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Abstract: Sjögren’s syndrome (SS) is a heterogeneous autoimmune rheumatic disease (ARD) charac-
terised by dryness due to the chronic lymphocytic infiltration of the exocrine glands. Patients can
also present other extra glandular manifestations, such as arthritis, anaemia and fatigue or various
types of organ involvement. Due to its heterogenicity, along with the lack of effective treatments, the
diagnosis and management of this disease is challenging. The objective of this review is to summarize
recent multi-omic publications aiming to identify biomarkers in tears, saliva and peripheral blood
from SS patients that could be relevant for their better stratification aiming at improved treatment
selection and hopefully better outcomes. We highlight the relevance of pro-inflammatory cytokines
and interferon (IFN) as biomarkers identified in higher concentrations in serum, saliva and tears.
Transcriptomic studies confirmed the upregulation of IFN and interleukin signalling in patients with
SS, whereas immunophenotyping studies have shown dysregulation in the immune cell population
frequencies, specifically CD4+and C8+T activated cells, and their correlations with clinical parame-
ters, such as disease activity scores. Lastly, we discussed emerging findings derived from different
omic technologies which can provide integrated knowledge about SS pathogenesis and facilitate
personalised medicine approaches leading to better patient outcomes in the future.

Keywords: Sjogren’s syndrome; patient stratification; clinical relevance; multi-omics

1. Introduction

Sjögren’s syndrome (SS) is an autoimmune rheumatic disease (ARD) characterised
by a chronic inflammatory process associated with lymphocytic infiltrate affecting the
exocrine glands. The disease has significant heterogeneity in clinical presentation according
to age at disease onset, type of organ involvement, as well as serological features and
response to therapy [1,2]. When the disease occurs on its own, it is called primary SS (pSS),
while when it accompanies other autoimmune conditions, it is defined as secondary SS
(sSS). Various classification criteria have been used to define pSS and exclude mimicking
pathology, with the most recent ones being the data and consensus-driven American
College of Rheumatology/European League Against Rheumatism Classification Criteria
proposed in 2016 [3].

There are currently no universally accepted classification criteria for sSS and some
experts argue that making a distinction between pSS and sSS is not adequate anymore,
as both phenotypes represent the same disease [4]. Moreover, the classification criteria
validated in adults have minimal utility in SS with childhood-onset (defined as disease
onset before the age of 18 years), as the disease presentation in children and young people,
although rare, is different [5]. This, in addition to the lack of validated classification criteria
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for childhood-onset SS, further limits the research opportunities for younger people affected
by this disease [6].

The disease manifestations vary among patients; some have predominant exocrine
glandular involvement leading to dryness, which is the hallmark symptom of the disease.
Glandular involvement manifests as dry mouth (xerostomia), dry eyes (xerophthalmia),
dry skin (xerosis cutis), as well as vaginal dryness, dry cough, pancreatic dysfunction,
salivary gland inflammation/enlargement (e.g., parotitis), etc., while patients with extra-
glandular involvement can experience frequent musculoskeletal, haematological, and rarely
hepatic, renal, pulmonary, cardiac, peripheral or central nervous system manifestations, as
well as less specific symptoms of fatigue (common) or fever and lymphadenopathy (less
common) [7]. Clinical presentation usually guides the disease management, which is largely
symptomatic for glandular manifestations and involves the use of immunosuppressive
treatment approaches in patients with more severe organ involvement [8]. The evidence
for the efficacy of various therapies currently recommended for the management of SS is
modest overall [9,10], emphasising the need for better research.

As a direct consequence of the disease pathogenesis being centred around the pro-
cess of autoimmune epithelitis, powered by the interplay between the cells of the innate
and adaptive immune systems, and activated by interferons and other pro-inflammatory
cytokines leading to chronic immune activation in a host with genetic susceptibility [11],
various disease fingerprints can be identified from the peripheral blood, as well as serum,
saliva, tears and salivary gland biopsies.

Significant progress has been achieved recently in clinical research in terms of better
patient clinical and molecular characterisation [12], but despite this, the management of
this condition remains challenging because of patient heterogeneity and various limitations
of the way the disease activity and response to treatment are measured. These aspects very
likely contribute to the lack of significant treatment advances in SS, despite preliminary
signals of the efficacy of various biologic agents in clinical trials [13–15]. Better research
into disease pathogenesis and distinct clinical and molecular phenotypes will hopefully
enable better patient selection for available therapies as well as new target discoveries.

2. Materials and Methods

This review aimed as identifying the main papers published since 2000 investigating
multi-omics (cytokine profiling in serum, tears, saliva, immunophenotyping, genomic,
transcriptomic and metabolomic) studies in SS in an effort to identify distinct patient groups
(endotypes) which can inform meaningful stratification for better disease characterisation
and improved treatment strategies. Publications selected for this review followed these
inclusion criteria: Sample size higher than 10, the inclusion of age and gender-matched
healthy controls, and data on at least one omic analysis in any biologic sample relevant
to SS (blood, serum, tears, saliva, salivary gland biopsy) and published in English. We
presented the most informative papers found in the literature in tables, summarising the
study design, sample size, control groups, main findings and their clinical relevance.

3. Results
3.1. Multi-Omic Biomarkers for Patient Stratification
3.1.1. Tear Biomarkers

One of the main symptoms of pSS is dry eye (xeropththalmia) as a result of lymphocytic
infiltration of the lacrimal glands. Tears represent a valuable biological sample resource
because of their proximity to the site of glandular inflammation and they might contain
biomarkers that could help us to understand the pathogenesis of pSS, improve its diagnosis
and have therapeutic implications.

Recently, several studies have concentrated their efforts on identifying those biomark-
ers through either cytokine, metabolomic or proteomic tear profiling (Table 1).

In this context, Chen et al. [16] determined the cytokine profile of tears, measured by a
27-plexcytokine assay in 29 pSS patients and 20 gender/age matched controls (non-SS sicca
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subjects and healthy controls—HCs). Elevated levels of pro-inflammatory cytokines, such
as interleukin (IL)-1 receptor agonist (ra), IL-2, IL-17A, interferon (IFN)-γ, Macrophage
inflammatory protein-1-β (MIP-1b), and Rantes (Regulated upon Activation, Normal T
Cell Expressed and Presumably Secreted) and anti-inflammatory interleukin 4 IL-4, were
found in pSS patients compared to controls. Interestingly, higher cytokine levels correlated
positively with eye dryness severity and negatively with Schirmer’s test which measures
the volume of tears secreted over 5 min [16]. These findings are validated by another study
Willems et al., which also found an increased concentration of IFN-γ, tumor necrosis factor
alfa (TNF-α), IL-2, IL-4, IL-6, IL-10, IL-12p70 and IL-5 in tears of pSS patients compared to
HCs [17]. Moreover, they also verified the negative correlation between the Schirmer test
and the concentration of IL-2, IL-4, IL-10 and IL-12p70 in tears.

