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This paper introduces the notion of comodularity, to cocluster observations of bipartite networks into co-
communities. The task of coclustering is to group together nodes of one type with nodes of another type,
according to the interactions that are the most similar. The measure of comodularity is introduced to assess the
strength of co-communities, as well as to arrange the representation of nodes and clusters for visualization, and
to define an objective function for optimization. We demonstrate the usefulness of our proposed methodology on
simulated data, and with examples from genomics and consumer-product reviews.
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I. INTRODUCTION

Networks are used to parsimoniously represent relation-
ships between entities of the same type. Classical analysis
methods use parametric models of network data, such as
degree-based and/or community-based models [1–6]. The last
few years have seen a flurry of activity in statistical network
analysis (see, for example, [7–10]). One of the best-studied
tools is the stochastic blockmodel [1,2], and various exten-
sions to it [11–13]; various methods of fitting this model
have been proposed, where maximizing modularity remains
an important practical approach [2,14]. Recent work in clus-
tering network nodes has generalized the applicability of the
stochastic blockmodel by showing that arbitrary exchangeable
networks can be represented using a blockmodel [2,15,16];
such a representation is called a “network histogram.” The
network histogram method [16] can be used to estimate
the optimal granularity at which communities, or functional
subnetwork modules, can be approximated and isolated in
social and biological networks, i.e., to estimate the optimal
number of clusters or communities of network nodes. Al-
ternatively, several Bayesian approaches to estimating the
optimal number of communities in a network have also been
proposed [17–19]. However, it is well established that when
clustering is implemented, estimating the optimal number of
clusters is an important and separate problem from the design
of the clustering methodology [20]. For example, sophisti-
cated solutions to this problem such as the gap statistic [21]
propose methodology for estimating the optimal number of
clusters, and this is done independently from the choice of
clustering methodology. In this paper we focus on the problem
of clustering methodology for variables of different types, i.e.,
coclustering.

Studying relationships between variables of the same type
is naturally very useful; its simplest generalization is to study
relationships between variables of a different type; this is
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known as the coclustering problem [22–25], and is of much
current interest in application areas from genomics to natu-
ral language processing [26–28]. The coclustering problem
can also be approached nonparametrically, as is made clear
by [23] and [25]. We start from the modularity approach
to recognizing communities [14], realizing that extending
such understanding to variables of different types is nontriv-
ial [24,29]. Having recognized communities in both types of
variables, we need to transform the clustering or grouping of
both types of variables into an ordering of groups. This is not
inherent to the formulation of the Aldous-Hoover represen-
tation of the generating mechanism of the random array we
are modeling, but is important for visualization purposes. We
aggregate the modularity over the groupings of each of the
two types of variables (corresponding to rows or columns)
to guide this choice of visualization. We also use modular-
ity to compare co-communities, which we define as pairings
of one group or cluster of each type of node, providing a
unique paradigm for understanding these important bipartite
network structures. Finally, to demonstrate the usefulness of
our proposed methodology, we analyze two characteristic net-
work data sets, as follows: a genomics data set, in which a
co-community represents a functional module that involves
two types of genomic features (i.e., measured on two different
data modalities or platforms), and a movie review data set, in
which a co-community represents a set of movies (probably
with similar characteristics) enjoyed by a particular group of
(possibly similar) people. Importantly, in our model setup, it
is possible for a node to be part of one co-community, or part
of multiple co-communities, or part of no co-communities.
Thus, we show how our proposed analysis methods enable us
to discover both known and hitherto unknown characteristics
of these two data sets. This paper is organized as follows:
Section II defines the stochastic blockmodel, and gives the
representation of an arbitrary separately exchangeable array.
It also defines the comodularity, and explains how the array
data will be analyzed. Then Sec. III shows how to find the
co-communities in data, and Sec. IV gives examples to il-
lustrate the performance of our proposed methodology. The
Appendixes provide all proofs of the paper.
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FIG. 1. Co-community structure. The margins of the random
array represent different types of nodes, and the array elements define
the edges of the bipartite network. The shaded blocks represent
co-communities of the two different types of nodes

II. COMODULARITY AND CO-COMMUNITY DETECTION

We begin this section by defining the degree-corrected
stochastic coblockmodel [22,23,30] together with notation.
We then give a definition of the Newman-Girvan modular-
ity [31] and, by analogy, we define a quantity which we
term the “comodularity,” and we specify an algorithm for
maximizing this quantity. While previous work (see, e.g., that
by [32]) has separately identified groupings of the different
types of nodes, the notion of “comodularity” considers the
pairing into blocks of these groupings of different types of
nodes (an issue which does not arise in networks with only
one type of node). We call such a pairing a “co-community,”
illustrated by the shaded blocks in Fig. 1. We show that under
certain conditions, maximizing the comodularity in this way is
equivalent to maximizing the model likelihood of the specified
degree-corrected stochastic coblockmodel.

Definition 1 (Degree-corrected stochastic coblockmodel).
For m, l ∈ N+, assign the labeling for the set of X nodes
as {1, . . . , m}, and for the set of Y nodes {1, . . . , l}, where
this labeling is chosen without loss of generality. Denote
an X -node grouping as g(X )

p ∈ G(X ), p ∈ {1, . . . , k(X )}, and
a Y -node grouping as g(Y )

q ∈ G(Y ), q ∈ {1, . . . , k(Y )}, where
G(X ) and G(Y ) are exhaustive lists of mutually exclusive X -
and Y -node groupings, respectively. Define map functions
z(X )(i) and z(Y )( j), such that g(X )

p = {i : z(X )(i) = p} and
g(Y )

q = { j : z(Y )( j) = q}. Define co-community connectivity

parameters θ ∈ [0, 1]k(X )×k(Y )
, where θz(X ) (i),z(Y ) ( j) is the

propensity of X -node i in group z(X )(i) to form a connection
with Y -node j in group z(Y )( j). Define also node-specific
connectivity parameters π(X ) ∈ Rm

�0 and π(Y ) ∈ Rl
�0. Let the

elements of the adjacency matrix A ∈ {0, 1}m×l follow the

law of

Ai j ∼ Bernouilli
(
π

(X )
i π

(Y )
j θz(X ) (i),z(Y ) ( j)

)
,

1 � i � m, 1 � j � l. (1)

Then, we call the generative mechanism of Ai j the “degree
corrected stochastic coblockmodel.”

We note that the terminology “X nodes” and “Y nodes” is
nonstandard; we introduce it here to increase clarity of expo-
sition. To improve identifiability of parameters of the model
in Definition 1, and defining a co-community as a pairing of
the X -node grouping g(X )

p with the Y -node grouping g(Y )
q , we

introduce a special case of the blockmodel favored by many
other authors [33], that θz(X ) (i),z(X ) ( j) may take only two values:

θp,q =

⎧⎪⎨⎪⎩
θin if the pairing of X -node grouping g(X )

p with

Y -node grouping g(Y )
q is a co-community,

θout otherwise.
(2)

We can also replace the Bernoulli model likelihood with a
Poisson likelihood: because the Bernoulli success probability
is typically small, and the number of potential edges (i.e.,
pairings of nodes) is large, a Poisson distribution with the
same mean converges to the same distribution, and so it makes
little difference in practice [11,34]. Its usage greatly simplifies
the technical derivations. Hence, we calculate the model log
likelihood as follows (assuming Ai j ∈ {0, 1} and therefore
Ai j! = 1 for all i, j):

�(θ,π(X ),π(Y ); G(X ), G(Y ) )

=
m∑

i=1

l∑
j=1

Ai j ln
(
π

(X )
i π

(Y )
j θz(X ) (i),z(Y ) ( j)

)
− π

(X )
i π

(Y )
j θz(X ) (i),z(Y ) ( j). (3)

The Newman-Girvan modularity [31] measures, for a par-
ticular partition of a network into communities, the observed
number of edges between community members, compared to
the expected number of edges between community members
without the community partition with the degree correction.
The Newman-Girvan modularity may be defined as follows:

Definition 2 (Newman-Girvan modularity). Define A ∈
{0, 1}n×n as a symmetric adjacency matrix representing a
unipartite network with nodes i ∈ {1, . . . , n}, define d as the
degree vector of the nodes of this network, di = ∑n

j=1 Ai j ,
and define the normalizing factor d++ as twice the total
number of edges, d++ = ∑n

i=1 di. Define a community, or
grouping, of nodes as g ∈ G, where G represents the set of all
such groupings of nodes, define the map function z(i) such
that ga = {i : z(i) = a}, and let I[z(i) = z( j)] specify whether
nodes i and j appear together in any community g, such that

I[z(i) = z( j)] =
⎧⎨⎩

1 if nodes i and j are grouped together
in any community g ∈ G

0 otherwise.

Then, the Newman-Girvan (NG) modularity QNG is defined as

QNG = 1

d++

n∑
i=1

n∑
j=1

[
Ai j − did j

d++

]
I[z(i) = z( j)]. (4)
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The comodularity is then defined by analogy with the
Newman-Girvan modularity (Definition 2) as follows:

Definition 3 (Comodularity). With m and l given by Defi-
nition 1 and A generated according to Definition 1, define d(X )

and d(Y ) as the degree vectors of the X and Y nodes of the
network, d (X )

i = ∑l
j=1 Ai j and d (Y )

j = ∑m
i=1 Ai j , and define

the normalizing factor d++ as twice the total number of edges,
d++ = ∑m

i=1 d (X )
i = ∑l

j=1 d (Y )
j . With g(X ) and g(Y ), z(X ) and

z(Y ) also defined in direct analog according to Definition 1, let
ct = {p, q} ∈ C, t = {1, . . . , T }. The enumeration of the pair
{p, q} is arbitrary, and is used to facilitate ease of access of the
coblocks in a chosen order. The coblock ct specifies that the
X -node grouping g(X )

p is paired with the Y -node grouping g(Y )
q ;

we refer to such a pairing as a “co-community.” Furthermore,
let �(C; G(X ), G(Y ); i, j) ∈ {0, 1} specify whether nodes i and
j appear together in any co-community c ∈ C, such that

�(C; G(X ), G(Y ); i, j) =
{

1 if {z(X )(i), z(Y )( j)} = c : c ∈ C

0 otherwise.

Then, the comodularity QXY is defined as

QXY = 1

d++

m∑
i=1

l∑
j=1

[
Ai j − d (X )

i d (Y )
j

d++

]
�(C; G(X ), G(Y ); i, j).

(5)

We note that for the comodularity (unlike the Newman-
Girvan modularity) we require a set of pairings of X -node
groupings with Y -node groupings C, such that each ct ∈ C
is a pairing of an X -node grouping g(X )

p ∈ G(X ) with a Y -
node grouping g(Y )

q ∈ G(Y ). Also, due to the asymmetry of the
coclustering problem, ct = {p, q} �= {q, p}. This separately
specified set of parings C is not required in the case of the
Newman-Girvan modularity, because in the unipartite net-
work setting, there is only one type of node, and hence node
groupings already “match up” with one another. This can be
visualized, in the unipartite network setting, as community
structure present along the leading diagonal of the adjacency
matrix, if the nodes are ordered by community. In the co-
community setting, an X -node grouping g(X ) may be paired
in C with many, with one, or with no Y -node groupings
g(Y ) ∈ G(Y ), and equivalently a Y -node grouping g(Y ) may be
paired in C with many, with one, or with no X -node groupings
g(X ) ∈ G(X ) (Fig. 1). Further, if the X nodes and Y nodes of the
network are arranged in the adjacency matrix according to the
groupings g(X ) and g(Y ), there is no reason co-communities
should appear along the leading diagonal. Hence, the function
� in Eq. (5) generalizes the role of the indicator function
in Eq. (4). We note that other approaches to this problem
directly specify a null model [35]. We also note that some-
times in practice we must relax the requirement of � ∈ {0, 1};
the reason for this is made clear in the technical derivations
(for tractability) in Appendix A which relate to Algorithm 1
(which follows next).

