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Abstract

In April 2019, an ultra-low emission zone (ULEZ) was implemented in London to tackle road
transport air pollution. In this study, a state-space intervention model is developed for the first
time to quantify the effects of this policy on London air quality. For developing this model,
hourly NO, NO;, and NOyx concentrations at 28 monitoring stations across London for 12
months before the uLEZ intervention and 11 months following it were used. Additionally, this
model accounts for the influences of the meteorological variables of temperature, wind speed,

and humidity, as well as those of the day of the week and calendar month.

The results of this model showed the uLEZ intervention was successful in reducing NO, NOo,
and NOy concentrations not just within the zone of implementation but also throughout the
wider low emission zone (LEZ) and Greater London area. This intervention made the greatest
reduction in NO and NOy in the uLEZ area (19% and 20%, respectively), followed by the LEZ
(18% and 17%) and then Greater London (11% and 15%). The reduction in NO; in the uLEZ
and LEZ is similar (11%-12%), with a larger reduction elsewhere in the Greater London area

(13%).
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1. Introduction

Air pollution exposure is a leading risk factor for human health, contributing to 3.4 million
premature deaths in 2017 worldwide (Soriano et al., 2017; Stanaway et al., 2018). In addition
to human health, air pollution has negative impacts on anthropogenic ecosystems (Ochoa-

Hueso et al., 2017) and climate (Shindell et al., 2009).

Road transport is a significant source of pollution in metropolitan areas; it accounted for almost
half of NOx emissions in London during 2016 (London Atmospheric Emissions Inventory
(LAEI) 2016 - Methodology, 2020). Since 1992, a succession of Euro standards has been
created to combat road transport air pollution, with progressively more stringent restrictions to
regulate exhaust emissions of new vehicles (Hitchcock et al.,, 2014). In addition to these
regulations, some policies for controlling traffic flow have been developed to reduce air
pollution in urban areas. Among these policies, operating and pricing strategies such as
low/zero emission zones have the greatest influence on improving urban air quality (York

Bigazzi & Rouleau, 2017).

A low emission zone (LEZ) is designed to restrict vehicles based on their pollutant emission
in a specific area. The first LEZ was implemented in Sweden in 1996, with others introduced
subsequently in other European cities (Settey et al., 2019). There are currently about 260
LEZs in European countries. In Paris, the first LEZ was introduced in 2015, with estimated
reductions in road transport NO, and PMo of 23-44% and 17-25%, respectively (Host et al.,
2020). In addition, a recent study (Poulhes & Proulhac, 2021) found this restriction benefits
not just LEZ residents, but also people living outside of Paris. In Lisbon, an LEZ was
implemented in two phases between 2011 and 2012, and a study looked at the temporal
concentrations of several pollutants from 2009 to 2016 (Santos et al., 2019). This analysis
showed that the NOy concentration has decreased by 13% but still exceeds the EU limit which
is 40 ugm (European Comission, 2017) . Similar studies have been reported for German
cities such as Berlin (Gehrsitz, 2017; Poulhes & Proulhac, 2021), and Stuttgart and Munich

(Jiang et al., 2017; Poulhés & Proulhac, 2021), which demonstrate a reduction in air pollution
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concentrations following the implementation of the LEZ. They did, however, emphasise the

need for further limitations to avoid EU limits from being exceeded.

According to the London Air Quality Network, nearly all of the monitoring stations in Greater
London (GL) exceeded the annual average NOy limits in 2006 (Fuller & Green, 2006). That
report laid the groundwork for the creation of a vehicle emissions-based charge scheme.
Based on that, the London low emission zone (LEZ) was established in May 2007 with the
goal of reducing emissions by 16% by 2012. This scheme restricted normal access to the

greater London area to allow only vehicles with Euro 3 or better emissions standard.

