
DUET: A Generic Framework for Finding SpecialQuadratic
Elements in Data Streams

Jiaqian Liu
1
, Haipeng Dai

1
, Rui Xia

1
, Meng Li

1
, Ran Ben Basat

2
, Rui Li

3
, Guihai Chen

1

liujiaqian@smail.nju.edu.cn, haipengdai@nju.edu.cn, {xiarui, menson}@smail.nju.edu.cn

r.benbasat@cs.ucl.ac.uk, ruili@dgut.edu.cn, gchen@nju.edu.cn

1
Nanjing University,

2
University College London,

3
Dongguan University of Technology

ABSTRACT
Finding special items, like heavy hitters, top-k items, and persis-

tent items, has always been a hot issue in data stream processing.

While data streams nowadays are usually high-dimensional, most

prior works focus on special items according to a certain primary

dimension and yield little insight into the correlations between

dimensions. Therefore, we propose to find special quadratic ele-

ments in data streams to reveal the close correlations between the

primary and secondary dimensions. Here, both the primary and

secondary dimensions are selected according to specific mining

purposes. Based on the special items mentioned above, we extend

our problem to three applications related to heavy hitters, top-k ,
and persistent items, and design a generic framework DUET to

process them. Besides, we analyze the error bound of our algorithm

theoretically and conduct extensive experiments on four publicly

available data sets. Our experimental results show that DUET can

achieve 3.5 higher throughput and three orders of magnitude lower

average relative error compared with prior algorithms.

PVLDB Reference Format:
Jiaqian Liu

1
, Haipeng Dai

1
, Rui Xia

1
, Meng Li

1
, Ran Ben Basat

2
, Rui Li

3
,

Guihai Chen
1
. DUET: A Generic Framework for Finding Special Quadratic

Elements in Data Streams. PVLDB, 14(1): XXX-XXX, 2020.

doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/callitwhatyouwannt13/DUET_Code.

1 INTRODUCTION
1.1 Background and Motivation
Nowadays, data stream processing has been widely deployed in

the field of traffic management, performance diagnosis, intrusion

detection, and popularity analysis [1–15]. One of the most funda-

mental tasks in stream processing is to mine or find special items

with features such as frequency. Such items typically include heavy
hitters, top-k items, and persistent items [16–26]. Here, heavy hitters
(also called frequent items) refer to items with frequencies larger

than a predefined threshold; top-k items are the k items with the

largest frequencies; persistent items are defined to be the items

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.

doi:XX.XX/XXX.XX

that are widely spread in the time dimension. However, one hidden

assumption taken by these works [16–26] is that they identify an

item according to a primary data dimension. Considering that data

nowadays are usually high-dimensional and the close correlation be-

tween different dimensions may even reveal structural or semantic

information, finding special items in terms of not only the primary

dimension but also the secondary dimension may be of great ap-

plication value. Here, both the primary and secondary dimensions

are selected according to special mining purposes. For example,

the data packet in networks is typically defined as a 5-dimension

tuple <SrcIP, DstIP, SrcPort, DstPort, Protocol> [27], which contains

necessary information for applications like congestion control by lo-

cating heavy hitters in a primary dimension <DstIP>. However, the
main purpose of congestion control is not only to locate but also to

relieve congestion, and the latter requires us to also know the SrcIPs
that send a large fraction of traffic to the heavy-hitterDstIPs. Wewill

give more examples of practical applications after formally defining

our problem. In other words, we not only need to find special items

in the primary dimension, but also need to reveal the close correla-

tions between the primary and secondary dimensions. Therefore,

we propose to find special quadratic elements in data streams.

Before defining our problem, we first introduce two concepts:

item, and quadratic element. By denoting two concrete values of

the primary and secondary dimensions as x and y, respectively, we
say that (x ◁ y) is a quadratic element of an item x .

Definition 1.1 (Finding Special Quadratic Elements). Given a data

stream of quadratic elements, find the special (x ◁ y) that satisfy
the following conditions:

x ∈ G, (1)

Fun((x ◁ y)) ≥ ϕ1Fun(x), (2)

where G represents the set of special items according to the primary

dimension, Fun(.) is an evaluation function, and 0 < ϕ1 < 1 is a

user-defined parameter.

Finding special quadratic elements has many practical appli-

cations. Based on the typical special items mentioned above, we

mainly focus on three important applications shown in Table 1 and

briefly introduce them as follows.

The first application isHH, where G represents the set of heavy

hitters, and Fun(.) is a frequency evaluation function. Take traffic

management [4] as an example, we are interested not only in the

SrcIP that sends a large volume of traffic, but also in where most

of its traffic is going. In this scenario, the chosen primary and

the secondary dimensions are <SrcIP> and <DstIP>, respectively.
Besides, the congestion control scenario mentioned above is also

an example of HH, and it abstracts the data as (DstIP ◁ SrcIP).

https://doi.org/XX.XX/XXX.XX
https://github.com/callitwhatyouwannt13/DUET_Code
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

Table 1: Settings for three applications.

Applications G Fun(.)
HH Heavy hitters Frequency evaluation function

TH Top-k items Frequency evaluation function

PP Persistent items Persistence evaluation function

The second application isTH. Here, G represents the set of top-k
items, and Fun(.) is a frequency evaluation function. In social web-

sites, real-time trends track top-k hottest topics searched by users.