Community detection of k communities can be performed
by fitting the degree-corrected stochastic blockmodel. This
is equivalent, under many circumstances, to spectral cluster-
ing [2,33,36], which may be carried out by grouping the nodes
into k clusters in the space of the eigenvectors corresponding

to the second to kth greatest eigenvalues of the Laplacian L =
D−1/2AD−1/2, where D is the diagonal matrix of the degree
distribution. Co-community detection in a bipartite network
of nodes attributed to the variables X and Y (respectively, X
nodes and Y nodes) can equivalently be performed by degree-
corrected spectral clustering [32].

A procedure to find an assignment of X and Y nodes to k(X )

X -node groupings (“row clusters”) and k(Y ) Y -node groupings
(“column clusters”), respectively, which finds a (possibly lo-
cally) optimum value of the comodularity QXY , is specified in
Algorithm 1:

Algorithm 1. With A and QXY defined as in Definition 1,
and d(X ) and d(Y ) defined as in Definition 3:

(1) Calculate the co-Laplacian LXY [32] as

LXY = (D(X ) )−1/2A(D(Y ) )−1/2, (6)

where D(X ) and D(Y ) are the diagonal matrices of d(X ) and
d(Y ), respectively.

(2) Calculate the singular value decomposition (SVD) of
the co-Laplacian LXY .

(3) Separately cluster the X and Y nodes in the spaces
of the left and right singular vectors corresponding to the
second to k(X )th andsecond to k(Y )th greatest singular values,
respectively, of this SVD of LXY .

(4) Identify the set of co-communities C, as pairings of
particular X -node groupings and Y -node groupings.

We note that there are a range of choices and alterna-
tives for steps 1–3 of Algorithm 1. The specifics of how
to identify the set of co-communities in step 4 of Algo-
rithm 1, i.e., the identification of C as particular pairings
of the identified X -node groupings and Y -node groupings,
are discussed further in Sec. III. Technical derivations relat-
ing to Algorithm 1 appear in Appendix A, and are based
on arguments made previously in the context of unipartite
(symmetric) community detection [33] for two communities,
extending them to this context of (asymmetric) co-community
detection. We note in particular that the notion of modularity
assumes that within-community edges are more probable than
between-community edges, and therefore modularity maxi-
mization is only consistent if constraints are applied to ensure
this assumption holds [11]. In the community detection set-
ting, under suitable constraints, the solutions which maximize
model likelihood and modularity are identical [2].

Proposition 1. The solution which maximizes the model
likelihood specified in Eq. (3), subject also to the constraint
of Eq. (2), is equivalent to the maximum comodularity assign-
ment obtained via Algorithm 1.

Proof. The proof for the case of two co-communities ap-
pears in Appendix B. It extends arguments made previously
in relation to community detection [33] to this context of
co-community detection. �

III. IDENTIFICATION AND COMPARISON
OF CO-COMMUNITIES

Fitting the stochastic coblockmodel by spectral clustering
as described in Algorithm 1 involves using k means to cluster
the X and Y nodes in the spaces of the left and right singular
vectors of the co-Laplacian [Eq. (6)]. However, there is sub-
sequently the problem of how to identify the co-communities,
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as represented by the shaded blocks in Fig. 1. This problem
of identifiability is novel: it does not arise when fitting the
stochastic blockmodel to unipartite networks by spectral clus-
tering, because of the symmetry of the problem (if there is
only one type of node, then different types of nodes do not
need to be grouped). Finding the co-communities (illustrated
by the shaded blocks in Fig. 1) consists of estimating the set
C (Definition 3) of pairings of X -node groupings g(X ) ∈ G(X )

with Y -node groupings g(Y ) ∈ G(Y ). It replaces identifying the
“diagonal” of the blockmodel, a concept that is less straight-
forward than for a symmetric adjacency matrix. In this section
we propose a methodology to address this problem in a fully
automated way in the bipartite network setting, along with
related issues of visualization and optimization.

Fitting the symmetric blockmodel in the unipartite com-
munity detection setting, there are exactly k = k(X ) = k(Y )

communities (because of symmetry). Each row grouping
matches up with exactly one column grouping, because the
row and column groupings are the same thing. On the other
hand, fitting the asymmetric coblockmodel by spectral clus-
tering as in Algorithm 1 leads to k(X ) and k(Y ) row and column
clusters. Hence, these k(X ) and k(Y ) row and column clusters
provide k(X ) × k(Y ) potential co-communities. Which of these
are significant (as in the shaded blocks in Fig. 1)? The best-
known solution to this problem clusters all the nodes at once
(after concatenating the left and right singular vectors) [32],
instead of clustering the X and Y nodes separately. However,
that approach requires k(X ) = k(Y ), so that each X -node group-
ing is paired with exactly one Y -node grouping. Our approach
does not have this restriction, and hence can model a broader
class of bipartite network structures, by introducing the no-
tion of co-communities, as illustrated in Fig. 1. On the other
hand, our approach must answer the question, how should we
assess and compare the k(X ) × k(Y ) potential co-communities?
That is, how should we compare each different pairing of an
estimated X -node grouping ĝ(X ) ∈ Ĝ(X ), with an estimated Y -
node grouping ĝ(Y ) ∈ Ĝ(Y ), to provide an assignment of the X
nodes and Y nodes to co-communities? In practice, we expect
the number of co-communities, T = |C| (where | · | represents
cardinality), to be significantly less than k(X ) × k(Y ). In the
unipartite community detection setting, k(X ) = k(Y ) = k, and
only the blocks on the diagonal can be communities: hence in
effect there we have T = k = √

k(X ) × k(Y ).
To estimate the set of co-communities, ct ∈ C, t =

{1, . . . , T }, in this bipartite network setting, we calculate
the “local comodularity” for each pairing ĝ(X ) with ĝ(Y ), by
considering a relevant subpart of the comodularity matrix B
[Eq. (7)]:

Definition 4 (Local comodularity). With A given by Defi-
nition 1, with d(X ), d(Y ) and d++ given by Definition 3, with

Bi j = Ai j − d (X )
i d (Y )

j

d++ , B = A − 1

d++ d(X )(d(Y ) )�, (7)

and with the set of X -node groupings and the set of Y -
node groupings estimated according to Algorithm 1 as Ĝ(X )

and Ĝ(Y ), respectively, where |Ĝ(X )| = k(X ) and |Ĝ(Y )| = k(Y ),
where | · | represents cardinality, for a particular pairing of es-
timated X -node grouping ĝ(X ) ∈ Ĝ(X ) with estimated Y -node
grouping ĝ(Y ) ∈ Ĝ(Y ), the local comodularity QXY (ĝ(X ), ĝ(Y ) )

is defined as

QXY (ĝ(X ), ĝ(Y ) ) = 1

d++
∑
i∈ĝ(X )

∑
j∈ĝ(Y )

Bi j . (8)

“Local” here means that we are considering a statistic for
an individual block, out of the many blocks which are found
in general along each row and column. Each of the k(X ) × k(Y )

possible pairings of ĝ(X ) with ĝ(Y ) can be defined, or not,
as a co-community; doing so means that they are included
in, or excluded from, the estimated set of co-communities
Ĉ (Definition 3). To consider all permutations, 2k(X )×k(Y )

such
assignments would need to be considered, which would be
computationally very demanding. However, this problem can
be avoided by defining summary statistics targeted for particu-
lar purposes. The three such purposes which we consider here
are described in the following subsections: Sec. III A, com-
paring potential co-communities and assessing their strength;
Sec. III B, arranging the co-communities for visualization;
and Sec. III C, defining an algorithmic objective function to
be optimized, when determining co-community partitions.

A. Comparing and assessing significance of co-communities

Under a null model of no co-community structure,
θz(X ) (i),z(Y ) ( j) = const, for all i, j. Therefore, referring to the
log-linear model [34], Eq. (1) becomes

Ai j ∼ Bernouilli

(
π

(X )
i π

(Y )
j

π++

)
, (9)

where we have defined

θz(X ) (i),z(Y ) ( j) = 1/π++. (10)

Hence under this null,

E(Ai j ) = π
(X )
i π

(Y )
j

π++ ,

which implies that for large networks which are not too sparse,
E(Bi j ) is nearly zero. We define the informal idealized quan-
tities B̃ and Q̃XY in comparison with Eqs. (7) and (8):

B̃ = A − 1

π++ π(X )(π(Y ) )�, (11)

and

Q̃XY (ĝ(X ), ĝ(Y ) ) = 1

π++
∑
i∈ĝ(X )

∑
j∈ĝ(Y )

B̃i j, (12)

where the empirical degree distributions d(X ) and d(Y ) have
been replaced by the theoretical node connectivity parameters
π(X ) and π(Y ), and the empirical normalization factor d++ is
also replaced by the theoretical normalization factor π++.

If the pairing of X - and Y -node groupings ĝ(X ) and ĝ(Y )

exhibit some co-community structure, then Eq. (10) no longer
holds, and so the null model does not hold either. The stronger
this co-community structure is, the further we move from the
null model, and the greater θ becomes relative to 1/π++. This
corresponds to E(Ai j ) becoming larger than π

(X )
i π

(Y )
j /π++,

which is equivalent to the observed number of edges in the
co-community becoming greater than the expected, under the
null of no co-community structure. This in turn means that
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Q̃XY also becomes more positive. In other words, the further
we move from the null model, the greater tendency of the
X nodes and Y nodes of these groups to form connections
with one another (compared with their expected propensity
to make connections with any nodes, of the opposite type)
and therefore constitute a strong co-community. Hence, a
parsimonious method of comparing potential co-communities
is simply to compare their local comodularity, QXY (ĝ(X ), ĝ(Y ) ).
This naturally leads to a ranking of potential co-communities
according to their strength, e.g., leading to identification of the
shaded blocks in Fig. 1 by some thresholding criterion, such
as statistical significance.

An estimate of statistical significance of a potential co-
community can also be made, as follows. Noting that, with
adjacency matrix A defined according to the Bernoulli distri-
bution of Definition 1, with fixed θz(X ) (i),z(Y ) ( j) = 1/π++,

Var(B̃i j ) = Var(Ai j ) =
(

π (X )π (Y )

π++

)(
1 − π (X )π (Y )

π++

)
,

and assuming probabilities of observing links between dif-
ferent pairs of nodes are independent, the variance of
Q̃XY (ĝ(X ), ĝ(Y ) ) can be approximated (for deterministic node-
groupings) as

Var(Q̃XY (ĝ(X ), ĝ(Y ) ))

= 1

(π++)2

∑
i∈ĝ(X )

∑
j∈ĝ(Y )

(
π

(X )
i π

(Y )
j

π++

)(
1 − π

(X )
i π

(Y )
j

π++

)
,

(13)

where the factor 1/(π++)2 is due to the factor 1/(π++) in
Eq. (12). We also note that here, departing from convention,
the π

(X )
i and π

(Y )
j are of the scale of degrees rather than

probabilities (Definition 1). Hence, assuming d(X ) p→ π(X ),

d(Y ) p→ π(Y ), and d++ p→ π++, and assuming the potential
co-community defined by ĝ(X ) and ĝ(Y ) is comprised of suf-
ficiently many nodes for a Gaussian approximation to hold,
we can test the significance of QXY (ĝ(X ), ĝ(Y ) ) with a z test,
with zero mean and with Var(QXY ) estimated as Var(Q̃XY ) in
Eq. (13), also replacing π

(X )
i with d (X )

i , π
(Y )
j with d (Y )

j , and
π++ with d++, and ignoring the stochasticity of g(X ) and g(Y ).
A pairing ĝ(X )

p and ĝ(Y )
q is then defined as a co-community ĉ

and included in Ĉ (Definition 3), i.e., {p, q} = ĉ ∈ Ĉ, if and
only if this pairing ĝ(X )

p with ĝ(Y )
q is significant according to this

z test, at some significance level. We note that, in practice, this
is only a rough approximation of significance, also because by
specifying in advance the co-community node groupings ĝ(X )

and ĝ(Y ), we have introduced dependencies between the X and
Y nodes of this co-community.