However, according to reports of LAEI in 2016, air pollution concentrations in several London
zones continued to exceed the annual mean EU limit values. Figure 1 shows the annual
average of NO2 concentration in London in 2016: this shows that the majority of areas within
and near central London, as well as major roads leading there, exceed the EU limit (40 pg/m?3).
To improve air quality in these areas, an ultra-low emission zone (ULEZ) was implemented in
April 2019 covering the same area as the existing congestion charge zone in central London.
Vehicles are required to meet Euro 4 (petrol), Euro 6 (diesel) or better standards to gain access

to the uLEZ.

The restriction of vehicular access to the uLEZ has a variety of effects on traffic volume and
emissions-related composition of traffic elsewhere. The volume of traffic entering the uLEZ
was expected both to diminish and to improve in composition because of the new restrictions.
Although traffic entering the zone will have similar effects nearby, there could be reverse
effects on traffic volumes and composition there because of prohibited traffic diverting around
the zone. This raises the question of the spatial extent of effects of introduction of the uLEZ,

and indeed whether any benefits arise beyond the zone itself.
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Figure 1: Annual average air pollution concentrations in 2016 for NO; from LAEI (Air Pollution in the UK, 2018)

There are several approaches to quantify the impacts of these restrictions on road transport
air pollution, such as linear regression (Santos et al.,, 2019), geographically weighted
regression models (Poulhés & Proulhac, 2021), mixed effect models (Bernardo et al., 2021)
and before-after comparisons with Mann-Whitney statistical test (Tartakovsky et al., 2020).
The current study used a state-space intervention method to explore the effects of the uLEZ
restriction on London air quality as measured across the broader London area. The main
advantage of this model over existing approaches is that it estimates both the temporal and
spatial relationship between monitoring stations, and it can incorporate an intervention (such
as ULEZ). This model developed based on spatio-temporal modelling of atmospheric pollution
(Hajmohammadi & Heydecker, 2021) which is an extension of autoregressive moving average
(ARMA) models (G. Box, 2008). In addition, this model evaluates the policy intervention of the
ULEZ traffic restrictions in central London on air quality across the Greater London area,

implicitly allowing for variations in traffic volumes and composition. Meteorological data

-9 ey Limit
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including wind speed, temperature and humidity were also used in this model. A series of
multivariate state-space models with different specifications were developed and then
evaluated by the Bayesian Information Criteria (BIC). The preferred model that results from
this was then used to quantify the reduction in pollutant concentrations at each station of the

study area, and in each of the uLEZ, the LEZ and greater London.

2. Dataset

2.1. London Air Quality data
The current analysis incorporated data from all of London’s 28 air quality monitoring stations

extracted from the London Air Quality Network (LAQN)(London Air Quality, 2021). Of these,
11 stations are within the uLEZ (located within the London inner ring road, thus including the
City of London and the West End), 9 are in the remainder of the London low emission zone
(LEZ) and 8 are in greater London (outside of the LEZ). Figure 2 shows the location of each
station, along with the boundaries of uLEZ and the LEZ.

This dataset contains hourly measurements of the atmospheric concentration of each of Nitric
oxide (NO), Nitrogen dioxide (NO) and oxides of Nitrogen (NO,) at each of these stations.
The data was extracted for a period of 23 months, from 1 April 2018 until 28 February 2020.
In response to the COVID-19 pandemic and lockdowns from March 2020, traffic flow changed
significantly. This prevented us from having a fully balanced design with 12 months during
each of the periods before and after uLEZ intervention. Use of calendar month as a categorical
covariate ensured that comparisons were made between corresponding months of the year
where data were available, so allowing for annual seasonal trends in traffic and meteorological

conditions.
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Figure 2: Location of each monitoring station across London

The total number of observations available was 1,336,344, which was less than the maximum
possible of 1,409,184: this shortfall was due to detector outages in about 5% of hours. The
concentrations of each of the pollutants varied substantially across the stations, and also with
each of hour of the day, day of the week, and month of the year. Each of these relationships
has a high level of statistical significance in a one-way analysis of variance (p < 0.01) because
of the large number of observations. The number of observations, and the typical size of each
pollutant together with these variations, expressed as the standard deviation among the
classified means, is given in Table 1. The variation among stations constituted a substantial
proportion of the total squared deviations, amounting to R? ~ ¥ for each of the pollutants. The

distribution of the mean of the concentration of the pollutants is shown in Figure 3.
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Table 1: Statistics of pollutants (ugm-3)

