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ABSTRACT

The proliferation of Web services makes it difficult for users to se-

lect themost appropriate one among numerous functionally identi-

cal or similar service candidates. Quality-of-Service (QoS) describes

the non-functional characteristics of Web services, and it has be-

come the key differentiator for service selection. However, users

cannot invoke all Web services to obtain the corresponding QoS

values due to high time cost and huge resource overhead. Thus,

it is essential to predict unknown QoS values. Although various

QoS prediction methods have been proposed, few of them have

taken outliers into consideration, which may dramatically degrade

the prediction performance. To overcome this limitation, we pro-

pose an outlier-resilient QoS prediction method in this paper. Our

method utilizes Cauchy loss to measure the discrepancy between

the observed QoS values and the predicted ones. Owing to the ro-

bustness of Cauchy loss, our method is resilient to outliers. We

further extend our method to provide time-aware QoS prediction

results by taking the temporal information into consideration. Fi-

nally, we conduct extensive experiments on both static and dy-

namic datasets. The results demonstrate that our method is able

to achieve better performance than state-of-the-art baseline meth-

ods.
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1 INTRODUCTION

Web services provide interoperability among disparate software

applications and play a key role in service-oriented computing [3].

Over the past few years, numerous Web services have been pub-

lished as indicated by theWeb service repository–ProgrammableWeb1.

The proliferation of Web services brings great benefits in building

versatile service-oriented applications and systems.

It is apparent that the quality of service-oriented applications

and systems relies heavily on the quality of their component Web

services. Thus, investigating the quality of Web services is an im-

portant task to ensure the reliability of the ultimate applications

and the entire systems. The quality of Web services can be charac-

terized by their functional and non-functional attributes. Quality-

of-Service (QoS) represents the non-functional aspect of Web ser-

vices, such as response time, throughput rate and failure probabil-

ity [37, 47]. Since there are many functionally equivalent or simi-

lar services offered on the Web, investigating non-functional QoS

properties becomes themajor concern for service selection [12, 62].

However, the QoS value observed by users depends heavily on the

Web service invocation context. Hence, the quality of the same

Web service experienced by different users may be relatively dif-

ferent [42]. For this reason, it is important to acquire personalized

QoS values for different users. Considering that users cannot in-

voke all Web services to obtain personalized QoS values on their

own due to high time cost and huge resource overhead [47, 61], pre-

dictingmissing QoS values based on existing observations plays an

essential role in obtaining approximate personalized QoS values.

Matrix factorization (MF) is arguably the most popular tech-

nique adopted for QoS prediction [16, 61, 68]. However, most ex-

isting MF-based QoS prediction methods directly utilize !2-norm

to measure the difference between the observed QoS values and

the predicted ones [31, 44, 48, 50, 53, 57, 66]. It is well-known that

!2-norm is sensitive to outliers [8, 58, 63, 70]. That is, the objec-

tive function value may be dominated by outliers during the !2-

norm minimization process, which will lead to severe approxima-

tion deviation between the observed normal values and the pre-

dicted ones. As a result, without taking outliers into consideration,

existing MF-based methods may not achieve satisfactory perfor-

mance. In recent years, there are some explorations on enhancing

the robustness of MF-based QoS prediction methods by replacing

!2-norm with !1-norm [71]. Although !1-norm is more robust

to outliers [13, 35, 64], !1-norm-based objective function is much

1https://www.programmableweb.com/

http://arxiv.org/abs/2006.01287v3
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://www.programmableweb.com/
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harder to optimize and the solution is also unstable [34, 56]. More-

over, !1-norm is still sensitive to outliers, especially when outliers

take significantly different values from the normal ones [10, 55].

There are also some methods seeking to identify outliers explicitly

by means of clustering algorithms [18, 49, 72], which usually treat

all the elements in the smallest cluster as outliers [19, 47]. However,

it is difficult to choose the proper number of clusters. Consequently,

these methods usually suffer from the misclassification issue. That

is, either some outliers may not be eliminated successfully or some

normal values may be selected as outliers falsely.

In this paper, we propose a robust QoS prediction method un-

der the matrix factorization framework to deal with the aforemen-

tioned issues. Our method chooses to measure the discrepancy be-

tween the observed QoS values and the predicted ones by Cauchy

loss [2, 27] instead of the !1-norm loss or !2-norm loss. It has been

shown that Cauchy loss is much more robust to outliers than the

!1-norm loss and !2-norm loss [27, 55]. Theoretically, Cauchy loss

allows nearly half of the observations to be out of the normal range

before it gives incorrect results [36]. For a given QoS dataset, it

is unlikely that nearly half of the observations are outliers. Thus,

Cauchy loss is sufficient for outlier modeling and has the potential

to provide better prediction results. Note also that ourmethod does

not explicitly identify outliers, which reduces the risk of misclassi-

fication and makes our method more general and more robust. In

other words, our method is resilient to outliers. Considering that

the QoS value of a Web service observed by a particular user may

change over time, it is essential to provide time-aware personalized

QoS prediction results. To achieve this goal, we further extend our

method under the tensor factorization framework by taking the

temporal information into consideration.

In summary, the main contributions of this paper include:

• First, we propose a robustWeb service QoS predictionmethod

with outlier resilience. Our method measures the discrep-

ancy between the observed QoS values and the predicted

ones by Cauchy loss, which is robust to outliers.

• Second, we extend our method to provide time-aware QoS

prediction results under the tensor factorization framework

by taking the temporal information into consideration.

• Third, we conduct extensive experiments on both static and

dynamic datasets to evaluate the performance of ourmethod.

The results demonstrate that our method can achieve better

performance than state-of-the-art baseline methods.

2 UNAVOIDABILITY OF QOS OUTLIERS

Most existing QoS prediction methods assume that the QoS obser-

vations are reliable and rational. However, this assumption may

not hold in the real world. This is because the observed QoS data

can be affected by many factors. For example, there may be some

malicious users submitting wrong QoS values deliberately. The ser-

vice providers may also pretend to be service users and thus exag-

gerate the performance of their own Web services and depreciate

the performance of their competitors’ Web services. In addition,

the QoS values observed by users are largely dependent on the

invocation environment such as network latency and server over-

load, which may lead some of the QoS values to deviate far from

the normal range. In consideration of these complicated factors, we
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Figure 1: The distribution of response time and throughput.

argue that it is highly possible that some of the QoS observations

are outliers.