By analyzing the characteristics of active users behind different

hot topics, such as the age or occupation of users, websites can

make more accurate recommendations and provide a higher quality

of service for users. Correspondingly, the quadratic elements in

streams are abstracted as (Topic ◁ Age) or (Topic ◁ Occupation).
Different from the previous two applications related to frequency,

PP focuses on persistence. Here, G represents the set of persistent

items, and Fun(.) is a persistence evaluation function. In some

stealthy attacks [28–31], victims are suffered from threats spread

over multiple attackers and time periods, and need to be located

by identifying persistent items. To further intercept the malicious

traffic, we also need to locate attackers for each victim. Considering

that locating all the attackers is of high overhead and most of the

malicious traffic comes from active attackers that have long-term

connections with the victim, we locate those active attackers for

victims. Here, the quadratic elements in streams are abstracted

as (DstIP ◁ SrcIP).

1.2 Limitations of Prior Art
Finding correlated heavy hitters (CHH) [32–34] is the most relevant

problem to ours, and it is the same as our HH application. Existing

algorithms for finding CHH can be divided into two types. The

first type of algorithm [32, 33] uses two independent structures to

separately track frequent items and frequent quadratic elements.

However, the step of tracking frequent quadratic elements adds one

more condition to our problem, which causes that CHH is a subset

of our special quadratic element. Therefore, directly using this type

of algorithm to find special quadratic elements will lead to low

accuracy. The second type of algorithm [34, 35] uses a related two-

tire structure to maintain quadratic elements for frequent items, and

it avoids the problem in the first type of algorithm. However, the

hierarchical update operations of these algorithms result in a slow

processing speed. Therefore, existing algorithms are inefficient for

our HH application. Moreover, for the other two applications TH

and PP, they have never been considered in prior works.

1.3 Our Proposed Approach
We design a generic framework DUET to find special quadratic

elements in data streams. As is shown in Fig. 1,DUET includes two

structures: DUal filter and sharEd Table. In particular, dual filter

(abbreviated as DFilter) consists of two parts. One is a sketch for

recording and querying items. The other is a filter that consists of

d ∗w buckets divided into two parts, Element , and Count . Shared
table (abbreviated as STable) consists of l ∗ r cells divided into two

parts, Element and Frequency. As we all know, the size distribution
of items in data streams is skewed [36–38]: most of the items called

cold items have low frequencies and a few items called hot items
have high frequencies. Considering that our problem focuses on

the quadratic elements of hot items in G, our key idea is to filter

Streams of quadratic

 elements

 STable

Element Count

Bucket

Element Frequency

Cell

 DFilter

Filter

Sketch for recording

and querying items

Sketch

Figure 1: Our framework DUET and data structures of DFil-
ter and STable.

out the useless quadratic elements of cold items and catch more

quadratic elements of hot items, which requires us to address three

technical challenges.

Our first challenge is to identify quadratic elements of cold and

hot items in data streams without any prior knowledge of data. To

deal with this challenge, we use the sketch in DFilter to estimate

the frequency of the item for each incoming quadratic element, and

checkwhether the item is hot or not by a predefined threshold. Then,

obviously, a naive solution is to record the current quadratic element

if the item is hot, or simply discard the quadratic element if it is not.

However, hot items go through a cumulative process from cold to

hot; during this process, their quadratic elements will be filtered out

mistakenly, and some of them called potential hot quadratic elements
are likely to be the special quadratic elements we need to find. So,

our second challenge is to preserve these quadratic elements during

filtering. To tackle the second challenge, we add a filter in our

DFilter to track these potential hot quadratic elements. After that,

our third challenge is to maintain quadratic elements of hot items

efficiently. Considering the inefficiency of allocating independent

space for each item to fully record its quadratic elements, our STable

approximately tracks quadratic elements by sharing, i.e., the items

mapped into the same row of STable share all the r cells in the row

to record their quadratic elements.

Based on the former solutions to the three challenges, we propose

our insertion algorithm as follows. For each incoming (x ◁ y), we
record and query its item x in the sketch, and decide the operation

on (x ◁ y). If x is cold, we insert (x ◁ y) into the filter to preserve

potential hot quadratic elements. If x just becomes hot, we extract

its potential hot quadratic elements from the filter to STable. If x
is already hot, we insert (x ◁ y) into STable. For the query process,

we simply traverse each quadratic element recorded in STable and

query its item in the sketch to obtain the special quadratic elements.

As indicated by our theoretical analysis and experimental results,

DUET has the following three advantages. First, DUET reaches a

high processing speed. Experimental results show that the through-

put of DUET can be 3.5 times higher than that of prior algorithms.

Second, DUET achieves a high estimation accuracy. It can reduce

the average relative error by three orders of magnitude compared

with prior algorithms in our experiments. Third, DUET is generic to

be applied to all the three applications mentioned above. Especially,

to extend our solution to PP, we propose a method equivalently

2

convert persistence to frequency after removing the duplicates in

each of the T equal-sized time periods divided for measurement.

We will give the detailed design for each application in Section 5,

and conduct extensive experiments in Section 6 for them.

1.4 Our Contributions
Our key contributions are summarized below.

(1) To the best of our knowledge, we are the first to propose

the problem of finding special quadratic elements in data streams,

which can be applied into multiple practical applications.

(2) We propose a framework DUET, which is generic, accurate,

and has a high processing speed, and show how to apply it to three

practical applications, including HH, TH, and PP.

(3) We theoretically analyze the space and time complexities of

our algorithm, and obtain the error bound of DUET.

(4) We conduct extensive experiments on four publicly available

data sets to evaluate the performance of DUET. Our experimental

results show that DUET can achieve 3.5 higher throughput and

three orders of magnitude lower average relative error compared

with prior algorithms.

