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Dynamic causal modelling 
of COVID‑19 and its mitigations
Karl J. Friston 1*, Guillaume Flandin1 & Adeel Razi1,2,3

This technical report describes the dynamic causal modelling of mitigated epidemiological outcomes 
during the COVID‑9 coronavirus outbreak in 2020. Dynamic causal modelling is a form of complex 
system modelling, which uses ‘real world’ timeseries to estimate the parameters of an underlying 
state space model using variational Bayesian procedures. Its key contribution—in an epidemiological 
setting—is to embed conventional models within a larger model of sociobehavioural responses—in a 
way that allows for (relatively assumption‑free) forecasting. One advantage of using variational Bayes 
is that one can progressively optimise the model via Bayesian model selection: generally, the most 
likely models become more expressive as more data becomes available. This report summarises the 
model (on 6‑Nov‑20), eight months after the inception of dynamic causal modelling for COVID‑19. This 
model—and its subsequent updates—is used to provide nowcasts and forecasts of latent behavioural 
and epidemiological variables as an open science resource. The current report describes the underlying 
model structure and the rationale for the variational procedures that underwrite Bayesian model 
selection.

Since the introduction of dynamic causal modelling for quantitative prediction of the COVID-19 coronavirus 
 epidemic1,2, the structure of the model has been progressively optimised as new data become available. In this 
technical report, we describe the model’s structure and provide illustrative predictions of various outcomes at 
the time of submission (i.e., 6-Nov-2020) (Note: As noted in the Epilogue, this paper provides the motivation 
for—and account of—a particular instance of a DCM of COVID-19 at a specific point in time. Due to the nature 
of dynamic causal modelling, the optimal structure of the model necessarily changes as more data becomes avail-
able and model complexity increases. A weekly record of successive changes to the model can be found  here3). 
These illustrative examples focus on identifying models with the greatest evidence and how this underwrites 
predictive validity.

Dynamic causal modelling (DCM) stands apart from most modelling in epidemiology by predicting mitigated 
outcomes—and quantifying the uncertainty associated with those outcomes. This stands in contrast to quan-
titative epidemiological forecasts that do not consider the effect of prevalence on sociobehavioural responses. 
Usually, these projections are over few weeks—and rest upon fitting curves to the recent trajectory of various 
data; e.g., Refs.4,5. In contrast, dynamic causal modelling considers what is most likely to happen, based upon a 
generative model that best explains all the data available. This mandates a model of sociobehavioural responses 
that mitigate viral transmission, such as social distancing, lockdown, testing and tracing, etc. In turn, this requires 
a detailed consideration of how various sorts of data are generated. For example, it has to model fluctuations in 
testing capacity and sampling bias due to people self-selecting when symptomatic. The advantage of this kind of 
modelling is that any data generated by the model can be used to inform the model parameters that underwrite 
fluctuations in latent states, such as the prevalence of infection. Latent states refer to those states of the popula-
tion that cannot be estimated directly and have to be inferred from observable data.

Dynamic causal modelling focuses not on worst-case scenarios but on the most likely outcomes, given concur-
rent predictions of viral transmission, responses in terms of behavioural interventions and changes in the way that 
the epidemic is measured (e.g., confirmed cases, death rates, hospital admissions, testing capacity, etc.). Crucially, 
dynamic causal modelling brings two things to the table. The first is the use of variational procedures to assess 
the quality of—or evidence for—any given model. This means that the model adapts to the available data; in the 
sense that the best model is taken to be the model with the greatest evidence, given the current data. As time goes 
on, the complexity of the model increases, in a way that is necessary to explain the data accurately. Technically, 
log evidence (a.k.a., marginal likelihood) is accuracy minus complexity—and both are a function of the  data6.

The second advantage of dynamic causal modelling is a proper incorporation of uncertainty in the estimation 
of conditional dependencies. In other words, it allows for the fact that uncertainty about one parameter affects 
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uncertainty about another. This means dynamic causal models generally have a large number of parameters, 
such that the conditional uncertainty about all the parameters is handled together. This furnishes a model that 
is usually very expressive and may appear over-parameterised. However, by optimising the prior probability 
density over the model parameters, one can optimise the complexity (c.f., the effective number of parameters), 
using Bayesian model  selection7–9. Note that the ability to pursue this form of structure learning rests on being 
able to estimate the model evidence or marginal likelihood, which is one of the primary raisons d’être for the 
variational procedures used in dynamic causal  modelling10–12.