Tears are composed of water, electrolytes, mucins and hundreds of different proteins
and metabolites. Urbanski et al. identified a metabolic signature of tears comprising nine
metabolites specific to pSS, compared to patients with non-immune dry eye disease [18].
Metabolomic quantification by mass spectrometry and liquid chromatography showed
that three metabolites, serine, aspartate and dopamine, had lower concentrations whereas
six lipids (including pro-inflammatory lysophosphatidylcholine [19], sphingomyelin, and
phoshatidylcholine diacyl) had increased concentrations in pSS patients compared to the
non-pSS Sicca controls. Moreover, age, sex, use of anticholinergic drugs, or the presence
of anti-Ro/SSA antibodies did not influence the association between the metabolomic
signature and the pSS status, suggesting that it is a true disease signature.

Tear proteomic analysis by Das et al. [20] using high performance liquid chromatogra-
phy (HPLC) and mass spectrometry revealed the upregulation of 83 proteins and downreg-
ulation of 112 proteins in pSS patients compared to HCs. Enrichment pathway analysis of
upregulated proteins included leukocyte trans-endothelial migration, protein-lipid complex
remodelling and collagen catabolic pathway. On the other hand, the analysis of downregu-
lated proteins indicated that pathways, such as glycolysis and amino acid metabolism, were
diminished in tears from pSS patients. The relationship between proteomic biomarkers and
clinical outcomes was not explored.

3.1.2. Saliva Biomarkers

Dry mouth (xerostomia) is a key symptom of pSS occurring in more than 95% of
patients as a consequence of autoimmune destruction of salivary glands [21,22]. Salivary
gland pathology detected by salivary gland biopsy is included in the classification criteria
for pSS, and in many patients, this is an essential diagnostic and prognostic tool. How-
ever, this is an invasive procedure that could lead to local complications in a minority
of cases, [23] whereas the collection of saliva for research purposes is, in contrast, a non-
invasive procedure. Biomarkers found in saliva could potentially reflect the pathogenesis
of this disease. Therefore, many researchers have been aiming to identify those lately
(Table 2).

One of the few studies examining the cytokine profile of unstimulated saliva of pSS
patients using the Luminex platform found an increase in IFN-γ, IL-1, IL-4, IL-10, IL-12p40,
IL-17, and TNF-α levels in pSS patients compared to non-SS and HCs [24]. Moreover,
IL-6 levels were higher in pSS compared to HCs. Notably, unstimulated saliva flow
rate correlated with INF-γ/IL-4 ratio and salivary gland biopsy focus score (the number
of inflammatory infiltrates of at least 50 cells present in 4 mm2 of salivary gland area)
correlated with TNF-α/IL-4 ratio in pSS, suggesting a predominant Th1 saliva signature.
Years later, Chen et al. [16] reported enhanced levels of IP-10 (Interferon gamma-induced
protein 10 or C-X-C motif chemokine ligand 10, CXCL10) and MIP-1α in saliva samples
from pSS compared to HCs and a negative correlation between MIP-1α levels and both
unstimulated whole saliva as well as the stimulated whole saliva flow rates.
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Table 1. Examples of studies investigating potential Sjögren’s Syndrome biomarkers in tears.

Reference Type of Study/Samples/Methods Number (N) of pSS Patients and
HCs Age (Mean ± SD) Disease Signature Identified Correlations with Clinical

Outcomes

BIOMARKERS IN TEARS

Cytokine profiling

Chen et al., 2019
[16]

Cross-sectional
Tear strips for Schirmer I test
Unstimulated (UWS) and stimulated
(SWS) saliva samples
Method: Cytokine 27-plex Assay

N = 29 pSS
56.8 ± 13.0 years
N = 20 sicca (non-SS) controls
51.7 ± 10.6 years
N = 17 HCs
45.4 ± 10.9 years

Increased IL-1ra, IL-2, IL-4, IL-17A, IFN-γ,
MIP-1b, and Rantes in pSS vs. non-SS/HCs
(p < 0.05).

Increased dry eye severity level and
ocular surface staining correlated
with increased tear cytokine levels,
except for IP-10. Negative
correlations between Schirmer’s test
and tears IL-1ra, IL-2, IL-4, IL-8,
IL-12p70, IL-17A, IFN-γ, MIP-1b,
and Rantes (r = 0.26–0.61, p < 0.05).

Willems et al., 2021 [17]
Cross-sectional
Tear samples
Method: LUNARIS™ BioChip

N = 12 pSS
41.7 ± 13.3 years
N = 13 HCs
43.0 ± 13.8 years

Tears: Increased I FN-γ, TNF-α, IL-2, IL-4,
IL-6, IL-10 and IL-12p70 (left eye) and IL-5
(right eye) in pSS compared to non-SS and
HCs (p < 0.005).

Schirmer test correlated to IL-2
(r = −0.702), IL-4 (r = −0.769), IL-10
(r = −0.839) and IL-12p70
(r = −0.753) left eye levels; IL-10
directly correlated with SPEED test
score (r = 0.722; p = 0.0001) as well
as NIKBUT score (r = −0.705;
p = 0.00002).

Metabolomic profiling

Urbanski et al., 2021 [18]

Cross-sectional
Tear strips for Schirmer I test
Method: mass spectrometry/liquid
chromatography

N = 40 female pSS
63 years
N = 40 non pSS sicca controls
58 years

9 metabolites (serine, aspartate; dopamine
and six lipids) defined a tear pSS
metabolomic signature (ROC-AUC = 0.83)
PCA analysis showed that 2 PC explained
74.5% variance defined by 8/9 metabolites;
the six lipids were distributed in the PC 1
and the amino acids in the second one.

The association between the
metabolomic signature and the pSS
status was not altered by age, sex,
use of anticholinergic drugs or
presence of anti-SSA antibodies
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Table 1. Cont.

Reference Type of Study/Samples/Methods Number (N) of pSS Patients and
HCs Age (Mean ± SD) Disease Signature Identified Correlations with Clinical

Outcomes

BIOMARKERS IN TEARS

Proteomic profiling

Das et al., 2021 [20]

Cross-sectional
Tears, Tear washes
Saliva
Cryopreserved parotid gland
biopsy samples
Methods
High performance liquid
chromatography HPLC/mass
spectrometry MS
shotgun proteomics analysis
Biopsy staining with anti-PRG4 mAb
Bead-based immunoassay using the
AlphaLISA

Tears
N = 22 pSS (F:M = 10:1)
60.0 ± 16.5 years
N = 20 HCs (F:M = 13:7)
31.2 ± 11.4 years
Tear washes
N = 14 pSS (F:M = 13:1)
59.5 ± 12.0 years
N = 29 HCs (F:M = 17:12)
34.1 ± 14.2 years

Tears: 83 upregulated and 112 unique
downregulated proteins in pSS vs. HCs.
Enriched pathways in pSS: leukocyte
trans-endothelial migration, protein-lipid
complex remodelling and collagen
catabolic. Enriched pathways in HCs:
glycolysis/gluconeogenesis and glycolysis
in senescence, amino acid metabolism and
VEGFA/VEGFR2 signalling pathway.
Overall, there was a loss of glycolysis and
metabolism but an elevation of immune
processes in pSS tears samples. PRG4 in
tear washes was significantly decreased in
pSS (p < 0.01).