B. Arranging the co-communities for visualization

A standard task in exploratory data analysis using vari-
ants of the stochastic blockmodel is arranging the detected
communities so they can be visualized in a helpful way. This
visualization is usually carried out by way of a heatmap rep-
resentation of the adjacency matrix with the nodes grouped
into communities. In the symmetric or unipartite community
detection scenario, the communities occur along the leading

diagonal of this ordered adjacency matrix. The communities
themselves are often ordered along the leading diagonal ac-
cording to their edge densities. In the bipartite co-community
detection setting, co-communities may be present away from
the leading diagonal, and there is no longer a restriction on
how many co-communities a node may be part of—although
we do not consider here the possibility of overlapping co-
communities.

We propose then, that once the X -node groupings and Y -
node groupings have been determined by spectral clustering
as described above, a natural way to order these groups with
respect to one another is via row and column comodularities,
which we define as follows.

Definition 5. With d++ given by Definition 3, and with B
given by Definition 4, with with the set of X -node group-
ings and the set of Y -node groupings estimated according
to Algorithm 1 as Ĝ(X ) and Ĝ(Y ), respectively, the row and
column modularities Qrow(ĝ(X ) ) and Qcolumn(ĝ(Y ) ) are defined,
for ĝ(X ) ∈ Ĝ(X ) and ĝ(Y ) ∈ Ĝ(Y ), as

Qrow(ĝ(X ) ) =
∑

ĝ(Y )∈Ĝ(Y )

∣∣∣∣∣∣ 1

d++
∑
i∈ĝ(X )

∑
j∈ĝ(Y )

Bi j

∣∣∣∣∣∣ (14)

and

Qcolumn(ĝ(Y ) ) =
∑

ĝ(X )∈Ĝ(X )

∣∣∣∣∣∣ 1

d++
∑
i∈ĝ(X )

∑
j∈ĝ(Y )

Bi j

∣∣∣∣∣∣. (15)

Considering the absolute values of the local comodularities
in these sums serves to prioritize the most extreme choices
of divisions of nodes into co-communities, according to their
local comodularities. On the other hand, if absolute values
were not considered here, the row and column modularities
would always be zero, because the rows and columns of B
must always sum to zero. We note that we could have chosen
to use squared instead of absolute values; however, we choose
to use absolute values so as not to give extra weight to a
few extreme values. The row and column comodularities are
the sums, respectively, of the absolute values of the local co-
modularities along the rows and columns, respectively, of the
ordered adjacency matrix. Hence, they represent a measure of
how extreme the co-community divisions are, in each row and
column, according to the groupings defined by Ĝ(X ) and Ĝ(Y ).
By ordering the X -node and Y -node groupings by decreas-
ing Qrow(ĝ(X ) ) and Qcolumn(ĝ(Y ) ), respectively, co-communities
with the largest local comodularities will tend to congregate
towards the top left of the ordered adjacency matrix. This is
a natural arrangement for visualization as a heatmap, because
it tends to place the strongest co-communities together in this
corner, and so the attention is intuitively drawn to this region.

We note that there may be other equally effective ways of
arranging the adjacency matrix for visualization as a heatmap.
However, this method is effective, and it is a parsimonious so-
lution in the context of comodularity, because row and column
modularities are very simply and intuitively related to local
comodularity. In the case that there is no co-community struc-
ture present, such as under the null model of Eq. (9), then Qrow

and Qcolumn as defined in Definition 5 would also tend to be
close to zero, and the ordering would cease to be meaningful.
However, if there are even a few significant co-communities
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present, their corresponding X - and Y -node groupings ĝ(X )

and ĝ(Y ) would stand out, as assessed by Qrow and Qcolumn.
Therefore these ĝ(X ) and ĝ(Y ) would be placed at the top of the
respective orderings, with the co-community pairings tending
towards in the top-left corner. The other rows and columns,
which do not contain significant co-communities, would have
corresponding Qrow and Qcolumn close to zero. Hence, these
rows and columns would be naturally ordered according to
their irrelevance. They would accordingly be placed further
away from the top left of the heatmap, giving the intuition
that they are unimportant.

C. Defining an objective function for optimizing the
co-community partitions

Defining an objective function over the whole network,
in terms of the assignments of the nodes to X -node and Y -
node groupings ĝ(X ) and ĝ(Y ), allows optimization of these
node assignments. It also provides a means of comparison
of algorithmic parameters and other design choices in the
practical implementation of the methods. It would be most
ideal, for a trial assignment of nodes to Ĝ(X ) and Ĝ(Y ), to
estimate the set of co-communities Ĉ using the method of
Sec. III A, and then to calculate the comodularity according to
Definition 3. However, for a large number of repetitions within
an algorithm, or for an iterative search and optimization, this
would be computationally inefficient. Instead, we define the
global comodularity to be used as an objective function for
such purposes, as follows:

Definition 6. With d++ given by Definition 3, and with
B given by Definition 4, with the set of X -node groupings
and the set of Y -node groupings estimated according to Algo-
rithm 1 as Ĝ(X ) and Ĝ(Y ), respectively, the global comodularity
is defined, for ĝ(X ) ∈ Ĝ(X ) and ĝ(Y ) ∈ Ĝ(Y ), as

Qglobal =
∑

ĝ(Y )∈Ĝ(Y )

∑
ĝ(X )∈Ĝ(X )

∣∣∣∣ 1

d++
∑
i∈ĝ(X )

∑
j∈ĝ(Y )

Bi j

∣∣∣∣. (16)

For a pairing ĝ(X ) and ĝ(Y ), the local comodularity
QXY (ĝ(X ), ĝ(Y ) ) represents the strength of the co-community
structure in that grouping of X nodes and Y nodes. If the
absolute value was not considered in the sum, Qglobal would
always be zero. Hence, by prioritizing a sum of the absolute
values of the local comodularity of all pairings ĝ(X ) with ĝ(Y ),
we prioritize an extreme division of the X nodes and Y nodes
into co-communities, as measured by the local comodularity.
This therefore corresponds to an extreme partition in terms of
co-community structure, as assessed by comodularity.

Spectral clustering usually requires the nodes to be
grouped in the spaces of the top singular vectors of the co-
Laplacian, and this grouping is often carried out by k means,
as described in Algorithm 1. Because k-means optimization
is not convex, the converged result may be a local optimum.
Hence, implementations of k means often begin at a random
start point, with the optimization run several times from ran-
dom start points, choosing the result which is in some sense
optimal. In the community-detection setting, a natural statistic
to maximize in this optimization is the Newman-Girvan mod-
ularity. An equivalent statistic here to maximize in this co-
community detection setting is hence the global comodularity,

which is intuitively linked to the local comodularity measure
of co-community structure. In the community-detection set-
ting, assignments to communities can also be optimized by
carrying out node swapping between communities, in order
to maximize the Newman-Girvan modularity [37]. The global
comodularity is a statistic which could be equivalently maxi-
mized in this co-community detection setting.

IV. EXAMPLES

In this section, we present results of applying the proposed
methodology to simulated data, and to real data relating to
movie reviews and to genomic patterns. We fit the degree-
corrected stochastic coblockmodel by spectral clustering as
described in Sec. II, with additional practical details as
described below. As noted in Sec. I, methodology to de-
termine the optimal number of clusters is a challenging
problem, worth studying independently of methodology to
determine the clusters themselves [21]. Therefore to enable us
to properly evaluate our proposed methodology for detecting
co-communities (as illustrated by the shaded blocks in Fig. 1),
we use the ground-truth cluster numbers defined in the simu-
lation study to focus on testing whether we can recover the
planted co-communities. Then in Sec. IV C, we are limited
practically in how many clusters we should aim to detect by
the granularity of the ground truth (i.e., node covariate infor-
mation) that is available. Again, our primary aim is to assess
the proposed methodology for detecting co-communities: in
this example, a co-community represents a group of similar
movie fans who like a set of similar movies. We also note
that Appendix C provides a practical method with theoretical
justification for estimating the optimal number of X - and
Y -node groupings k(X ) and k(Y ), from which co-communities
can be identified. In the context of community detection, fit-
ting the degree-corrected stochastic blockmodel using spectral
clustering, when calculating the Laplacian it is advantageous
to slightly inflate the degree distribution (regularization) [4], a
trick which made Google’s original page-rank algorithm [38]
so effective in web searching. Here in the co-community
detection setting, correspondingly when calculating the co-
Laplacian [Eq. (6)], we inflate the diagonals of D(X ) and
D(Y ) by the medians of d(X ) and d(Y ), respectively. Further,
when fitting variants of the stochastic blockmodel by spectral
clustering with k means, nodes with small leverage score
(which are usually low-degree nodes) can be excluded from
the k-means step [4]; this practice is also followed here. We
note that these regularization steps have not previously been
carried out in this co-community detection and/or cocluster-
ing setting. We also note that while spectral clustering is in
general computationally intensive, binary adjacency matrices
such as those dealt with in this setting tend to be very sparse.
Further, we only require k = Max(k(X ), k(Y ) ) components of
the singular value decomposition, a number which tends to be
two or more orders of magnitude smaller than the maximum
dimension of the adjacency matrix. Efficient computational
methods exist to find the top few components in the singular
value decomposition of large sparse matrices [39,40], with im-
plementations in MATLAB and R, meaning that these methods
are easy to implement and practical for large networks. The k-
means clustering algorithm begins with a random start point,
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FIG. 2. Convergence of the comodularity. The comodularity con-
verges well to a maximum, within 250 runs of k means, in the
genomics data set. For reference, the comodularity is consistently
found to be zero when calculated based on randomly assigned co-
community partitions of similar size.

and hence it can provide a different result each time it is run.
We therefore run the k-means step in the spectral clustering
several times, choosing the result which maximizes the global
comodularity [Eq. (16)]. We run k means repeatedly until the
output is visually assessed to have stabilized, at which point it
can be seen from the convergence plot that there is very little,
if any, improvement in comodularity achieved by further runs
of k means. An example of such convergence in the genomics
data set presented in Sec. IV B is shown in Fig. 2.

A. Simulation study

We carried out a simulation study to evaluate the ef-
fectiveness of this co-community detection methodology
against generated networks with known ground-truth co-
communities. A classic generative model for exchangeable
random networks with heterogeneous degrees is the logistic-
linear model [34]. We use a version here for bipartite
networks, with additional co-community structure, defined as

Logit(pi j ) = α
(X )
i + α

(Y )
j + θi j, (17)

where pi j defines the probability of an edge being observed
between nodes i and j. We choose to use this model because
the parameters can take any real values, and the edge proba-
bilities pi j will still be between zero and 1. This model only
deviates from the equivalent logarithmic model when the pa-
rameter values become very large, which is what prevents pi j

from reaching (and exceeding) 1 [34]. Further, the blockmodel
approximates any smooth function, and hence the model can
be used purely in the sense of approximation [16,23]. The
node-specific parameters α

(X )
i and α

(Y )
j are elements of param-

eter vectors α(X ) and α(Y ) which define degree distributions for
the X and Y nodes. We choose power-law degree distributions
for the nodes, because this is a characteristic of scale-free
networks [41], which are found to be physically realistic in
a wide range of scenarios, including biological networks [42]
and social networks [43]. We note that although power-law
degree distributions are not found in exchangeable networks,
blockmodels (such as the model presented here) are still good
at approximating the propensity for connections within the
network [44]. The parameters α

(X )
i and α

(Y )
j are each gen-

erated as the logarithms of samples taken from a bounded

Pareto distribution as in [45]. We note that because α
(X )
i and

α
(Y )
j are chosen to be random, our generated networks are

exchangeable [46], whereas if α
(X )
i and α

(Y )
j were defined

deterministically, these networks would instead be generated
under the inhomogeneous random graph model [47,48]. The
co-community parameter θi j is allowed to take two values:
θi j = θin if i and j are in the same co-community, and θi j =
θout otherwise, which is equivalent to the modeling constraint
we applied in Eq. (2). After generating the pi j according to
Eq. (17), the network is generated by sampling each Ai j ,

Ai j ∼ Bernouilli(pi j ).