These potential advantages can be leveraged to model a large variety of data types, to fit an expressive model 
of epidemiological trajectories and, implicitly, produce posterior predictive densities over measurable outcomes. 
In other words, parameterising behavioural responses—such as social distancing—as a function of latent states, 
enables the model to guess how we will respond in the future, with an appropriate uncertainty. This is the basis 
of the predictions of mitigated responses above.

The remainder of this report provides a brief description of current predictions using 10 sorts of data. These 
posterior predictive densities are based upon the implementation of DCM for COVID-19 described in the 
Supplementary Information and detailed in the accompanying annotated MATLAB code (see software note).

Dynamic causal modelling
The convolution, generative or forward model of epidemic data (here, from the United Kingdom) is based upon 
four factors, each of which corresponds to a distinct kind of latent state, each with a number of distinct levels. 
One of these factors (the infection factor) can be thought of as a conventional (SEIR) epidemiological model. 
The remaining factors are concerned with population fluxes and fluctuating contacts between people, who may 
or may not be affected, and the clinical progression of the infection that depends on—but is separate from—the 
infection factor. This allows for both symptomatic and asymptomatic clinical corollaries of infection. The final 
factor concerns testing. This is a key part of the generative model because it generates the data considered to be 
informative about the course of the epidemic.

The particular DCM described in the Supplementary Information is based upon the original model of a single 
 region1. It has subsequently been extended to deal with viral spread both within and between  communities2. This 
was necessary to explain secondary  waves13. A further difference between early applications of dynamic causal 
modelling, in this setting, and current applications is the use of multimodal data. The example in Fig. 1 uses 10 
sources of data (see Supplementary Information for details):

• confirmed cases based upon PCR testing, as reported by specimen date
• daily deaths within 28 days of testing positive for COVID-19, reported by date of death
• critical care unit occupancy as measured by the number of patients requiring mechanical ventilation
• the number of PCR tests performed each day
• the number of people infected, based upon unbiased community surveys using PCR tests
• the percent of people who are seropositive, based upon unbiased community surveys using antibody tests
• the number of people reporting symptoms, as estimated by the COVID Symptom Study
• estimates of the reproduction ratio, issued by the government
• mobility, as measured by Department of Transport estimates of car use
• location, as estimated by Google’s mobility data; i.e., workplace activity.

Note that some of these so-called data would be treated as estimates in conventional modelling, for exam-
ple, the effective reproduction ratio. However, dynamic causal modelling treats these estimates as data features 
because they are based upon historical data. In other words, dynamic causal modelling generates the underlying 
reproduction ratio directly from latent states, such as the rate of change of prevalence of infection. This means 
it can then predict estimates based upon legacy data, under the assumption that there are random effects that 
accompany these conventional estimators.

Figure 1 shows the data (black dots) and predictions in terms of posterior expectations (blue lines) and asso-
ciated 90% credible intervals (shaded areas). Here, we consider the first eight outcomes listed above. Note that 
the period over which data is available—and the time between observations—varies with different data types. 
However, because the generative model operates in continuous time, from the beginning of the outbreak into 
the future, all data points can be used. Here, we see that the first and secondary waves of confirmed cases show 
a marked asymmetry, with a much larger number of confirmed cases in the secondary wave. This is largely a 
reflection of the number of tests performed, as evidenced by the antisymmetric profile of daily deaths (averaged 
over seven days), which were predicted to peak at around 200 deaths per day (Note: Note that this prediction 
pertains to death by date, not by date reported, which has exceeded 400 on at least one day at the time of writing.) 
in early November 2020 (specifically, November 8). This pattern is reflected in the number of patients requir-
ing mechanical ventilation, the estimated prevalence of infection from community surveys and the symptoms 
reported using the COVID Symptom  Study14.