2 RELATEDWORK
In this section, we introduce the related work in terms of our three

applications, HH, TH, and PP.

2.1 HH
There are two problems related to this application, i.e., finding corre-
lated heavy hitters (CHH) [32–34], and finding popular conditional

heavy hitters (PCHH) [39].

The definition of CHH is the same as that of our special quadratic

element in HH. Existing algorithms to find CHH can be classified

into two types. The first type uses two independent structures to

record frequent items and frequent quadratic elements separately,

and obtain CHHs by checking these frequent quadratic elements.

Typical algorithms include CSSCHH [32], which separately main-

tains items and quadratic elements by using Space-Saving [20], and

PCSSCHH [33], which is essentially a parallel version of CSSCHH

on distributed and shared-memory architectures. In fact, CHHs

found by these algorithms need to satisfy more strict conditions

than our special quadratic elements, for that they first need to be

frequent enough to survive at the recording step. Therefore, this

type of algorithm essentially limits the estimation accuracy. The

second type uses a related two-tier structure to record items and

quadratic elements, including one typical algorithm MGCHH [34].

In particular, MGCHH uses a set of primary counters updated by the

Misra-Gries (MG) [35] algorithm to track frequent items; moreover,

another set of secondary counters are associated with each primary

counter to track quadratic elements of the primary item. Because

the cardinality of items (quadratic elements) is much larger than

the number of primary (secondary) counters, MGCHH needs to

perform complex hierarchical operations to evict items (quadratic

elements) during the update. Therefore, the processing speed of

MGCHH is very slow.

PCHH is slightly different from our special quadratic element.

That is, PCHH refers to (x ◁y) that satisfies fx ◁y ≥ ϕ1 fx , where fx
and fx ◁y are the frequencies of x and (x ◁y), respectively, and fx ◁y
ranks in top-k with respect to all quadratic elements. However, two

existing algorithms of finding PCHH, FamilyHH and GlobalHH

[39], can also be adapted to process HH. Specifically, the key idea of

FamilyHH and GlobalHH is similar to CSSCHH, i.e., using two inde-
pendent structures to record frequent items and quadratic elements

separately. Thus, these two algorithms suffer the same problem as

the first type of algorithm for finding CHH and have poor accuracy

when the memory is tight.

2.2 TH
To the best of our knowledge, no prior works deal with this appli-

cation TH. Specifically, prior works usually focus on top-k items in

a primary dimension and ignore their quadratic elements. There-

fore, we just introduce related algorithms for finding top-k items

in this part.

The algorithms for finding top-k items can be divided into two

categories. One is sketch-based, which approximately estimates the

frequency of all items, and uses a min-heap to track top-k items.

Classic sketches include CM sketch [17], C sketch [18], and CU

sketch [19]. The other is counter-based, which maintains a part

of items with large frequencies, and typical algorithms include

Lossy-Counting [21], Space-Saving [20], and HeavyGuardian [22].

2.3 PP
Similar to the situation of TH, prior works usually focus on per-

sistent items and ignore their quadratic elements. Thus, we just

introduce related algorithms for finding persistent items.

The core idea of finding persistent items is to remove the dupli-

cates in each time period, and two categories of algorithms exist.

One is to record the original ID of items. Typical algorithms include

small space [25] based on sampling and On-Off sketch [23] based on

setting flag bits. The other is to record the code of items, including a

typical algorithm PIE [24], which records the fingerprint and raptor

codes [40] to decode the persistent items.

Table 2: Notations frequently used in this paper.

Notations Descriptions
x Item x

(x ◁ y) Quadratic element (x ◁ y)
d Number of arrays in the filter

w Number of buckets in each array of the filter

Nth Threshold of hot items

B[i][j] The j-th bucket in the i-th array of the filter

B[i][j].E (∗.C) Element (Count) part of B[i][j]
l Number of rows in STable

r Number of cells in each row of STable

C[i][j] The j-th cell in the i-th row of STable

C[i][j].E (∗.F) Element (Frequency) part of C[i][j]
fx (f̂x) (Estimated) frequency of x

fx ◁y (f̂x ◁y) (Estimated) frequency of (x ◁ y)
px (p̂x) (Estimated) persistence of x

px ◁y (p̂x ◁y) (Estimated) persistence of (x ◁ y)
hi (.) (1 ≤ i ≤ d) Hash functions from items to {1, ...,w }

Hf (.) Hash function from quadratic element to {1, ..., d }
Ht (.) Hash function from items to {1, ..., l }
ϕ1, ϕ2 User-defined parameters, 0 < ϕ1, ϕ2 < 1

N Size of stream

T Number of time periods

3 DESIGN OF DUET
In this section, we describe the design of DUET. We first introduce

our solution framework in Section 3.1. Then, we describe the in-

sertion and query operations in Section 3.2 and 3.3, respectively.

3

For convenience, we list the notations frequently used in this paper

and their descriptions in Table 2.

3.1 Solution Framework
As is shown in Fig. 1, DUET consists of two structures: dual filter

(DFilter), and shared table (STable). In this part, we introduce the

design of these two structures in detail.

DFilter: The DFilter has two key functions: 1) Estimate the

frequency of items and identify hot items by a predefined threshold

Nth ; and 2) Preserve the potential hot quadratic elements.