The co-communities themselves are planted in the network
as randomly chosen groups of 150 of each type of node. We
note that some nodes may not lie in any co-community: for
nodes not in a co-community, the edge probability is regulated
by θout, and similarly by θin for two nodes that are in a co-
community. The maximum number of co-communities is set
at k(X ) × k(Y ), and by analogy with the unipartite or symmetric
community detection setting, we choose to set the number
of co-communities T as the square root of this theoretical
maximum, T = √

k(X ) × k(Y ). As discussed in Sec. III, in the
unipartite community detection setting there is a constraint on
the number of communities, k = k(X ) = k(Y ), because the X -
node and Y -node groupings are the same thing. This constraint
does not exist in the bipartite co-community detection setting,
and so the theoretical maximum number of co-communities
is k(X ) × k(Y ), i.e., the square of the number of communi-
ties in the equivalent symmetric community detection setting.
However, we expect the number of co-communities to be
significantly less than this in practice, and so by default we
choose T = √

k(X ) × k(Y ) as the number of co-communities,
although we note that many other choices would also be valid
here.

We test the methods on networks generated with k(X )

and k(Y ) ranging from 8 and 6, respectively, up to 80 and
60, respectively (corresponding to values of numbers of
nodes, m and l , ranging from 1200 and 900 up to 12 000
and 9000, respectively). We also test the methods on net-
works generated with values of θin from 10 to 50, which
corresponds to within co-community edge density ρin ∈
{0.039, 0.15, 0.34, 0.6}, and we set θout = 1, corresponding to
outside or between co-community edge density ρin = 0.0013
[N.B., θin and θout are not probabilities; see Eq. (17)]. For
each combination of parameters, we carry out 50 repeti-
tions of network generation and co-community detection, to
enable assessment of the variability of the accuracy of the
co-community detection (with more repetitions, the com-
putational cost becomes prohibitive). After generating the
networks, we detect co-communities according to the methods
described above, based on the same values of k(X ) and k(Y )

that we used to generate the networks. We keep these values
the same, to understand specifically how the co-community
detection methodology is working, as discussed in more de-
tail in Sec. I. This means there are k(X ) × k(Y ) potential
co-communities, and we assess each in terms of strength and
significance, as discussed in Sec. III A. Hence, we define the
estimated set of co-communities Ĉ, as all combinations of de-
tected X - and Y -node groupings ĝ(X ) ∈ Ĝ(X ) with ĝ(Y ) ∈ Ĝ(Y )

054309-7



THOMAS E. BARTLETT PHYSICAL REVIEW E 104, 054309 (2021)

(a)

(b)

(c) (d) (e)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

7 17 28 38 48 59 69
munities

N
or

m
al

is
ed

 M
ut

ua
l I

nf
or

m
at

io
n

1200 3000 4800 6600 8400 10200 12000
Number of Row Nodes

900 2250 3600 4950 6300 7650 9000
Number of Column Nodes

in = 0.6
in = 0.34
in = 0.15
in = 0.039

FIG. 3. Simulation study. (a) Normalized mutual information (NMI) compares detected co-communities with ground-truth planted co-
communities (dashed lines indicate 95% C.I.). (b)–(e) Examples of generated networks all with nR = 1200, nC = 900, kR = 8, kC = 6,
and 7 planted co-communities; entries in the adjacency matrix equal to 1 (representing a network edge) are marked in black, and planted
co-communities are outlined in color. (b) θin = 40, within-community edge density ρin = 0.6; (c) θin = 30, ρin = 0.34; (d) θin = 20, ρin = 0.15;
(e) θin = 10, ρin = 0.039. For all networks, θout = 1, outside (between) co-community edge density ρout = 0.0013.

which are significant according to a z test with zero mean
and variance calculated as in Eq. (13). We define signifi-
cance according to false discovery rate (FDR)-corrected [49]
p-value < 0.05. This tends to result in more co-communities
being detected than were originally planted (primarily due to
some being split); however, we note that the main aim of this
methodology is to find a good representation of the underlying
co-community structure (as assessed by comodularity), rather
than to reproduce it exactly.

To compare detected co-communities with the ground-
truth planted co-communities, we use the normalized mutual
information (NMI) [50] to compare the corresponding X -
and Y -node groupings (over the full node sets). The NMI
compares the numbers of nodes which appear together in
the discovered X - and Y -node groupings, compared with
whether they appeared together in those that correspond
to the planted co-communities (adjusted for group sizes).
NMI has been used in a similar way previously in the co-
community-detection context [51], as well as the unipartite

community-detection context [11]. The NMI takes the value
1 if the X - and Y -node groupings that correspond to these co-
communities are perfectly reproduced in the co-community
detection, and zero if they are not reproduced at all, and
somewhere in between if they are partially reproduced. The
results, together with examples of randomly generated adja-
cency matrices, are shown in Fig. 3, which shows that the
method performs well as long as there is sufficient within-
co-community edge density (implying a detection threshold),
and performs well as the number of co-communities increases.
The run times for the fits for number of row nodes equal
to 1200, 4800, 8400, and 12 000 (with number of column
nodes equal to 900, 3600, 8400, and 9000) are 1.6, 21, 80,
and 190 s, respectively (using one core of a MacBook Pro,
2019, 2.6 GHz).

B. Genomics data set

We present an example of a practical application of these
methods to a challenging problem in genomics. A gene
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encodes how to make a gene product, and the corresponding
gene expression level quantifies how much gene product is
currently being produced. Hence, the gene expression level
indicates the extent to which a gene is “active,” or “switched
on.” DNA methylation is a gene regulatory pattern, mean-
ing that it influences the activity and/or expression level of
particular genes. DNA methylation patterns are themselves
influenced by the expression levels and/or activity of other
genes. However, much is still unknown about the interaction
between DNA methylation patterns and gene expression pat-
terns [52]. It is of much interest to uncover groups of genes
with methylation patterns which are linked to the expression
patterns of other groups of genes, to allow biological hy-
potheses to be formed, which can then be investigated further,
experimentally and computationally. Hence, this is a natural
scenario to be approached with co-community detection, as
the method offers the potential to uncover latent structure not
easily identifiable otherwise.

As a measure of the DNA methylation (DNAm) pattern of
each gene, we choose to consider here intragene DNA methy-
lation variability (IGV), as it is a per-gene measure of DNA
methylation variance which has been shown to be strongly as-
sociated with disease [53,54]. We denote the gene expression
variables X (i), i = 1, . . . , m, and the DNAm variables Y ( j),
j = 1, . . . , l; i.e., X (i) and Y ( j) refer to the measurements
for particular genes of gene expression and DNA methyla-
tion IGV, respectively. We define a network edge Ai j = 1
if variables X (i) and Y (i) are significantly correlated, and
we set Ai j = 0 otherwise [55]. We carried out co-community
detection on this genomics data set according to the methods
described above. (The data source is the Cancer Genome At-
las [56], breast cancer invasive carcinoma data set, basal tumor
samples only). Figure 4(a) shows the adjacency matrix after
carrying out co-community detection, ordering the X - and
Y -node groupings by row and column comodularity [Eqs. (14)
and (15)]. Figure 4(b) (inset) shows the same adjacency matrix
ordered along its margins alphabetically by gene name, i.e.,
without ordering the margins using co-community detection.
Hence, Fig. 4(b) shows a baseline in which the nodes are
essentially randomly ordered, against which to compare the
adjacency matrix after co-community detection, and ordering
based upon it. The co-community structure is clearly revealed
in Fig. 4(a), whereas no co-community structure is visible in
Fig. 4(b). We define a co-community ĉ ∈ Ĉ as a combina-
tion of X -node grouping ĝ(X ) ∈ Ĝ(X ) with Y -node grouping
ĝ(Y ) ∈ Ĝ(Y ) which is significant according to a z test with zero
mean and variance calculated as in Eq. (13), with significance
defined by FDR-corrected p-value < 0.05. The numbers of X -
and Y -node groupings, k(X ) and k(Y ), are estimated according
to Eqs. (C6) and (C7) as 89 and 67, respectively, leading
to 5963 potential co-communities, of which T̂ = 2018 are
found to be significant. We tested these 2018 significant co-
communities for domain relevance, by comparing the overlap
of the genes (nodes) of each co-community, separately with
each of 10 295 known gene groups [58]. This type of analysis
is often called “gene set enrichment analysis” (GSEA) [59].
We found that 1340 (66%) overlap significantly (Fisher’s
exact test, FDR-adjusted p < 0.05) with these known gene
sets, confirming the domain relevance of this result, as well as
indicating novel findings which could be investigated further
by experimental biologists.
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FIG. 4. Co-Communities in the genomics data set. (a) Genes
are ordered along the margins of the adjacency matrix, according
to co-communities detected by the methods presented here. Parti-
tions between detected co-communities are shown with black lines.
(b) The same adjacency matrix ordered along its margins alpha-
betically by gene name, i.e., without ordering the margins using
co-community detection. Entries in the adjacency matrix equal to 1
(representing a network edge) are colored, with green and red indi-
cating positive and negative associations, respectively. We note that
this is a signed network [57]. N.B., this color scheme contrasts with
that used in Fig. 5, in which network edges do not have associated
signs, and hence are all colored blue.

C. Movie-review data set

We present a second, contrasting example of a practical ap-
plication of these methods to real data, to a consumer-product
review data set. We downloaded movie review data from
the Movie Lens database, which details 1 000 209 reviews
of 3952 different movies, by 6040 unique users who each
provided at least 20 different reviews [60]. Denoting movies
by the variables X (i), i = 1, . . . , m, and users by the variables
Y ( j), j = 1, . . . , l , we define a network edge, i.e., Ai j = 1, if
movie X (i) has been reviewed by user Y (i), and no edge, i.e.,
Ai j = 0, otherwise. Covariate information is also available,
assigning each movie to one of 18 categories, and classifying
each user into one of 7 age groups and 20 professions.

As discussed in Sec. I, determining the optimal number of
clusters is a different problem than determining the clusters
themselves. In this example, the granularity of the available
ground-truth clusters (i.e., the covariate information we have
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available for verification of detected coclusters) is very much
less than that estimated according to Eqs. (C6) and (C7) (i.e.,
77 and 95, respectively). To make the comparison with the
available ground truth straightforward, we choose to use a
level of granularity of k(X ) = 10 and k(Y ) = 15 that is in line
with the available ground truth. This is well justified theo-
retically, as follows. The graphon function [61] regulates the
smoothness of the success probabilities generating the edges
of the network, and so if the success probabilities are chang-
ing rapidly across nodes, then we need to use more blocks,
or communities; in doing so, we are ensuring that even the
roughest portion of the graphon function is sufficiently well
resolved. However, we can also reduce granularity by reduc-
ing the number of blocks, while accepting that we will lose
the ability to resolve some portions of the graphon function
well. This point is also discussed further in Appendix C.

Co-Community detection was carried out using the meth-
ods described above, and Fig. 5 shows the result. Of the 150
potential co-communities, T̂ = 41 are found to be significant
using the z test as before, and are thus defined as co-
communities. The X and Y nodes of these 41 co-communities
are tested for overlap with the covariate groups. Of these, 22
are found to overlap significantly with one or more covariate
groups, and these are highlighted in red, with the signifi-
cant covariate groups shown along the margins, in Fig. 5.
We use Fisher’s exact test to assess significances, defined as
FDR-corrected p < 0.05. We note that using the Fisher test
is slightly inappropriate due to the generative mechanism of
the groups. However, we would anticipate that any residual
correlation from the group discovery is minor. Importantly
though for assessment via this benchmark data set, many
of the findings are predictable: horror, science fiction,i and
war films tend to be watched by younger people; drama and
romance are popular across the board. Others need more
explanation, for example, a group of children’s movies and
musicals tended to be reviewed by 25–34-year-old customer
service professionals. However, we can expect that this is a
demographic group of people who tend to have younger chil-
dren whom they watch movies with. Other children’s movies
are grouped together with animation, fantasy, and horror, and
tend to be watched by both younger and older groups. This
might reflect very broad classifications used for such movies,
many of which in reality could be fairly similar. Also these are
groups of people who would tend to watch movies together.
An important conclusion to draw is that the covariate infor-
mation available for this data set appears to be of a lower
granularity than the detail which can be revealed by these
co-community detection methods.