The model also shows a decline in seropositivity from about 7 to 5% at the time of writing, which is pre-
dicted to increase again over the next few weeks. The reproduction ratio started at over 2 and fell, during the 
first lockdown, to below one, dipping to a minimum of about 0.7 over the summer. After this, it rose to about 
1.5 and fell below 1 in October. Note that the conventional estimates of the reproduction ratio—relative to the 
posterior expectation from DCM—are a slight overestimate. Crucially, the black dots in this figure (upper and 
lower confidence intervals, based upon consensus from the SPI-M: the UK Govt. Scientific Pandemic Influenza 
Subgroup on  Modelling15) have been shifted 2 weeks backwards in time from their date of reporting. This is what 
is meant above by historical or retrospective estimates. In other words, the estimates of the reproduction ratio 
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pertain to states of affairs a few weeks ago. At the time of writing, this was particularly relevant because a national 
lockdown had just been announced, with the aim of getting the reproduction ratio below one. According to this 
analysis, it was already below one at the time of the  announcement16.

Figure 2 shows the equivalent results for mobility and location based upon Department of Transport and 
Google mobility data. It suggests that the national lockdown in spring reduced contact rates to about 25% of 

Figure 1.  Posterior predictions of various outcome modalities, ranging from confirmed cases through to the 
reproduction ratio. The black dots correspond to smoothed empirical data from the publicly available sources 
listed in the main text. The blue lines and shaded areas correspond to the posterior expectation and 90% 
Bayesian credible intervals based upon the posterior predictive density. The vertical blue dashed line indicates 
the date at which the analysis was performed.
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pre-COVID levels; after which they rose again slowly, until the resurgence of infections at the onset of the sec-
ondary wave. In Fig. 2, 100% refers to the pre-COVID mobility.

Uncertainty quantification is an inherent aspect of the data assimilation afforded by dynamic causal model-
ling. In other words, dynamic causal models are convolution models that use Bayesian or variational approaches 
to assimilate data—and the attending uncertainty. In this particular dynamic causal model, all the uncertainty 
resides in the model parameters, such as various rate constants and probabilities (see Table 1 and the Supplemen-
tary Information). This uncertainty is then propagated through to time-dependent latent states and, ultimately, 
the outcomes (denoted by the shaded confidence intervals in the figures above).

Although efficient, variational procedures are notoriously overconfident. They underestimate the uncertainty 
because of the way they handle conditional dependencies: see discussion and Ref.17. To compensate for this, the 
confidence intervals in the above figures have been inflated by multiplying the posterior standard deviation by a 
factor of eight. Crucially, these confidence intervals do not incorporate uncertainty about the structure or form 
of the model itself. In other words, although the model has been optimised to maximise model evidence, there 
is no guarantee that this is the best of all possible models, which it will almost certainly not be.

Figure 3 shows the underlying latent states generating the predictions in Figs. 1 and 2. The upper two panels 
show three outcomes from the previous figures (black dots): daily confirmed cases using PCR testing, daily 
deaths, and critical care occupancy. The upper left panel shows the rates, while the upper right panel shows the 
cumulative totals. The remaining panels report the fluctuations in the latent states of the four factors. Each factor 
has two panels, showing each of the accompanying levels. For a more detailed explanation of what these latent 
states mean—and how they can be interpreted—please see the Supplementary Information.

The infection panel includes prior thresholds for restrictions on contacts within (lockdown) and between 
(travel) an effective or active population (broken lines). It is these thresholds that produce the periodic expres-
sion of secondary and subsequent waves following the initial outbreak. One key thing to note here is that, in this 
example, about 70% of the population remains susceptible to future infection (after January 2021). The remaining 
population are at low risk of coming into contact with the virus or have acquired an effective immunity; irrespec-
tive of whether they are seropositive or seronegative.

Table 1 provides a brief description of the parameters, their prior densities and the posterior density afforded 
by fitting the data in the figures above. The prior precision corresponds to the inverse variance of the log-trans-
formed priors. Although the (nonnegative) scale parameters are implemented as probabilities or rates, they are 
estimated as log parameters. The prior means and ranges were based upon the above sources—and have been 
progressively optimised with successive versions of the model using Bayesian model  reduction8. Note that some 
parameters have narrow (informative) priors, while others are relatively uninformed. The upper and lower 
ranges of the prior and posterior confidence intervals contain 90% of the probability mass. Note that these are 
probabilistic ranges, and the posterior estimates can exceed these bounds, if the data calls for it.