Not explored

Legend: pSS—primary Sjögren’s Syndrome, HC—healthy controls, Rantes—Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted, MIP-1b—Macrophage
Inflammatory Proteins, IFN—interferon, IL—interleukin, VEGFA—Vascular endothelial growth factor A, VEGFR2—VEGF receptor 2, PRG4—Proteoglycan 4.
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Table 2. Examples of studies investigating potential Sjögren’s Syndrome biomarkers in saliva/salivary glands.

Reference Type of Study/Samples/Methods Number (N) of pSS Patients and
HCs Age (Mean ± SD) Disease Signature Identified Correlations with Clinical

Outcomes

BIOMARKERS IN SALIVA/SALIVARY GLANDS

Cytokine profiling

Kang et al., 2011
[24]

Cross-sectional
Unstimulated saliva samples
Method: Luminex® bead-based assay

N = 30 pSS
49.9 ± 9.0 years
N = 30 sicca (non-SS)
51.5 ± 10.0 years
N = 25 HCs
49.4 ± 9.5 years

Saliva: Increased IFN-γ, IL-1, IL-4, IL-10,
IL-12p40, IL-17, and TNF-α levels in pSS vs.
non-SS and HCs (p < 0.005). IL-6 levels
higher in pSS vs. HCs (p = 0.011).
INF-γ/IL-4; TNF-α/IL-4 higher in pSS vs.
HCs (p = 0.028, p = 0.038, respectively).

No correlations were found between
any salivary cytokine levels and
clinical parameters.
Unstimulated saliva flow rate
correlated with INF-γ/IL-4 ratio
(r = 0.411 p = 0.024) and focus score
correlated with TNF-α/IL-4 ratio
(r = 0.581, p = 0.023) in pSS,
suggesting a predominant Th1
saliva signature.

Chen et al., 2019
[16]

Cross-sectional
Tear strips for Schirmer I test
Unstimulated (UWS) and stimulated
(SWS) saliva samples
Method: Cytokine 27-plex Assay

N = 29 pSS
56.8 ± 13.0 years
N = 20 sicca (non-SS) controls
51.7 ± 10.6 years
N = 17 HCs
45.4 ± 10.9 years

Saliva: increased IP-10 in pSS vs.
non-SS/HCs. Both pSS and non-SS subjects
had higher MIP-1α levels than HCs
(p < 0.05).

UWS and SWS correlated negatively
with MIP-1a saliva level
(r = −0.276, p = 0.046 and
r = −0.282, p = 0.040, respectively).

Metabolomic profiling

Kageyama et al.,
2015 [25]

Cross-sectional
Unstimulated saliva samples
Method: Gas chromatography mass
spectrometry (GC-MS) analysis

N = 14 female pSS
44.2 ± 13.01 years
N = 21 HCs
46.7± 10.24 years

41 of the metabolites were reduced in pSS
patients compared to HCs (p < 0.05).
Decreased glycine, tyrosine, uric acid and
fucose in pSS vs. HCs in PCA analysis.

Patient stratification based on saliva
metabolome depicted two groups:
one younger (p = 0.082) and with a
lower SG biopsy score (p = 0.014).
Glycine levels differentiate between
the two groups.
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Table 2. Cont.

Reference Type of Study/Samples/Methods Number (N) of pSS Patients and
HCs Age (Mean ± SD) Disease Signature Identified Correlations with Clinical

Outcomes

BIOMARKERS IN SALIVA/SALIVARY GLANDS

Metabolomic profiling

Herrala et al., 2020 [26]

Longitudinal study
Stimulated saliva samples
Method: proton nuclear magnetic
resonance (1 H-NMR) spectroscopy

56 samples from N = 14 female pSS
patients during four laboratory
visits within 20 weeks.
48.6 years
N = 15 HCs
(mean age 49.8 years)

Increased choline in pSS patients at each
time point (p ≤ 0.015), taurine at the last
three time points (p ≤ 0.013), alanine at the
last two time points (p ≤ 0.007) and glycine
at the last time point (p = 0.005).
Inter-individual variation observed for
glycine (p ≤ 0.007, all time points), choline
(p ≤ 0.033, three last time points) and
alanine (p = 0.028, baseline).

Not explored

Proteomic profiling

Delaleu et al., 2015 [27]

Cross-sectional
Unstimulated whole saliva
Methods: 187-plex capture
antibody-based assay

Saliva
N = 48 pSS (females)
47 years
N = 24 non-SS cohort
(12 RA patients + 12 HCs)
51 years

Significant differences in 61 biomarkers in
pSS vs. controls (p < 0.001). FGF-4 levels
lower in pSS (the only decreased protein).
A biomarker signature comprising clusterin,
IL-5, FGF-4, and IL-4 yielded accurate
group prediction for 93.8% of pSS and 100%
of non-SS controls classification.

No biomarkers correlated with
salivary flow rates

Das et al., 2021
[20]

Cross-sectional
Tears, Tear washes
Saliva
Cryopreserved parotid gland
biopsy samples
Methods
High performance liquid
chromatography HPLC/mass
spectrometry MS
shotgun proteomics analysis
Biopsy staining with anti-PRG4 mAb
Bead-based immunoassay using the
AlphaLISA

Saliva
N = 30 pSS (F:M = 22:8)
45.2 ± 14.6 years
N = 10 HCs (F:M =5:5)
46.8 ± 14.5 years

Saliva: 104 upregulated and 42
downregulated proteins in pSS vs. HCs.
Enriched pathways in pSS: JAK-STAT
signalling after IL-12 stimulation,
superoxide metabolic process and
phagocytosis. Enriched pathways in HCs:
neutrophil degranulation, negative
regulation of peptidase activity; 2.3-fold
increase in PRG4 in pSS (p < 0.05).
PRG4 expression was found in both the
serous acini and the striated duct on
parotid gland biopsies (N = 4).

Not explored
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Table 2. Cont.

