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Abstract:
The acquisition of a multi-drug refractory state is a major cause of mortality in myeloma. Myeloma
drugs that target the Cereblon (CRBN) protein include widely-used immunomodulatory drugs (IMiDs),
and newer CRBN E3 ligase modulator drugs (CELMoDs), in clinical trials. CRBN genetic disruption
causes resistance and poor outcomes with IMiDs. Here we investigate alternative genomic
associations of IMiD resistance, using large whole genome sequencing patient datasets (n=522 cases)
at newly diagnosed, lenalidomide (LEN)-refractory and lenalidomide-then-pomalidomide (LEN-then-
POM)-refractory timepoints.
Selecting gene targets reproducibly identified by published CRISPR/shRNA IMiD resistance screens,
we found little evidence of genetic disruption by mutation associated with IMiD resistance.
However, we identified a chromosome region, 2q37, containing COP9-signalosome members COPS7b and
COPS8, copy loss of which significantly enriches between newly-diagnosed (incidence 5.5%), LEN-
refractory (10.0%) and LEN-then-POM-refractory states (16.4%), and may adversely affect outcomes
when clonal fraction is high. In a separate dataset (50 patients) with sequential samples taken
throughout treatment, we identified acquisition of 2q37 loss in 16% cases with IMiD exposure, but
none in cases without IMiD exposure. The COP9 signalosome is essential for maintenance of the CUL4-
DDB1-CRBN E3 Ubiquitin Ligase. This region may represent a novel marker of IMiD resistance with
clinical utility.
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Key Points 
 
1. 2q37 copy loss enriches significantly between newly-diagnosed (~5%), LEN-resistant (10%) and 

POM-resistant  (16.4%) myeloma 

2. 2q37 carries COPS7b and COPS8, required for CRBN stability. Their partial loss leads to CRBN 

partial loss, which may blunt LEN/POM efficacy. 

 
 
Abstract 
 
The acquisition of a multi-drug refractory state is a major cause of mortality in myeloma. Myeloma 

drugs that target the Cereblon (CRBN) protein include widely-used immunomodulatory drugs 

(IMiDs), and newer CRBN E3 ligase modulator drugs (CELMoDs), in clinical trials. CRBN genetic 

disruption causes resistance and poor outcomes with IMiDs. Here we investigate alternative 

genomic associations of IMiD resistance, using large whole genome sequencing patient datasets 

(n=522 cases) at newly diagnosed, lenalidomide (LEN)-refractory and lenalidomide-then-

pomalidomide (LEN-then-POM)-refractory timepoints. 

Selecting gene targets reproducibly identified by published CRISPR/shRNA IMiD resistance screens, 

we found little evidence of genetic disruption by mutation associated with IMiD resistance. 

However, we identified a chromosome region, 2q37, containing COP9-signalosome members 

COPS7b and COPS8, copy loss of which significantly enriches between newly-diagnosed (incidence 

5.5%), LEN-refractory (10.0%) and LEN-then-POM-refractory states (16.4%), and may adversely 

affect outcomes when clonal fraction is high. In a separate dataset (50 patients) with sequential 

samples taken throughout treatment, we identified acquisition of 2q37 loss in 16% cases with IMiD 

exposure, but none in cases without IMiD exposure. The COP9 signalosome is essential for 

maintenance of the CUL4-DDB1-CRBN E3 Ubiquitin Ligase. This region may represent a novel marker 

of IMiD resistance with clinical utility. 
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Main Text  1 

Introduction 2 

Identification of causes and biomarkers of drug resistance in myeloma guide understanding of 3 

treatment failures, and development of targeted therapeutics. Genetic changes driving myeloma 4 

development are well described, including structural variants, copy number aberrations (CNAs) and 5 

gene mutations. Tumour genetic/epigenetic changes conferring survival advantage during drug 6 

exposure, and their contribution to drug resistant tumour clones, are less understood1,2. We 7 

previously reported genetic aberrations in Cereblon (CRBN), the target of  immunomodulatory 8 

(IMiD) and CRBN E3 ligase modulator (CELMoD) drugs, associated with IMiD resistance. These 9 

include mutations, high levels of a splice variant skipping exon 10, CRBN structural variants, and  10 

heterozygous loss of the CRBN-containing 3p region; they exhibit strong therapeutic selection on 11 

lenalidomide (LEN) and/or pomalidomide (POM) treatment3. We hypothesized that homozygous or 12 

heterozygous genetic alterations in additional genes required for CRBN-targeting drug activity may 13 

be clinically relevant. Pharmacogenetic screens identifying genes essential for IMiD agent sensitivity 14 

in vitro have recurrently identifed COP9 signalosome (CSN) complex genes4-9 (Supplementary Tables 15 