Predictive validity
Dynamic causal modelling is generally used to test hypotheses about the causal structure that generates data. This 
rests on Bayesian model comparison, where each hypothesis or model is scored using a (a variational bound) on 
model evidence. This enables one to find the best explanation for the data at hand that has the greatest predictive 
validity. This follows because cross-validation accuracy goes hand-in-hand with model evidence: in other words, 
maximising model evidence precludes over fitting by minimising complexity—and ensures generalisation to new 
 data6,17,20. This is particularly prescient for epidemiological modelling because ‘new data’ pertains to the future, 
which means generalisation corresponds to predictive validity. Using models for forecasting that have not been 
subject to appropriate Bayesian model selection may have poor predictive validity because they overfit, if too 
complex, or underfit, if not sufficiently expressive. An example is provided in Fig. 4.

Figure 4 illustrates a failure of forecasting with epidemiological (transmission)  models5 that have not been 
optimised using variational model comparison. The left panels show the forecasts from the MRC Biostatistics Unit 
at the University of Cambridge, UK, shortly before and after the first peak of a second surge. These projections 

Figure 2.  Posterior predictions for mobility. This figure uses the same format as Fig. 1. In this case, the data are 
expressed as a percentage of pre-pandemic values; namely, transport use and workplace activity, as estimated 
from Google mobility data. Please see main text for the data sources.
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are based on screen grabs from the  dashboard4 on appropriate days. The right panels show the equivalent pre-
dictions using dynamic causal models (Taken from the dashboard  at21) following Bayesian model selection; 
specifically, Bayesian model reduction based upon a variational free energy evidence bound. The first MRC 

Table 1.  Parameters of the dynamic causal model. Sources: Refs.18,19. Table 1 lists the parameters of this 
model, their priors and their posteriors based upon the data above. The free parameters are listed in the 
second column and their role in shaping the epidemiological dynamics is described in the Supplementary 
Information.

Number Name Description
Prior 
mean Precision

Lower 
(95%)

Upper 
(95%)

Posterior 
mean

Lower 
(95%)

Upper 
(95%)