However, we are in lack of an oracle showing in advance which

QoS observations are outliers. Here, we treat the rare extreme val-

ues which significantly differ from the remaining ones as outliers

by following the definition in [24]. To bemore intuitive, in Figure 1

(a) and (b), we show the distribution of both response time and

throughput of 100 Web services invoked by 3 randomly selected

users from a publicly available dataset–WS-DREAM_dataset12. As

can be seen, although a user tends to have different usage experi-

ences on different Web services, most QoS values of these Web

services observed by the three users fall into a normal range. For

example, the response time mainly falls in the interval of [0, 2].

However, there are also some observations deviating far from the

normal range. As shown in Figure 1 (a), the response time expe-

rienced by user 2 even reaches up to 14 seconds, which is far be-

yond the normal range. Needless to say, such kind of observations

should be treated as outliers. We further demonstrate the distri-

bution of response time and throughput of 3 Web services experi-

enced by 100 different users in Figure 1 (c) and (d). It can be ob-

served that although the usage experiences of a Web service can

varywidely among different users, the QoS values of the sameWeb

service observed by the majority of users tend to fall into a normal

range. Whereas, there are also some observations taking values far

beyond the normal range. These phenomena verify the rationality

of treating extreme values as outliers and also reveal the unavoid-

ability of outliers in QoS observations.

3 PRELIMINARIES

Suppose that we are provided with a set of< users and a set of =

Web services, then the QoS values between all users and Web ser-

vices can be represented by a matrix ^ ∈ R<×= whose entry ^8 9

2https://github.com/wsdream/wsdream-dataset/tree/master/dataset1

https://github.com/wsdream/wsdream-dataset/tree/master/dataset1
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denotes the QoS value of Web service 9 observed by user 8 . Obvi-

ously, it is time-consuming and resource-consuming for each user

to invoke all Web services to get the personalized QoS values. As a

consequence, we typically have only partial observations between

users and Web services, which means that lots of entries in ^ are

null. The goal of QoS prediction is to predict these null entries by

exploiting the information contained in existing observations.

3.1 Problem Definition

Let Ω denote the set of existing QoS observations, that is,

Ω = {(8, 9,^8 9 ) | the QoS value ^8 9 between user 8 and

Web service 9 has been observed}.
(1)

Then the problem of QoS prediction is defined as follows.

Problem Statement: Given a set of QoS observations Ω, QoS

prediction aims at predicting unknown QoS values by utilizing the

information contained in Ω.

3.2 Matrix Factorization for QoS Prediction

Generally speaking, matrix factorization tries to factorize a given

matrix into the product of several low-rank factor matrices. In

the context of QoS prediction, the basic framework of MF-based

methods is to factorize matrix ^ into two low-rank factor matri-

ces [ ∈ R<×; and Y ∈ R=×; , i.e., ^ ≈ [Y
) . Here, each row of [

represents the latent feature of a user, and each row of Y represents

the latent feature of aWeb service. The dimensionality of latent fea-

tures is controlled by a parameter ; (; ≪ min(<,=)). Apparently,

[Y
) should be as close to^ as possible. As thus, the general objec-

tive function for MF-based QoS prediction methods can be derived

as:

min
[ ,Y
L(^ , [Y) ) + _LA46, (2)

where L measures the degree of approximation between [Y
) and

^ , LA46 denotes the regularization term to avoid over-fitting, and

_ represents the regularization coefficient.

The most widely adopted loss function in matrix factorization

is the least square loss (i.e., !2-norm loss), which is also the most

commonly used loss function inMF-based QoS predictionmethods

[31, 57, 61, 66, 71]. In this setting, the specific objective function can

be clearly given as follows:

min
[ ,Y

1

2
‖O ⊙ (^ − [Y) )‖2

2
+ _LA46, (3)

where ‖ · ‖2 denotes the !2-norm which is calculated as the square

root of the sum of squares of all entries, ⊙ denotes the Hadamard

product (i.e., entry-wise product), and O ∈ R<×= denotes the indi-

cator matrix whose entry O8 9 indicates whether the QoS value of

Web service 9 has been observed by user 8 or not. If user 8 has the

record of Web service 9 , O8 9 is set to 1; otherwise, it is set to 0.

The objective function based on !2-norm as in Eq. (3) is smooth

and can be optimized by the gradient descent method [15]. How-

ever, the !2-norm is sensitive to outliers (i.e., rare extreme values)

[63]. When the given observations contain outliers, the residuals

between these outliers’ corresponding entries in ^ and their ap-

proximation entries in [Y
) become huge due to the square opera-

tion. Therefore, when minimizing the objective function in Eq. (3),

more priorities are given to these outliers, which unfortunately

causes severe approximation deviation of the normal QoS values.

As a result, the QoS prediction performance may degrade dramat-

ically.

To make the model more robust to outliers, a common stategy

is to replace !2-norm with !1-norm [13, 23, 51, 71]. Based on !1-

norm, the objective function is formularized as below:

min
[ ,Y
‖O ⊙ (^ − [Y) )‖1 + _LA46, (4)

where ‖ · ‖1 denotes the !1-norm which is calculated as the sum of

the absolute values of all entries. Although !1-norm is to some ex-

tent more robust to outliers than !2-norm, the objective function

based on !1-norm as in Eq. (4) is a non-smooth function and it is

much harder to optimize. What’s more, although the large residu-

als due to outliers are not squared in !1-norm, they may still be

quite large relative to the normal ones and thus one would expect

that they would influence the objective function as well [10].

4 OUR METHOD

As stated in the previous section, both !1-norm and !2-norm are

sensitive to outliers. In order to make the MF-based methods more

robust to outliers, we propose a novel QoS prediction method that

utilizes Cauchy loss [2] as the measurement of the discrepancy be-

tween the observed QoS values and the predicted ones. It has been

shown that Cauchy loss is resistant to outliers [17, 36, 55]. Thus

our method is expected to be robust to outliers.

4.1 M-Estimator

Before presenting the details of our method, we first introduce

the concept of M-estimator. In robust statistics, M-estimators are a

broad class of estimators, which represent the minima of particu-

lar loss functions [21]. Let A8 denote the residual of the 8-th datum,

i.e., the difference between the 8-th observation and its approxi-

mation. Then M-estimators try to optimize the following objective

function:

min

∑

8

6(A8 ), (5)

where function 6 gives the contribution of each residual to the ob-

jective function. A reasonable function 6 should satisfy the follow-

ing four properties [14]:

• 6(G) ≥ 0, ∀G ;

• 6(G) = 6(−G), ∀G ;

• 6(0) = 0;

• 6(G) is non-decreasing in |G |, i.e., 6(G1) ≤ 6(G2), ∀|G1 | <

|G2 |.