Concretely, the DFilter consists of two parts. One is a sketch

for recording and querying items, and typical sketches include CM

sketch, CU sketch, and Stream-Summary. The other is a filter that

consists of d arrays, each of which is associated with a uniform

random hash function [41] hi (.) ∈ [1,w] (1 ≤ i ≤ d). For each
array, there arew buckets and each of the buckets is divided into

two parts: 1) Element , which records the identifier of the quadratic

element mapped into the bucket using a uniform random hash

function Hf (.) ∈ [1,d]; 2) Count , which is a counter to count for

the quadratic element recorded in Element . For convenience, let
B[i][j] (1 ≤ i ≤ d, 1 ≤ j ≤ w) denote the j-th bucket in the i-th
array, and let B[i][j].E and B[i][j].C denote the Element part and
the Count part in the bucket B[i][j], respectively.

STable: Considering the inefficiency of allocating independent

space for each item to fully record its quadratic elements, the key

idea of our STable is to share space among items to approximately

track their quadratic elements.

Specifically, the STable consists of a l ∗ r matrix of cells, each

of which contains two parts Element and Frequency to record the

quadratic element and its frequency, respectively. For convenience,

letC[i][j] (1 ≤ i ≤ l, 1 ≤ j ≤ r) denote the cell in row i and column

j, and let C[i][j].E and C[i][j].F denote the Element part and the

Frequency part in the cellC[i][j], respectively. Moreover, we assign

a uniform random hash function Ht (.) ∈ [1, l], and let items with

the same value lx = Ht (x) share all the r cells in the lx -th row to

record their quadratic elements.

3.2 Insertion
As is shown in Algorithm 1, we firstly describe the main idea of

the insertion. For each incoming (x ◁ y), we first query x in the

sketch (Line 1). If f̂x < Nth , which means x is cold, we insert x
and (x ◁ y) into the sketch and the filter, respectively (Line 2-4).

After that, if f̂x + 1 == Nth , which means x just becomes hot, we

extract its potential hot quadratic elements from d mapped buckets

of x to STable, and reinitialize their Element and Count parts (Line

5-14). If f̂x ≥ Nth , which means x is already a hot item, we insert

x into the sketch and insert (x ◁ y) into STable (Line 15-17). Next,

we introduce all the functions invoked in Algorithm 1.

Insert2Sketch(x) and QuerySketch(x): Both of these func-

tions are invoked by the sketch in DFilter. Take the CM sketch

as an example, it consists of D arrays, A1, ...,AD , each of which

containsW counters. For Insert2Sketch(x), it uses D hash functions,

H1, ...,HD , to map x to counters A1[H1(x)%W], ...,AD [HD (x)%W],

and increases them by 1. Before inserting an item x , we call the
function QuerySketch(x), which also maps x to D counters and

returns the smallest value of the D mapped counters.

Algorithm 1: Insert((x ◁ y))
Input: (x ◁ y); Threshold Nth ; Hash functions hi (.) (1 ≤ i ≤ d),

Hf (.), and Ht (.).

1 f̂x = QuerySketch(x);

2 if f̂x < Nth then
3 Insert2Sketch(x);
4 Insert2Filter((x ◁ y));

5 if f̂x + 1 == Nth then
6 for i ∈ [1, d] do
7 (xi ◁ yi) = B[i][hi (x)].E ;
8 if xi == x then
9 Insert2Table((xi ◁ yi), B[i][hi (x)].C);

10 B[i][hi (x)].E = NU LL;
11 B[i][hi (x)].C = 0;

12 else
13 Insert2Sketch(x);
14 Insert2Table((x ◁ y), 1);

Algorithm 2: Insert2Filter ((x ◁ y))
Input: (x ◁ y); Hash functions hi (.) (1 ≤ i ≤ d) and Hf (.).

1 p = Hf (y);
2 if B[p][hp (x)].E == NU LL then
3 B[p][hp (x)].E = (x ◁ y);
4 B[p][hp (x)].C = 1;

5 else if B[p][hp (x)].E == (x ◁ y) then
6 B[p][hp (x)].C + +;

7 else
8 B[p][hp (x)].C − −;

9 if B[p][hp (x)].C == 0 then
10 B[p][hp (x)].E = (x ◁ y);
11 B[p][hp (x)].C = 1;

Insert2Filter((x ◁y)): This function operates on Element and
Count parts of the filter to preserve potential hot quadratic ele-

ments. The rationale is that each item uses its d mapped buckets,

B[1][h1(x)], ...,B[d][hd (x)], to approximately preserve its quadratic

elements. As is shown in Algorithm 2, we first calculate the hash

value p = Hf (y) and insert (x ◁y) into the bucket B[p][hp (x)]. There
are three cases:

(1) B[p][hp (x)].E is NULL. We directly insert (x ◁ y) by setting

B[p][hp (x)].E = (x ◁ y) and B[p][hp (x)].C = 1 (Line 2-4).

(2) The quadratic element recorded in B[p][hp (x)].E is (x ◁ y).
We increase B[p][hp (x)].C by 1 (Line 5-6).

(3) Otherwise, we decrease B[p][hp (x)].C by 1. After that, if

B[p][hp (x)].C == 0, we replace B[p][hp (x)].E with (x ◁ y), and set

B[p][hp (x)].C = 1 (Line 7-11).

Example 1 (Fig. 2): We use an example to illustrate the operation

in DFilter, where d = 4, w = 4, and Nth = 16. When (x1 ◁ y1) is

coming, we first query x1 in the sketch and f̂x1 = 10 < 16. Then,

x1 is inserted into the sketch, and (x1 ◁y1) is inserted into the filter.
Here, p = Hf (y1) = 2 and hp (x1) = 2. Thus, (x1 ◁ y1) is mapped to

4

Sketch
Insert2Sketch

(a) Insert ((x1 ◁ y1)).