V. CONCLUSION

We have introduced the notion of comodularity based on
the stochastic coblockmodel, and have shown how it can
be used to perform co-community detection in bipartite net-
works. We have shown how comodularity can be used to
compare co-communities, to calculate their strength and sig-
nificance, and to arrange them for visualization. We have
addressed practical points about the implementation of the
methodology, and have demonstrated its usefulness with a
simulation study and application to two contrasting examples
of real data sets, from genomics and consumer-product re-

views. We note that the main aim of our method is detection of
co-communities (in fact misspecified, because we do not think
that the inferred groups are perfect). An interesting extension
to this methodology would be to consider overlapping blocks
in the stochastic coblockmodel, a problem which has already
been successfully addressed in the context of the stochastic
blockmodel for unipartite networks [62], and in coclustering
without fitting the stochastic blockmodel [24]. Another in-
teresting application would be to develop an online version
of the method (i.e., which updates rather than recomputes)
as a computationally efficient approach to large and grow-
ing data sets [63]. This methodology would be expected to
work similarly well in many other contexts, such as inter-
personal networks where the individuals are of two distinct
categories, such as teachers and students, or publication net-
works where the two types of variables are authors and papers.
This methodology could also be expected to work in even
more general settings of biclustering or coclustering, in which
the variables being clustered together are simply correlated,
rather than having any tangible interactive behavior in the
real world. These methods are based on commonly available
computationally efficient methods for large sparse matrices,
and perform well on large data sets, with large numbers of
co-communities, often performing better than methods based
on model likelihoods.
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APPENDIX A: DERIVATION RELATING TO
ALGORITHM 1, FOR THE CASE OF TWO

CO-COMMUNITIES

Define m, l , A, B, d(X ), d(Y ), d++, g(X ), g(Y ), k(X ), k(Y ), �,
and QXY according to Definitions 1–4. Specify that k(X ) =
k(Y ) = 2, that T = 2, that c1 = {1, 1}, and that c2 = {2, 2};
i.e., that there are two co-communities, the first of which
consists of g(X )

1 paired with g(Y )
1 , and the second of which

consists of g(X )
2 paired with g(Y )

2 . Define co-community label
vectors s and r for the X and Y nodes, respectively, such that

si =
{

1 if X -node i is in co-community 1
−1 if X -node i is in co-community 2,

(A1)

and

r j =
{

1 if Y -node j is in co-community 1
−1 if Y -node j is in co-community 2.

(A2)

Hence (referring to Definition 3),

�(C; G(X ), G(Y ); i, j) = 1
2 (sir j + 1),

and

QXY = 1

2d++

m∑
i=1

l∑
j=1

Bi j (sir j + 1).

Note that the rows of B sum to zero:
l∑

j=1

Bi j =
l∑

j=1

Ai j − d (X )
i

d++

l∑
j=1

d (Y )
j = d (X )

i − d (X )
i

d++ d++ = 0.

054309-10



COMODULARITY AND DETECTION OF CO-COMMUNITIES PHYSICAL REVIEW E 104, 054309 (2021)

A
ge

 U
nd

er
 1

8

A
ge

 U
nd

er
 1

8,
 A

ge
 5

6+

U
ne

m
pl

oy
ed

  

r

Tr
rA

ge
 5

6+
x

v
r

P
ro

gr
am

m
e r

r

  Drama

  Drama
  Thr

  War

  F
  Horror

  Horror

  Drama

M
o

FIG. 5. Co-Communities in the movie-review data set. Entries in the adjacency matrix equal to 1 (representing a network edge) are colored
blue, and detected communities are outlined in black.

Also, the columns of B also sum to zero, by a similar argu-
ment. Hence,

QXY = 1

2d++

m∑
i=1

l∑
j=1

Bi jsir j . (A3)

When Newman [33] derives the properties of unipar-
tite network community detection he relaxes the constraint
that the co-community labels take the values of ±1, to be
able to arrive at an algebraic solution. Nodes are then assigned
to one community or the other, according to their sign (in
the two-community scenario). A similar relaxation is made
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here, allowing si ∈ R and r j ∈ R, subject also to the following
elliptical constraints, which allow for degree heterogeneity as
in the degree-corrected stochastic blockmodel:

m∑
i=1

d (X )
i s2

i = d++, (A4)

l∑
j=1

d (Y )
j r2

j = d++. (A5)

In the extreme scenario, in which si ∈ {−1, 1} and
r j ∈ {−1, 1}, these constraints are equivalent to d++ =∑m

i=1 d (X )
i = ∑l

j=1 d (Y )
j (i.e., as per Definition 3). This relax-

ation is equivalent to saying that nodes may be partly in one
group, and partly in another group (which also relates to the
mixed-membership blockmodel [12]). N.B., ultimately each
node will be assigned entirely to only the group it is most
strongly associated with (according to si or r j), and hence
mixed membership does not occur in the final assignment
of nodes to groups. For homogeneous degree distributions,
the constraints of Eqs. (A4) and (A5) prevent the comodu-
larity from becoming arbitrarily large, as nodes are assigned
many times over to many groups. For heterogenous degree
distributions, the effect of the constraint is equivalent, ex-
cept that the constraint is weighted to give importance to
high-degree nodes. This is achieved by the constraints of
Eqs. (A4) and (A5) restricting the weighted sum of the degrees
(weighted by the assignment of nodes to groups) to be equal
to the total number of edges.

We wish to find the community assignment vectors r and s
which maximize the comodularity; i.e., we want to maximize
QXY with respect to both r and s. To do this, we employ the
Lagrange multipliers λ and μ, and equate the derivatives to
zero; N.B., the partial derivatives with respect to si′ and r j′

are used as the derivatives and are taken with respect to these
individual i′ ∈ {1, . . . , l}, and j′ ∈ {1, . . . , m}.

∂

∂si′

[
m∑

i=1

l∑
j=1

Bi jsir j −λ

m∑
i=1

d (X )
i s2

i − μ

l∑
j=1

d (Y )
j r2

j

]
= 0,

and
∂

∂r j′

[
m∑

i=1

l∑
j=1

Bi jsir j −λ

m∑
i=1

d (X )
i s2

i −μ

l∑
j=1

d (Y )
j r2

j

]
=0,

⇒
l∑

j=1

Bi jr j − 2λd (X )
i si = 0, (A6)

and
m∑

i=1

Bi jsi − 2μd (Y )
j r j = 0. (A7)

Hence, taking D(X ) and D(Y ) as the diagonal matrices with
the degree vectors d(X ) and d(Y ), respectively, on their leading
diagonals,

Br = 2λD(x)s (A8)

and

B�s = 2μD(y)r. (A9)

Substituting for s, Eq. (A9) in Eq. (A8), gives

(D(y) )−1B�(D(x) )−1Br = 4λμr, (A10)

⇒ (D(y) )−1/2B�(D(x) )−1/2(D(x) )−1/2B(D(y) )−1/2r = 4λμr,

⇒ ((D(x) )−1/2B(D(y) )−1/2)�((D(x) )−1/2B(D(y) )−1/2)

r = 4λμr, (A11)

⇒ M�Mr = 4λμr, (A12)

where

M = (D(x) )−1/2B(D(y) )−1/2.

By an identical argument, substituting Eq. (A8) in Eq. (A9)
and rearranging equivalently,

MM�s = 4λμs. (A13)

Hence, s and r are eigenvectors of MM� and M�M, re-
spectively, with 4λμ the corresponding eigenvalue in both
cases. Therefore, s and r are left and right singular vectors,
respectively, of

M = (D(x) )−1/2B(D(y) )−1/2,

with corresponding singular value 2
√

λμ.
Multiplying Eq. (A6) by si/2d++, summing over i, and

referring to Eq. (A4) gives

1

2d++

m∑
i=1

l∑
j=1

Bi jsir j = 2λ

2d++

m∑
i=1

d (X )
i s2

i = 2λd++

2d++ = λ.

Hence, referring to Eq. (A3), we get

QXY = λ. (A14)

Then equivalently multiplying Eq. (A7) by r j/2d++, sum-
ming over j, and referring to Eq. (A5), and then referring to
Eq. (A3) gives

QXY = μ. (A15)

Therefore, referring again to Eqs. (A12) and (A13), the
maximum modularity solution is for the left and right sin-
gular vectors of M which correspond to the greatest singular
value 2λ.

Now substituting Eq. (7) in Eq. (A9), we get

s�
(

A − 1

d++ d(X )(d(Y ) )�
)

= 2μr�D(y),

⇒ s�A = 1

d++ s�d(X )(d(Y ) )� + 2μr�D(y). (A16)

Post-multiplying Eq. (A16) by 1 = (1, 1, 1, . . .) leads to

s�d(X ) = 1

d++ s�d(X )d++ + 2μr�d(Y )

∴ μr�d(Y ) = 0.

Assuming that there is co-community structure present in A,
there must be positive comodularity, i.e., QXY > 0 ⇒ μ > 0
[referring back to Eq. (A15)], and therefore r�d(Y ) = 0. By
an identical argument, also s�d(X ) = 0. Therefore, for eigen-
vectors r corresponding to QXY > 0,

Br =
(

A − 1

d++ d(X )(d(Y ) )�
)

r = Ar,
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and so to find these eigenvectors with QXY maximized, instead
of Eq. (A11) we can consider

((D(x) )−1/2A(D(y) )−1/2)�((D(x) )−1/2A(D(y) )−1/2)r = (2λ)2r
(A17)

which, referring back to Eq. (6), can be written in terms of the
co-Laplacian LXY as

L�
XY LXY r = (2λ)2r.

By identical argument, we can also write

((D(x) )−1/2A(D(y) )−1/2)((D(x) )−1/2A(D(y) )−1/2)�s = (2λ)2s
(A18)

and

LXY L�
XY s = (2λ)2s.

Hence, the co-Laplacian LXY has left and right singular vec-
tors s and r, respectively, with corresponding singular values
2λ. It can be seen that Eq. (A17) has the eigenvector 1 =
(1, 1, 1, . . .), as follows:

((D(x) )−1/2A(D(y) )−1/2)�((D(x) )−1/2A(D(y) )−1/2)1 = (2λ)21

⇒ (D(y) )−1A�(D(x) )−1A1 = (2λ)21

⇒ (D(y) )−1A�(D(x) )−1d(X ) = (2λ)21

⇒ (D(y) )−1A�1 = (2λ)21

⇒ (D(y) )−1d(Y ) = (2λ)21

1 = (2λ)21

and hence the corresponding eigenvalue is (2λ)2 = 1, which,
by the Perron-Frobenius theorem, must be the greatest eigen-
value [33,64]. An identical argument can also be applied to
s in Eq. (A18). This means that the greatest singular value
2λ = 1 corresponds to these left and right singular vectors
which are both 1 (of lengths m and l , respectively); however,
such singular vectors do not satisfy r�d(Y ) = 0 and s�d(X ) =
0. Therefore, to maximize the comodularity in the case of
two co-communities, we should divide the X and Y nodes
according to the left and right singular vectors, respectively,
which correspond to the second greatest singular value.

The above explains how Algorithm 1 works for the case
of two co-communities. An equivalent extension to k commu-

nities has been made in the unipartite community-detection
setting [36]. To do so, the community labels are identified
with the vertices of k − 1 simplices; i.e., for detection of three
communities, the co-community labels would be the vertices
of a triangle. Relaxing constraints equivalent to Eqs. (A4)
and (A5) means allowing the nodes to move away from the
vertices of the simplex. This amounts to clustering the nodes
in the space of the eigenvectors corresponding to the second
to kth greatest eigenvalues of the Laplacian L. This clustering
is conventionally done using k means. The reader is referred
to [36] for the detailed technical derivations relating to this. A
similar extension can naturally be made in this co-community-
detection setting. To detect k(X ) X -node groupings, and k(Y )

Y -node groupings, the X and Y nodes can be separately clus-
tered (using k means independently for the X and Y nodes) in
the spaces of the left and right singular vectors (respectively)
corresponding to the second to k(X )th and second to k(Y )th
greatest singular values, respectively, of the singular value
decomposition of the co-Laplacian LXY .