1&2), required for maintenance of the CUL4-DDB1-CRBN E3 Ubiquitin Ligase. Although 16 

pharmacological CSN inhibiton is toxic to many cancer cell lines10, in myeloma decrease in even one 17 

CSN subunit results in decreased CRBN protein levels and reduced LEN efficacy, because the CSN 18 

acts as a deneddylating ‘off switch’ for the CUL4-DDB1-CRBN E3 Ubiquitin Ligase. If deneddylating 19 

activity falls, CRBN protein is auto-ubiquitinated and degraded4,5. All CSN subunits 1-9 are required 20 

for deneddylating activity, although only one of COP7A or COP7B11. 21 

We asked whether disruption of any genes identified by in vitro IMiD agent-essential genetic screens 22 

bear relevance to IMiD agent resistance in the clinic. Due to the dominance of CNAs in myeloma12, 23 

we interrogated association of screen-identified gene deletion in the IMiD-response pathway, with 24 

selection during IMiD agent exposure. These results assign novel significance to genomic regions in 25 
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RRMM patients, specifically regarding therapy acquired-resistance to IMiDs and potentially 26 

CELMoDs.  27 

 28 

Methods 29 

Illumina whole-genome sequencing (WGS, coverage 60/30x tumour/germline) from 522 cases and 30 

RNASeq data from 189 cases was analysed as reported3, although sample size was increased 31 

(Supplementary Figure 1, Supplementary Table 3). DNA was extracted from germline peripheral 32 

blood and baseline/relapse timepoint bead-enriched CD138+ myeloma cells, from patients in 33 

CC4074-MM010 (STRATUS; NCT0171278913), CC-4047-MM-007 (OPTIMISMM; NCT0173492814), CC-34 

4047-MM-014-B (NCT01946477), CC220-MM001 (NCT0277303015) and CC122-ST-001-MM2 35 

(NCT01421524) trials. Newly diagnosed (ND) patient data from IFM/DFCI-2009 (NCT0119106016) 36 

were also used.   37 

Separately, clinically-annotated sequential myeloma patient samples from two UK biobanks 38 

(Supplementary Table 4) were analysed. Patients consented to research use of bone marrow 39 

aspirates from sequential disease timepoints. WGS was performed as above, although in certain 40 

instances the CD138- bone marrow fraction was used for germline DNA.  41 

 42 

Results and Discussion 43 

We adopted a hypothesis-driven approach identifying candidate genes whose loss may favour IMiD 44 

drug resistance from published pharmacogenetic screens (n=5 screens, Supplementary Table 1). We 45 

shortlisted 23 genes essential for LEN/POM activity in ≥2 screens (Figure 1A, Supplementary Table 46 

2). In each WGS cohort (ND n=198, LEN-refractory n=269, LEN-then-POM-refractory n=55, defined in 47 

Supplementary Methods), incidence of LEN/POM-essential gene mutation in drug-refractory 48 

cohorts was rare, as previously found with CRBN3. Copy loss was more frequent (Figure 1B), 49 

although not uniformly increased across all genes and timepoints. We identified regions containing 50 

any of these 23 genes with a trend in enrichment of copy loss between ND, LEN, and LEN-then-POM-51 
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refractory states, using criteria of an overall incidence of >10% copy loss at the LEN-then-POM-52 

refractory state, and incidence of copy loss that increased from ND to LEN-then-POM-refractory 53 

states by ≥1.5-fold (Supplementary Figure 2). These criteria delivered 3 regions demonstrating 54 

enrichment: a) 3p (CRBN locus as reported3) b) 17p (reported to be selected during myeloma 55 

progression17 as site of TP53, in addition to three of the shortlisted IMiD response-essential genes: 56 

UBE2G1, NCOR1 and COPS3; enrichment of loss may be driven by shared loss of TP53) and c) 2q37, 57 

previously unidentified as relevant in myeloma, but which contains two CSN members (COPS7B, 58 

COPS8) (Figure 1c, Supplementary Figures 3/4). The proportion of cases with COPS8 loss 59 

significantly increased from 11/198 (5.5%, ND), to 27/269 (10.0%, LEN-refractory) and 9/55 (16.4%, 60 

LEN-then-POM-refractory), p=0.028. COPS7b loss increased from 8/198 (4.0%, ND), to 21/269 (7.8%, 61 