Sketch
Insert2Sketch

(b) Insert ((x2 ◁ y2)).

Figure 2: Example of inserting (x1 ◁y1) and (x2 ◁y2) to DFilter
when x1 and x2 are cold.

Algorithm 3: Insert2Table((x ◁ y), f)
Input: Tuple ((x ◁ y), f); Hash function Ht (.).

1 lx = Ht (x);
2 if (x ◁ y) has been in some cell C[lx][j] then
3 C[lx][j].F+ = f ;

4 else if There are some empty cells then
5 Choose one empty cell C[lx][col];
6 C[lx][col].E = (x ◁ y);
7 C[lx][col].F = f ;

8 else
9 Get the cell C[lx][min] with the minimum Frequency;

10 C[lx][min].F− = f ;
11 if C[lx][min].F < 0 then
12 C[lx][min].E = (x ◁ y);
13 C[lx][min].F = −C[lx][min].F ;

B[2][2]. Because B[2][2].E = (x1 ◁ y1), we increase B[2][2].C by 1.

After that, f̂x1 = 10 + 1 < 16, so the insertion procedure completes.

For the next incoming (x2 ◁ y2), f̂x2 = 13 < 16. Then, x2 is

inserted into the sketch, and (x2 ◁y2) is inserted into the filter. Here,
p = Hf (y2) = 1 and hp (x2) = 2. Thus, (x2 ◁y2) is mapped to B[1][2].
Because B[1][2].E , (x2 ◁ y2), we decrease B[1][2].C by 1. After

that, f̂x2 = 13 + 1 < 16, so the insertion procedure completes.

Insert2Table((x ◁ y), f): This function is invoked by STable,

which makes the items with the same hash value share space to

record their quadratic elements. As is shown in Algorithm 3, we

first calculate the hash value lx = Ht (x) and insert (x ◁ y) into the

lx -th row. There are three cases of the insertion:

(1) (x ◁ y) is already in one cell of row lx . We simply increase

C[lx][j].F by f (Line 2-3).

(2) (x ◁ y) is not found and there are some empty cells in row lx .
We choose one empty cell to insert (x ◁ y) and set its Frequency as

f (Line 4-7).

(3) Otherwise, we find the cell C[lx][min] with the minimum

Frequency in row lx and decrease C[lx][min].F by f . After that,
if C[lx][min].F < 0, we replace C[lx][min].E with (x ◁ y) and set

C[lx][min].F as its absolute value (Line 9-13).

Sketch
Insert2Sketch

(a) Step 1: Extract two potential hot elements of x1 and reset Element and Count
of their buckets.

(b) Step 2: Insert (x1 ◁ y2) and (x1 ◁ y1) to STable.

Figure 3: Example of extracting potential hot quadratic ele-
ments to STable when x1 just becomes hot.

Algorithm 4: Query
Input: The filter and STable; The conditional statement; Θ = ∅.

Output: The set of special quadratic elements Θ.
1 for i in [1, l] do
2 for j in [1, r] do
3 (x ◁ y) = C[i][j].E ;

4 f̂x ◁y = C[i][j].F ;

5 f̂x = QuerySketch(x);
6 if The conditional statement is true then
7 Θ = Θ ∪ (x ◁ y);

8 return Θ;

Example 2 (Fig. 3): In this example, we show how to extract po-

tential hot quadratic elements to STable when an item just becomes

hot. We continue to set Nth = 16, and let r = 4 for STable. After

the insertion of (x1 ◁y1) in DFilter, f̂x1 = 15+ 1 = 16, which means

x1 just becomes hot, and there are two potential hot quadratic el-

ements, (x1 ◁ y2) and (x1 ◁ y1), in d mapped buckets of x1. As is
shown in Fig. 3, the insertion process includes two steps: 1) Extract

the potential hot quadratic elements, and reset their buckets; 2) We

insert (x1 ◁y2) into STable first. It is mapped into theHt (x1)-th row,

where just the last cell is empty. Thus, we insert (x1 ◁ y2) into the

last cell and set Frequency = 5; For (x1 ◁ y1), it is also mapped into

the Ht (x1)-th row and there is no empty cell left. We replace the

smallest cell with (x1 ◁ y1), and set Frequency = |5 − 11| = 6.

3.3 Query
We invoke the function Query (shown in Algorithm 4) to obtain the

special quadratic elements. Before starting the query process, we

set the appropriate conditional statement for different applications.

Take HH as an example, the statement is set as f̂x ◁y ≥ ϕ1 f̂x and
f̂x ≥ ϕ2N . After that, the algorithm traverses the whole STable

to get the quadratic element in each cell and query its item in the

sketch. In the end, the algorithm returns a set of quadratic elements

Θ that meet the condition. We will give the detailed settings for

HH, TH, and PP in Section 5.

5

4 THEORETICAL ANALYSIS OF DUET
In this section, we give the theoretical analysis of DUET. We first

give the space and time complexities of DUET. Then, we analyze the

estimation error bound of quadratic elements. Considering that the

sketch in DFilter is optional, we first give the error-bound model

of quadratic elements. Then, we use the CM sketch as an example

to obtain the specific error bound.

4.1 Space and Time Complexities
Space complexity: considering that DUET consists of a sketch,

d ∗w buckets, and l ∗ r cells, the space complexity is O(s + (dw +
lr)logn), where s is the space complexity of the sketch.