APPENDIX B: PROOF OF PROPOSITION 1, FOR THE
CASE OF TWO CO-COMMUNITIES

For the case of two co-communities, with θin and θout

defined according to Eq. (2), with the co-community labels
ri and s j defined as in Appendix A [Eqs. (A1) and (A2)], and
with G(X ) and G(Y ) defined according to Definition 1, we note
(equivalently to [33]) that

θz(X ) (i),z(Y ) ( j) = 1
2 (θin + θout + ris j (θin − θout )), (B1)

and

ln (θz(X ) (i),z(Y ) ( j) ) = 1

2

(
ln (θinθout ) + ris j ln

(
θin

θout

))
. (B2)

We note that Eqs. (B1) and (B2) only hold because si ∈
{−1, 1} and r j ∈ {−1, 1}. Substituting Eqs. (B1) and (B2)
into Eq. (3), and estimating the node-specific connectivity
parameters π(X ) and π(Y ) by the degree distributions d(X )

and d(Y ), leads to the profile likelihood (using the Poisson
approximation of [34])

�(θ; d(X ), d(Y ); G(X ), G(Y ) ) =
m∑

i=1

l∑
j=1

[
Ai j

2

(
ln (θinθout ) + ris j ln

(
θin

θout

))
− d (X )

i d (Y )
j

2
(θin + θout + ris j (θin − θout ))

]

⇒ �(θ; d(X ), d(Y ); G(X ), G(Y ) ) = 1

2

m∑
i=1

l∑
j=1

[
Ai j ln (θinθout ) − d (X )

i d (Y )
j (θin + θout )

+ ln

(
θin

θout

)(
Ai j − d (X )

i d (Y )
j · θin − θout

ln θin − ln θout

)
sir j

]
.

We seek to maximize �(θ; d(X ), d(Y ); G(X ), G(Y ) ) with respect to G(X ) and G(Y ) by choosing the co-community labels si and r j .
Therefore, we can drop the terms constant in si and r j to give

�̃(θ; d(X ), d(Y ); G(X ), G(Y ) ) =
m∑

i=1

l∑
j=1

(
Ai j − d (X )

i d (Y )
j · θin − θout

ln θin − ln θout

)
sir j,
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and defining

η = θin − θout

ln θin − ln θout
,

we therefore have

�̃(θ; d(X ), d(Y ); G(X ), G(Y ) ) =
m∑

i=1

l∑
j=1

(
Ai j − ηd (X )

i d (Y )
j

)
sir j, (B3)

which we note as equivalent to Eq. (22) in [33]. Proceeding similarly to that work, by applying to Eq. (B3) the constraints of
Eqs. (A4) and (A5) with Lagrange multipliers λ and μ and differentiating and equating to zero, we get

∂

∂si′

[
m∑

i=1

l∑
j=1

(
Ai j − ηd (X )

i d (Y )
j

)
sir j − λ

m∑
i=1

d (X )
i s2

i − μ

l∑
j=1

d (Y )
j r2

j

]
= 0,

∂

∂r j′

[
m∑

i=1

l∑
j=1

(
Ai j − ηd (X )

i d (Y )
j

)
sir j − λ

m∑
i=1

d (X )
i s2

i − μ

l∑
j=1

d (Y )
j r2

j

]
= 0,

⇒
l∑

j=1

(
Ai j − ηd (X )

i d (Y )
j

)
r j − 2λd (X )

i si = 0, and
m∑

i=1

(
Ai j − ηd (X )

i d (Y )
j

)
si − 2μd (Y )

j r j = 0,

and therefore also recalling the definitions of D(X ) and D(Y ) as
the diagonal matrices with the degree vectors d(X ) and d(Y ),
respectively, on their leading diagonals,

(A − ηd(X )(d(Y ) )�)r = 2λD(X )s (B4)

and

(A� − ηd(Y )(d(X ) )�)s = 2μD(Y )r. (B5)

Combining Eqs. (B4) and (B5) by substituting for s and r, and
following simplification identical to Eqs. (A10) and (A11),
gives

W�Wr = 4λμr

and

WW�s = 4λμs,

where

W = (D(X ) )−1/2(A − ηd(X )(d(Y ) )�)(D(Y ) )−1/2.

Hence s and r are left and right singular vectors of the sin-
gular value decomposition of W, again with corresponding
singular values 4λμ. Defining 1 = (1, 1, 1, . . .), and noting
that 1d(X )(d(Y ) )� = d++(d(Y ) )�, etc., we can see that pre-
multiplying Eqs. (B4) and (B5) by 1 leads to

r�d(Y )(1 − d++η) = 2λs�d(X ) (B6)

and

s�d(X )(1 − d++η) = 2μr�d(Y ). (B7)

Substituting for s�d(X ) and r�d(Y ), Eq. (B7) in Eq. (B6) and
vice versa, gives

s�d(X )[(1 − d++η)2 − 4μλ] = 0

and

r�d(Y )[(1 − d++η)2 − 4μλ] = 0,

and therefore because (1 − d++η)2 − 4μλ is not guaranteed
to be zero,

s�d(X ) = 0

and

and r�d(Y ) = 0.

Therefore, Eqs. (B4) and (B5) reduce to

Ar = 2λD(x)s

and

A�s = 2μD(y)r,

and again combining these equations by substituting for s
and r and following equivalent simplification to Eqs. (A10)
and (A11), we hence find that s and r are left and right singular
vectors of the co-Laplacian [Eq. (6)]. Therefore, the choice of
the co-community labels s and r which maximizes the model
likelihood specified in Eq. (3), subject also to the constraint
of Eq. (2), is equivalent to the maximum comodularity assign-
ment obtained via Algorithm 1.

APPENDIX C: SELECTING THE NUMBER
OF CO-COMMUNITIES

In order to use Algorithm 1 to carry out co-community
detection, we must specify the number of X -node groupings
k(X ), and the number of Y -node groupings k(Y ).

If we want to let the network grow, it would be impractical
to fully specify more complicated versions of the parametric
model of Definition 1, which completely account for all ef-
fects. Instead, we can make a nonparametric generalization of
this model incorporating more smoothing, based on the notion
of the graphon. The graphon is a latent, smooth function
which sets the probability between each pair of nodes of a
connection forming between that pair of nodes [61]. In this
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setting, the graphon is not symmetric, due to the two different
types of nodes modeled.

Definition 7. For the Lipschitz-continuous graphon func-
tion f ∈ L((0, 1)2), with A defined according to Defini-
tion 1, define connectivity functions φ(X ) ∈ L(0, 1) and φ(Y ) ∈
L(0, 1), and define latent orderings ξ

(X )
i

i.i.d.∼ U (0, 1) and (in-

dependently) ξ
(Y )
j

i.i.d.∼ U (0, 1) on the graphon margins of X
and Y nodes i ∈ {1, . . . , m} and j ∈ {1, . . . , l}, respectively.
Then,

E(Ai j ) = f
(
ξ

(X )
i , ξ

(Y )
j

)
φ(X )(ξ (X )

i

)
φ(Y )(ξ (Y )

j

)
. (C1)

The graphon f (Definition 7) can be considered an
infinite-dimensional equivalent to θp,q (Definition 1), up
to a reordering of the nodes (after the Aldous-Hoover
theorem [29]). The connectivity functions φ(X ) and φ(Y ) (Def-
inition 7) are then similarly equivalent to the node-specific
connectivity parameters π(X ) and π(Y ) (Definition 1 for the
degree-corrected stochastic coblockmodel). These functions
φ(X ) and φ(Y ) model the general variability of connectiv-
ity strength throughout the network, whereas the graphon f
models the tendency for regions of the network to aggre-
gate into specific co-communities. The model of Definition 7
is a more general model which is specified similarly for
any network size. Thus, Eq. (C1) contains redundancy, and
hence, as the networks we consider here are of fixed size, the
degree-corrected stochastic coblockmodel (Definition 1) may
be a more parsimonious choice. To estimate the generating
mechanism of a bipartite network stably, Definition 7 must be
replaced by a model with a limited number of parameters, i.e.,
Definition 1.

The network histogram method of fitting the stochastic
blockmodel [16] in the unipartite or symmetric community-
detection setting provides a rule-of-thumb method for select-
ing the optimal number of communities, or blocks, in the
model. However, we note that this rule-of-thumb method may
not result in a perfect match between the number of com-
munities and the size of blocks, as spectral clustering may
not result in equal size communities. Fitted in this way, the
blockmodel is a valid representation of a network, whatever
the generating mechanism of that network, as long as this
generating mechanism results in an exchangeable network.
The network histogram approximates the graphon, which is
a continuous function: the nodes correspond to discrete loca-
tions along the graphon margins, ordered in an optimal way
to satisfy the smoothness requirement of the graphon. The
graphon oracle [16,61] defines a good ordering of the nodes,
according to graphon smoothness, and coassociation patterns.
This information is not available in practice, but it can be used
to bound the mean integrated squared error of the network
histogram approximation to the graphon. This ordering natu-
rally corresponds to community assignments, and the number
of communities, or blocks, is determined by the smoothness
of the graphon. An intuition for this is by analogy with a
wave: if there are many peaks over a fixed distance (i.e., short
wavelength), the maximum gradient of the wave will be large,
whereas if there are few peaks over the same fixed distance
(i.e., long wavelength), the maximum gradient will be small.
Similarly, the more communities, or peaks, that there are in

the graphon, the greater the maximum gradient of the graphon
will be and, correspondingly, the less smooth it will be.

1. Finding the optimal numbers of X - and Y -node groupings

In this section we define the anisotropic graphon, which
allows us to determine an optimal number of X - and Y -node
groupings, k(X ) and k(Y ), from which co-communities can
be identified. This relates closely to the network histogram
method in the symmetric unipartite community-detection set-
ting [16]. In the unipartite community-detection setting, the
graphon is a symmetric limit object bounded on (0, 1)2. It is
symmetric because in that setting, the set of X nodes is the
same as the set of Y nodes, and hence the smoothness is the
same with respect to the corresponding orthogonal directions
on the graphon. In contrast, in this co-community-detection
setting the graphon is asymmetric, having different smooth-
nesses with respect to the X and Y nodes. Hence, we refer to
this as the “anisotropic graphon,” which is similarly a limit ob-
ject bounded on (0, 1)2. To aid our analyses, we can stretch the
anisotropic graphon so that it has the same smoothness with
respect to the X nodes, and with respect to the Y nodes. It is
easy to see that such a transformation exists for all anisotropic
graphons. We refer to the result of stretching the anisotropic
graphon in this way as the “equi-smooth graphon.” Without
loss of generality, this transformation can be expressed as a
stretch of scale factor γ with respect to the X nodes, and
a simultaneous stretch of scale factor 1/γ with respect to
the Y nodes. We refer to γ as the anisotropy factor. This is
formalized as follows.

Definition 8. For the Lipschitz-continuous anisotropic
graphon f ∈ L((0, 1)2) defined according to Definition 7, let
the anisotropy factor γ define the linear-stretch transforma-
tion which maps f onto the Lipschitz-continuous equi-smooth
graphon f̃ ∈ L((0, γ ) × (0, 1/γ )). Then,

f (x, y) = f̃ (γ x, y/γ ). (C2)

Lipschitz continuity, in this context, means that the
smoothness of the graphon (anisotropic or equi-smooth) is
upper bounded, and we use this bound to calculate the optimal
number of X - and Y -node groupings. We note that as the
graphon is asymmetric in the bipartite case, this assignation
is still suitable.

