developers of
web-based services and mobile applications. For data sources, it harnesses meteorological
broadcast services particularly using raw data from airport weather stations as well as those
from radar stations, and data from other official weather stations [25]. The OpenWeath-
erMap API, in particular, processes all the data using machine learning to enhance the
numerical weather prediction models provided by several data sources e.g., NOAA, Met
Office, ECMWF and Environmental Canada (see https://openweathermap.org/technology
(accessed on 18 November 2021)). The idea behind the development of OpenWeath-
erMap API was inspired by the platforms known as OpenStreetMap and Wikipedia,
which make information freely available to everyone; OpenWeatherMap API typically
utilises the OpenStreetMap to visualise its spatially referenced weather predictions. It
also provides an API with JSON endpoints to make free and unlimited calls which is
updated on every hour, to get current values for weather indicators and 3-hourly fore-
cast values stretching up to five days (i.e., these are observed (now) measures, with ac-
companied by 3-hourly “consecutive” predictions on lead time estimates (going up-to
five days in the future) on what these weather variable measurements will be ahead of
what was currently observed) and we have compiled these data from OpenWeatherMap

https://openweathermap.org/technology
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API. Note that the current and forecasted values are updated and released every hourly.
For our research, which is situated in Recife and Campina Grande, we automated the
process via RStudio and Python for extracting the current and 3-hourly weather infor-
mation for the following parameters: temperature, relative humidity, pressure, cloud
cover and weather description, and automatically into MongoDB using the API address:
http://api.openweathermap.org/data/2.5/forecast?id=[ID]&APPID=[KEY] (accessed on
21 July 2022).

Given the API key provided by the OpenWeatherMap API services and then setting the
station IDs by inserting the values of 3390760 (longitude: −34.8811 and latitude: −8.0539)
and 3403642 (longitude: −35.8811 and latitude: −7.2306) to the above connection, we are
able to extract the weather parameters for Recife and Campina Grande, respectively, and
continuously compile the records into MongoDB. The dataset from OpenWeatherMap API
were downloaded as a JSON which have a nested structure (i.e., 3-hourly weather estimates
nested within city-level information) (Figure 1).
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2.1.2. Dataset 2: Brazilian National Institute of Meteorology (INMET)

The INMET database comprises an extended network of automatic and conven-
tional weather stations since the year 1961 and it is the one most recognised [7,23,24].
As of May 2000, there are 584 stations in operation throughout the country and each
station may provide hourly, daily, and/or monthly values for the measured meteoro-
logical parameters of temperature (average, minimum and maximum), relative humid-
ity, pressure and many more (Figure 2). We downloaded the full available data for
the INMET automatic weather stations located in Recife and Campina Grande with
station IDs A301 (with longitude: −34.959239 and latitude: −8.05928) and A313 (with
longitude: −35.904831 and latitude: −7.225574), respectively; using the following link:
https://tempo.inmet.gov.br/TabelaEstacoes/# (accessed on 21 July 2022).
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Figure 2. Describe the list of weather parameters drawn from Brazilian National Institute of Meteo-
rology (Instituto Nacional de Meteorologia (INMET)).

2.2. Statistical Analysis

In this work, we are mostly interested in analysing two weather parameters: tem-
perature and humidity, as these variables are the most important predictors for mosquito
presence, which we intend to use for future work, and so the analysis in this paper limited to
these two variables only. To iterate, we begin the analysis by examining how representative
the two sources are by assessing the residual difference in two steps:

First, by comparing the day-by-day (according to time stamp as well) OpenWeath-
erMap API current measurements with baseline measurements from INMET stratified by
season type (i.e., dry or wet). Here, we measure the mean difference between samples and
use a 2-sampled unpaired t-test to determine whether the two sources are significantly
different from each other. A p-value exceeding the 0.05 is an indication the day-by-day
differences are not zero, and, thus, the OpenWeatherMap being different from INMET.

A second analysis focuses on comparing OpenWeatherMap API’s future forecasts
made for 1-day, 2-day, 3-day and 4-day lead times against its own current baseline mea-
surement for 0-day (so as to detect any evidence of forecast drift with the lead-times) using
Taylor diagrams without stratification.