The influence function of 6 is defined as its first-order derivative:

6′(G) =
d6(G)

dG
. (6)

The influence function 6′ measures the influence of each datum

on the value of the parameter estimate. For a robust M-estimator,

it would be inferred that the influence of any single datum is in-

sufficient to yield any significant offset [55]. Ideally, a robust M-

estimator should have a bounded influence function.

Both !2-norm loss and !1-norm loss satisfy the four properties

required by M-estimators. For the !2 estimator with 6(G) = 1

2
G2 ,

the influence function is6′(G) = G , which means that the influence
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Figure 2: Comparison of different M-estimators.

of a datum on the parameter estimate grows linearly as the error

increases. This confirms the non-robusteness of !2 estimator to

outliers. Although the !1 estimator with 6(G) = |G | can reduce the

influence of large errors due to its bounded influence function, it

will still be affected by outliers since its influence function has no

cut off point [27, 55] (|6′(G) | = 1 even when G → ±∞). Besides,

!1 estimator is not stable because 6(G) = |G | is not strictly convex

in G . It follows that the influence function of a robust M-estimator

should not only be bounded but also be insensitive to the increase

of errors (|6′(G) | → 0when G → ±∞). Cauchy estimator has been

shown to possess such precious characteristics. The 6 function of

Cauchy estimator (i.e., Cauchy loss) is shown as follows:

6(G) = ln

(

1 +
G2

W2

)

, (7)

where W is a constant. The influence function is then calculated as:

6′(G) =
2G

W2 + G2
, (8)

which takes value in the range of [− 1

W ,
1

W ]. Moreover, 6′(G) tends

to zero when G goes to infinity. This indicates that the influence

function of Cauchy estimator is insensitive to the increase of errors.

Therefore, Cauchy estimator is robust to outliers. A comparison of

different M-estimators is illustrated in Figure 2.

4.2 Model Formulation

In view of Cauchy estimator’s robustness, we choose Cauchy loss

to construct the objective function of ourmethod. Based onCauchy

loss, the objective function is derived as:

min
[ ,Y
L =

1

2

<
∑

8=1

=
∑

9=1

O8 9 ln

(

1 +
(^8 9 − [8Y

)
9 )

2

W2

)

+
_D

2
‖[ ‖2

2
+
_B

2
‖Y ‖2

2
,

(9)

where [8 and Y 9 denote the 8-th row of [ and the 9-th row of Y

respectively, _D and _B represent the regularization coefficients.

The objective function in Eq. (9) can be efficiently optimized by

the gradient descent method [15]. Specifically, we choose to op-

timize [ and Y row by row. Then, we have the following update

Algorithm 1 Algorithm for Static QoS Prediction

Input: ^ ∈ R<×= , ; , W , _D , _B , [D , [B ;

Output: [ ∈ R<×; , Y ∈ R=×; ;

1: Randomly initialize [ and Y ;

2: repeat

3: for 8 = 1 to< do

4: Update [8 according to Eq. (10);

5: for 9 = 1 to = do

6: Update Y 9 according to Eq. (11);

7: until Convergence

8: return [ , Y ;

rules:

[8 ← [8 − [D
mL

m[8
, (10)

Y 9 ← Y 9 − [B
mL

mY 9
, (11)

where [D and [B denote the learning rates for [ and Y , and

mL

m[8
= _D[8 −

=
∑

9=1

O8 9

^8 9 − [8Y
)
9

W2 + (^8 9 − [8Y
)
9 )

2
Y 9 , (12)

mL

mY 9
= _BY 9 −

<
∑

8=1

O8 9

^8 9 − [8Y
)
9

W2 + (^8 9 − [8Y
)
9 )

2
[8 . (13)

The overall optimization procedure of our method is presented

in Algorithm 1, whose time complexity is shown in Theorem 1.

Theorem 1. Let A denote the number of iterations for Algorithm 1

to achieve convergence and let d denote the number of available en-

tries in ^ , then the time complexity of Algorithm 1 is O(Ad;).

Proof. The main time cost of Algorithm 1 lies in the updates of

[ and Y . In each iteration, updating [ takes O(<; + d;) time and

updating Y takes O(=; + d;) time. Since both< and = are less than

d , the time complexity of updating [ and Y can both be simplified

as O(d;). Thus, the overall time complexity is of order O(Ad;). �

4.3 Extension for Time-Aware QoS Prediction

As pointed out in [62], the QoS performance of Web services is

highly related to the invocation time because the service status

(e.g., number of users) and the network environment (e.g., network

speed) may change over time. Thus, it is essential to provide time-

aware personalized QoS information to help users make service

selection at runtime [69]. In this part, we aim to extend ourmethod

to make it suitable for time-aware personalized QoS prediction.

To achieve the goal, we choose to extend our method under the

tensor factorization framework. A tensor is a multidimensional or

# -way array [25]. An# -way tensor is denoted asX ∈ R�1×�2×···×�# ,

which has # indices (81, 82, · · · , 8# ) and its entries are denoted by

X8182 · · ·8# . In this sense, a tensor can be treated as a generalized

matrix and a matrix can also be treated as a two-way tensor.