NO NOZ Nox
Number 445,451 445,446 445,447
Mean 34.33 44.83 97.48
Standard deviation 48.5 28.7 98.3
SD (Station) 23.7 16.3 52.1
SD (Hour) 11.0 7.3 23.1
SD (Day) 7.11 412 15.00
SD (Month) 7.42 3.89 14.03
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Figure 3: Mean concentrations of a) NO, b) NO, and c) NOy at the studied monitoring stations
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2.2. Meteorological Data
Hourly observations of ambient temperature T (C"), relative humidity h (%) and wind speed

s (ms?) were extracted from London Heathrow airport located in west London. This data is
provided by the National Centres for Environmental Information (National Oceanic and
Atmospheric Administration, 2019). These meteorological measurements were taken to apply
throughout the study area. They were used in the present analysis to allow for the effects on
the pollution measurements of differences in weather between the periods before and after

implementation of the uLEZ.

The total number of observations available was 50,274, which was 0.25% less than the
maximum possible of 50,400. A number of observations together with the typical value and

standard deviation are given in Table 2 for each of these measurements.

Table 2: Meteorological data

Temperature  Relative humidity ~ Wind speed

T(C) h (%) w (m/s)
Number of Observations | 16,758 16,758 16,758
Mean \ 12.52 76.02 4.02
Standard deviation \ 6.21 17.20 2.22

Each of the three pollutants, NO, NO; and NOXx is negatively correlated with each of
temperature and wind speed. However, whilst each of NO and NOy is positively correlated
with relative humidity, NO; is negatively correlated with it. These results are summarised in
Table 3.

Table 3: Correlation of pollutants with meteorological data

Temperature  Relative humidity ~ Wind speed

Pollutant T(C) h (%) w (m/s)
NO -0.22 0.11 -0.33
NO2 -0.08 -0.11 -0.46
NOy \ -0.19 0.05 -0.39

3. Methodology

3.1. Introduction
The effects of the ULEZ intervention on air quality across London, both within the uLEZ zone

and beyond, were quantified using a state-space modelling approach. State-space models are
dynamic statistical analysis techniques that estimate the state of a system at the current time

indirectly through observed time series data (Durbin & Koopman, 2000; Tsay & Chen, 2018).
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The observed time series, Y,, depends on an underlying or state process, X,, through an

inexact observation process: y, = a(xt)+:at whilst the state evolves in a way that reflects the
structure of the system being observed: in the simplest case, without any exogenous
influences, this can be expressed as X, = B(xt_l)+wt where w; is a random disturbance to
development of the system, typically with a white noise distribution. Here we adopt time-

invariant linear formulations a(.) for the observation and B(.) for the system processes.

3.2. Modelling the uLEZ Intervention
The policy intervention that is of primary interest is the introduction of uLEZ in April 2019. This

can be represented through a vector of covariates:

c, =0(t-t)) 1)

0
where t, is the time of introduction uLEZ, and @(t):{1 (t>0)
>

3.3. Air Quality Space-State (AQSS) Model
In the state-space model used for London air quality, the observed time series vector y, is a

measurement of atmospheric concentration of pollutant (observation vector) and the state time

series vector X, is the corresponding vector of the atmospheric concentration of pollutants.

This value at time t is connected to the value at t-1 (1 hour lag) at the same station as well as
other stations by the process matrix, B. This matrix shows the spatio-serial relationship of

pollutant concentrations as they develop over time and location.
To accommodate seasonal variation of pollutant concentrations over the 12 calendar months,
the covariate vector &mx with coefficients M, was included in the model to represent effects

of month m. Similarly, to represent systematic variation within each week, the day-of-week

effect was modelled by covariate vector «, with coefficients D, . These two covariates are

defined as:
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~ {1 if time tis during calendar month m (1<m<12)

0 otherwise

(2)

1 if timetisduringday d (1<d <7)
a =
« 0 otherwise

These covariates will generate separate coefficients for 12 months (January to December)
and 7 days (Monday to Sunday) in the model, so the effects each month and day will be

estimated.

