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Abstract  

In April 2019, an ultra-low emission zone (uLEZ) was implemented in London to tackle road 

transport air pollution. In this study, a state-space intervention model is developed for the first 

time to quantify the effects of this policy on London air quality. For developing this model, 

hourly NO, NO2, and NOx concentrations at 28 monitoring stations across London for 12 

months before the uLEZ intervention and 11 months following it were used. Additionally, this 

model accounts for the influences of the meteorological variables of temperature, wind speed, 

and humidity, as well as those of the day of the week and calendar month.  

The results of this model showed the uLEZ intervention was successful in reducing NO, NO2, 

and NOx concentrations not just within the zone of implementation but also throughout the 

wider low emission zone (LEZ) and Greater London area. This intervention made the greatest 

reduction in NO and NOx in the uLEZ area (19% and 20%, respectively), followed by the LEZ 

(18% and 17%) and then Greater London (11% and 15%). The reduction in NO2 in the uLEZ 

and LEZ is similar (11%-12%), with a larger reduction elsewhere in the Greater London area 

(13%). 
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1. Introduction 1 

Air pollution exposure is a leading risk factor for human health, contributing to 3.4 million 2 

premature deaths in 2017 worldwide (Soriano et al., 2017; Stanaway et al., 2018). In addition 3 

to human health, air pollution has negative impacts on anthropogenic ecosystems (Ochoa-4 

Hueso et al., 2017) and climate (Shindell et al., 2009).  5 

Road transport is a significant source of pollution in metropolitan areas; it accounted for almost 6 

half of NOx emissions in London during 2016 (London Atmospheric Emissions Inventory 7 

(LAEI) 2016 - Methodology, 2020). Since 1992, a succession of Euro standards has been 8 

created to combat road transport air pollution, with progressively more stringent restrictions to 9 

regulate exhaust emissions of new vehicles (Hitchcock et al., 2014).  In addition to these 10 

regulations, some policies for controlling traffic flow have been developed to reduce air 11 

pollution in urban areas. Among these policies, operating and pricing strategies such as 12 

low/zero emission zones have the greatest influence on improving urban air quality (York 13 

Bigazzi & Rouleau, 2017). 14 

A low emission zone (LEZ) is designed to restrict vehicles based on their pollutant emission 15 

in a specific area. The first LEZ was implemented in Sweden in 1996, with others introduced 16 

subsequently in other European cities (Settey et al., 2019). There are currently about 260 17 

LEZs in European countries. In Paris, the first LEZ was introduced in 2015, with estimated 18 

reductions in road transport NOx and PM10 of 23-44% and 17-25%, respectively (Host et al., 19 

2020). In addition, a recent study (Poulhès & Proulhac, 2021) found this restriction benefits 20 

not just LEZ residents, but also people living outside of Paris. In Lisbon, an LEZ was 21 

implemented in two phases between 2011 and 2012, and a study looked at the temporal 22 

concentrations of several pollutants from 2009 to 2016 (Santos et al., 2019). This analysis 23 

showed that the NOx concentration has decreased by 13% but still exceeds the EU limit which 24 

is 40 gm-3 (European Comission, 2017) . Similar studies have been reported for German 25 

cities such as Berlin (Gehrsitz, 2017; Poulhès & Proulhac, 2021), and Stuttgart and Munich 26 

(Jiang et al., 2017; Poulhès & Proulhac, 2021), which demonstrate a reduction in air pollution 27 
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concentrations following the implementation of the LEZ. They did, however, emphasise the 28 

need for further limitations to avoid EU limits from being exceeded.  29 

According to the London Air Quality Network, nearly all of the monitoring stations in Greater 30 

London (GL) exceeded the annual average NOx limits in 2006 (Fuller & Green, 2006). That 31 

report laid the groundwork for the creation of a vehicle emissions-based charge scheme. 32 

Based on that, the London low emission zone (LEZ) was established in May 2007 with the 33 

goal of reducing emissions by 16% by 2012. This scheme restricted normal access to the 34 

greater London area to allow only vehicles with Euro 3 or better emissions standard.  35 