To determine the optimal number of X - and Y -node group-
ings, k(X ) and k(Y ), assuming a fixed block size to do the
mapping, we set these k(X ) and k(Y ) so as to minimize the mean
integrated squared error (MISE) of the blockmodel approx-
imation of the graphon. Following a methodology which is
closely related to the network histogram estimator in the sym-
metric (unipartite) community-detection setting [16], making
use of the graphon oracle estimator, an upper bound can be
calculated on this MISE, from a bias-variance decomposition,
as follows:

Lemma 1. With A, m, l , g(X ) ∈ G(X ), and g(Y ) ∈ G(Y ) de-
fined according to Definition 1, let ρ be a deterministic scaling
constant which specifies the expected number of edges in the
network, such that

ρ = E

(
1

ml

l∑
j=1

m∑
i=1

Ai j

)
,
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and define piecewise block approximations to the adjacency
matrix, for each pairing of a set of X nodes g(X ) with a set of
Y nodes g(Y ), as

Āp,q =
∑

i∈g(X )
p , j∈g(Y )

q
Ai j∣∣g(X )

p

∣∣∣∣g(Y )
q

∣∣ ,

where | · | represents cardinality. With z(X ) and z(Y )( j) defined
according to Definition 1, ξ (X ) and ξ (Y ) defined according
to Definition 7, and f defined according to Definition 8,
define alternative map functions z̃(X )(i′), i′ ∈ {1, . . . , m},
and z̃(Y )( j′), j′ ∈ {1, . . . , l}. These map functions take the
ordered locations of the X and Y nodes, respectively,
along the graphon margins, as specified by ξ (X ) and ξ (Y ),
and return the corresponding X - and Y -node groupings,

such that z̃(X )(
[�]m · ξ
(X )
i ) = z(X )(i), and z̃(Y )(
[�]l · ξ

(Y )
j ) =

z(Y )( j). Define the graphon oracle estimator as

f̂ (x, y) = ρ̂−1Ā̃z(X ) (
lx�),̃z(Y ) (
my�), (C3)

and let ∫∫
(0,1)2

f (x, y)dx dy = 1. (C4)

With f̃ and γ defined as in Definition 8, let M̃ be the max-
imum gradient of f̃ , and let h(X ) and h(Y ) be “bandwidth”
parameters with respect to the X and Y nodes, respectively.
Then, the graphon oracle upper bound on the MISE of the
blockmodel estimate of the graphon function f̂ is

MISE
(
f̂
)
� M̃2

{
γ 2 (h(X ) )2

m2
+ 1

γ 2

(h(Y ) )2

l2

}

+ 2M̃2

{
γ 2 1

4m
+ 1

γ 2

1

4l

}
{1 + o(1)}

+ 1

ρh(X )h(Y )
{1 + o(1)}. (C5)

Proof. See Appendix D. �
As would be expected from the form of the anisotropic

graphon, this expression directly captures the resolution ob-
tained in each axis. We note that the ordering of the nodes
along the adjacency matrix margins is not necessarily the
same as in their mappings along the graphon margins. Thus,
we need to specify how nodes map to the groupings g(X )

and g(Y ) in a different way for the graphon, as compared
to the adjacency matrix. This difference is accounted for by
using different mapping functions: z̃(X )(i′) and z̃(Y )( j′) for the
graphon, and z(X )(i) and z(Y )( j) for the adjacency matrix. That
is, z̃(X )(i′) and z̃(Y )( j′) are required to specify the (contiguous)
ranges and locations of the X - and Y -node groupings g(X )

and g(Y ) on the graphon margins, and equivalently z(X )(i) and
z(Y )( j) for their (noncontiguous) locations on the adjacency
matrix margins.

Using the MISE formulation of Lemma 1, we can estimate
the optimal numbers of X - and Y -node groupings, k(X ) and
k(Y ).

Proposition 2. With m and l defined as in Definition 1, and
M̃ and ρ defined as in Lemma 1, the optimal number of X - and

Y -node groupings, k(X ) and k(Y ), respectively, are

k(X ) = γ (ml )
1
4 (2ρM̃2)

1
4 (C6)

and

k(Y ) = 1

γ
(ml )

1
4 (2ρM̃2)

1
4 . (C7)

Proof. The proof of this proposition is developed from the
equivalent proof for the case of the isotropic graphon (corre-
sponding to community detection in unipartite networks) [16].
The optimal bandwidths h(X )∗ and h(Y )∗ can be found by opti-
mizing the expression for the MISE of Eq. (C5) with respect
to h(X ) and to h(Y ) and setting to zero, and combining the
resulting equations. To calculate k(X ) and k(Y ), substitute these
optimal bandwidths h(X )∗ and h(Y )∗ into k(X ) = m/h(X )∗ and
k(Y ) = l/h(Y )∗, which leads to Eqs. (C6) and (C7). �

We note that the above proof of Proposition 2 implies that
X -node groupings are all the same size, and that the Y -node
groupings are all the same size. This assumption is relaxed in
the practical implementation of this methodology we propose:
this point is discussed further in the next section.

2. Practical estimation of the number of X -
and Y -node groupings

We implement spectral clustering by including a standard
k-means step, to group the X and Y nodes in the spaces
of the left and right singular vectors corresponding to the
second to k(X )th and second to k(Y )th greatest singular values,
respectively, of the singular value decomposition of the co-
Laplacian LXY [Eq. (6)]. This k-means step does not produce
identical group sizes; however, we note that the estimates
of k(X ) and k(Y ) defined according to Eqs. (C6) and (C7)
assume that the X and Y node groupings are the same size
(i.e., that the blocks in the blockmodel are all the same size
with respect to the X nodes, and separately with respect to
the Y nodes). We relax this requirement in practice (while
noting that we must maintain mini h(X )

i / maxi h(X )
i = �(1)),

because after examining several empirical data sets of the type
presented in the next section, we observed that the group sizes
produced by this type of regularized degree-corrected spectral
clustering tend not to vary significantly in size (there are no
“giant clusters”). Further, this requirement of identical group
sizes is not physically realistic in the practical examples we
present in the next section, and in many other real scenarios.

To estimate M̃ and γ , we approximate the maximum slope
of the graphon separately in the directions corresponding to
the X and Y nodes, by considering the top component of the
singular value decomposition of the adjacency matrix A. This
is equivalent to the rule-of-thumb procedure in the network
histogram method, in the symmetric or unipartite community-
detection scenario [16]. The top left and right singular vectors
are ordered, and their gradients and values at their midpoints
(the expected points of maximum slope) are estimated as p̂X

and b̂X , respectively, for the X nodes and p̂Y and b̂Y , respec-
tively, for the Y nodes. By thinking of this singular value
decomposition as a factorization of the scaled, discretely sam-
pled graphon (i.e., the ordered adjacency matrix), denoting the
greatest singular value as ν leads to the linear approximations
for the maximum gradient of the isotropic graphon M in the

054309-16



COMODULARITY AND DETECTION OF CO-COMMUNITIES PHYSICAL REVIEW E 104, 054309 (2021)

directions of the X and Y nodes, MX and MY , respectively:

M̂X = ν

ρ
p̂X b̂Y m, M̂Y = ν

ρ
b̂X p̂Y l,

where m and l are the number of X and Y nodes, respectively
(as previously defined). These factors m and l take account
of the fact that the isotropic graphon margins are bounded on
[0,1], whereas the adjacency matrix margins take the values
{1, . . . , m} and {1, . . . , l}, and the edge density factor ρ (de-
fined as in Lemma 1) normalizes with respect to the adjacency
matrix realization, such that the above estimates are indepen-
dent of edge density ρ. The linear stretch transformation γ

defines the maximum gradients of the equi-smooth graphon
as M̃X = γ MX and M̃Y = MY /γ , respectively, and hence an
estimate of the squared maximum gradient of the isotropic
graphon can be found as

ˆ̃M
2 = γ 2M̂X

2 + 1

γ 2
M̂Y

2 = ν2

ρ2

(
γ 2 p̂2

X b̂2
Y m2 + 1

γ 2
b̂2

X p̂2
Y l2

)
.

Using the assumption that the equi-smooth graphon is
Lipschitz continuous, with the same upper bound on its
smoothness with respect to both the X and Y nodes, i.e.,
M̃X = M̃Y , ⇒ γ MX = MY /γ , we can estimate γ as

γ̂ 2 = M̂Y

M̂X
. (C8)

APPENDIX D: PROOF OF LEMMA 1

Define A, k(X ), and k(Y ) according to Definition 1, define
ξ (X ) and ξ (Y ) according to Definition 7, define f , f̃ , and γ

according to Definition 8, and define ρ and M̃ according to
Lemma 1. Define bandwidths h(X )

p = |g(X )
p | and h(Y )

q = |g(Y )
q |,

where | · | represents cardinality, define ω(p, q) as the domain
of integration over the block corresponding to the pairing of
g(X )

p with g(Y )
q (where g(X )

p and g(Y )
q are sets of X nodes and Y

nodes, with G(X ) and G(Y ) respectively the sets of g(X )
p and g(Y )

q

over p ∈ {1, . . . , k(X )} and q ∈ {1, . . . , k(Y )}), and define Āp,q

as the block average corresponding to the pairing of g(X )
p with

g(Y )
q ,

Āp,q =
∑

j∈g(Y )
q

∑
i∈g(X )

p
Ai j

h(X )
p h(Y )

q

.

For convenience, we also define here theoretical relations to
Āp,q, by denoting the average values of f and f 2 over the block
corresponding to the pairing of g(X )

p with g(Y )
q as f̄ p,q and f̄ 2

p,q,
respectively:

f̄ p,q = 1

|ω(p, q)|
∫∫

ω(p,q)
f (x, y)dx dy (D1)

and

f̄ 2
p,q = 1

|ω(p, q)|
∫∫

ω(p,q)
f 2(x, y)dx dy, (D2)

where

|ω(p, q)| = h(X )
p

m

h(Y )
q

l
.

The bias-variance decomposition of the oracle MISE of the
blockmodel approximation of the graphon function f̂ can
hence be written as [16]

MISE(f̂ ) � E

∫∫
(0,1)2

∣∣ f (x, y) − f̂ (x, y)
∣∣2

dx dy

=
k(Y )∑
q=1

k(X )∑
p=1

∫∫
ω(p,q)

{∣∣∣∣ f (x, y)−E(Āp,q)

ρ

∣∣∣∣2

+ Var(Āp,q )

ρ2

}
dx dy.

(D3)

The domain of integration ω(p, q) is hence a contiguous
region of the graphon, which corresponds to entries of the
adjacency matrix which are not necessarily contiguous.

Modeling the equi-smooth graphon f̃ as a linear stretch
transformation of the anisotropic graphon f , by anisotropy
factor γ , means that we can write

f (x, y) = f̃ (γ x, y/γ ).

We define the graphon oracle [16,61] ordering of the X and
Y nodes according to ξ (X ) and ξ (Y ), respectively. These are
unobservable latent random vectors, which map the locations
of the X and Y nodes from the margins of the graphon to the
margins of the adjacency matrix. That is, ξ (X )

i and ξ
(Y )
j provide

the locations on the graphon margins which correspond to
the X and Y nodes i and j, respectively, where i and j are
the adjacency matrix indices of these nodes. We define (i)−1

as a function which gives the rank of ξ
(X )
i , 1 � i � m, and

similarly ( j)−1 as a function which gives the rank of ξ
(Y )
j ,

1 � j � l . Therefore, (i)−1 and ( j)−1 are functions which
take the ordering along the adjacency matrix margins, and
return the ordering along the graphon margins. Hence, the
inverses of these functions, (i) and ( j), take the ordering along
the graphon margins, and return the corresponding ordering
along the adjacency matrix margins. Adapting the proof of
Lemma 3 from [16] to the anisotropic graphon, by defining

im = i/(m + 1) and jl = j/(l + 1), and assuming that f̃ is Lipschitz continuous, gives∣∣ f
(
ξ

(X )
(i) , ξ

(Y )
( j)

) − f (im, jl )
∣∣ = ∣∣ f̃

(
γ ξ

(X )
(i) , ξ

(Y )
( j) /γ

) − f̃ (γ im, jl/γ )
∣∣ � M̃

∣∣(γ ξ
(X )
(i) , ξ

(Y )
( j) /γ

) − (γ im, jl/γ )
∣∣.