1 N Population size (M) 66.65 Inf 66.65 66.65 66.65 66.65 66.65

2 n Initial cases 1 0.25 0.037 26.8 1.04 0.41 2.6

3 r Pre-existing immu-
nity 0.1 16 0.066 0.15 0.047 0.032 0.069

4 o Initially exposed 0.1 16 0.066 0.15 0.14 0.13 0.15

5 out P (leaving home) 0.3 64 0.24 0.36 0.27 0.23 0.31

6 sde Threshold: distanc-
ing 0.05 64 0.040 0.061 0.047 0.044 0.049

7 qua Threshold: quar-
antine 0.005 64 0.0040 0.0061 0.0095 0.0083 0.010

8 exp P (leaving area) 0.0005 16 0.0003 0.0007 0.0010 0.0009 0.0011

9 cap CCU beds per 
person 0.00032 16 0.00021 0.00048 0.00057 0.00043 0.00076

10 s Distancing sensitiv-
ity 2 64 1.6 2.4 2.4 2.2 2.7

11 u Quarantine sensi-
tivity 6 64 4.8 7.3 7.32 5.9 8.9

12 c Mechanical sensi-
tivity 1 64 0.81 1.2 0.79 0.65 0.96

13 nin Contacts: home 2 64 1.6 2.4 1.0 0.88 1.3

14 nou Contacts: work 64 64 52 78.6 81 70 94

15 trm Transmission (early) 0.5 64 0.40 0.61 0.53 0.46 0.61

16 trn Transmission (late) 0.5 64 0.40 0.61 0.27 0.23 0.31

17 tin Infected period 
(days) 5 1024 4.7 5.2 4.9 4.7 5.1

18 tcn Infectious period 
(days) 4 1024 3.7 4.2 3.4 3.3 3.6

19 tim Loss of immunity 
(days) 256 64 208 314 222 208 237

20 res Seronegative propor-
tion 0.4 64 0.32 0.49 0.45 0.42 0.49

21 tic Incubation period 
(days) 4 1024 3.7 4.2 3.0 2.8 3.1

22 tsy Symptomatic period 
(days) 6 1024 5.6 6.3 6.7 6.5 7.0

23 trd ARDS period (days) 11 1024 10.4 11.5 8.8 8.5 9.1

24 sev P(ARDS|symptoms): 
early 0.005 1024 0.0047 0.0052 0.0047 0.0044 0.0049

25 lat P(ARDS|symptoms): 
late 0.005 0.25 0.00018 0.13 0.0035 0.0030 0.0041

26 fat P(fatality|ARDS): 
early 0.5 1024 0.47 0.52 0.44 0.42 0.46

27 sur P(fatality|ARDS): 
late 0.5 0.25 0.018 13.4 0.31 0.25 0.38

28 ttt FTTI efficacy 0.036 1024 0.034 0.037 0.037 0.035 0.039

29 tes Testing: bias (early) 1 0.25 0.037 26.8 0.22 0.017 2.9

30 tts Testing: bias (late) 4 0.25 0.14 107 5.2 4.8 5.7

31 del Test delay (days) 4 1024 3.7 4.2 3.9 3.7 4.1

32 ont Symptom demand 0.01 0.25 0.00037 0.26 0.0074 0.0045 0.012

33 fnr False-negative rate 0.2 1024 0.18 0.21 0.20 0.19 0.21

34 fpr False-positive rate 0.002 1024 0.0019 0.0021 0.0020 0.0019 0.0021

35 lin Testing: capacity 0.01 0.25 0.00037 0.26 0.0065 0.0059 0.0071

36 rat Testing: constant 48 0.25 1.7 1288 44 41 48

37 ons Testing: onset 200 0.25 7.4 5367 203 194 213
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forecast on 11-Nov-20 predicted that the number of deaths each day would rise exponentially and “is likely to be 
between 380 and 610 on the 21st of November”. In fact, death rates peaked on 9 November at 398 (7-day average, 
evaluated on 20-Nov-20), as predicted by dynamic causal modelling. Crucially, the dynamic causal modelling 

Figure 3.  Posterior predictions and underlying latent states. The upper two panels show selected outcomes 
from the previous figures (black dots): here, daily confirmed cases using PCR testing, daily deaths, and critical 
care occupancy. The upper left panel shows the rates, while the upper right panel shows the cumulative totals. 
The remaining panels detail fluctuations in the latent states of the four factors. Each factor has two panels, 
showing each of the accompanying levels. For clarity, some levels have been omitted because the probabilities of 
being in any level—of any given factor—sum to one. For a more detailed explanation of what these latent states 
mean—and how they can be interpreted—please see the Supplementary Information.
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predictions were consistent before and after the peak. Conversely, the MRC predictions had no predictive valid-
ity, forecasting opposite trends before and after the peak (indicated with the red ellipse). Furthermore, dynamic 
causal modelling predicted this peak before an upsurge in confirmed cases, albeit with a smaller amplitude and 
3 weeks prematurely (see Fig. 5).

An important application of nowcasting is to estimate the reproduction ratio (or R-number). As noted above 
this is often used as a point of reference for evaluating when various mitigations should be considered. However, 
when estimated using models that have not been optimised, estimates of things like the reproduction ratio can, 
in principle, become inaccurate and biased. An example is shown in Fig. 6. The left panel shows the reproduc-
tion ratio in terms of an expected value (black line) and credible intervals from the MRC Biostatistics Unit at the 
University of Cambridge (for London). The right panel shows the upper and lower intervals (blue dots) based 
upon a consensus of several modelling groups that constitute the SPI-M15 (for the United Kingdom).

Figure 4.  Predicting the second peak: The left panels show the forecasts from the MRC Biostatistics Unit at the 
University of Cambridge, UK, shortly before and after the peak of a second surge. These projections were taken 
as screen grabs from the dashboard on appropriate days. The right panels show the equivalent predictions using 
dynamic causal modelling. The top row shows the predictions before the second peak, while the bottom row 
shows the equivalent predictions a few days later. The dates are indicated by the vertical red lines. The red ellipse 
highlights an example of overfitting recent trends in the data.

Figure 5.  Dynamic causal modelling predictions of a second wave before any increase in confirmed cases in 
early August. This figure is taken from an internal report on the causes of second  waves13.
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In both instances, the reproduction ratio was estimated to be above one at the time the number of new 
infections peaked in the United Kingdom. This is mathematically impossible because the R-number should be 
exactly one at the time of peak incidence. Conversely, the estimates based on dynamic causal modelling (see 
Fig. 6 and Supplementary Information) suggest that the reproduction ratio fell below one about 3 weeks before 
the peak in death rates (black line in the right panel). The dynamic causal modelling estimates have a similar 
amplitude to the MRC and consensus (SPI-M) estimates; however, the latter lag the former by two weeks. In 
short, retrospective estimates that are used to motivate various nonpharmacological interventions—and assess 
their relative impact—may not be apt for guiding time-sensitive decisions.