Reference Type of Study/Samples/Methods Number (N) of pSS Patients and
HCs Age (Mean ± SD) Disease Signature Identified Correlations with Clinical

Outcomes

BIOMARKERS IN SALIVA/SALIVARY GLANDS

Salivary gland tissue transcriptomic profiling

Vertstappen et al.,
2021 [28]

Cross-sectional
Parotid and labial gland biopsy
Methods: RNAseq—HiSeq 2500
System (Illumina).
Multiplexed bead-based immunoassays
for cytokine profiling
Assessment of CD45-positive infiltrates
on SG biopsies

N = 34 pSS with 51 paired (parotid
and labial) biopsies
21 biopsy positive
13 biopsy negative
52 years
N = 20 non SS sicca controls
17 biopsy negative
50 years

Parotid glands: 1041 up-regulated and
194 down-regulated DEG and labial glands:
581 and 43, respectively, between biopsy
positive pSS and controls. The top 20
up-regulated genes in both tissues were
mostly B-cell or T cell related. No
significant differences between biopsy
negative pSS and controls. Transcript
expression levels correlated between
parotid and labial glands (R2 = 0.86,
p < 0.0001).
Signatures enriched in biopsy-positive pSS
compared with either biopsy-negative pSS
or controls: IFN-α signalling, IL-12/IL-18
signalling, CD3/CD28 T cell activation,
CD40 signalling in B-cells, double negative
type-2 B-cells, and FcRL4+ B-cells. Strong
correlation between the IFN-α score in
PBMCs and SGs.

No difference in ESSDAI,
unstimulated salivary flow or
ESSPRI in patient DEG clusters.

Legend: pSS—primary Sjögren’s Syndrome, HC—healthy controls, IFN—interferon, IL—interleukin, TNF—Tumour necrosis factor, MIP—Macrophage Inflammatory Protein, FGF—
Fibroblast growth factor, PRG—proteoglycan, FcRL-Fc Receptor Like, SGs—salivary gland, ESSDAI—EULAR Sjögren’s syndrome (SS) disease activity index, ESSPRI—EULAR Sjogren’s
Syndrome Patient Reported Index.
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Metabolomics analysis of saliva identified a total of 41 metabolites reduced in pSS
patients compared to HCs [25]. Principal component analysis (PCA) revealed that saliva
from pSS patients had less biological diversity compared to HCs. Two distinct groups of
pSS patients were identified based on their metabolomic profile: the only clinical differences
between the groups were older age and the presence of major salivary gland glanditis
in one group compared to the other. Recently, a longitudinal study by Herrala et al. [26]
investigated changes in the levels of salivary metabolites in pSS and HCs using proton
nuclear magnetic resonance (NMR) spectroscopy over 20 weeks. Choline, taurine, alanine,
and glycine were the most significantly different metabolites, all of them were found in
higher concentrations in saliva samples from pSS patients than in HCs. Compared to the
baseline of the HCs, choline was significantly elevated at each time point, taurine and
glycine were significantly higher at weeks 1, 10 and 20, whereas alanine was higher at
weeks 10 and 20, suggesting that the distinct saliva metabolic signature is relatively stable
over time.

Saliva proteomic analysis by Delaleu et al. [27] using a multiplex capture antibody-
based assay identified 61 differentially expressed proteins in pSS vs. non-SS controls
including rheumatoid arthritis (RA) and HCs samples. Interestingly only one protein, fi-
broblast growth factor (FGF)-4, was found at a lower concentration in pSS while 60 different
proteins were present at higher concentrations compared to controls. This comprehensive
analysis recognised a proteomic signature based on the following proteins: clusterin, IL-5,
FGF-4 and IL-4. The proteomic signature could correctly identify pSS patients with an accu-
racy of 93.8% and non-SS patients with an accuracy of 100%. However, none of the protein
biomarkers correlated with saliva flow rates in pSS. A more recent study by Das et al. [20]
identified the upregulation of 104 proteins and downregulation of 42 proteins in pSS
compared to controls. Some enriched pathways in patients’ saliva included JAK-STAT
signalling after IL-12 stimulation, superoxide metabolic process and phagocytosis.

3.1.3. Potential pSS Biomarkers in Peripheral Blood

It is well known that pSS is characterised by an imbalance of immune cell types,
including a loss of T cell tolerance and autoreactivity, increased infiltration of exocrine gland
tissues, contributing to the inflammatory microenvironment, as well as B cell activation,
which is crucial for ectopic lymphoid structure and germinal centre formation, which
eventually leads to the irreversible glandular damage [29]. Table 3.

Mingueneau et al. [30] published a fascinating study whereby, using mass spectrom-
etry and immunochemistry in paired blood and salivary gland biopsies, a SS disease
signature was uncovered. These findings highlighted the presence of activated CD8+

T cells, terminally differentiated plasma cells, and activated epithelial cells in biopsies,
whereas in blood samples they observed a cell signature of low numbers of CD4+ T cells,
memory B cells, plasmacytoid dendritic cells and high numbers of activated CD4+, CD8+ T
cells and plasmablasts. The blood signature observed correlated with clinical parameters
and enabled patient stratification into different endotypes with distinct disease activity
and degrees of glandular inflammation. In line with this result, Van der Kroef et al. [31]
also observed reduced frequencies of memory B cells and plasmacytoid dendritic cells
and increased frequencies of activated HLA-DR CD4+ and CD8+ T cells in pSS patients
compared to HCs.

In 2021, Szabó et al. [32] published an article whose aim was to investigate whether
the distribution of B cells in pSS could be affected by a change in the balance of circulating
T follicular helper (Tfh) cell subsets and follicular regulatory T cells. Utilising multicolour
flow cytometry, they discovered that pSS patients had a significant increase in activated Tfh
cells compared to HCs. Interestingly, anti-La/SSB-positive patients had a higher frequency
of T follicular regulatory cells compared to seronegative patients. In the B-cell compartment,
they observed that memory B cells were decreased, and transitional and naïve B cells were
significantly increased. Lastly, they identified a positive correlation between the proportion
of activated Tfh cells and both the levels of anti-La/SSB autoantibody and the serum IgA
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titre. Moreover, they demonstrated the frequency of pro-inflammatory Tfh1 cells correlated
positively with levels of serum IgG and anti-LA/SSB autoantibody, suggesting the potential
implication of various immune cell subsets in the disease pathogenesis through correlations
with serological markers.