To reiterate, in order to account for broader variations caused by seasonality, the
analyses in outlined in 1 are stratified by “Wet” and “Dry” season. In step one, it will involve
calculating the mean of the difference between the current and baseline measurements of
OpenWeatherMap API and INMET and summarising this information using a series of
time series based residual plots, and then computing their overall mean differences and
standard deviations accordingly by season type (i.e., “Wet” and “Dry”) for each city. The
analysis is performed on day-by-day and time stamp level (on a 6-h interval instead of a
3-h—we chose this for easy data management purposes) (e.g., 1 May 2020 00:00:00 UTC,
1 May 2020 06:00:00 UTC, 1 May 2020 12:00:00 UTC and so on) and stratified by season
type, i.e., “dry” and “wet”, to account for any type of effect modification [4]. Normality
for each of these differences was ensured through visual inspection of histograms, and by
usage of the Kolmogorov–Smirnov test (where the p-value is greater than 0.05 to ensure
that the distribution does not deviate from a normal distribution). Further analysis was
conducted through the use of Taylor diagrams to compare each lead time forecast from

https://tempo.inmet.gov.br/TabelaEstacoes/#
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OpenWeatherMap API against INMET and to ensure that the results are consistent. The
results presented in these diagrams will graph out Root Mean Squared Error (RMSE),
Correlation coefficient and Standard deviation. All statistical analysis and visualisations
were carried out and generated using RStudio Desktop (version 2022.07.0+548 for MAC).

3. Technical Validation

By computing the mean difference and its variability by city and season between
OpenWeatherMap’s and INMET (i.e., reference database), their summary statistics are
presented in Table 1. The stratified plots show the point-to-point residual differences
between the two sources, it gives an overarching description of the temporal patterns
for temperature and humidity, and how the databases differ from each other (i.e., values
approximate to zero is an indication that the readings are the same) (Figures 3 and 4). The
differences are marginal for temperature with p-values being above 0.05; conversely, the
results indicate a significant difference when considering humidity, the mean difference and
variability between OpenWeatherMap API and INMET are quite large with SD exceeding
±7 with most p-values being less than 0.01 (Table 1). Figures 5 and 6, as well as results
in Table 2 inclusive, provides a graphical (and statistical) summary of how closely the
lead time forecasts of “what it will be” observations predicted by OpenWeatherMap API
closely matches its own baseline data. Let us consider the output of Figure 6C; the lead
time predictions (versus day-0) for humidity in Campina Grande are poor as they jointly
show RSME increase from ±7.42 to ±8.15, and its correlation decreasing from 0.76 to 0.70.

Table 1. Shows the variability in the mean differences between the OpenWeatherMap API and
INMET observations stratified by Wet and Dry seasons for Recife and Campina Grande.

Dry Season
Mean Difference (SD)

Wet Season
Mean Difference (SD)

Recife: Temperature −0.35 (±1.47) (p > 0.05) 0.85 (±1.86) (p > 0.05)
Recife: Humidity 1.03 (±7.73) (p < 0.001) −4.16 (±7.62) (p < 0.01)
Campina Grande: Temperature −0.67 (±1.58) (p > 0.05) −1.14 (±1.56) (p > 0.05)
Campina Grande: Humidity −0.87 (±9.23) (p < 0.05) 3.19 (±7.52) (p < 0.01)

Table 2. Shows the reported standard deviation, correlation coefficient and RMSE differences derived
from Taylor diagram analysis for the comparison between 1-day (purple), 2-day (green), 3-day
(orange) and 4-day (blue) forecasts against baseline measurements (day-0) of OpenWeatherMap API.

Temperature a Wet Season Dry Season

Day-1
(Purple)

Day-2
(Green)

Day-3
(Orange)

Day-4
(Blue)

Day-1
(Purple)

Day-2
(Green)

Day-3
(Orange)

Day-4
(Blue)

Recife (See Figure 5A) (See Figure 5B)
Correlation 0.77 0.76 0.74 0.74 0.92 0.92 0.92 0.91
RMSE 0.97 0.99 1.01 1.02 0.54 0.55 0.54 0.55

Campina Grande (See Figure 5C) (See Figure 5D)
Correlation 0.79 0.80 0.78 0.78 0.93 0.92 0.91 0.90
RMSE 1.71 1.69 1.75 1.71 1.61 1.65 1.67 1.69

Humidity b Wet Season Dry Season

Day-1
(Purple)

Day-2
(Green)

Day-3
(Orange)

Day-4
(Blue)

Day-1
(Purple)

Day-2
(Green)

Day-3
(Orange)

Day-4
(Blue)

Recife (See Figure 6A) (See Figure 6B)
Correlation 0.71 0.67 0.59 0.58 0.86 0.83 0.81 0.82
RMSE 5.09 5.37 5.68 5.76 3.44 3.81 4.04 3.99