However, according to reports of LAEI in 2016, air pollution concentrations in several London 36 

zones continued to exceed the annual mean EU limit values. Figure 1 shows the annual 37 

average of NO2 concentration in London in 2016: this shows that the majority of areas within 38 

and near central London, as well as major roads leading there, exceed the EU limit (40 µg/m3). 39 

To improve air quality in these areas, an ultra-low emission zone (uLEZ) was implemented in 40 

April 2019 covering the same area as the existing congestion charge zone in central London. 41 

Vehicles are required to meet Euro 4 (petrol), Euro 6 (diesel) or better standards to gain access 42 

to the uLEZ.  43 

The restriction of vehicular access to the uLEZ has a variety of effects on traffic volume and 44 

emissions-related composition of traffic elsewhere. The volume of traffic entering the uLEZ 45 

was expected both to diminish and to improve in composition because of the new restrictions. 46 

Although traffic entering the zone will have similar effects nearby, there could be reverse 47 

effects on traffic volumes and composition there because of prohibited traffic diverting around 48 

the zone. This raises the question of the spatial extent of effects of introduction of the uLEZ, 49 

and indeed whether any benefits arise beyond the zone itself. 50 

 51 

 52 

 53 
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54 
Figure 1: Annual average air pollution concentrations in 2016  for  NO2 from LAEI (Air Pollution in the UK, 2018) 55 

There are several approaches to quantify the impacts of these restrictions on road transport 56 

air pollution, such as linear regression (Santos et al., 2019), geographically weighted 57 

regression models (Poulhès & Proulhac, 2021), mixed effect models (Bernardo et al., 2021)  58 

and before-after comparisons with Mann-Whitney statistical test (Tartakovsky et al., 2020). 59 

The current study used a state-space intervention method to explore the effects of the uLEZ 60 

restriction on London air quality as measured across the broader London area. The main 61 

advantage of this model over existing approaches is that it estimates both the temporal and 62 

spatial relationship between monitoring stations, and it can incorporate an intervention (such 63 

as uLEZ). This model developed based on spatio-temporal modelling of atmospheric pollution 64 

(Hajmohammadi & Heydecker, 2021) which is an extension of autoregressive moving average 65 

(ARMA) models (G. Box, 2008). In addition, this model evaluates the policy intervention of the 66 

uLEZ traffic restrictions in central London on air quality across the Greater London area, 67 

implicitly allowing for variations in traffic volumes and composition. Meteorological data 68 

EU Limit 

NO2 (gm-3) 
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including wind speed, temperature and humidity were also used in this model. A series of 69 

multivariate state-space models with different specifications were developed and then 70 

evaluated by the Bayesian Information Criteria (BIC). The preferred model that results from 71 

this was then used to quantify the reduction in pollutant concentrations at each station of the 72 

study area, and in each of the uLEZ, the LEZ and greater London. 73 

2. Dataset 74 

2.1. London Air Quality data   75 

The current analysis incorporated data from all of London’s 28 air quality monitoring stations 76 

extracted from the London Air Quality Network (LAQN)(London Air Quality, 2021). Of these, 77 

11 stations are within the uLEZ (located within the London inner ring road, thus including the 78 

City of London and the West End), 9 are in the remainder of the London low emission zone 79 

(LEZ) and 8 are in greater London (outside of the LEZ). Figure 2 shows the location of each 80 

station, along with the boundaries of uLEZ and the LEZ.  81 

This dataset contains hourly measurements of the atmospheric concentration of each of Nitric 82 

oxide (NO), Nitrogen dioxide (NO2) and oxides of Nitrogen (NOx) at each of these stations. 83 

The data was extracted for a period of 23 months, from 1 April 2018 until 28 February 2020. 84 