Martin-Gutierrez et al. [33] identified an immune signature derived from the analysis
of 29 different cell subsets including B and T cells, which was driven by five distinct cell
subsets: transitional Bm2′ cells, late memory Bm5 cells, IgD-CD27-B cells, and CD8+ naive
and CD8+ Tem which differentiated between pSS patients and matched HCs. Moreover,
they identified a shared immunological profile across three disease phenotypes: systemic
lupus erythematosus (SLE), pSS and SLE associated with SS. By applying machine learn-
ing approaches, they identified two patient endotypes based on immune cell alterations,
irrespective of the underlying diagnosis, suggesting significant pathogenic commonalities
between these three disease groups. Notably, correlations were found between clinical
manifestations and the frequencies of the immune cell subsets driving the stratification.
CD8+ and CD4+ T cell subsets and B cell populations correlated with the erythrocyte
sedimentation rate (ESR) in pSS patients whereas haemoglobin levels correlated with the
frequency of CD8+central memory T cells. Disease damage scores also correlated with
the frequency of CD8+ TEMRA (effector memory T cells re-expresses CD45RA)cells, CD8+

responder cells (CD25-CD127+) and CD8+CD25-CD127-T cells.
Single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) identified

the expansion of CD4+ cytotoxic T lymphocytes and a population of CD4+ T cells highly ex-
pressing the T cell receptor Alpha Variable 13-2gene, in pSS patients compared to HCs [34].
Pathway enrichment analysis revealed upregulation of genes involved with type I and II
interferon signalling, TNF family signalling and antigen processing and presentation in pSS
patients. Using flow cytometry, it was confirmed the percentages of CD4+ Granzyme B+ T
cells in the CD4+ T cell populations were significantly higher in pSS patients compared to
the HCs. No correlations were found between the frequencies of CD4+ T cells and clinical
or serological parameters, including the disease activity index ESSDAI (EULAR Sjögren’s
syndrome (SS) disease activity index), ESR levels, or the presence of anti-Ro antibodies.

Disease-associated biomarkers can be detected in serum through proteomic or
metabolomic technologies. Serum concentrations of proteins in pSS patients and HCs
were measured by a high-throughput proteomic assay in a recent publication [35]. Using
this complex assay 1110 proteins were quantified and, from those, 82 were found to be
differentially expressed in pSS patients. Significant correlations between nine differently
expressed serum proteins and the ESSDAI score were found. Using a second cohort of pSS
patients, five proteins including CXCL13, TNF-receptor 2, CD48, B-cell activating factor
(BAFF), and PD-L2 (Programmed cell death ligand 2) were validated as pSS-associated
biomarkers. Another study investigated which serum protein biomarkers, measured by
Bio-Plex, could distinguish pSS from other autoimmune diseases, such as SLE and RA [36].
Out of 63 proteins, they were able to identify eight and four proteins that could differentiate
pSS from SLE and RA, respectively. A combination of four different proteins: BDNF (Brain
Derived Neurotrophic Factor), I-TAC/CXCL11, soluble (s) CD163 and Fractalkine/CX3CL1
was identified as a pSS protein signature as it could discern pSS from other autoimmune
diseases. A negative correlation between ESSDAI score and serum sCD163 concentrations
was found.

Different reports [37–39] have also focused on analysing changes in serum metabolites
by different techniques, such as mass spectrometry to find new molecules that could play
a role in the pathogenesis of pSS and could become new drug targets [39]. Using a non-
targeted gas chromatography-mass spectrometry (GC-MS) serum metabolic profile, the
authors detected 21 metabolites that differentiated between pSS patients and controls, with
18 out of 21 metabolites further validated in another cohort. Two metabolites, stearic acid
and linoleic acid had the adequate discriminatory capacity to separate pSS patients from
HCs and correlated with clinical parameters, such as C-Reactive Protein (CRP), ESR, IgG,
anti-Ro/SSA, anti-La/SSB, antinuclear antibodies, IgA and rheumatoid factor.
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Table 3. Examples of studies investigating potential Sjögren’s Syndrome biomarkers in saliva.

Reference Type of
Study/Samples/Methods

Number (N) of pSS
Patients and HCs Age

(Mean ± SD)
Disease Signature Identified Correlations with Clinical Outcomes

BIOMARKERS IN PERIPHERAL BLOOD

Immunophenotype profiling

Mingueneau et al., 2016 [30]

Cross-sectional
PBMC samples, a subset of
paired SG biopsies
Method: CyTOF,
immunohistochemistry

N = 49 pSS
53 years
N = 45 sicca (non-SS)
and HCs
54 years

SG biopsies: increased activated CD8+ T
cells, terminally differentiated plasma cells,
and activated epithelial cells
Blood: 6-cell signature: decreased CD4,
memory B-cells, plasmacytoid dendritic
cell, and increased activated CD4 and CD8
T cells and plasmablasts.

The blood cellular components correlated
with clinical parameters clustered patients
into subsets with distinct disease activity
and glandular inflammation.

Van der Kroef et al., 2020 [31]
Cross-sectional,
PBMC samples
Methods: Luminex, CyTOF

N = 88 SSc
54 years
N = 31 SLE
43 years
N = 23 pSS
56 years
N = 44 HCs
50 years

pSS patients have increased HLA-DR CD4+

and CD8+ frequencies and reduced memory
B cells and pDCs compared to HCs.

Not explored in pSS

Szabó et al., 2021 [32]

Cross-sectional
PBMCs samples
Methods: flow cytometry,
functional analysis and ELISA.

N = 38 pSS
54 years
N = 27 HCs
46 years

pSS patients showed a significant increase
in activated T follicular helper cells.
Frequencies of T follicular regulatory cells
were increased in autoantibody La positive
patients compared to seronegative pSS.
Transitional and naïve B cells increased,
memory B cells decreased,

The percentage of activated T follicular
helper cells showed a positive correlation
with the levels of anti-La/SSB autoantibody
and with serum IgA titre. Frequency of
Tfh1 positive correlation with levels of
serum IgG and anti-LA/SSB autoantibody.

Martin-Gutierrez et al., 2021 [33]
Cross-sectional
PBMC samples
Method: Flow cytometry/ML

N = 45 pSS
59 (30–78)
N = 29 SLE
48 (21–72)
N = 14 SLE/SS
55 (26–56)
N = 31 HCs

Patients with SS/SLE and SLE/SS shared
immunological signatures.
A signature comprising 5/29 immune cell
subsets studied: transitional Bm2′ cells, late
memory Bm5 cells, IgD-CD27-B cells, and
CD8+ naïve and CD8+ Tem cells
stratified patients

ESR correlated with 4 CD8+ T cell, 3 CD4+

T cell and 2 B cell subpopulations, which
drove patient stratification. Hgb level
correlated with % CD8+ Tcm cells. Disease
damage scores across correlated with
%CD8+ T cell, including
CD8+CD25–CD127, CD8+ responder T cells,
and CD8+ Temra cells
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Table 3. Cont.