Time complexity: for the insertion process, the most compli-

cated insertion involves one query in the sketch, one insertion in

the filter, and the operation to extract potential hot elements from

the filter to STable. Therefore, the worst time complexity of the

insertion is O(t + dr), where t is the time complexity of the query

in the sketch. For the query process, we simply traverse STable and

check the filter. Thus, the time complexity of the query is O(lrt).

4.2 No Over-estimation of Quadratic Elements
Lemma 4.1. During the whole updating process, there is no over-

estimation of quadratic elements. That is, denote the estimated and
true frequency of quadratic element (xi ◁ yi) on the u-th update as
f̂
(u)
xi ◁yi and f

(u)
xi ◁yi , respectively. We have

f̂
(u)
xi ◁yi ≤ f

(u)
xi ◁yi . (3)

Proof. Generally, we complete the proof by mathematical in-

duction. Due to space limitations, we omit the proof here. □

4.3 Error-bound Model of Quadratic Elements
As per Lemma 4.1, there is no over-estimation of quadratic elements,

so we turn to derive the error bound of under-estimation. Consider-

ing that the sketch in DFilter is optional, in our error bound model,

we abstract the expected number of quadratic elements inserted into

DFilter and STable as Fd and Fs , respectively, which can be derived

according to the sketch used in DFilter. To pave the way towards

our model derived in Theorem 4.3, we first give the expectation of

under-estimation in DFilter in the following lemma.

Lemma 4.2. Denote the expected number of quadratic elements
inserted into DFilter as Fd , the threshold of hot items as Nth,and the
true frequency of xi as fxi . Then, the expectation of under-estimation
in DFilter for each (xi ◁ yi) is

E(Di) =
Fd
dw
+
min{Nth, fxi }

d
. (4)

Proof. Assume that (xi ◁ yi) is recorded in B[di][hdi (xi)] and
the new incoming quadratic element is (x j ◁ yj). If there is a hash
collision between them, i.e., (xi ◁yi) , (x j ◁yj) and (x j ◁yj) is also
mapped into B[di][hdi (xi)], the under-estimation of (xi ◁yi) occurs.
Specifically, there are two situations that cause (xi ◁ yi) , (x j ◁ yj).
One is xi , x j and the other is (xi = x j) ∧ (yi , yj). For the first
situation, let Ii , j be an indicator function defined as

Ii , j =

{
1, xi , x j ∧ hi (xi) = hi (x j) ∧ Hf (yi) = Hf (yj),

0, otherwise .
(5)

and Xi denote the number of quadratic elements that cause hash

collisions in the first situation, and it is clear that

E(Xi) ≤ E
©«
Fd∑
j=1

Ii , j
ª®¬ ≤

Fd∑
j=1
E(Ii , j) ≤

Fd
dw
. (6)

Analogously, for the second situation, let Li , j be an indicator func-

tion, defined as

Li , j =

{
1, xi = x j ∧ yi , yj ∧ Hf (yi) = Hf (yj),

0, otherwise,
(7)

and Yi denote the number of quadratic elements that cause hash

collisions in the second situation. For hot items, Nth out of fxi
quadratic elements are inserted into DFilter at most; and for cold

items, all fxi quadratic elements are inserted at most. Therefore,

let Ni =min{Nth, fxi }.

E(Yi) ≤ E
©«
Ni∑
j=1

Li , j
ª®¬ ≤

Ni∑
j=1
E(Li , j) ≤

Ni
d
. (8)

By adding E(Xi) and E(Yi), we have

E(Di) ≤
Fd
dw
+
min{Nth, fxi }

d
. (9)

This completes the proof. □

Theorem 4.3. Let fxi ◁yi and f̂xi ◁yi denote the true and estimated
frequency of (xi ◁ yi), respectively. Let Fd and Fs denote the number
of quadratic elements inserted into DFilter and STable, respectively.
Let N , Nth and fxi denote the stream size, the threshold of hot items,
and the true frequency of xi , respectively. Let Li denote the set of
quadratic elements whose frequencies are larger than (xi ◁ yi). Given
an arbitrary positive value ε , and let ∆i = fxi ◁yi − f̂xi ◁yi , we have

Pr [∆i ≥ εN] ≤
Fd +w ∗min{Nth, fxi }

εdwN
+

Fs ∗ Pdec
εlN

, (10)

where, Pdec =
(
|Li |

r − 1

) (
1

l

)r−1 (
1 −

1

l

) |Li |−r+1
.

Proof. Firstly, we analyze the expectation of under-estimation

in STable for (xi ◁ yi), denoted by E(Si). For (xi ◁ yi) which is

recorded in C[li][ri], it is decreased only when there is no empty

cell for the new incoming quadratic element that is also hashed into

the li -th row, and C[li][ri].F is the minimum in the li -th row. Let

Pdec denote the probability of performing the decrement, and Li
denote the set of quadratic elements whose frequencies are larger

than (xi ◁ yi), we have

Pdec =

(
|Li |

r − 1

) (
1

l

)r−1 (
1 −

1

l

) |Li |−r+1
. (11)

Thus, the expectation of under-estimation in STable for each (xi ◁yi)
is given by

E(Si) ≤
Fs ∗ Pdec

l
. (12)

Next, we analyze the error bound for (xi ◁ yi). Specifically, we
divide all the quadratic elements into three sets: 1)A, which is only

6

inserted into DFilter; 2) B, which is only inserted into STable; 3) C,

which is inserted into both DFilter and STable. It is clear that

E(f̂xi ◁yi) =

fxi ◁yi − E(Di), (xi ◁ yi) ∈ A,

fxi ◁yi − E(Si), (xi ◁ yi) ∈ B,

fxi ◁yi − E(Di) − E(Si), (xi ◁ yi) ∈ C.