In response to the COVID-19 pandemic and lockdowns from March 2020, traffic flow changed 85 

significantly. This prevented us from having a fully balanced design with 12 months during 86 

each of the periods before and after uLEZ intervention. Use of calendar month as a categorical 87 

covariate ensured that comparisons were made between corresponding months of the year 88 

where data were available, so allowing for annual seasonal trends in traffic and meteorological 89 

conditions. 90 

 91 
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 92 

Figure 2: Location of each monitoring station across London 93 

The total number of observations available was 1,336,344, which was less than the maximum 94 

possible of 1,409,184: this shortfall was due to detector outages in about 5% of hours. The 95 

concentrations of each of the pollutants varied substantially across the stations, and also with 96 

each of hour of the day, day of the week, and month of the year. Each of these relationships 97 

has a high level of statistical significance in a one-way analysis of variance (p < 0.01) because 98 

of the large number of observations. The number of observations, and the typical size of each 99 

pollutant together with these variations, expressed as the standard deviation among the 100 

classified means, is given in Table 1. The variation among stations constituted a substantial 101 

proportion of the total squared deviations, amounting to R2  ¼  for each of the pollutants. The 102 

distribution of the mean of the concentration of the pollutants is shown in Figure 3.  103 

13 

11 

12 
15 

20 

9 

14 

21 

22 

16 
18 

28 

25 

27 
23 

17 
19 

10 
6 

7 

1 

2 

5 

3 

4 

ULEZ  

LEZ  

24 

26 

8 



7 
 

Table 1:  Statistics of pollutants (gm-3) 104 

 105 

 106 

 107 

 108 

109 

 110 

 111 

Figure 3:  Mean concentrations of a) NO, b) NO2 and c) NOx at the studied monitoring stations 112 
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Number 445,451 445,446 445,447 
Mean 34.33 44.83 97.48 
Standard deviation 48.5 28.7 98.3 
SD (Station) 23.7 16.3 52.1 
SD (Hour) 11.0 7.3 23.1 
SD (Day) 7.11 4.12 15.00 
SD (Month) 7.42 3.89 14.03 

a

b
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2.2. Meteorological Data  113 

Hourly observations of ambient temperature  T ( C ), relative humidity h  (%) and wind speed  114 

s  (ms-1) were extracted from London Heathrow airport located in west London. This data is 115 

provided by the National Centres for Environmental Information (National Oceanic and 116 

Atmospheric Administration, 2019). These meteorological measurements were taken to apply 117 

throughout the study area. They were used in the present analysis to allow for the effects on 118 

the pollution measurements of differences in weather between the periods before and after 119 

implementation of the uLEZ.  120 

The total number of observations available was 50,274, which was 0.25% less than the 121 

maximum possible of 50,400. A number of observations together with the typical value and 122 

standard deviation are given in Table 2 for each of these measurements. 123 

Table 2: Meteorological data 124 

 125 

 126 

 127 

Each of the three pollutants, NO, NO2 and NOx is negatively correlated with each of 128 

temperature and wind speed.  However, whilst each of NO and NOx is positively correlated 129 

with relative humidity, NO2 is negatively correlated with it. These results are summarised in 130 

Table 3. 131 

Table 3: Correlation of pollutants with meteorological data 132 

 133 

3. Methodology  134 

3.1. Introduction 135 

The effects of the uLEZ intervention on air quality across London, both within the uLEZ zone 136 

and beyond, were quantified using a state-space modelling approach. State-space models are 137 

dynamic statistical analysis techniques that estimate the state of a system at the current time 138 

indirectly through observed time series data (Durbin & Koopman, 2000; Tsay & Chen, 2018).  139 

 Temperature 

T ( C ) 

Relative humidity 
h (%) 

Wind speed 
w  (m/s) 

Number of Observations   16,758 16,758 16,758 
Mean 12.52 76.02 4.02 
Standard deviation 6.21 17.20 2.22 

Pollutant 
Temperature 

T ( C ) 

Relative humidity 
h (%) 

Wind speed 
w  (m/s) 