For time-aware QoS prediction, we need to take the temporal in-

formation of QoS values into consideration. According to the defi-

nition of tensors, it is clear that we can model QoS observations

with temporal information as a three-way tensor X ∈ R<×=×C
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Algorithm 2 Algorithm for Time-Aware QoS Prediction

Input: X ∈ R<×=×C , ; , W , _D , _B , _C ;

Output: [ ∈ R<×; , Y ∈ R=×; , Z ∈ RC×; ;

1: Randomly initialize [ ≥ 0, Y ≥ 0 and Z ≥ 0;

2: repeat

3: for 8 = 1 to< do

4: Update [8 according to Eq. (17);

5: for 9 = 1 to = do

6: Update Y 9 according to Eq. (18);

7: for : = 1 to C do

8: Update Z: according to Eq. (19);

9: until Convergence

10: return [ , Y , Z ;

whose each entry X8 9: represents the QoS value of Web service

9 observed by user 8 at time : . Here, C denotes the total number

of time intervals. Accordingly, we can use an indicator tensor I ∈

R
<×=×C to show whether the QoS values have been observed or

not. If user 8 has the record ofWeb service 9 at time : , I8 9: is set to

1; otherwise, its value is set to 0. To predict the unknown QoS val-

ues inX, similar toMF-based methods, we first factorizeX to learn

the latent features of users,Web services and contexts, respectively,

and then leverage the interaction among them to predict QoS val-

ues. Specifically, we adopt the canonical polyadic (CP) decomposi-

tion method [38] to factorizeX into three low-rank factor matrices

[ ∈ R<×; , Y ∈ R=×; and Z ∈ RC×; . Then, X is approximated in the

following way:

X ≈ X̂ =

;
∑

ℓ=1

[
(ℓ) ◦ Y (ℓ) ◦ Z (ℓ) , (14)

where [
(ℓ) ∈ R< , Y (ℓ) ∈ R= and Z

(ℓ) ∈ RC denote the ℓ-th col-

umn of [ , Y and Z respectively, and ◦ represents the vector outer

product. In this way, each entry X8 9: is approximated by:

X8 9: ≈ X̂8 9: =

;
∑

ℓ=1

[8ℓY 9ℓZ:ℓ . (15)

For tensor factorization, nonnegative constraints are usually en-

forced on the factor matrices to promote the model’s interpretabil-

ity [43]. We also add nonnegative constraints to all the factor ma-

trices [ , Y and Z . Then together with the Cauchy loss, we derive

the objective function for time-aware QoS prediction as below:

min
[ ,Y,Z

L′ =
1

2

<
∑

8=1

=
∑

9=1

C
∑

:=1

I8 9: ln

(

1 +
(X8 9: − X̂8 9: )

2

W2

)

+
_D

2
‖[ ‖2

2
+
_B

2
‖Y ‖2

2
+
_C

2
‖Z ‖2

2
,

B .C . [ ≥ 0, Y ≥ 0, Z ≥ 0,

(16)

where _C denotes the regularization coefficient for matrix Z .

Due to the nonnegative constraints, we cannot adopt the gradi-

ent descent method to optimize the objective function in Eq. (16)

any more. Alternatively, we use the multiplicative updating (MU)

algorithm [26] to solve Eq. (16). To bemore specific,MU alternately

updates [ , Y and Z with the other two being fixed in each iteration.

Although the objective function in Eq. (16) is nonconvex over [ , Y

and Z simultaneously, it is a convex function in each variable when

the other two are fixed. Thus we can derive a closed-form update

rule for each variable under the Karush-Kuhn-Tucker (KKT) con-

ditions [5]. The detailed update rules are listed as follows:

[8 ← [8 ⊙

∑=
9=1

∑C
:=1

I8 9:�8 9:X8 9: (Y 9 ⊙ Z: )

∑=
9=1

∑C
:=1

I8 9:�8 9:X̂8 9: (Y 9 ⊙ Z: ) + _D[8
, (17)

Y 9 ← Y 9 ⊙

∑<
8=1

∑C
:=1

I8 9:�8 9:X8 9: ([8 ⊙ Z: )
∑<
8=1

∑C
:=1

I8 9:�8 9:X̂8 9: ([8 ⊙ Z: ) + _BY 9
, (18)

Z: ← Z: ⊙

∑<
8=1

∑=
9=1 I8 9:�8 9:X8 9: ([8 ⊙ Y 9 )

∑<
8=1

∑=
9=1 I8 9:�8 9:X̂8 9: ([8 ⊙ Y 9 ) + _CZ:

. (19)

In the above equations, �8 9: is defined as �8 9: =
1

W2+(X8 9:−
ˆX8 9: )

2
.

Algorithm 2 summarizes the overall optimization procedure of

our time-aware QoS predictionmethod. Since Algorithm 2 updates

[ , Y and Z alternately and each update decreases the objective func-

tion value monotonically, it is guaranteed to converge to a local

minimal solution. The time complexity of Algorithm 2 is shown in

Theorem 2.

Theorem2. Let A ′ denote the number of iterations for Algorithm2

to achieve convergence and let d ′ denote the number of available en-

tries in X, then the time complexity of Algorithm 2 is O(A ′d ′;).

Proof. The proof is similar to that of Theorem 1. In each itera-

tion, it takes O(d ′;) time to update [ , Y and Z . Therefore, the total

time complexity of Algorithm 2 is of order O(A ′d ′;). �

It is worthmentioning that in bothAlgorithm1 andAlgorithm 2,

we do not detect outliers explicitly. Thus our method will not suf-

fer from the problem of misclassification, which indicates that our

method is more resilient and more robust to outliers.

5 EXPERIMENTS

In this section, we conduct a set of experiments on both static

QoS prediction and time-aware QoS prediction to evaluate the ef-

ficiency and effectiveness of our method by comparing it with sev-

eral state-of-the-art QoS prediction methods. We implement our

method and all baseline methods in Python 3.7. And all the experi-

ments are conducted on a server with two 2.4GHz Intel Xeon CPUs

and 128GB main memory running Ubuntu 14.04.5 (64-bit)3.

5.1 Datasets

Weconduct all experiments on a publicly available dataset collection–

WS-DREAM4, which was collected from real-world Web services.

WS-DREAM contains both static and dynamic QoS datasets. The

static dataset describes real-world QoS measurements, including

both response time and throughput values, obtained from339 users

on 5825 Web services. The dynamic dataset describes real-world

QoS measurements from 142 users on 4500 Web services over 64

consecutive time slices (at 15-minute interval). The dynamic dataset

also includes records of both response time and throughput values.

The statistics of the datasets are presented in Table 1.

3The source code is available at https://github.com/smartyfh/CMF-CTF
4https://github.com/wsdream/wsdream-dataset

https://github.com/smartyfh/CMF-CTF
https://github.com/wsdream/wsdream-dataset
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Table 1: Statistics of QoS Data

Type QoS Attributes #User #Service #Time Range Mean

Static
Response Time (s) 339 5825 - 0-20 0.9086

Throughput (kbps) 339 5825 - 0-1000 47.5617

Dynamic
Response Time (s) 142 4500 64 0-20 3.1773

Throughput (kbps) 142 4500 64 0-6727 11.3449

5.2 Evaluation Metrics

The most commonly used evaluation metrics for QoS prediction

include mean absolute error (MAE) [67] and root mean square er-

ror (RMSE) [67]. Let Π denote the set of QoS values to be predicted

(i.e., Π is the testing set) and let # = |Π |, then MAE is calculated

as:

"�� =

∑

@∈Π |@ − @̂ |

#
, (20)

and RMSE is calculated as:

'"(� =

√

∑

@∈Π (@ − @̂)
2

#
, (21)

where @̂ denotes the predicted value for the observation@. For both

MAE and RMSE, smaller values indicate better performance.