Discussion
The main contribution of DCM for COVID-19 is to place conventional (SEIR) models in a larger model of 
sociobehavioural responses and, crucially, models of how people seek out tests or healthcare. This involves hav-
ing a multifactorial model, in which SEIR models constitute one of several factors. This enables the DCM to 
generate a wide range of measures and outcomes, and therefore use more empirical (real-world) kinds of data to 
optimise the model and its predictive validity. We have illustrated this anecdotally, by comparing the predictions 
of models that have and have not been optimised with respect to their marginal likelihood.

A key consideration in optimising the model—and implicitly its predictive validity—is getting the coarse 
graining or expressivity of the model right. Because the model evidence can be written as accuracy minus com-
plexity—where complexity scores the degrees of freedom used to provide an accurate prediction of the data—the 
optimal model depends upon the data it is trying to explain. This means model evidence (or variational free 
energy) can be used to evaluate models with different degrees of freedom. For example, one could consider 
models in which social distancing and mask wearing were sensitive to different variables (e.g., social distancing 
increased with hospitalisation rates, while mask wearing increased with prevalence). If this more complex model 
had greater evidence then a simpler model—in which social distancing and mask wearing were subsumed into 
an effective contact rate (i.e., number of effective contacts per day, as in the current model)—then this would 
licence the distinct modelling of social distancing and mask wearing.

One might ask, what are the relative advantages of DCM in relation to alternative approaches; for example, 
machine learning (ML). Two key differences between DCM, in relation to ML are: (i) an explicit formulation in 
terms of a generative model and (ii) uncertainty quantification. A generative model is necessary if one wants to 
use the optimised model (and parameters) for scenario modelling: e.g., Refs.23,24. For example, if one wanted to 
ask how relaxing restrictions on contact rates would affect viral spread, one can change a parameter that couples 
prevalence to contact rates and predict the consequences. This would not be possible using ML, because there 
is no explainable or interpretable parameterisation in terms of prevalence or contact  rates25. Having said this, 
if certain parts of the model to not need to be interpreted they could be optimised using ML. A nice example 
of this can be found in Ref.26, who used long short-term memory (LSTM) to estimate the (uninterpretable) 
parameters of the likelihood mapping between the (interpretable) latent states of a dynamic behavioural model 
and (observable) outcomes.

The ability of DCM to quantify uncertainty (c.f., confidence accumulation) means that any predictions or 
scenario modelling can be equipped with credible intervals in a straightforward fashion: c.f.27,28. This would not 
be possible using ML that, usually, does not learn probability densities or beliefs. Conversely, DCM deals with 
probability densities explicitly, using variational Bayes.

Figure 6.  Estimates of the reproduction ratio from the MRC Biostatistics Unit (left panel) and dynamic causal 
modelling (right panel). The black lines correspond to the best (posterior) expectations and the shaded area 
correspond to credible intervals. The blue dots superimposed over the dynamic causal modelling estimates 
report the ranges of consensus values reported by the  government22. These have been plotted 2 weeks before 
the end date of the reporting period for each pair. The vertical red lines indicate the date of estimation in mid-
November.
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Variational Bayes rests on the calculus of variations, as applied to something called a mean field approxima-
tion; namely, a factorisation of the posterior density over unknown variables that lends it a known and trac-
table functional form. This functional form allows one to evaluate a lower (variational free energy) bound on 
model evidence (a.k.a., marginal likelihood) that is necessary for model comparison. The particular mean field 
approximation used in this DCM was straightforward; namely, a factorisation into two multivariate Gaussian 
distributions over (i) the parameters of transitions among states (and likelihood model) and (ii) the precision 
of random fluctuations in the data. Because the posterior densities are over the log of the respective parameters, 
the (nonnegative, scale) parameters have, effectively, a lognormal distribution.

In DCM, the (sufficient statistics of the) posterior densities are optimised using a (Newton) gradient ascent 
on variational free energy (a.k.a., evidence lower bound) where, crucially, the Gaussian form of the posterior 
enables the gradients to be evaluated analytically. This is known as Variational  Laplace10. Practically, the advan-
tage of Variational Laplace is its computational efficiency, in relation to alternative sampling schemes: c.f.29: i.e., 
minutes as opposed to hours. More importantly, the variational free energy is considered to be a much better 
approximation to model evidence than approximations based on sampling schemes (e.g., Metropolis Hastings), 
such as the Bayesian Information Criteria, harmonic means (please see Ref.30 for discussion.), et  cetera6,31.