NO -0.22 0.11 -0.33 
NO2 -0.08 -0.11 -0.46 
NOx -0.19 0.05 -0.39 
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The observed time series, ty , depends on an underlying or state process, tx , through an 140 

inexact observation process: ( )t t t= +y a x ε  whilst the state evolves in a way that reflects the 141 

structure of the system being observed: in the simplest case, without any exogenous 142 

influences, this can be expressed as  ( )-1t t t= +x B x w  where  wt  is a random disturbance to 143 

development of the system, typically with a white noise distribution. Here we adopt time-144 

invariant linear formulations a(.) for the observation and B(.) for the system processes. 145 

3.2. Modelling the uLEZ Intervention 146 

The policy intervention that is of primary interest is the introduction of uLEZ in April 2019. This 147 

can be represented through a vector of covariates: 148 

 ( )0t t t=  −c            (1) 149 

where 0t  is the time of introduction uLEZ, and ( )
( )

( )

0 0

1 0

t
t

t


 = 



. 150 

3.3. Air Quality Space-State (AQSS) Model 151 

In the state-space model used for London air quality, the observed time series vector ty  is a 152 

measurement of atmospheric concentration of pollutant (observation vector) and the state time 153 

series vector tx  is the corresponding vector of the atmospheric concentration of pollutants. 154 

This value at time t is connected to the value at t-1 (1 hour lag) at the same station as well as 155 

other stations by the process matrix,  B . This matrix shows the spatio-serial relationship of 156 

pollutant concentrations as they develop over time and location.   157 

To accommodate seasonal variation of pollutant concentrations over the 12 calendar months, 158 

the covariate vector  mt  with coefficients mM  was included in the model to represent effects 159 

of month m . Similarly, to represent systematic variation within each week, the day-of-week 160 

effect was modelled by covariate vector dt  with coefficients dD . These two covariates are 161 

defined as:  162 
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( )

( )

1 1 12
δ

0

1 1 7

0

mt

dt

t

t d

m m

d

 
= 


 
 = 



if time is during calendar month

otherwise

if time is during day 

otherwise

    (2) 163 

These covariates will generate separate coefficients for 12 months (January to December) 164 

and 7 days (Monday to Sunday) in the model, so the effects each month and day will be 165 

estimated.     166 

The meteorological variables including temperature, T, relative humidity, h and wind speed, s, 167 

were added to the model as covariates with coefficients P, R and W, respectively. Hence, the 168 

air quality state-space (AQSS) model is:  169 

12 7

1

1 1

δ

t t t

t t t m mt d dt t t t t

m d

PT Rh Ws−

= =

= +

= + + +  + + + + 

y x ε

x Bx Cc M D w
   (3) 170 

where tε  and tw  are uncorrelated white noise representing observation (respectively process) 171 

error.  172 

3.4. Model development and Evaluation  173 

For the evaluation of the London ultra-low emissions zone, several different state-space model 174 

formulations were investigated in this study. Model development started from a “basic” state-175 

space model with process matrix (B), intervention term (C) and increment (u), which allows for 176 

systematic drift in the state: 177 

1

t t t

t t t t−

= +

= + + +

y x ε

x Bx Cc u w
       (4) 178 

We note that the drift in the state, represented by the offset  u , will accommodate any long-179 

term trends in traffic volumes and fleet composition through the study period. 180 

This model was developed to “Basic+W” by adding the meteorological data including 181 

temperature, T, relative humidity, h, and wind speed, s: 182 
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1

t t t

t t t t t t tPT Rh Ws−

= +

= + + + + + +

y x ε

x Bx Cc u w
     (5) 183 

Further development to this model results in AQSS model (3) with meteorological data and 184 

additionally daily (D) and monthly (M) effects: This model does not require the increment u  185 

because its effect is absorbed into the daily term. The final step in model investigation was to 186 

add an hourly effect (H) (AQSS+H) to allow for systematic effects over the 24 hours the day, 187 

modelled by covariate vector ht  with coefficients hH ; this covariate is defined as:  188 