However, according to the definition of MAE and RMSE, we can

see that bothMAE andRMSE are sensitive to outliers,whichmeans

that if Π contains outliers, then MAE and RMSE cannot truly re-

flect the QoS prediction performance. For example, suppose that

@∗ ∈ Π is an outlier, then in order to get a small MAE value and

RMSE value, the predicted @̂∗ should be close to @∗ rather than the

normal QoS value. As thus, a smaller MAE or RMSE value may not

really indicate better performance. To overcome this limitation, we

eliminate outliers from Π when calculating MAE and RMSE. Note

that we do not have groundtruth labels for outliers. Therefore, we

need to detect outliers from scratch. To achieve this goal, we em-

ploy the 8Forest (short for isolation forest) method [29, 30] for out-

lier detection. 8Forest detects outliers purely based on the concept

of isolation without employing any distance or density measure,

making 8Forest quite efficient and robust. 8Forest will calculate an

outlier score for each datum. The score takes value in the range

of [0, 1] and a larger value indicates more possibility to be out-

liers. Based on the outlier score, we can set the number of outliers

flexibly. To intuitively show the effectiveness of 8Forest, we report

the outlier detection results of a randomly selected Web service

from the static dataset in Figure 3, where the outlier ratio is set

to 0.05. As can be seen, 8Forest demonstrates good performance in

outlier detection. It can detect both overinflated and underinflated

outliers.

5.3 Baseline Methods

For ease of presentation, we name our method for static QoS pre-

diction as CMF and our method for time-aware QoS prediction as

CTF hereafter. For static QoS prediction, we compare CMF with

the following five methods:

• MF2: MF2 denotes the basicMF-based QoS predictionmethod

[66] and it measures the discrepancy between the observed

QoS values and the predicted ones by !2-norm.
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Figure 3: Exemplary outlier detection results by 8Forest.

• MF1: MF1 is also an MF-based QoS prediction method [71].

However, it utilizes the !1-norm loss to construct the objec-

tive function. MF1 is expected to be more robust to outliers.

Note that we implement MF1 a little differently from the

original one proposed in [71]. In our implementation, we

ignore the privacy and location information.

• CAP: CAP is a credibility-aware QoS prediction method

[47]. It first employs a two-phase :-means clustering algo-

rithm to identify untrustworthyusers (i.e., outliers), and then

predicts unknown QoS values based on the clustering infor-

mation contributed by trustworthy users.

• TAP: TAP is a trust-aware QoS prediction method [45]. It

aims to provide reliable QoS prediction results via calculat-

ing the reputation of users by a beta reputation system, and

it identifies outliers based on :-means clustering as well.

• DALF: DALF is a data-aware latent factor model for QoS

prediction [49]. It utilizes the density peaks based clustering

algorithm [40] to detect unreliable QoS data directly.

For time-aware QoS prediction, we compare our CTF with the

following five methods:

• NNCP: NNCP is a tensor-based time-aware QoS prediction

method [60]. It is based on CP decomposition and imposes

nonnegative constraints on all the factor matrices.

• BNLFT: BNLFT is a biased nonnegative tensor factorization

model [33]. It incorporates linear biases into the model for

describing QoS fluctuations, and it adds nonnegative con-

straints to the factor matrices as well.

• WLRTF: WLRTF is an MLE (maximum likelihood estima-

tion) based tensor factorization method [9]. It models the

noise of each datum as a mixture of Gaussian (MoG).

• PLMF: PLMF is an LSTM (long short-term memory) [20]

based QoS prediction method [54]. PLMF can capture the

dynamic latent representations of users and Web services.

• TASR: TASR is a time-aware QoS predictionmethod [11]. It

integrates similarity-enhanced collaborative filtering model

and the ARIMA model (a time series analysis model) [4].

Although MF1, CAP, TAP and DALF are able to deal with out-

liers to some extent for static QoS prediction, to our best knowl-

edge, our method CTF is the first to take outliers into considera-

tion for time-aware QoS prediction. It is also worth emphasizing

that our method and all baseline methods (except CAP, TAP and

DALF) will not explicitly detect outliers when learning the predic-

tion model. The reason for detecting outliers during the testing
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Table 2: Performance Comparison with Different Training Ratios on Static Dataset (Best Results in Bold Numbers)

QoS Attributes Methods
MAE RMSE

10% 20% 30% 70% 80% 90% 10% 20% 30% 70% 80% 90%

Response Time

MF2 0.5334 0.4103 0.3534 0.3044 0.2921 0.2848 0.8407 0.6978 0.6195 0.5742 0.5565 0.5438

MF1 0.4041 0.4037 0.4036 0.2815 0.2786 0.2798 0.6120 0.6106 0.6103 0.5590 0.5544 0.5505

CAP 0.3603 0.3521 0.3312 0.2282 0.2112 0.1881 0.6439 0.6640 0.6789 0.5815 0.5987 0.5821

TAP 0.3385 0.2843 0.2449 0.2477 0.2812 0.3189 0.5512 0.4985 0.4589 0.4687 0.5155 0.5665

DALF 0.3955 0.3439 0.3081 0.2496 0.2492 0.2397 0.7466 0.6779 0.5974 0.5471 0.5403 0.5388

CMF 0.1762 0.1524 0.1408 0.1153 0.1102 0.1085 0.3705 0.3599 0.3504 0.3106 0.2877 0.2699

Throughput

MF2 13.9730 12.3750 10.7753 7.8371 7.8255 7.8071 28.9608 26.8906 24.6608 19.6406 19.2831 18.6451

MF1 16.5509 13.1105 10.7200 7.5736 7.3263 7.1115 33.8889 27.9648 23.6611 18.1316 17.9458 17.3698

CAP 16.4269 16.3125 16.1946 9.7147 8.6984 7.8516 32.9558 32.9334 32.9540 23.7955 22.2425 21.3711

TAP 22.1419 19.8273 17.8388 14.5786 14.8380 15.4028 43.4987 40.9533 38.8371 33.3052 32.4076 32.0935

DALF 13.1968 11.9619 10.6882 7.8156 7.7902 7.7771 27.8531 26.0299 24.4506 19.3523 18.9886 18.2965

CMF 8.4573 7.2501 6.4300 5.1865 5.1241 5.0078 24.9137 20.8927 18.8985 17.2916 17.1433 16.9388

Table 3: Performance Comparison with Different Outlier Ratios on Static Dataset (Best Results in Bold Numbers)