Campina Grande (See Figure 6C) (See Figure 6D)
Correlation 0.76 0.77 0.70 0.70 0.92 0.90 0.90 0.91
RMSE 7.42 7.34 8.17 8.15 8.44 8.85 9.12 9.14

a Standard deviation estimates for baseline temperature (Celsius) OWM (at day-0) are Recife ±1.46 (wet season)
and ±1.31 (dry season); and in Campina Grande ±2.59 (wet season) ±4.13 (dry season). b Standard deviation
estimates for baseline humidity (%) OWM (at day-0) are Recife ±6.74 (wet season) and ±6.64 (dry season); and in
Campina Grande ±10.5 (wet season) ±20.1 (dry season).
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Figure 3. Shows the extent of how OpenWeatherMap API deviates from baseline observations in
INMET; Recife is represented by panels (A,B), corresponding to comparisons made for temperature
by wet and dry, respectively; Campina Grande is represented by panels (C,D), corresponding to
comparisons made for temperature by dry and wet season, respectively. The dashed lines provide an
indication for how the points deviate from the centre 0.
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Figure 4. Shows the extent of how OpenWeatherMap API deviates from baseline observations in
INMET; Recife is represented by panels (A,B), corresponding to comparisons made for humidity
by wet and dry, respectively; Campina Grande is represented by panels (C,D), corresponding to
comparisons made for humidity by dry and wet season, respectively. The dashed lines provide an
indication for how the points deviate from the centre 0.
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Figure 5. Taylor diagram illustrates the statistical comparison between 1-day (purple), 2-day (green),
3-day (orange) and 4-day (blue) against baseline measurements of OpenWeatherMap API (i.e., day-0).
Recife is represented by panels (A,B), which show analysis for temperature stratified wet and dry,
respectively; Campina Grande is represented by panels (C,D), which show analysis for temperature
stratified wet and dry, respectively. The x–y axes are standard deviation, arc represents correlation
between the lead time prediction and baseline, and circular contours are the root-mean-squared
error differences.
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Figure 6. Taylor diagram illustrates the statistical comparison between 1-day (purple), 2-day (green),
3-day (orange) and 4-day (blue) against baseline measurements of OpenWeatherMap API (i.e., day-0).
Recife is represented by panels (A,B), which show analysis for humidity stratified wet and dry,
respectively; Campina Grande is represented by panels (C,D), which show analysis for humidity
stratified wet and dry, respectively. The x–y axes are standard deviation, arc represents correlation
between the lead time prediction and baseline, and circular contours are the root-mean-squared
error differences.

4. Usage Notes

The two datasets described here, (1) INMET, which provides observed historical and
current/near real-time measurements for weather, and (2) OpenWeatherMap API, which
provides up to five days of future weather predictions, can be linked to city- and/or
neighbourhood-level mosquito-borne arbovirus surveillance data to investigate the tempo-
ral patterns of mosquito populations in Recife and Campina Grande. It should be noted
that such evaluation on accuracy presented in this manuscript is specifically focussed on
these two Brazilian cities, and, therefore, the results are strictly representative to Recife and
Campina Grande (and not applicable to other cities).
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With that in mind, the overarching purpose for drawing weather-related information
(in particular temperature and relative humidity) from INMET and OpenWeatherMap
API is for their integration into a predictive model for making current and lead-time
temporal predictions of mosquito population on a city- or neighbourhood(s) scale. INMET
is an established source for weather data and is considered the reference standard to
compare OpenWeatherMap API against. In terms of accuracy, we noticed that the overall
residual difference for temperature between the two data sources, regardless of season
type, are somewhat marginal, which is an indication that readings for temperature from
OpenWeatherMap API are marginally similar to those automatically recorded in INMET.
However, OpenWeatherMap API’s data for humidity differ substantially. The outcome
of our examination showed that temperature as a measure from OpenWeatherMap has
the least residual mean difference and variability (see Table 1) while humidity is opposite.
However, when carrying out the day-by-day comparison, we find the forecasted readings
in OpenWeatherMap API to be substantially different from the baseline measures—with
this in mind, using OpenWeatherMap API for modelling and making predictions about
mosquito population is viable option for temperature; however, for humidity, users should
be wary and examine that error’s distribution on how far OpenWeatherMap API forecasts
deviate from actual observed baseline weather data. This paper limits the comparisons to
only two resources (because at the time, the authors were considering OpenWeatherMap
API for making lead-time prediction for mosquito populations [15–20] with a specific focus
on two cities—what would be an interesting possibility is to extend such analysis with other
forecasts from other global weather models which might be better than OpenWeatherMap
API, such examples include the Global Forecast System (GFS), which is one of many models
produced by the US Government’s agency National Centres for Environmental Prediction
(NCEP). On a final note, a small caution is raised when considering the use of relative
humidity for mosquito prediction. It should be noted that it is a function of both water and
temperature; hence, its usage in a statistical model should be “standalone” and not with
temperature treated as an adjustment to avoid potential issues such as multicollinearity [28].
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