( )1 1 24

0
ht

t h h 
 = 



if time is during hour of the day 

otherwise.
. 189 

Hence, this extension (AQSS+H) to the air quality state-space model is:  190 

12 7 24

1

1 1 1

δ

t t t

t t t m mt d dt t t t h ht t

m d h

PT Rh Ws−

= = =

= +

= + + +  + + + +  +  

y x ε

x Bx Cc M D H w
  (6) 191 

These models were developed in the R programming software using the MARSS (Holmes et 192 

al., 2012) package. Because the response variable xt of these models could not be negative, 193 

the logarithm of pollutant concentration is used. The resulting model form for concentration of 194 

pollution is consequently log-linear with lognormal error structure.  195 

The performance of models (3) – (6) was compared using the Bayesian Information Criterion 196 

(BIC) (Pandis, 2016):  197 

BIC 2 log ( )e n p= − +L         (7) 198 

where  p  is the number of free parameters in the model,  n  is the number of observations and 199 

L  is the log-likelihood of the fitted model. According to this criterion, the introduction of further 200 

parameters can be justified by a sufficiently large increase in likelihood of the fitted model, 201 

taking into account the number of observations used. In the present form (7), models with 202 

smaller values of BIC are preferred. 203 
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4. Results 204 

The results of fitting state-space models to the London air quality dataset (atmospheric 205 

concentration of NO2, NO and NOx) and model evaluation are presented in this section.  206 

4.1. Model testing and evaluation 207 

The performance of several models introduced in section 3.4 was evaluated by Bayesian 208 

Information Criterion (BIC) (7).  The BIC of each of these models is presented in Table 4. 209 

Models with smaller values of  BIC  are preferred, with use of additional parameters justified 210 

by sufficient improvement in model likelihood. 211 

Table 4: BIC of the developed models (smaller is better) 212 

 213 

According to the results of model performance, the AQSS model (3) is preferred for each of 214 

the three pollutants over the others as it has the smallest BIC values. The BIC values in Table 215 

4 show that inclusion of meteorological data improves the performance of the Basic model 216 

substantially. Inclusion of month and day of week effects also improves model performance, 217 

but further inclusion of hourly effects does not. Based on this, the AQSS model (3) was 218 

selected to estimate the intervention effects, C, of the uLEZ intervention. 219 

4.2. Analysis of residuals  220 

The residuals in a statistical model of time series data of this type should be serially 221 

uncorrelated (Washington et al., 2020). Failure of this weakens the model due to lack of 222 

independence in the residuals, and it might be a sign of inadequate modelling. Two diagnostics 223 

that are used to check the residuals are the autocorrelation function (ACF) and the partial 224 

autocorrelation function (PACF). ACF and PACF of the residuals of the AQSS models are 225 

Model (Equation number) 

Parameters  BIC (in millions) 

u B C Meteorology 

(P, R, W) 

D M H 
NO NO2 NOx 

Basic (4) ✓  ✓  ✓  - - - - 2.212 2.222 2.112 

Basic+W (5) ✓  ✓  ✓  ✓  - - - 2.018 2.048 2.024 

AQSS (3) - ✓  ✓  ✓  ✓  ✓  - 2.015 2.042 2.021 

AQSS+H  (6) - ✓  ✓  ✓  ✓  ✓  ✓  2.412 2.451 2.415 
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shown in Figure 4.  From this figure, the residuals of the AQSS model are largely clear from 226 

significant lags, so that no temporal structure remains.   227 

  228 

 229 

 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

Figure 4: ACF and PACF plots of residuals in the AQSS model: a) NO, b) NO=, c) NOx 245 

4.3. Effects of uLEZ intervention   246 

The vector of coefficients C in the AQSS model quantifies the uLEZ intervention effect at the 247 

measurement sites. Table 4 shows the values of Exp(C) and reduction percentage (calculated 248 

as 100[1- Exp(C)]% ) for each station and pollutant type. It should be noted that the AQSS 249 

model uses a logarithmic transformation of the concentration of pollutants.  250 

We note from these results that the estimates of reduction in NO2 concentration are smaller 251 

than the corresponding ones in NO and NOx.  Reasons for this include that road vehicles tend 252 

to emit more NO than NO2, so the primary effect of changes in traffic will be on the former. 253 