QoS Attributes Methods
MAE RMSE

2% 4% 6% 8% 10% 20% 2% 4% 6% 8% 10% 20%

Response Time

MF2 0.4080 0.3732 0.3533 0.3445 0.3306 0.3072 0.8040 0.7210 0.6711 0.6508 0.6021 0.5810

MF1 0.3761 0.3390 0.3185 0.2972 0.2702 0.2525 0.7935 0.6903 0.6398 0.5918 0.5575 0.3744

CAP 0.4163 0.3657 0.3311 0.2997 0.2739 0.2413 0.9789 0.8375 0.7616 0.6817 0.6191 0.5258

TAP 0.4562 0.3788 0.3268 0.2703 0.2183 0.1649 1.1536 0.9393 0.8148 0.6475 0.4294 0.2478

DALF 0.3622 0.3217 0.3071 0.2890 0.2781 0.2480 0.7695 0.6728 0.6346 0.5975 0.5701 0.5132

CMF 0.2134 0.1758 0.1545 0.1384 0.1253 0.1019 0.6582 0.5001 0.4452 0.3811 0.3195 0.2347

Throughput

MF2 11.8832 10.7024 9.6776 9.0889 8.6373 8.1358 32.9795 28.5992 25.3608 22.9710 21.1042 18.5597

MF1 12.3647 10.7403 9.8674 9.2223 8.7708 8.1667 32.9672 27.7982 24.4438 22.1691 20.2018 17.4015

CAP 18.2991 16.8273 15.5975 13.8889 13.6477 12.6762 45.9353 39.6390 35.5944 31.4784 29.2029 25.2830

TAP 22.0584 18.8479 16.9577 15.9026 15.1283 14.2151 58.5192 47.7490 41.6689 38.5700 35.2813 31.2779

DALF 11.8763 10.5724 9.1783 8.9276 8.6037 8.0449 32.8586 28.5797 24.8752 22.7428 20.9789 18.3713

CMF 8.3266 7.2138 6.5143 6.0463 5.5718 5.0177 30.5885 26.0933 22.9529 20.7105 17.8538 14.7925

phase is to make MAE and RMSE be able to truly reflect the QoS

prediction performance. For all methods, outliers will be removed

when calculating MAE and RMSE. In addition, in the experiments,

we run each method 10 times and report the average results for

fair comparison.

5.4 Experiments for Static QoS Prediction

5.4.1 Parameter Se�ings. In the experiments, for all baselinemeth-

ods, we tune the corresponding parameters following the guidance

of the original papers. As for our method CMF, on the response

time dataset, the parameters are set as ; = 30, W = 1, _D = _B = 1,

and [D = [B = 0.003. On the throughput dataset, the parameters

are set as ; = 30, W = 20, _D = _B = 0.01, and [D = [B = 0.025. For

MF2, MF1 and DALF, the feature dimensionality is also set to 30.

5.4.2 Experimental Results. We first report the results by varying

the training ratios in the range of {0.1, 0.2, 0.3, 0.7, 0.8, 0.9}. This

is to simulate various prediction scenarios with different data spar-

sity. For example, when the training ratio is set to 0.1, then 10% of

the dataset will be used as training data and the rest will be used

as testing data. As aforementioned, during the testing phase, out-

liers should be eliminated explicitly. Here we set the outlier ratio to

0.1, which means 10% of the testing data with large outlier scores

will be removed when calculating MAE and RMSE. The detailed

comparison results are presented in Table 2. As can be seen, our

method CMF consistently shows better performance than all base-

line methods. Moreover, the MAE and RMSE values obtained by

our method are much smaller than those of baseline methods, es-

pecially on the response time dataset. For instance, CMF achieves

more than 30% performance promotion on response time over

bothMAE and RMSE. From Table 2, we can also see that MF1, MF2,

DALF and CMF tend to obtain smaller MAE and RMSE values as

the training ratio increases. This is desired because a larger train-

ing ratio indicates that more QoS observations (i.e., more informa-

tion) will be used to train the prediction model. However, CAP

and TAP do not show this pattern, especially on the response time

dataset.We can also observe that althoughCAP, TAP and DALF ex-

plicitly take outliers into consideration during the training phase,

their performance is not satisfactory. The reason may be the mis-

classification of outliers. Since our method does not detect outliers

directly during the training phase, it will not suffer from the mis-

classification issue. The resilience of our method to outliers makes

it more robust.

We then report the results by varying the outlier ratios in the

range of {0.02, 0.04, 0.06, 0.08, 0.1, 0.2}. In this experiment, the

training ratio is fixed at 0.5. The results are shown in Table 3. From

Table 3, we can see that our method still shows the best perfor-

mance under different outlier ratios. It can also be observed that
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Figure 4: Impact of dimensionality ; on CMF (with outlier ratio set to 0.02 and 0.1).
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Figure 5: Impact of parameter W on CMF (with outlier ratio set to 0.02 and 0.1).
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Figure 6: Impact of data sparsity on CMF (with outlier ratio set to 0.02 and 0.1).

the MAE and RMSE values of all methods become smaller as the

outlier ratio increases. This is reasonable because the larger the

outlier ratio is, the more testing data with large outlier scores will

be removed. Thus, the effects of outliers on the calculation of MAE

and RMSE will be reduced accordingly. From Table 3, we can fur-

ther obtain that with the increasing of outlier ratios, the perfor-

mance promotion of CMF relative to MF2 increases from 48% to

67% over MAE and from 18% to 60% over RMSE on the response

time dataset. On the throughput dataset, the performance promo-

tion also increases from 30% to 38% over MAE and from 7% to

20% over RMSE. The increase of performance promotion verifies

the necessity of removing outliers during the testing phase. It also

verifies the robustness of our proposed method again.