LEN-refractory) and 7/55 (12.7%, LEN-then-POM-refractory), p=0.034 (FDR-corrected chi-squared 62 

proportion trend tests). The proportion of cases where the copy loss was clonal also increased, 63 

between ND (36.4% COPS8, 50.0% COPS7B) and LEN-then-POM-refractory states (77.8% COPS8, 64 

85.7% COPS7B) (Figure 1C).  Patients who lost a copy of COPS7B/COPS8 also demonstrated variable 65 

but significant reduction in their gene expression (p<0.01 both genes, 2-tailed T-test) (Figure 1D).   66 

Outcome data with subsequent POM treatment was available in the LEN-refractory STRATUS cohort 67 

(n=188)13, and with RVD induction in the ND cohort16. Although underpowered, when all 2q37 clonal 68 

fraction sizes were considered there was no difference in either cohort PFS (Supplementary Figure 69 

5a/c) or ORR (31.5% vs 32.6%, STRATUS only) between cases with 2q37 loss and those without. In 70 

STRATUS,  median PFS was 4.6 months and median POM-based treatment duration 4.9 months13, 71 

likely inadequate time for small clones to drive a PFS different from the background rate. We 72 

therefore next confined analysis to 2q37-loss cases with cancer clonal fraction (CCF)>0.75 (following 73 

an approximated bimodal split of CCF distribution (Figure 1C, arrow). Small cohort size (7/188) 74 

hindered power, but in CCF>0.75 cases a trend to lower PFS was noted (p=0.09) (Supplementary 75 

Figure 5b), and ORR was 25% (2/8 responded). This association, including CCF>0.75 cut-off 76 

validation, will need confirming with larger cohorts.  77 
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 78 

In a separate cohort of myeloma patients (n=50) with sequential WGS analysis before and after 79 

treatment (total n=127 tumours; ND n=32, non-LEN/POM exposure n=42, LEN-exposed/refractory 80 

n=41, LEN-then-POM-refractory n=12, Figure 2A), we traced acquisition and/or expansion of CNA-81 

defined subclones post LEN/POM therapy vs timepoints post non-IMiD therapies (Figure 2A-C). 5/31 82 

(16%) patients who had a LEN/POM-exposed timepoint acquired either clonal or subclonal loss of 83 

the 2q37 region containing COPS7B and COPS8 at their LEN/POM-exposed timepoint. In four cases, 84 

this CNA had been either absent or below limit of detection pre-LEN/POM exposure. In one case, it 85 

was present at low level before LEN/POM exposure, but the patient had previous thalidomide 86 

(THAL)-based therapy. In this case, when LEN-based treatment ceased, the clone disappeared again 87 

(Figure 2Cv). In contrast to the LEN/POM-exposed timepoints, in the 42 timepoints without prior 88 

LEN/POM exposure, and the 32 ND timepoints, the only incidence of COPS7B/COPS8-containing 89 

regional 2q37 loss was the case who had had THAL-based prior therapy. In 2 cases, sequential 90 

histological material was available; plasma cell CRBN protein levels fell after 2q37 loss emergence, 91 

although variably on a per-cell basis (Figure 2D). We performed correlatory in vitro modelling of 92 

partial COPS7B or COPS8 loss, resulting in CRBN protein loss and reduced LEN-induced growth arrest 93 

(Supplementary Figure 6). 94 

 95 

Although not previously shown to confer therapy-specific clonal advantages in clinical myeloma, 96 

CNAs may represent biomarkers of drug resistance. We demonstrated the contribution of CRBN 97 

copy loss in LEN/POM-refractory patients, and now identify a second therapy-related CNA, 2q37 98 

loss, whose incidence increases through LEN- and POM-refractory states, emerging as a marker of 99 

dominant clones in IMiD-resistant disease. CRBN is critical to IMiD function, but whether these CNAs 100 

will mark resistance to novel CELMoD agents18, or the kinetics of CELMoD-CRBN binding are as 101 

sensitive to relative CRBN protein loss or mutation, remains unaddressed. Both CRBN and CSN-102 
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member CNAs may be cost-effectively detected by additions to targeted sequencing approaches19, 103 

which may prove useful in future therapeutic decision-making.  104 
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Figure Legends 
 
Figure 1: Loss of COPS7b and COPS8 genes on chromosome 2q37 increases in incidence at LEN and 

LEN-then-POM refractory states 

(A) Genes (n = 23) and their chromosome location, identified from ≥2 published pharmacogenetic 

screens (n=5 screens, Supplementary Tables 1 & 2). 

(B) Incidence of mutation or deletion (excluding cases with copy neutral LOH) in the 23 genes listed 

in (A) in 3 patient datasets: NDMM, LEN-refractory and POM-refractory. Incidence of 1q21 gain/amp 

(CKS1B), 1p loss (CDKN2C) and 17p loss (TP53) across the 3 patient datasets are provided for 

context. 