(13)

Then, based on the Markov inequality,

Pr [∆i ≥ εN] ≤
E(∆i)

εN
≤

E(Di)

εN
, (xi ◁ yi) ∈ A,

E(Si)

εN
, (xi ◁ yi) ∈ B,

E(Di) + E(Si)

εN
, (xi ◁ yi) ∈ C.

(14)

Thus, for any (xi ◁ yi), we have

Pr [∆i ≥ εN] ≤
E(Di) + E(Si)

εN
. (15)

By combining Eq. (4) derived in Lemma 4.2, Eq. (11), Eq. (12), and

Eq. (15), the result follows. □

4.4 Error Bound Based on CM Sketch
Based on the error-bound model derived in Theorem 4.3, we need

to obtain Fd and Fs to get the error bound based on CM sketch.

Before that, we first analyze the estimation error of items.

Specifically, CM sketch overestimates the frequency of items, for

that some different items may be mapped into the same counter.

Therefore, some cold items are identified as hot items mistakenly

and further affect the estimation of quadratic elements. By the

similar analysis of CM sketch [17], we obtain the following lemma.

Lemma 4.4. Suppose that CM sketch consists ofD ∗W counters. Let
f̂xi and fxi denote the estimated and true frequency of xi in DFilter,
respectively, N denote the total frequency of all items, and ε1 denote
an arbitrary positive value. Then,

Pr [f̂xi − fxi ≥ ε1N] ≤ (ε1W)−D , (16)

Proof. Due to space limitations, we omit the proof here. □

Lemma 4.5. Let n denote the number of distinct items in the stream,
and Fd denote the expected number of quadratic elements inserted
into DFilter. Suppose that all the items in the stream are arranged as
{x1, x2, ..., xn }, where fx1 ≥ fx2 ≥ ... ≥ fxn , and the items before
xh (including xh) are hot, which means fxi ≥ Nth (1 ≤ i ≤ h) and
fxi < Nth (h < i ≤ n). Then,

Fd ≤ hNth +

n∑
i=h+1

fxi . (17)

Moreover, suppose that the frequency distribution of cold items obeys
the distribution D and the mean value of D is µD . Let N denote the
total frequency of all the items, and Fs denote the expected number
of quadratic elements inserted into STable. Then,

Fs ≤

h∑
i=1

fxi + µD ∗

n∑
i=h+1

min

{
1,

[
N

W (Nth − fxi)

]D}
. (18)

Proof. According to the insertion process, hNth quadratic el-

ements of hot items and all the

∑n
i=h+1 fxi quadratic elements of

cold items should be inserted into DFilter. Actually, due to hash col-

lisions, some items are overestimated and their quadratic elements

are inserted into STable when their true frequencies are less than

Nth . Therefore, Fd ≤ hNth +
∑n
i=h+1 fxi .

The quadratic elements inserted into STable can be divided into

two types. The first type belongs to hot items, and let E(Nsh) denote

the expectation of total frequencies of them. Because some of their

quadratic elements may be inserted into DFilter first and under-

estimated in DFilter, as per Lemma 4.1. Thus, E(Nsh) ≤
∑h
i=1 fxi .

The second type belongs to cold items. If the estimated frequency

of a cold item xi is larger than Nth , its quadratic elements will be

inserted into STable, and denote the probability of it as Poveri . As

per Lemma 4.4, let ε1N = Nth − fxi , we have

Poveri = Pr [f̂xi ≥ Nth] ≤ min

{
1,

[
N

W (Nth − fxi)

]D}
. (19)

Let Uc be the set of all the cold items, ζ be the set of cold items

whose estimated frequencies are larger than Nth , and Nsc be the

total frequency of these cold items, then the expectation of Nsc is

E(Nsc) ≤
∑
xi ∈ζ

E(fxi) ≤
∑

xi ∈Uc

Poveri ∗ µD

≤ µD ∗

n∑
i=h+1

min

{
1,

[
N

W (Nth − fxi)

]D}
.

(20)

By adding E(Nsh) and E(Nsc), Eq. (18) holds.

This completes the proof. □

To validate the correctness of Lemma 4.5, we conduct experi-

ments on the data set CAIDA1 (mentioned in Section 6.1). Here, let

N = 10
7
, and vary memory from 200KB to 2000KB. As is shown in

Fig. 4, the empirical Fd and Fs are always lower than the theoretical

Fd and Fs , respectively, conforming the correctness of Lemma 4.5.

(a) Fd . (b) Fs .

Figure 4: Theoretical value vs. empirical value.
By plugging in Fd and Fs derived in Lemma 4.5 into Theorem

4.3, we obtain the error bound of Quadratic elements based on CM

sketch. To validate that, we conduct experiments on CAIDA1. Here,

we vary the memory from 200KB to 2000KB and let N = 10
7
. In

Fig. 5, we show the results when ε = 2
−17

and ε = 2
−16

. It is clear

that the empirical probability of DUET is always lower than the

theoretical bound derived in Theorem 4.3.

(a) ε = 2
−17

. (b) ε = 2
−16

.

Figure 5: Theoretical bound vs. empirical probability.

7

5 IMPLEMENTATION FOR THREE
APPLICATIONS

In this section, we briefly introduce how to apply DUET to three

applications shown in Table 1, i.e., HH, TH, and PP.