Reference Type of
Study/Samples/Methods

Number (N) of pSS
Patients and HCs Age

(Mean ± SD)
Disease Signature Identified Correlations with Clinical Outcomes

BIOMARKERS IN PERIPHERAL BLOOD

Single-cell transcriptomic profile

Hong et al., 2021 [34]

Cross-sectional
PBMCs
Methods: scRNAseq and Flow
cytometry

N = 10 pSS patients
48.8 years
N= 10 HCs
33 years

Two subpopulations expanded in pSS: one
expressing cytotoxicity genes (CD4+ CTLs
cytotoxic T lymphocyte), and another
highly expressing T cell receptor (TCR)
variable gene (CD4+ TRAV13-2+ T cell).
Total T cells significantly higher in pSS vs.
HCs (p = 0.008). The IL-1β expression in
macrophages, TCL1A in B cells, and IFN
response genes in most cell subsets were
upregulated in pSS. Susceptibility genes
including HLA-DRB5, CTLA4, and AQP3
were highly expressed in pSS.

Correlation between the percentage of CD4+

CTLs and clinical characteristics, such as
ESR), anti-SSA positive, and ESSDAI but no
significant correlation was found.

Serum proteomics

Nishikawa et al., 2016
[35]

Cross-sectional
Methods: high-throughput
proteomic analysis, ELISA.

Discovery cohort:
N = 30 pSS
61 years
N = 30 HCs
40 years
Validation cohort:
N = 50 pSS
60 years

A total of 82 (57 upregulated and 25
downregulated) serum proteins were
differentially expressed in patients pSS vs.
HCs. Enriched pathways: “extracellular
region”, “chemokine signalling pathway”,
“downstream of TNF-α”, “platelet
activation”, and “platelet degranulation”.
Nine proteins correlated with disease
activity in the discovery cohort.

In the validation cohort five proteins:
CXCL13, TNF-R2, CD48, BAFF, and PD-L2
showed a correlation with ESSDAI, and
therefore, were proposed as disease
activity-associated biomarkers.

Serum concentrations of CXCL13, TNF-R2,
and CD48 were positively correlated with
that of immunoglobulin (Ig) G.
TNF-R2 was negatively correlated with
unstimulated salivary.
BAFF was negatively correlated with the
excretion rate in the submandibular gland.
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Table 3. Cont.

Reference Type of
Study/Samples/Methods

Number (N) of pSS
Patients and HCs Age

(Mean ± SD)
Disease Signature Identified Correlations with Clinical Outcomes

BIOMARKERS IN PERIPHERAL BLOOD

Serum proteomics

Padern et al., 2021 [36] Cross-sectional
Methods: BioPlex, ELISA

N = 42 pSS
62.5 years
N = 28 RA
60.5 years
N = 25 SLE
40 years

Eight biomarkers could statistically
discriminate samples from pSS versus
SLE patients.
Four could statistically discriminate pSS
patients from RA patients.
None of the studied biomarkers could
simultaneously discriminate pSS from RA
and SLE. We, therefore, determined the
positive predictive value (PPV), sensitivity,
and specificity of different combinations of
BDNF, I-TAC/CXCL11, sCD163 and
Fractalkine/CX3CL1 concentrations. These
biomarkers were chosen because they were
those most strongly associated with
distinguishing pSS from the other AIDs.

Negative correlation between pSS activity
according to the ESSDAI score and serum
sCD163 concentrations.

Serum metabolomic profiling

Xu et al., 2021 [39]
Cross-sectional
Serum samples
Method: non-targeted GC-MS

Discovery:
90 pSS patients, M:F = 1/10)
53 years
153 HCs (male/female: 1/10)
50.4 years
Validation:
119 pSS, M:F = 1/10
52.9 years
143 HCs (M:F = 1/10
50.23 years

Increased alanine, tryptophan, glycolic acid,
pelargonic acid,
cis-1-2-dihydro-1-2-naphthalenediol, etc.,
and decrease in catechol, anabasine,
3-6-anhydro-D-galactose, beta-gentiobiose
and ethanolamine in pSS patients vs. HCs.
Stearic acid and linoleic acid distinguished
pSS from HCs (ROC−AUC = 0.97−0.98)

Inflammatory markers, autoantibodies and
Ig G levels correlated with various
metabolite levels.

Legend: pSS—primary Sjögren’s Syndrome, HC—healthy controls, SLE—systemic lupus erythematosus, pDCs—plasmacytoid dendritic cell, Tfh—T follicular helper cells,
ESR—Erythrocyte Sedimentation Rate, Hgb—Haemoglobin, AQP- Aquaporin, CTLA—Cytotoxic T-Lymphocyte Associated, CXCL-C-X-C motif chemokine ligand, TNFR—Tumour
Necrosis factor receptor, BAFF—B-cell activating factor, PDL2—Programmed cell death 1 ligand 2, BDNF—Brain-derived neurotrophic factor, sCD163—soluble CD163, ESSDAI—EULAR
Sjögren’s syndrome (SS) disease activity index.
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3.1.4. Genetic and Epigenetic Studies

Although the aetiology of SS is unknown, it is considered that different factors, such
as environmental, genetic and epigenetic, contribute to the disease pathogenesis. In this
context, several studies [40–43], have focused on finding genetic and epigenetic factors that
could be associated with SS. Transcriptomics, genome-wide association studies (GWAS) to
identify genomic variants that are statistically associated with a risk of suffering the disease
and epigenetic studies to determine whether gene expression is active or inactive based on
DNA methylation are widely used nowadays.

Multi-omic pSS Signatures

It is well known that the diagnosis and treatment of SS, is challenging due to the exist-
ing molecular and clinical heterogenicity, which reflects different disease stages, variable
types of organ involvement, disease severity and treatment, as well as patient-specific
factors, such as age, environmental exposures and comorbidities. Thus, recent research
(Table 4) has been focused on integrating genomic/epigenomic, transcriptomic, proteomic,
metabolomic and immunophenotype characterisation and clinical data to gain more knowl-
edge about the disease pathogenesis as well as being able to classify patients into groups
defined by their molecular pattern.

Integrated transcriptomic and serum proteomic data with an immune signature com-
prising 24 different cell populations highlighted the presence of a pSS gene signature driven
by interferon genes as well as ADAMs (a disintegrin and metalloprotease) substrates [44].
Interestingly, the genomic regions coding the genes identified as part of the disease sig-
nature were predominantly hypomethylated, therefore, transcriptionally activated. In
addition, the proteomic analysis revealed some correlations between ADAMs substrates
and ESSDAI scores. Relevantly, the authors confirmed that CD8+ T cells, especially TEMRA,
produced the signature observed. Similarly, transcriptomic and cytokine profiling of pSS
patients allowed the stratification of pSS patients into three distinct clusters, defined by
IFN-responsive and inflammation-associated genes [45]. Interestingly, patients belonging to
the cluster with the strongest IFN and inflammation gene signature also had high ESSDAI
scores and elevated levels of anti-Ro/SSA and La/SSB autoantibodies. This cluster was
also defined by a high serum concentration of cytokines, such as LIGHT and Blys and
chemokine CXCL13 [45]. Soret et al. [46] and Barturen et al. [47] independently validated
some of these findings, by showing a pSS patient transcriptomic stratification also driven
by IFN-related pathways. Interestingly, in both studies, a cluster of patients with low
disease activity was identified, characterised by a transcriptomic profile similar to that of
HCs. Soret et al. [46] did not detect any differentially expressed genes, single nucleotide
polymorphisms (SNPs) or differences in B and T cells, monocytes, basophils, eosinophils
and neutrophils frequencies in pSS patients with low disease activity when compared
to HCs.
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Table 4. Examples of studies investigating potential Sjögren’s Syndrome biomarkers using multi-omic approaches.