(C) Proportion of samples with COPS7b and COPS8 copy loss (excluding cases with copy neutral LOH) 

(LH y-axis) and their CCFs (RH y-axis) at NDMM, LEN-, and POM-refractory states. Significance 

detected by chi-squared test for trend in proportions with FDR correction (when compared with all 

23 genes, for other genes see Supplementary Figure 2) Note: no instances of homozygous COPS7B 

or COPS8 loss were identified. Arrow in (C)ii. marks narrow point in CCF distribution taken as cut-off 

to divide high CCF (>0.75) from low CCF (<0.75) cases (used in Supplementary Figure 5) 

(D) Difference in COPS7b and COPS8 gene expression (mRNA expression by TPM) with presence or 

absence of gene copy loss. Significance detected by unpaired 2-sided T-test. 

NDMM = Newly diagnosed multiple myeloma; LEN = Lenalidomide; POM = Pomalidomide; LOH = loss 

of heterozygosity; CCF = cancer clonal fraction; TPM = transcripts per million reads mapped. 

 

Figure 2: Clonal fraction of 2q37 COPS7b/COPS8 loss increases only during IMiD-based therapies 

(A) Schematic showing sequential sample numbers analysed at each state of LEN or POM 

exposure/refractoriness 

(B) Summary table of incidence of patients acquiring 2q37 loss (filtered to include loss of COPS7b 

and/or COPS8 containing-regions only) during IMiD-based therapy vs no IMiD exposure 

(C) ‘Fishplot’ diagrams demonstrating behavior of 2q37 loss-containing subclones (green-colored) 

over sequential samples, in relation to other CNA-defined subclones and drug exposure. Total 

tumour burden over time (grey area) is derived from serial serum M-protein/restricted free light 

chain measurements (taken at white vertical line timepoints). Only IMiD-containing drug regimes are 

marked. Subclone emergence points have been inferred by linear growth assumptions. Note 

behavior of subclones during intervening months/years between WGS sampling points (taken at 

black vertical line timepoints) is inferred, for example in plot (v), where precise max CCF of 2q37-

containing subclone reached, and timing of its expiration is unknown. This plot shows one likely 

scenario. 
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(D) For 2 of the cases in (C), CRBN immunohistochemistry (IHC) of bone marrow biopsies from same 

timepoints as the WGS data is shown, plus Kappa (𝜅) and Lambda (𝜆) light chain in situ hybridisation 

(ISH) to indicate tumour burden. Graphs show corresponding CRBN protein quantification 

(percentage of cell surface stained) across disease stage, each point representing one cell. 

Significance as shown determined by Mann Whitney (case 2, 2 timepoints) and Kruskal Wallis (case 

3, 3 timepoints) tests for non-parametric data. 

 
 

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/doi/10.1182/blood.2022015909/1909567/blood.2022015909.pdf by guest on 01 August 2022



Gene Chromosome

CAND1 chr12

COPS2 chr15

COPS3 chr17

COPS4 chr4

COPS5 chr8

COPS6 chr7

COPS7A chr12

COPS7B chr2

COPS8 chr2

CRBN chr3

DDB1 chr11

EDC4 chr16

GPS1 chr17

PLAA chr9

RBX1 chr22

TRAF2 chr9

UBE2D3 chr4

UBE2G1 chr17

UBE2M chr19

SPOP NA

XRN1 NA

NCOR1 chr17

GLMN chr1

A B

C D COPS8

m
R

N
A

 e
x
p

re
s
s
io

n
 C

O
P

S
8

COPS8 defect Others

p= 3.0E-03

COPS7B

m
R

N
A

 e
x
p

re
s
s
io

n
 C

O
P

7
B

OthersCOPS7B defect

p= 4.6E-03

i. ii. 

POM refractory: Mutation or copy loss in 36/55  

(65%) samples

New 
diagnosis

Len 
Refractory

Pom 
Refractory

0

10

20

30

P
e
rc

e
n

ta
g

e
 o

f 
c
a
s
e
s
 

a
ff

e
c
te

d

COPS8 

0.0

0.5

1.0

C
a
n

c
e
r C

lo
n

a
l F

ra
c
tio

n
 (C

C
F

)

p = 0.028 

New 
diagnosis

Len 
Refractory

Pom 
Refractory

0

10

20

30

P
e
rc

e
n

ta
g

e
 o

f 
c
a
s
e
s
 

a
ff

e
c
te

d

COPS7b

0.0

0.5

1.0

C
a
n

c
e
r C

lo
n

a
l F

ra
c
tio

n
 (C

C
F

)