5.4.3 Impact of Dimensionality. The parameter dimensionality ;

controls the dimension of latent features in the factor matrices. To

study the impact of ; , we vary its value from 10 to 80 with a step

size of 10. In this experiment, the training ratio is fixed at 0.5 and

the outlier ratio (denoted as >) is set to 0.02 and 0.1. The results are

illustrated in Figure 4. As we can see, both MAE and RMSE take

smaller values when dimensionality ; grows. This is because when

; takes larger values, more features of users and Web services will

be captured, thus resulting in more accurate prediction results. We

also observe on the throughput dataset that the performance tends

to be stable when ; ≥ 40, which indicates that ; = 40 is sufficient

for the factor matrices to approximate the original matrix well.

5.4.4 Impact of Parameter W . Recall that W denotes the constant in

the Cauchy loss. Here we study its impact on the performance of

ourmethod by varying its value in the range of {0.1, 0.5, 1, 5, 10, 20, 50}.

In this experiment, the training ratio is fixed at 0.5, and the outlier

ratio > is set to 0.02 and 0.1 as well. The results are illustrated in

Figure 5. As can be seen, our method is sensitive toW . This is due to

that W implicitly determines which data will be treated as outliers
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Table 4: Performance Comparison with Different Training Ratios on Dynamic Dataset (Best Results in Bold Numbers)

QoS Attributes Methods
MAE RMSE

10% 20% 30% 70% 80% 90% 10% 20% 30% 70% 80% 90%

Response Time

NNCP 1.0796 1.0536 1.0550 1.0424 1.0406 1.0392 2.6401 2.5797 2.5809 2.5574 2.5668 2.5616

BNLFT 1.0828 1.0575 1.0467 1.0368 1.0556 1.0403 2.6181 2.5809 2.5682 2.5559 2.5731 2.5582

WLRTF 1.0560 1.0437 1.0288 1.0299 1.0218 1.0274 2.6009 2.5706 2.5642 2.5566 2.5571 2.5491

PLMF 2.6133 2.5932 2.4054 2.2097 2.1266 2.0247 4.5582 4.3536 4.3294 4.1843 3.9818 3.8542

TASR 2.8188 2.7120 2.5591 2.1184 2.0066 1.8854 6.3872 6.1807 5.9552 5.0212 4.8000 4.5447

CTF 0.9215 0.8981 0.8890 0.8860 0.8766 0.8750 2.5865 2.5579 2.5548 2.5529 2.5517 2.5401

Throughput

NNCP 1.5079 1.4342 1.4287 1.3761 1.3708 1.3761 4.9207 4.7019 4.6404 4.5080 4.4484 4.4968

BNLFT 1.4241 1.3935 1.3791 1.3856 1.3695 1.3613 4.6031 4.4685 4.4537 4.4128 4.3595 4.3493

WLRTF 2.9576 2.9568 2.9564 2.9561 2.9562 2.9537 4.9161 4.9160 4.9165 4.9153 4.9159 4.9095

PLMF 2.4712 2.2602 2.4459 2.3328 2.4655 2.2329 3.6705 3.8363 3.8455 3.8209 3.7541 3.5119

TASR 4.3265 3.6419 3.4736 2.8803 2.8258 2.7417 5.9152 5.1844 5.0034 4.3744 4.3142 4.2709

CTF 1.3567 1.1945 1.1225 0.9907 0.9889 0.9782 3.0436 2.9225 2.8576 2.7732 2.6978 2.6178

Table 5: Performance Comparison with Different Outlier Ratios on Dynamic Dataset (Best Results in Bold Numbers)

QoS Attributes Methods
MAE RMSE

2% 4% 6% 8% 10% 20% 2% 4% 6% 8% 10% 20%

Response Time

NNCP 1.1846 1.1451 1.1069 1.0692 1.0521 1.0204 2.6740 2.6393 2.6023 2.5826 2.5805 2.5799

BNLFT 1.1647 1.1253 1.0871 1.0654 1.0475 0.9936 2.6499 2.6149 2.5771 2.5687 2.5659 2.5646

WLRTF 1.1436 1.1036 1.0562 1.0435 1.0261 0.9758 2.6438 2.6079 2.5696 2.5609 2.5584 2.5581

PLMF 2.6379 2.6011 2.5798 2.4241 2.3315 2.3162 5.2828 5.0571 4.7704 4.5917 4.2765 4.0729

TASR 2.5125 2.4326 2.3589 2.3363 2.3292 2.3019 5.4851 5.4510 5.4229 5.4018 5.3942 5.3877

CTF 1.0292 0.9813 0.9357 0.9105 0.8879 0.8448 2.6369 2.6015 2.5627 2.5564 2.5541 2.5503

Throughput

NNCP 2.4853 2.0339 1.7508 1.5419 1.3926 1.0231 9.8925 7.6471 6.2757 5.2096 4.5026 2.8916

BNLFT 2.4335 1.9909 1.7163 1.5137 1.3693 1.0117 9.7267 7.4979 6.1664 5.1236 4.4319 2.8376

WLRTF 6.4309 4.8846 3.9224 3.3382 2.9562 2.0911 17.9461 11.6611 7.9882 5.9178 4.9156 3.1509

PLMF 5.3105 4.1556 3.0467 2.9632 2.3924 2.1807 13.7985 8.7995 6.6349 4.9651 3.8347 3.7906

TASR 5.7661 4.5595 3.8264 3.3965 3.1322 2.6317 14.8241 9.7143 6.8450 5.2958 4.6089 3.5886

CTF 2.2624 1.6385 1.3421 1.1437 1.0193 0.7323 9.5370 6.0759 4.3650 3.2415 2.7989 1.8020

during the training phase. Thus we need to choose a proper W to

achieve the best performance. As shown in Figure 5, W should take

value around 1 on the response time dataset and around 20 on the

throughput dataset to obtain accurate prediction results.

5.4.5 Impact of Data Sparsity. To evaluate the performance of our

method comprehensively, it is also necessary to investigate the im-

pact of the sparsity of training data. To this end, we vary the train-

ing ratio from 0.1 to 0.9 with a step size of 0.1. Apparently, different

training ratio implies different data sparsity. In this experiment, we

also set the outlier ratio > to 0.02 and 0.1. The results are reported

in Figure 6. From Figure 6, we see that as the training ratio in-

creases (i.e., the sparsity of data decreases), more accurate results

are obtained.