One disadvantage of variational procedures is known as the overconfidence problem. In other words, in using 
a mean field approximation, the marginal posterior densities over the factors are generally too precise, because 
they preclude conditional  dependencies17. To accommodate this, one can scale the posterior covariances of the 
parameters, so that the 90% credible interval of the posterior predictive density contains about 90% of the empiri-
cal data points. In the present setting, this involved scaling the posterior standard deviation by a factor of eight.

Epilogue
This report focuses on the model structure at a particular point during the COVID-19 pandemic. This model 
was subsequently used to produce weekly dashboard summaries of epidemiological trajectories and forecasts in 
the  UK3. The accompanying dashboard contains links to weekly reports that list changes to the model. We have 
deliberately not updated the examples—or description of the model—in this article, which can be read as the 
initial basis for subsequent modelling.

However, it is natural to ask whether this kind of modelling proved useful over the ensuing months. The 
answer is yes and no. Up until the submission of the current report, DCM showed a high degree of predictive 
validity, widely acknowledged as providing the most accurate predictions of hospitalisation and morbidity dur-
ing the first  wave1. However, it failed to predict the course of the second wave in the UK, after the emergence of 
the alpha variant. This speaks to the importance of Bayesian model selection and how the best model changes as 
more data becomes available. In this case, the DCM described above could not model increases in transmission 
risk. With the advent of the alpha variant, models that included fluctuating transmission risk and seasonality 
effects (modelled with temporal basis functions) afforded greater model evidence and therefore replaced the 
current  model32. Subsequently, further model updates were required to accommodate vaccination, the rollout 
of lateral flow device testing at scale, age stratified data, and so on.

Anecdotally, DCM predictions of prevalence, hospitalisation and mortality rates in the UK outperformed 
projections based upon conventional epidemiological modelling; especially worst-case scenario modelling. This 
is unsurprising because the objective of DCM is to predict the most likely outcomes, given the data at hand. Con-
versely, the objective of reasonable worst-case scenario modelling is to project outcomes under various predefined 
scenarios that may or may not come to be. We hope to quantify the predictive validity of DCM retrospectively, 
using global data, in the forthcoming year.

Conclusion
In dynamic causal modelling, everything is optimised with respect to the marginal likelihood or evidence for a 
model, as scored by a variational free energy or evidence bound. This has the important consequence that the 
best model is a function of the data at hand. In turn, this means that the best model at the beginning of the epi-
demic is not the best model halfway through. As more data becomes available, the model needs to become more 
expressive (or complex) in order to provide an accurate account of these data. The complexity depends upon 
how tight the priors are over the model’s free parameters. There is an optimal complexity that, in conjunction 
with the accuracy of fit, subtends model evidence.

This optimal complexity can be identified using Bayesian model comparison. In other words, the model is 
defined in terms of which parameters are allowed to vary and which are, a priori, more constrained. This model 
optimisation is itself an adaptive and ongoing process that can, in principle, continue as long as data keeps arriv-
ing. As noted above, although Bayesian model comparison has been used throughout the epidemic, there is no 
guarantee that the basic form of the model—or its coarse graining—is necessarily the best. This would depend 
upon an exhaustive search of the model space, which is a difficult problem. A problem that may be addressed 
when the epidemic enters its endemic phase.

Data availability
All data analysed during this study are available for academic research purposes from the sites listed in the 
fourth column of Table S1.

Code availability
The figures in this report can be reproduced using annotated (MATLAB) code available as part of the free and 
open source academic software SPM (https:// www. fil. ion. ucl. ac. uk/ spm/), released under the terms of the GNU 
General Public License version 2 or later. The routines are called by a demonstration script that can be invoked 
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by typing >  > DEM_COVID_UK at the MATLAB prompt. At the time of writing, these routines are undergo-
ing software validation in our internal source version control system—that will be released in the next public 
release of SPM (and via GitHub at https:// github. com/ spm/). In the interim, please see https:// www. fil. ion. ucl. 
ac. uk/ spm/ covid- 19/.
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