The meteorological variables including temperature, T, relative humidity, h and wind speed, s,
were added to the model as covariates with coefficients P, R and W, respectively. Hence, the
air quality state-space (AQSS) model is:

Y =X, +&

12 7 3
X, :th—l+CCt+ZMm6mt+ZDdadt+PTt+Rht +Ws, +Ww, @)
m=1 d=1

where g, and w, are uncorrelated white noise representing observation (respectively process)

error.

3.4. Model development and Evaluation
For the evaluation of the London ultra-low emissions zone, several different state-space model
formulations were investigated in this study. Model development started from a “basic” state-
space model with process matrix (B), intervention term (C) and increment (u), which allows for

systematic drift in the state:

Yi =X +&

(4)

X, =Bx,_, +Cc, +u+w,
We note that the drift in the state, represented by the offset u, will accommodate any long-

term trends in traffic volumes and fleet composition through the study period.

This model was developed to “BasictW” by adding the meteorological data including

temperature, T, relative humidity, h, and wind speed, s:

10
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V. =X, +§& (5)

X, =Bx,; +Cc, +u+PT, + Rh +Ws, +w,
Further development to this model results in AQSS model (3) with meteorological data and
additionally daily (D) and monthly (M) effects: This model does not require the increment u
because its effect is absorbed into the daily term. The final step in model investigation was to
add an hourly effect (H) (AQSS+H) to allow for systematic effects over the 24 hours the day,

modelled by covariate vector 7,, with coefficients H, ; this covariate is defined as:

_ |1 if time tis during hour of the day h (1£ h< 24)
M= 0 otherwise. '

Hence, this extension (AQSS+H) to the air quality state-space model is:

Y =X +&

12 7 24 6
x, =Bx,_, +Cc, +Z|\/|mésmt +ZDdocdt +PT, +Rh +Ws, +2thm +W, ©
m=1 d=1

h=1
These models were developed in the R programming software using the MARSS (Holmes et
al., 2012) package. Because the response variable x; of these models could not be negative,
the logarithm of pollutant concentration is used. The resulting model form for concentration of

pollution is consequently log-linear with lognormal error structure.

The performance of models (3) — (6) was compared using the Bayesian Information Criterion

(BIC) (Pandis, 2016):

BIC=-2z+log,(n)p (7)

where p is the number of free parameters in the model, n is the number of observations and
Z is the log-likelihood of the fitted model. According to this criterion, the introduction of further
parameters can be justified by a sufficiently large increase in likelihood of the fitted model,
taking into account the number of observations used. In the present form (7), models with

smaller values of BIC are preferred.

11
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4. Results

The results of fitting state-space models to the London air quality dataset (atmospheric
concentration of NO2, NO and NO,) and model evaluation are presented in this section.

4.1. Model testing and evaluation
The performance of several models introduced in section 3.4 was evaluated by Bayesian
Information Criterion (BIC) (7). The BIC of each of these models is presented in Table 4.
Models with smaller values of BIC are preferred, with use of additional parameters justified

by sufficient improvement in model likelihood.

Table 4: BIC of the developed models (smaller is better)

Parameters BIC (in millions)
Model (Equation number) |y B C MF;?ETO\;\%gy D M H NO NO2 NO,
Basic (4) v v v - - - - 2212 2222 2112
Basic+W (5) v v v v - - - 2018 2.048 2.024
AQSS (3) - v v v v v - 12015 2042 2.021
AQSS+H (6) - vV v v v v v 12412 2451 2415

According to the results of model performance, the AQSS model (3) is preferred for each of
the three pollutants over the others as it has the smallest BIC values. The BIC values in Table
4 show that inclusion of meteorological data improves the performance of the Basic model
substantially. Inclusion of month and day of week effects also improves model performance,
but further inclusion of hourly effects does not. Based on this, the AQSS model (3) was
selected to estimate the intervention effects, C, of the uLEZ intervention.
4.2. Analysis of residuals