Reference Type of
Study/Samples/Methods

Number (N) of pSS
Patients and HCs
Age (Mean ± SD)

Disease Signature Identified Correlations with Clinical Outcomes

MULTIOMIC SIGNATURES

Tasaki et al., 2017 [44]

Cross-sectional
Methods: whole blood
Transcriptomes microarrays,
serum proteomes and peripheral
immunophenotyping

N = 36 pSS patients
61 years
N = 36 HCs
39 years

pSS gene signature predominantly involves the interferon
signature including HERC5, EPSTI1 and CMPK2and
ADAMs substrates. SGS was significantly overlapped with
SS-causing genes indicated by a genome-wide association
study as the regions that code genes in the SS gene
signature were hypomethylated. Combining the molecular
signatures with immunophenotypic profiles revealed that
cytotoxic CD8 T cells were associated with SGS.

SGS positively correlated with the levels of
autoantibodies, including anti-Ro/SSA and
anti-La/SSB antigen–antibodies and serum
IgG levels.
Most ADAM substrates showed significant
positive correlations with ESSDAI.

James et al., 2019 [45]
Cross-sectional
Methods: RNAseq, Bioplex,
ELISA, Luminex

N = 47 pSS patients
52 years

Three clusters of patients were identified based on
transcriptomic analysis. No demographic differences
between clusters.
C1 weakest IFN signature and minimal activity of
inflammation gene modules.
C2 strongest IFN signature, strongest inflammation
module. Higher ESSDAI scores. More patients presented
anti-Ro and anti-La antibodies and higher levels. Higher
levels of cytokines, such as LIGHT and Blys. CXCL13.
C3 intermediate IFN signature, low activity of the
inflammation modules.c3 higher levels of IL1, IL2 IL2RA.

C2 cluster presented higher ESSDAI scores
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Table 4. Cont.

Reference Type of
Study/Samples/Methods

Number (N) of pSS
Patients and HCs
Age (Mean ± SD)

Disease Signature Identified Correlations with Clinical Outcomes

MULTIOMIC SIGNATURES

Soret et al., 2021 [46]

Cross-sectional
Whole blood
Methods: RNAseq, GWAS,
Methylation and flow cytometry
Serum sample
Methods: Luminex, automated
chemiluminescent
immunoanalyzer (IDS-iSYS)

N = 304 pSS patients
58 years
N = 330 HCs
53 years

Clustering of pSS samples based on transcriptomic data
identified 4 different clusters (C1, C2, C3 and C4).
C1 was enriched with IFN-related pathways, present an
enriched up-regulated IFN signalling pathway; 35 SNPS
were detected in genes associated with the immune
system (HLA-DQB1, HLADQA1, HLA-DRA, HLA-C,
HLA-G), signal transduction (NOTCH4), developmental
biology (POU5F1), gene expression (DDX39B).
Methylation in 87 genes. T cell lymphopenia. Increased in
The IFNγ-induced protein (CXCL10/IP-10) as well as
CCL8/MCP-2 and TNFα. IL-1 RII, was downregulated.
No DEGs were noticed when comparing C2 to HCs. No
SNPS were found in C2. Methylation of IFN genes MX1
and NLRC5. Frequency and the absolute number of T and
B cells, monocytes, NK-like, DC, basophils, eosinophils,
and neutrophils are similar to HCs.
C3 was enriched with pathways related to B cell activation,
and IFN signalling. SNPs detected in HLA-DQA,
HLA-DRA (2 SNPs), BTNL2 and HCG23. Methylation in
56genes. Increased frequency of monocytes and
lymphocytes. Increased in The IFNγ-induced protein
(CXCL10/IP-10) as well as CCL8/MCP-2 and TNFα. IL-1
RII, was downregulated.
C4 endotype with higher DEG including T and B
activation, cytokine signalling and IL-15 production. The
only SNPs identified in the intron LINC02571 gene and
were previously associated with a risk for developing SLE.
Methylation in 3000 genes. Decreased in B and T cells and
monocytes. High percentage of neutrophils.

No statistically significant differences
between the four clusters in ESSDAI or
PGA mean scores.
Statistically significant differences in the
distribution of reported arthritis, rate of
cancer history, coronary artery disease and
chronic obstructive pulmonary disease
were observed between the four clusters.
Patients from C4 reported more severe
clinical symptoms compared to the three
other clusters.
Some serological characteristics were
significantly different across the four
clusters, C1 and C3 have higher
hypergammaglobulinemia, extractable
nuclear antigen (ENA) antibodies, the
presence of serum anti-SSA52/anti-SSA60
autoantibodies and higher circulating
kappa and lambda free light chains (cFLC).
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Table 4. Cont.

Reference Type of
Study/Samples/Methods

Number (N) of pSS
Patients and HCs
Age (Mean ± SD)

Disease Signature Identified Correlations with Clinical Outcomes

MULTIOMIC SIGNATURES

Barturen et al., 2021 [47]

Cross-sectional
Follow-up
Methods:
Whole blood transcriptome and
methylome

N = 955
cross-sectional
patients with
7 autoimmune
diseases
53.4 years
N = 113 follow up
patients.
47 years
N = 267 HCs
46 years

Four clusters were identified and validated; 3 clusters
represented inflammatory, lymphoid and interferon
patterns; 1 cluster with low disease activity with no
specific molecular pattern.

SLEDAI and ESSDAI scores were higher in
all 3 clusters compared to the
undefined cluster.

Legend: pSS—primary Sjögren’s Syndrome, HC- healthy controls, HERC5—HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase 5, EPSTI1—Epithelial Stromal Interaction
1, CMPK2—Cytidine/Uridine Monophosphate Kinase 2, ADAM—A Disintegrin And Metalloprotease, SGS-Sjögren´s gene signature, IFN—interferon, CXCL-C-X-C motif ligand,
SNPs—Single nucleotide polymorphisms, Notch—Neurogenic locus notch homolog protein, MX1—myxovirus resistance protein 1,NLRC5—NLR Family CARD Domain Containing 5,
CCL8/MCP2—monocyte chemotactic protein-2, SLEDAI—Systemic Lupus Erythematosus Disease Activity Index, ESSDAI—EULAR Sjögren’s syndrome (SS) disease activity index.