(a) 

(c) 

(b) 
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The two main pathways for NO are oxidation to NO2 and dispersion, whilst there are other 254 

sources of NO2 in urban areas, so that changes in NO concentration will lead to smaller ones 255 

in NO2. Other sources of NO2 in urban areas will reduce the proportional effect of changes in 256 

NO concentrations.  257 

Generally, these values show a reduction in NO, NO2, and NOx concentrations at all stations 258 

across London after the uLEZ intervention. The average reductions of NO and NOx in the 259 

uLEZ zone are greater (19% and 20%, respectively) than in the LEZ (17.9% and 17.1%, 260 

respectively) and Greater London (10% and 15.1%). However, in the case of NO2, the average 261 

reduction is similar at 11.6% for uLEZ and 11.4% for LEZ, while it is slightly larger in Greater 262 

London (13.4%).   263 

In addition, annual mean of NO2 in London (average of all monitoring stations) shows that 264 

London reached the EU limit for NO2 (40 µg/m3) in 2020. The annual mean of NO2 was 47.5  265 

µg/m3 in 2018 (before introducing uLEZ) which reduced to 43.8 µg/m3 in 2019 and 38.9 µg/m3 266 

in 2020.  267 

4.4. Spatial distribution of effects of the uLEZ intervention 268 

Heat maps of the Exp(C) values at the stations across London for NO, NO2 and NOx are shown 269 

in Fig. 3-5, respectively, to highlight the geographical distribution of the intervention value. 270 

(Note that the neutral value of Exp(C) in this form is 1).   271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 
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Table 5: Exp (C) and reduction (percentage) at each station, along with average reduction in each zone 279 

 280 

 281 

Zone  Code Station 
NO NO2 NOx       

exp (C) 
reduction 

% 
exp (C) 

reduction 
% 

exp (C) 
reduction 

%       

ULEZ 

1 WM6 0.78 22 0.93 7 0.60 40       

2 BM0 0.79 20 0.92 8 - -       

3 IM1 0.74 26 0.87 13 0.77 23       

4 CT4 0.78 21 0.91 9 0.82 18       

5 NB1 0.80 20 0.93 7 0.90 10       

6 CT3 0.77 23 0.84 16 0.80 20       

7 MY1 0.83 16 0.87 13 0.82 18       

8 CD9 0.77 23 0.86 14 0.71 29 
     

9 SK6 0.96 3 0.84 16 0.88 12 average reduction % 

10 LB5 0.89 10 0.95 5 0.93 7 NO NO2 NOx 

11 HK6 0.79 20 0.81 19 0.76 24 19.0 11.6 20.2 

LEZ 

12 CD1 0.79 21 0.87 13 0.81 19       

13 IS6 0.86 13 0.96 4 0.91 9       

14 HG4 0.91 8 0.96 4 0.86 14       

15 TH2 0.61 39 0.73 27 0.70 30       

16 LW4 0.94 5 0.91 9 0.90 10       

17 SK5 0.80 19 0.91 9 0.77 23       

18 LB4 0.97 3 0.87 13 0.90 10 average reduction % 

19 RI1 0.67 32 0.83 17 0.77 23 NO NO2 NOx 

20 EA8 0.83 16 0.93 7 0.82 18 17.9 11.4 17.1 

Greater 
London  

21 BT4 0.82 18 0.81 19 0.83 17       

22 EN5 0.68 32 0.89 11 0.74 26       

23 LW1 0.94 6 0.92 8 0.92 8       

24 WA2 0.97 2 0.85 15 0.84 16       

25 RHG 0.94 5 0.91 9 0.84 16       

26 LB6 0.93 6 0.72 28 0.91 9 average reduction % 

27 GN4 0.94 6 0.86 14 0.81 19 NO NO2 NOx 

28 HV3 0.94 6 0.97 3 0.91 9 10.6 13.4 15.1 
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 282 

 283 

 284 

Figure 5: Heat map of reduction in air pollution at stations across London: a) NO, b) NO2 and c) NOx  285 
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4.5. Monthly, Daily and meteorological effects 286 