5.5 Experiments for Time-Aware QoS
Prediction

5.5.1 Parameter Se�ings. In the experiments, we tune the param-

eters of all baseline methods following the guidance of the origi-

nal papers. As for our method CTF, on the response time dataset,

the parameters are set as ; = 15 and _D = _B = _C = 0.1. W is

set to 10 when calculating MAE and 35 when calculating RMSE.

On the throughput dataset, the parameters are set as ; = 15 and

_D = _B = _C = 100. W is fixed at 5 for both MAE and RMSE. As

for NNCP, BNLFT, WLRTF and PLMF, the feature dimensionality

is also set to 15.

5.5.2 Experimental Results. We first report the results by varying

the training ratios in the range of {0.1, 0.2, 0.3, 0.7, 0.8, 0.9} and

fixing the outlier ratio at 0.1. The results are presented in Table 4.

From Table 4, we can see that our method consistently shows bet-

ter performance than all baseline methods on both datasets. The

results verify the robustness of our method in the time-aware ex-

tension.

We then report the results by varying the outlier ratios in the

range of {0.02, 0.04, 0.06, 0.08, 0.1, 0.2} and fixing the training ra-

tio at 0.5. The results are shown in Table 5, from which we observe

that our method achieves better performance under different out-

lier ratios, which is similar to the results on the static dataset.

5.6 Efficiency Analysis

Here, we further investigate the runtime efficiency of our method.

In this experiment, we fix the training ratio at 0.5 and the outlier

ratio at 0.1. The runtime of different methods on the response time

dataset is reported in Figure 7. On the static dataset, we can observe

that CMF is very efficient. Its runtime is comparable to that of MF2
and MF1. It also runs much faster than CAP, TAP and DALF. On

the dynamic dataset, although CTF runs slower than PLMF and
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Figure 7: Runtime comparison on the response time dataset.

TASR, it is faster than BNLFT and WLRTF and is comparable to

NNCP.

6 RELATED WORK

6.1 Collaborative QoS Prediction

Most existing QoS prediction methods fall into collaborative filter-

ing methods [47], which can be further divided into two categories:

memory-based methods [6, 7, 22, 41, 67] and model-based meth-

ods [39, 44, 51, 53, 59]. Memory-based methods predict unknown

QoS values by employing the neighbourhood information of simi-

lar users and similar Web services [65], which further leads to user-

based methods [6], service-based methods [41] and hybrid meth-

ods [7, 22, 67] that systematically combine the user-based methods

and service-based methods. Memory-based methods usually suffer

from the data sparsity problem [61, 66], due to the limited number

of Web services a single user will invoke. Model-based methods

can deal with the problem of data sparsity, thus they have gained

the most popularity [61]. Model-based methods usually train a pre-

defined prediction model based on existing QoS observations and

then predict missing QoS values. For example, Wu et al. [52] pro-

pose to train a factorizationmachinemodel for QoS prediction. Luo

et al. [32] introduce fuzzy neural networks and adaptive dynamic

programming to predict QoS values. Matrix factorization is also

a model-based technique and it has obtained the most attention

[31, 44, 53, 61, 66]. MF-based methods factorize the user-service

matrix into two low-rank factor matrices with one factor matrix

capturing the latent representations of users and another revealing

the latent representations of Web services. Therefore, MF-based

methods are able to automaticallymodel the contributions to a spe-

cific QoS value from the user side and service side simultaneously,

which usually results in better prediction performance. In addition,

MF-based methods possess high flexibility of incorporating side

information such as location [19], contexts [50, 51] and privacy

[28]. MF-based methods can also be easily generalized for time-

aware QoS prediction under the tensor factorization framework

[33, 46, 60, 62]. There are also a few other kinds of time-aware QoS

prediction methods like time series model-based methods [1, 11]

and neural networks-based methods [54].

6.2 Reliable QoS Prediction

Although there are various QoS prediction methods, few of them

have taken outliers into consideration. However, as analyzed in

Section 2, some QoS observations indeed should be treated as out-

liers. Thus, the performance of existing methods may not be reli-

able. For example, most existing MF-based QoS predictionmethods

directly utilize !2-norm to measure the discrepancy between the

observed QoS values and the predicted ones [31, 44, 50, 53, 57, 66].

It is widely accepted that !2-norm is not robust to outliers [8, 58,

70]. As a consequence, the performance of MF-based methods may

be severely influenced when QoS observations contain outliers.

In order to obtain reliable QoS prediction results, it is necessary

to take outliers into consideration. One popular method to reduce

the effects of outliers is replacing !2-norm with !1-norm because

!1-norm is more robust to outliers [13, 23, 35, 64]. For example, an

!1-norm low-rank MF-based QoS prediction method is introduced

in [71]. However, !1-norm-based objective function is non-smooth

and thus much harder to optimize [34, 56]. Besides, !1-norm is still

sensitive to outliers, especially when outliers are far beyond the

normal range of QoS values [10, 55].

Another line of reliable QoS prediction is detecting outliers ex-

plicitly based on clustering algorithms. In [47], Wu et al. propose

a credibility-aware QoS prediction method, which employs a two-

phase:-means clustering algorithm to identify untrustworthy users

(i.e., outliers). Su et al. [45] propose a trust-aware QoS prediction

method, which provides reliable QoS prediction results via calcu-

lating the reputation of users by a beta reputation system and iden-

tifies outliers based on :-means clustering as well. In [49], a data-

aware latent factor model is introduced, which utilizes the density

peaks-based clustering algorithm [40] to detect unreliable QoS val-

ues. However, it is difficult to choose a proper number of clusters,

thus either some outliers may not be eliminated successfully or

some normal valuesmay be selected as outliers falsely. Ourmethod

does not detect outliers explicitly. Therefore it will not suffer from

the misclassification issue.

7 CONCLUSION

In this paper, we have proposed a novel robust QoS prediction

method, which utilizes Cauchy loss to measure the discrepancy

between the observed QoS values and the predicted ones. Owing

to the robustness of Cauchy loss, our method is resilient to out-

liers. That is, there is no need to detect outliers explicitly. There-

fore, our method will not suffer from the problem of misclassifi-

cation. Considering that the QoS performance may change over

time, we have further extended our method to make it suitable for

time-aware QoS prediction. To evaluate the efficiency and effec-

tiveness of our method, we have conducted extensive experiments

on both static and dynamic datasets. Experimental results have

demonstrated that ourmethod can achieve better performance than

existing methods.
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