Biomedicines 2022, 10, 1773 18 of 23

4. Discussion

The significant progress made by high-throughput technologies, increased effort for
large-scale academic and industry research collaborations to facilitate external validation,
and advancement of computer algorithms for big data integration and cluster analysis
provide unprecedented opportunities for better patient classification, improved pathogenic
characterisation, prediction and therapeutic opportunities across all autoimmune diseases.
It is increasingly recognised the need for better quality research, including both pre-clinical
and clinical validation to enable meeting the ultimate goal of achieving clinical utility and
patient benefit. Despite the impressive therapeutic advances leading to licensing of many
new targeted therapies in autoimmune rheumatic disease (ARDs), such as inflammatory
arthritis or SLE [48], patients with SS do not benefit from the same range of therapeutic
options available for other conditions, despite shared pathogenesis [49]. Many of the signals
of efficacy from early phase clinical trials of various biologics investigated in SS have not
been replicated in larger studies and research is ongoing [50,51].

Efforts have been made in improving the way the response to treatment in clinical trials
of patients with SS is assessed [52], while current treatment recommendations expanded to
targeted biologic treatment options despite of lack of large phase 3 clinical trials [10]. In
addition, novel approaches, such as advocating for a molecular classification of SS to drive
precision medicine strategies have been proposed [46], which suggests that the future of
clinical research in SS will likely involve multi-omic characterisation of patients (Figure 1).
In this respect, good quality, reproducible research involving large cohort collaborations to
capture the disease heterogeneity, as well as facilitate the validation of disease signatures,
is required to improve knowledge about SS pathogenesis and facilitate the much-needed
therapeutic advances.
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It is widely recognised that SS is associated with a genetic predisposition, similar
to other ARDs, which has been confirmed in large GWAS studies which validated the
associations with HLA, IRF5, STAT4 and BLK genetic loci, while also detecting novel
susceptible loci [53]. The best characterised are the HLA genes, associated with an increased
disease risk ranging from 1.85 to 3.41 as per a large meta-analysis [54]. Various non-HLA
genes associated with the disease have also been described but very few have been validated
across studies [11].
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Research into the role of environmental factors and epigenetics currently supports
the old hypothesis that a ubiquitous virus is a potential trigger for the mechanism of
autoimmunity, with most data potentially implicating Epstein–Barr Virus (EBV), Human T
cell Leukemia Virus-1 (HTLV-1), or Coxsackie virus in the development of SS [55], despite
the lack of conclusive evidence for their causal role. The most well-defined epigenetic
mechanisms likely to play a role in the pathogenesis of SS have been described as DNA
methylation, histone modifications and non-coding RNAs [42].

SS is characterised by a pro-inflammatory environment and cytokine profiling of
serum, tears and saliva identified a predominance of pro-inflammatory cytokines, such as
MIP, IL-1, IFN-γ, TNF-α, IL-6, IL-12 or IL17 in various proportions, as well as increased
anti-inflammatory molecules, such as IL-4 or IL-10. Some of these data have been validated
across studies, while some of the biomarkers, including cytokine ratios suggesting a Th1
signature also correlated with clinically meaningful parameters, such as tear and saliva
secretion [16,17,24].

Dysregulation of various immune cell populations has been hypothesised as one of the
key factors implicated in disease pathogenesis. Immune profiling of patients with SS found
distinct immune signatures in the salivary gland tissue compared to peripheral blood, as
expected. The main players seem to be activated CD8+ T cells, terminally differentiated
plasma cells, and activated epithelial cells in biopsies, whereas the peripheral blood signa-
tures comprised high numbers of activated CD4+, CD8+ T cells. Although these signatures
were not perfectly validated across various studies [30,33], some correlated with serological
and clinical parameters, suggesting a potential clinical utility.

Proteomic analysis revealed distinct signatures in tears and saliva compared to the
serum of patients SS, with the majority of signatures being able to differentiate, with
high accuracy, SS patients from controls, and a few correlating with clinical meaningful
parameters. Enriched pathway analysis also overlapped with some cytokine signature
findings, such as the upregulation of the JAK-STAT signalling after IL-12 stimulation in
saliva [27]. The protein patterns identified in saliva were associated with B cell immune
responses, macrophage differentiation and T cell chemotaxis, which showed similarities
with salivary gland histopathological features [27], suggesting a potential role for saliva
analysis as a proxy measure of glandular inflammation.

Transcriptomic profiling of salivary gland tissue was characterised by the upregulation
of IFN-α and IL-12/IL-18 signalling, as well as CD3/CD28 T cell activation, CD40 signalling
in B-cells, as well as significant correlation with the IFN-α score in PBMCs [28], which shows
similarities with proteomic profiles of saliva. IFN response genes were also upregulated in
most cell subsets when assessed by single-cell blood transcriptomic analysis, highlighting
the role of the IFN activation pathway in the pathogenesis of the disease. In terms of
potential clinical implications, the IFNγ/IFNα mRNA ratio in salivary gland tissue was
shown to have the best discriminative capacity for lymphoma development in patients
with pSS [56]. Patient stratification based on transcriptomic signatures identified distinct
clusters driven by IFN and B cell activation, as well as SNPs in HLA genes and epigenetic
modifications including gene hypomethylation [46], all processes recognised as involved
in the disease pathogenesis, although the clinical significance of patient stratification was
less clear.

Metabolomic characterisation of serum, tears and saliva of patients with pSS identi-
fied distinct signatures with almost no overlap between various biologic fluids [18,26,39].
Further research exploring the inter-individual variability and its stability over time is
required [26].

The power of integrating several omic technologies in the investigation of the disease
fingerprints harnessed evidence for the role of cytotoxic CD8 T cells in the disease patho-
genesis [44] as well as enabled the identification of inflammatory, lymphoid and IFN-driven
patient clusters generated by a combination of the transcriptome, methylome and cytokine
profilin [45,47]. Patient clusters driven by high IFN and pro-inflammatory signatures were
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also associated with high disease activity suggesting that these pathways are relevant to
the disease pathogenesis.

5. Conclusions

Omic investigation of SS provides a valuable insight into the disease pathogenesis and
patient molecular heterogeneity which has implications for SS prognosis and better man-
agement strategies to address the unmet patient needs. Further research into standardising
technologies and validating findings across large patient populations, as well as further
exploration of potential correlations with clinical significance, are required to establish
which are the strongest molecular signals that could be potentially translated into research
with patient benefit. Ultimately, integrating data provided by multiple omics analysis can
provide the much-required complementary knowledge related to the interplay between
genes, environment, immune cell activation and pro-inflammatory milieu which all sustain
the pathogenic processes associated with SS.

Understanding how the disease’s natural course or treatment impacts these molecular
signatures, as well as which pathways can be targeted by available and novel treatments
will open a new era for research in SS.
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