The residuals in a statistical model of time series data of this type should be serially
uncorrelated (Washington et al., 2020). Failure of this weakens the model due to lack of
independence in the residuals, and it might be a sign of inadequate modelling. Two diagnostics
that are used to check the residuals are the autocorrelation function (ACF) and the partial

autocorrelation function (PACF). ACF and PACF of the residuals of the AQSS models are

12
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shown in Figure 4. From this figure, the residuals of the AQSS model are largely clear from

significant lags, so that no temporal structure remains.
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Figure 4: ACF and PACF plots of residuals in the AQSS model: a) NO, b) NO=, c) NOy

4.3, Effects of uLEZ intervention
The vector of coefficients C in the AQSS model quantifies the uLEZ intervention effect at the

measurement sites. Table 4 shows the values of Exp(C) and reduction percentage (calculated

as 100[1- Exp(C)]% ) for each station and pollutant type. It should be noted that the AQSS

model uses a logarithmic transformation of the concentration of pollutants.

We note from these results that the estimates of reduction in NO, concentration are smaller

than the corresponding ones in NO and NOx. Reasons for this include that road vehicles tend

to emit more NO than NOg, so the primary effect of changes in traffic will be on the former.

13
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The two main pathways for NO are oxidation to NO; and dispersion, whilst there are other
sources of NO; in urban areas, so that changes in NO concentration will lead to smaller ones
in NO.. Other sources of NO; in urban areas will reduce the proportional effect of changes in

NO concentrations.

Generally, these values show a reduction in NO, NO2, and NOx concentrations at all stations
across London after the uLEZ intervention. The average reductions of NO and NOy in the
ULEZ zone are greater (19% and 20%, respectively) than in the LEZ (17.9% and 17.1%,
respectively) and Greater London (10% and 15.1%). However, in the case of NO,, the average
reduction is similar at 11.6% for uLEZ and 11.4% for LEZ, while it is slightly larger in Greater

London (13.4%).

In addition, annual mean of NO- in London (average of all monitoring stations) shows that
London reached the EU limit for NO2 (40 pg/m?2) in 2020. The annual mean of NO, was 47.5
pg/m?2in 2018 (before introducing uLEZ) which reduced to 43.8 pg/m?in 2019 and 38.9 pug/m?
in 2020.

4.4, Spatial distribution of effects of the uLEZ intervention
Heat maps of the Exp(C) values at the stations across London for NO, NO; and NOy are shown
in Fig. 3-5, respectively, to highlight the geographical distribution of the intervention value.

(Note that the neutral value of Exp(C) in this form is 1).

14
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Table 5: Exp (C) and reduction (percentage) at each station, along with average reduction in each zone

Zone Code Station Noreduction Noieduction No:eduction
exp (C) % exp (C) % exp (C) %
1 WM6 0.78 22 0.93 7 0.60 40
2 BMO 0.79 20 0.92 8 - -
3 IM1 0.74 26 0.87 13 0.77 23
4 CT4 0.78 21 0.91 9 0.82 18
S NB1 0.80 20 0.93 7 0.90 10
ULEZ 6 CT3 0.77 23 0.84 16 0.80 20
7 MY1 0.83 16 0.87 13 0.82 18
8 CcD9 0.77 23 0.86 14 0.71 29
9 SK6 0.96 3 0.84 16 0.88 12 average reduction %
10 Bs 0.89 10 0.95 5 0.93 7 NO  NO, NO,
11 Hke 0.79 20 0.81 19 0.76 24 19.0 116 20.2
12 cm 0.79 21 0.87 13 0.81 19
13 is6 0.86 13 0.96 4 0.91 9
14 Hea 0.91 8 0.96 4 0.86 14
15 T1H2 0.61 39 0.73 27 0.70 30
LEZ 16 Lwa 0.94 5 001 9 0.90 10
17 sks 0.80 19 0.91 9 0.77 23
18 LB4 0.97 3 0.87 13 0.90 10 average reduction %
19 R 0.67 32 0.83 17 0.77 23 NO  NO, NO,
20 EA8 0.83 16 0.93 7 0.82 18 17.9 114 17.1
21 BT4 0.82 18 0.81 19 0.83 17
22 EN5 0.68 32 0.89 11 0.74 26
23 w1 0.94 6 0.92 8 0.92 8
Greater 24 wa2 0.97 2 0.85 15 0.84 16
London 25  RHG 0.94 5 0.91 9 0.84 16
26 LB6 0.93 6 0.72 28 0.91 9 average reduction %
27 GN4 0.94 6 0.86 14 0.81 19 NO  NO, NO,
28 Hvs 0.94 6 0.97 3 0.91 9 106 134 15.1