Writing the variances and applying Jensen’s inequality as in [16] we get

Var
(
ξ

(X )
(i)

) = im(1 − im)

m + 2
� 1/4

m + 2
, Var

(
ξ

(Y )
( j)

) = jl (1 − jl )

l + 2
� 1/4

l + 2
,

⇒ Eξ (X ),ξ (Y )

{
γ 2

(
ξ

(X )
(i) − im

)2 + 1

γ 2

(
ξ

(Y )
( j) − jl

)2
} 1

2
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�
(

γ 2Var
(
ξ

(X )
(i)

) + 1

γ 2
Var

(
ξ

(Y )
( j)

)) 1
2

�
{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

,

∴ Eξ (X ),ξ (Y )

∣∣ f
(
ξ

(X )
(i) , ξ

(Y )
( j)

) − f (im, jl )
∣∣ � M̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

. (D4)

We note that this explains the stretching factor γ . Now adapting Lemma 2 from [16], we apply the law of iterated expectations
to A(i)( j) to obtain

E(A(i)( j) ) = Eξ (X ),ξ (Y )

[
EA|ξ (X ),ξ (Y )

(
A(i)( j)

∣∣ξ (X ), ξ (Y )
)] = Eξ (X ),ξ (Y )

[
ρ f

(
ξ

(X )
(i) , ξ

(Y )
( j)

)]
. (D5)

Then using Jensen’s inequality we get∣∣Eξ (X ),ξ (Y )

[
ρ f

(
ξ

(X )
(i) , ξ

(Y )
( j)

)] − ρ f (im, jl )
∣∣ � ρEξ (X ),ξ (Y )

[∣∣ f
(
ξ

(X )
(i) , ξ

(Y )
( j)

) − f (im, jl )
∣∣], (D6)

and hence combining Eqs. (D4)–(D6), we have

|E(A(i)( j) ) − ρ f (im, jl )| � ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

. (D7)

Now applying the law of total variance to A(i)( j), as in Lemma 2 from [16], we obtain

Var(A(i)( j) ) = Eξ (X ),ξ (Y ) [VarA|ξ (X ),ξ (Y ) (A(i)( j)|ξ (X ), ξ (Y ) )] + Varξ (X ),ξ (Y ) [EA|ξ (X ),ξ (Y ) (A(i)( j)|ξ (X ), ξ (Y ) )]

= Eξ (X ),ξ (Y )

[
ρ f

(
ξ

(X )
(i) , ξ

(Y )
( j)

)(
1 − ρ f

(
ξ

(X )
(i) , ξ

(Y )
( j)

))] + Eξ (X ),ξ (Y )

[
ρ2( f

(
ξ

(X )
(i) , ξ

(Y )
( j)

))2] − (
Eξ (X ),ξ (Y )

[
ρ f

(
ξ

(X )
(i) , ξ

(Y )
( j)

)])2

= Eξ (X ),ξ (Y )

[
ρ f

(
ξ

(X )
(i) , ξ

(Y )
( j)

)] − Eξ (X ),ξ (Y )

[
ρ2

(
f
(
ξ

(X )
(i) , ξ

(Y )
( j)

))2] + Eξ (X ),ξ (Y )

[
ρ2

(
f
(
ξ

(X )
(i) , ξ

(Y )
( j)

))2]
− (

Eξ (X ),ξ (Y )

[
ρ f

(
ξ

(X )
(i) , ξ

(Y )
( j)

)])2

= Eξ (X ),ξ (Y )

[
ρ f

(
ξ

(X )
(i) , ξ

(Y )
( j)

)]{
Eξ (X ),ξ (Y )

[
1 − ρ f

(
ξ

(X )
(i) , ξ

(Y )
( j)

)]}
. (D8)

From Eq. (D4), we get

Eξ (X ),ξ (Y )

[
ρ f

(
ξ

(X )
(i) , ξ

(Y )
( j)

)]
� ρ f (im, jl ) + ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

(D9)

and

−Eξ (X ),ξ (Y )

[
ρ f

(
ξ

(X )
(i) , ξ

(Y )
( j)

)]
� −ρ f (im, jl ) + ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

, (D10)

and hence also

Eξ (X ),ξ (Y )

[
1 − ρ f

(
ξ

(X )
(i) , ξ

(Y )
( j)

)]
� 1 − ρ f (im, jl ) − ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

(D11)

and

−Eξ (X ),ξ (Y )

[
1 − ρ f

(
ξ

(X )
(i) , ξ

(Y )
( j)

)]
� −1 + ρ f (im, jl ) − ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

. (D12)

Now combining Eq. (D9) with the negative of Eq. (D12) and applying Eq. (D8) we get

Var(A(i)( j) ) �
[
ρ f (im, jl ) + ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

][
1 − ρ f (im, jl ) + ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

]
and hence

Var(A(i)( j) ) � ρ f (im, jl )[1 − ρ f (im, jl )] + ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

[
1 + ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

]
.

(D13)

Similarly combining the negative of Eq. (D10) with Eq. (D11) and applying Eq. (D8) we get

Var(A(i)( j) ) �
[
ρ f (im, jl ) − ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

][
1 − ρ f (im, jl ) − ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

]
,
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and hence

Var(A(i)( j) ) � ρ f (im, jl )[1 − ρ f (im, jl )] − ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

[
1 − ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

]
,

and therefore

−Var(A(i)( j) ) � −ρ f (im, jl )[1 − ρ f (im, jl )] + ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

[
1 − ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

]

� −ρ f (im, jl )[1 − ρ f (im, jl )] + ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

[
1 + ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

]
,

(D14)

and hence combining Eqs. (D13) and (D14) we get

|Var(A(i)( j) ) − ρ f (im, jl )[1 − ρ f (im, jl )]| � ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

[
1 + ρM̃

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

} 1
2

]
.

(D15)

Now referring to Eq. (D7) and comparing it to Eq. (6) of the Supporting Information Sec. A in [16] allows us to rewrite the
covariance expression in Lemma 2 of [16], giving

Cov(A(i)( j), A(i′ )( j′ ) ) � ρ2M̃2

{
γ 2 1

4(m + 2)
+ 1

γ 2

1

4(l + 2)

}
, (D16)

i �= i′, j �= j′. We can then use Eqs. (D7), (D15), and (D16) to adapt Proposition 1 from [16], also referring to Eqs. (D1) and (D2),
to give

|E(Āp,q ) − ρ f̄ p,q| � ρM̃

{
γ 2 1

4m
+ 1

γ 2

1

4l

} 1
2

{1 + o(1)} (D17)

and ∣∣∣∣∣Var(Āp,q ) − ρ f̄ p,q − ρ2 f̄ 2
p,q

h(X )
p h(Y )

q

∣∣∣∣∣ � ρM̃

h(X )
p h(Y )

q

{
γ 2 1

4m
+ 1

γ 2

1

4l

} 1
2

{1 + o(1)} + ρ2M̃2

{
γ 2 1

4m
+ 1

γ 2

1

4l

}
, (D18)

which is a conservative upper bound. Now substituting Eq. (D18) back into Eq. (D3), we get

MISE(f̂ ) �
k(Y )∑
q=1

k(X )∑
p=1

∫∫
ω(p,q)

[
|{ f (x, y) − f̄ p,q} + { f̄ p,q − E(Āp,q )/ρ}|2 + f̄ p,q − ρ f̄ 2

p,q

ρh(X )
p h(Y )

q

+ M̃

ρh(X )
p h(Y )

q

{
γ 2 1

4m
+ 1

γ 2

1

4l

} 1
2

{1 + o(1)} + M̃2

{
γ 2 1

4m
+ 1

γ 2

1

4l

}]
dx dy,

and then substituting Eq. (D17), integrating and rearranging, leads to

MISE
(
f̂
)
�

k(Y )∑
q=1

k(X )∑
p=1

[∫∫
ω(p,q)

| f (x, y) − f̄ p,q|2dx dy +
(

2M̃2

{
γ 2 1

4m
+ 1

γ 2

1

4l

}
{1 + o(1)} + f̄ p,q − ρ f̄ 2

p,q

ρh(X )
p h(Y )

q

+ M̃

ρh(X )
p h(Y )

q

{
γ 2 1

4m
+ 1

γ 2

1

4l

} 1
2

{1 + o(1)}
)

h(X )
p

m

h(Y )
q

l

]
. (D19)

Then, adapting the proof of Lemma 1 from [16], we can write

| f̄ p,q − f (x, y)| =
∣∣∣∣ 1

|ω(p, q)|
∫∫

ω(p,q)
f (x′, y′)dx′ dy′ − f (x, y)

∣∣∣∣ � 1

|ω(p, q)|
∫∫

ω(p,q)

∣∣ f̃ (γ x′, y′/γ ) − f̃ (γ x, y/γ )
∣∣dx′ dy′.
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Assuming f̃ is Lipschitz continuous, it therefore follows that

| f̄ p,q − f (x, y)| � 1

|ω(p, q)|
∫∫

ω(p,q)
M̃|(γ x′, y′/γ )−(γ x, y/γ )|dx′ dy′ � 1

|ω(p, q)|
∫∫

ω(p,q)
M̃

√
γ 2

(
h(X )

p
)2

m2
+ 1

γ 2

(
h(Y )

q
)2

l2
dx′ dy′

⇒ | f̄ p,q − f (x, y)| � M̃

√
γ 2

(
h(X )

p
)2

m2
+ 1

γ 2

(
h(Y )

q
)2

l2

and therefore

1

|ω(p, q)|
∫∫

ω(p,q)
| f̄ p,q − f (x, y)|2 � M̃2

{
γ 2

(
h(X )

p

)2

m2
+ 1

γ 2

(
h(Y )

q

)2

l2

}
,

and hence summing over all the blocks corresponding to all pairings of X -node groupings g(X ) ∈ G(X ) with Y -node groupings
g(Y ) ∈ G(Y ), and assuming h(X ) and h(Y ) are both constants, we get

k(Y )∑
q=1

k(X )∑
p=1

∫∫
ω(p,q)

| f̄ p,q − f (x, y)|2 � M̃2

{
γ 2 (h(X ) )2

m2
+ 1

γ 2

(h(Y ) )2

l2

}
. (D20)

Recalling Eq. (D1) and Eq. (C4), i.e., ∫∫
(0,1)2

f (x, y)dx dy = 1,

and noting that

k(Y )∑
q=1

k(X )∑
p=1

f̄ p,q − ρ f̄ 2
p,q

ρh(X )
p h(Y )

q

�
k(Y )∑
q=1

k(X )∑
p=1

f̄ p,q

ρh(X )h(Y )
,

we can see that

k(Y )∑
q=1

k(X )∑
p=1

f̄ p,q − ρ f̄ 2
p,q

ρh(X )
p h(Y )

q

�
k(Y )∑
q=1

k(X )∑
p=1

ml

ρ(h(X ) )2(h(Y ) )2

h(X )

m

h(Y )

l
f̄p,q

= ml

ρ(h(X ) )2(h(Y ) )2

k(Y )∑
q=1

k(X )∑
p=1

∫∫
ω(p,q)

f (x, y)dx dy

= ml

ρ(h(X ) )2(h(Y ) )2

∫∫
(0,1)2

f (x, y)dx dy

= ml

ρ(h(X ) )2(h(Y ) )2 . (D21)

Now substituting Eqs. (D20) and (D21) into Eq. (D19), and rearranging, we get

MISE
(
f̂
)
� M̃2

{
γ 2 (h(X ) )2

m2
+ 1

γ 2

(h(Y ) )2

l2

}
+ 2M̃2

{
γ 2 1

4m
+ 1

γ 2

1

4l

}
{1 + o(1)}

+ 1

ρh(X )h(Y )
+ M̃

ρh(X )h(Y )

{
γ 2 1

4m
+ 1

γ 2

1

4l

} 1
2

{1 + o(1)}

and hence

MISE(f̂ ) � M̃2

{
γ 2 (h(X ) )2

m2
+ 1

γ 2

(h(Y ) )2

l2

}
+ 2M̃2

{
γ 2 1

4m
+ 1

γ 2

1

4l

}
{1 + o(1)} + 1

ρh(X )h(Y )
{1 + o(1)}.
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