p = 0.034 

0

12

17p

1p

1q

COPS6

SPOP

DDB1

XRN1

PLAA

CRBN

TRAF2

UBE2D3

COPS5

COPS7B

COPS8

COPS4

CAND1

RBX1

UBE2G1

COPS3

COPS7A

NCOR1

GLMN

EDC4

26%

41%

41%

1%

2%

2%

3%

3%

3%

4%

5%

5%

6%

8%

10%

10%

13%

14%

14%

17%

19%

34%

45%

0 60

NDMM: Mutation or copy loss in 133/198 

(67%) samples

0

13

17p

1p

1q

XRN1

TRAF2

DDB1

COPS6

COPS5

SPOP

COPS2

PLAA

COPS4

CAND1

RBX1

COPS7B

COPS7A

GLMN

COPS8

COPS3

UBE2G1

EDC4

NCOR1

CRBN

36%

50%

69%

3%

3%

3%

3%

3%

6%

6%

11%

11%

11%

14%

19%

19%

22%

22%

22%

25%

28%

31%

36%

0 25
0

23

17p

1p

1q

COPS2

COPS6

SPOP

DDB1

PLAA

COPS5

UBE2D3

TRAF2

COPS7B

CAND1

CRBN

COPS4

COPS8

RBX1

COPS7A

COPS3

UBE2G1

GLMN

NCOR1

EDC4

46%

47%

70%

2%

2%

3%

5%

6%

8%

9%

9%

12%

12%

13%

14%

16%

17%

20%

26%

28%

32%

33%

36%

0 122

LEN refractory: Mutation or copy loss in 174/269  

(65%) samples

Gene/region deletion (copy loss)

Region gain/amp (1q only)

Missense Mutation

Nonsense Mutation

Frameshift Mutation

Splice site Mutation

Multi-Hit mutations

Deletion and mutation events

Figure 1

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/doi/10.1182/blood.2022015909/1909567/blood.2022015909.pdf by guest on 01 August 2022



Diagnosis

Firs
t r

elapse

Second re
lapse

Third
 re

lapse

t(11,14) 

1q gain

9q gain

2q loss

6q/7p loss

LEN DEXVTD

Clinically annotated

patients with myeloma

Clinically annotated

relapsed/refractory 

patients

41

LEN- exposed/refractory 

timepoints

12 

LEN-then-POM-

refractory timepoints

127 WGS tumour samples from 50 patients, ≥ 2/patient

Treatment timeline

42

Non LEN/POM-

exposure timepoints

32 

New diagnosis 

timepoints

LEN or POM exposed/ refractory timepoint No LEN or POM refractory timepoint

Total patients (n) 31 19

Acquire new 2q37 loss 5 (16%) 0

2q37 loss pre-existent 0 0

B

A

Diagnosis

Firs
t r

elapse

Second re
lapse

Third
 re

lapse

t(11;14), Del13

6p gain

1q gain 

17q gain 

THAL maintenance LEN DEX

2q 

loss

Diagnosis

M
inim

al 

response Double 

refra
cto

ry

1q gain

1q amp

2q loss

VTD PACE IXAZOMIB LEN DEX POM DEX

Diagnosis

Best 
response

Relapse

t(11;14) 

Del17p

8p loss 2q loss 

3p loss

LEN DEX POM DEX POM DEX

Diagnosis

Parti
al 

response

Firs
t r

elapse

Second re
lapse

t(4;14)
8p loss 1q gain

2q loss

LEN DEX IXAZOMIB LEN DEX

13 loss

Case iv.Case iii.

Case v.

C Case i. Case ii.

Case ii. Case iii. D
Diagnosis Relapse Diagnosis Partial response Second relapse

Diagnosis Relapse

0.0

0.5

1.0

1.5

P
e
rc

e
n

ta
g

e
 o

f 
c
e
ll
 s

u
rf

a
c
e
 a

re
a
 

s
ta

in
e
d

 p
o

s
it

iv
e

Case ii.

p < 0.0001

Diagnosis Partial 
Response

Second 
Relapse

0.0

0.5

1.0

1.5

P
e
rc

e
n

ta
g

e
 o

f 
c
e
ll
 s

u
rf

a
c
e
 a

re
a
 

s
ta

in
e
d

 p
o

s
it

iv
e

Case iii.

p < 0.0001

Figure 2

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/doi/10.1182/blood.2022015909/1909567/blood.2022015909.pdf by guest on 01 August 2022


	Cover Page
	Article File
	Figure 1
	Figure 2