15
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4.5. Monthly, Daily and meteorological effects
In the AQSS model (3), parameters M and D represent monthly (respectively daily) effects on

London air quality. The variation among months has standard deviations a, b, ¢ (NO, NO.,
NOy, respectively) with corresponding values among days of the week e, f, g. These effects
are supposed to remain unaffected by introduction of the uLEZ. The parameter values are

plotted in Fig. 6 and 7, respectively.
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Figure 6: Monthly (M) variations of NO, NO, and NOy from the AQSS model (3)
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Figure 7: daily (D) variations of NO, NO, and NOy from the AQSS model (3)
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From these results, the variations of NO, NO; and NOy concentrations over calendar months
are small, with a greater reduction from March to October in NO; and NOyx and from June to

October for NO.

Estimations of the parameter D show also some slight variations in NO, NO; and NOy
concentrations over the 7 days of the week, with a greater value for Wednesday and Thursday

compared to Saturday and Sunday.

5. Discussion

The BIC values of several state-space models (Table 4) show that meteorological data
(temperature, humidity and wind speed), along with month and day effects (model AQSS) are
key variables that improve the performance of the “Basic” model, which has the intervention
effect and the process matrix only. The AQSS model (3) also was checked by ACF and PACF
plots (Figure 4) to see if any temporal structure remained in the residuals, and they revealed

mostly white noise.

As shown in Table 5, the uLEZ intervention was successful in reducing NO, NO-, and NOy
concentrations not just within the target zone but also throughout the LEZ and Greater London
areas. This intervention makes the greatest reduction in NO and NOy in the uLEZ area,
followed by the LEZ and Greater London. The reduction in NO- in the uLEZ and LEZ zones is

similar, with a slightly greater reduction elsewhere in the Greater London area.

Estimation of month and day effects covariates (Figure 6 and 7, respectively) in the AQSS
model showed that while the variation over calendar months and days of the week are small,
there is a reduction in the NO, NO2 and NOy concentrations from June to October, and over

the weekends (Saturday and Sunday).

The AQSS model (3) shows that the uLEZ intervention reduced NO, NO,, and NOy
concentrations in London (ULEZ, LEZ and Greater London areas). This model quantifies the
reduction after allowing for meteorological conditions before and after the intervention, as well

as the effects of the day of the week and calendar month.
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6. Conclusions

Low emission zone and ultra-low emission zone are traffic policies that have been introduced
in London to tackle road transport air pollution. A state-space time series model was
developed in this work to quantify the effects of ultra-low emission zone policy. This model
used hourly NO, NO., and NOy concentrations from 28 monitoring stations across London for
12 months before and 10 months after the intervention. Furthermore, meteorological data
including temperature, wind speed and humidity, as well as the influence of the day of the
week and calendar month were considered in this model. The results of this model showed
that the ultra-low emission intervention successfully reduced the NO, NO; and NOy
concentrations in all monitoring stations studied. Notable in this is that the spatial extent of
these reductions is beyond the uLEZ itself, which could be due in part to each of reduction in
traffic volume, change in fleet composition in response to introduction of the uLEZ, and

atmospheric convection of pollutant.

Future work for this research will be using the presented model to quantify the effects of the

intervention on other pollutant types, such as particular matter (PM,).
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