In the AQSS model (3), parameters M and D represent monthly (respectively daily) effects on 287 

London air quality. The variation among months has standard deviations a, b, c (NO, NO2, 288 

NOx, respectively) with corresponding values among days of the week e, f, g. These effects 289 

are supposed to remain unaffected by introduction of the uLEZ. The parameter values are 290 

plotted in Fig. 6 and 7, respectively.  291 
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Figure 6: Monthly (M) variations of NO, NO2 and NOx from the AQSS model (3)   293 
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Figure 7: daily (D) variations of NO, NO2 and NOx from the AQSS model  (3) 295 



18 
 

From these results, the variations of NO, NO2 and NOx concentrations over calendar months 296 

are small, with a greater reduction from March to October in  NO2 and NOx and from June to 297 

October for NO.  298 

Estimations of the parameter D show also some slight variations in NO, NO2 and NOx 299 

concentrations over the 7 days of the week, with a greater value for Wednesday and Thursday 300 

compared to Saturday and Sunday.  301 

5. Discussion 302 

The BIC values of several state-space models (Table 4) show that meteorological data 303 

(temperature, humidity and wind speed), along with month and day effects (model AQSS) are 304 

key variables that improve the performance of the “Basic” model, which has the intervention 305 

effect and the process matrix only. The AQSS model (3) also was checked by ACF and PACF 306 

plots (Figure 4) to see if any temporal structure remained in the residuals, and they revealed 307 

mostly white noise.  308 

As shown in Table 5, the uLEZ intervention was successful in reducing NO, NO2, and NOx 309 

concentrations not just within the target zone but also throughout the LEZ and Greater London 310 

areas. This intervention makes the greatest reduction in NO and NOx in the uLEZ area, 311 

followed by the LEZ and Greater London. The reduction in NO2 in the uLEZ and LEZ zones is 312 

similar, with a slightly greater reduction elsewhere in the Greater London area.   313 

Estimation of month and day effects covariates (Figure 6 and 7, respectively) in the AQSS 314 

model showed that while the variation over calendar months and days of the week are small, 315 

there is a reduction in the NO, NO2 and NOx concentrations from June to October, and over 316 

the weekends (Saturday and Sunday).  317 

The AQSS model (3) shows that the uLEZ intervention reduced NO, NO2, and NOx 318 

concentrations in London (uLEZ, LEZ and Greater London areas). This model quantifies the 319 

reduction after allowing for meteorological conditions before and after the intervention, as well 320 

as the effects of the day of the week and calendar month.  321 
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6. Conclusions  322 

Low emission zone and ultra-low emission zone are traffic policies that have been introduced 323 

in London to tackle road transport air pollution. A state-space time series model was 324 

developed in this work to quantify the effects of ultra-low emission zone policy. This model 325 

used hourly NO, NO2, and NOx concentrations from 28 monitoring stations across London for 326 

12 months before and 10 months after the intervention. Furthermore, meteorological data 327 

including temperature, wind speed and humidity, as well as the influence of the day of the 328 

week and calendar month were considered in this model. The results of this model showed 329 

that the ultra-low emission intervention successfully reduced the NO, NO2, and NOx 330 

concentrations in all monitoring stations studied. Notable in this is that the spatial extent of 331 

these reductions is beyond the uLEZ itself, which could be due in part to each of reduction in 332 

traffic volume, change in fleet composition in response to introduction of the uLEZ, and 333 

atmospheric convection of pollutant. 334 

Future work for this research will be using the presented model to quantify the effects of the 335 

intervention on other pollutant types, such as particular matter (PMn).  336 
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