5.1 HH
Problem definition: Given a stream of quadratic elements, find

all (x ◁ y)s that satisfy fx ≥ ϕ2N and fx ◁y ≥ ϕ1 fx .
Data structures and operations: Our framework DUET and

operations in Section 3 can be directly used in this application.

Before querying, the conditional statement in Algorithm 4 is set as

f̂x ≥ ϕ2N and f̂x ◁y ≥ ϕ1 f̂x .

5.2 TH
Problem definition: Given a stream of quadratic elements, find

all (x ◁ y)s that satisfy that fx ranks in top-k and fx ◁y ≥ ϕ1 fx .
Data structures and operations: In this application, the sketch

in DFilter can be any data structure to find top-k items. Typical

sketches include CM (CU) sketch with a heap [26], and Stream-

Summary updated by Space-Saving. Besides, the filter and STable

keep unchanged. For the insertion process, we still insert items and

quadratic elements as in Algorithm 1. For the query process, we

replace f̂x = QuerySketch(x) in Line 5 of Algorithm 4 with f̂x =

S(x). Here, S(x) returns f̂x if x is recorded in the sketch as one

of the top-k items, or returns 0 if not. Meanwhile, the conditional

statement is set as f̂x > 0 and f̂x ◁y ≥ ϕ1 f̂x .

5.3 PP
Problem definition: Given a stream of quadratic elements di-

vided into T equal-sized time periods, find all (x ◁ y)s that satisfy
px ≥ ϕ2T and px ◁y ≥ ϕ1px .

Data structures and operations: One simple way to remove

duplicates is to add a Bloom Filter (BF) [42, 43] on the top of DUET.

The rationale is to regard the items and quadratic elements that

occur in each period as a set and encode them in BF. By membership

query for each item and element, we can judge whether it appears

for the first time in the current period or not. If yes, we store it into

DUET and perform update operations. However, the encoding of BF

is based on hashing, which introduces extra computation overhead

and slows down the processing speed.

To overcome the shortcomings of BF, we use a CU sketch as the

sketch in DFilter, and add a flag bit [23] to each counter of DUET

to indicate whether it has been updated in each period, which also

achieves the purpose of removing duplicates. At the beginning of

each period, all flag bits are initialized to 0. For the insertion process,

we check the related flag bit before each increment operation in

Algorithm 1. If and only if the flag bit is 0, we perform the increment

and reset it as 1. Before querying similar to Algorithm 4, we replace

f̂x ◁y and f̂x with p̂x ◁y and p̂x , respectively, and set the conditional
statement as p̂x ≥ ϕ2T and p̂x ◁y ≥ ϕ1p̂x .

6 EXPERIMENTAL RESULTS
In this section, we conduct experiments to validate the performance

of DUET. We firstly introduce the experimental setup in Section

6.1. Then, we compare our algorithms based on DUET with prior

algorithms on four data sets for application HH in Section 6.2.

Similarly, we evaluate the performance of DUET for application

TH and PP in Section 6.3 and 6.4, respectively.

6.1 Experimental Setup
Implementation:We implement our algorithm and the compari-

son algorithms in C++ and conduct all the experiments on amachine

with 6-core processors (Intel Core i7-8700 CPU @3.20GHz). The

source codes of all algorithms are available at [44].

Data Sets:We use the four data sets in our experiments as below.

(1) CAIDA1 and CAIDA2:We use anonymized passive traffic

traces from CAIDA’s passive monitors in 2019 [45], which includes

traces from the ‘equinix-nyc’ high-speed monitor. Particularly, we

choose ‘equinix-nyc.dirA.20190117-125910’ (named CAIDA1, which

contains 10M packets, including 163,078 distinct items and 623,981

distinct quadratic elements) and ‘dirB.20190117-130100’ (named

CAIDA2, which contains 10M packets, including 326,551 distinct

items and 848,638 distinct quadratic elements) for evaluation. The

format of data is (SOURCE_IP ◁ DESTINATION_IP).

(2) Reddit:We use the data set from the social network – Red-

dit Hyperlink Network [46] and name it Reddit. This subreddit-

to-subreddit hyperlink network is extracted from the posts that

create hyperlinks from one subreddit to another, which has 286,561

records in total, including 27,777 distinct items and 137,805 distinct

quadratic elements. The format of data is (SOURCE_SUBREDDIT ◁

TARGET_SUBREDDIT).

(3) Stack: We use the data set from Stack Overflow Temporal

Network [47] and name it Stack. This is a network of interactions on

the stack exchange website, which contains 10M records, including

519,167 distinct items and 4,655,787 distinct quadratic elements.

The format of data is (SRC ◁ TGT).

Metrics: Our experiments involve the following five metrics. Note

that due to space limitations, we only show some of them for each

of the three applications as described in Section 6.2-6.4.

(1) Throughput: The throughput is defined as the number of

quadratic elements inserted per second.

(2) Precision: The precision is defined as

|Γ |

|ϒ |
, where Γ and ϒ

are the set of correct quadratic elements we find and the set of all

the quadratic elements we find, respectively.

(3) Recall: The recall is defined as

|Γ |

|Λ|
, where Λ is the set of all

the correct quadratic elements.

(4) F1 score: The F1 score is the harmonic mean of precision

and recall, which is given by

2 ∗ precision ∗ recall

precision + recall
.

(5) Average Relative Error (ARE): The ARE is defined as

1

|Γ |

∑
(xi ◁yi)∈Γ

��� f̂xi ◁yi − fxi ◁yi

��� /fxi ◁yi . Especially, for the applica-
tion PP, we replace f with p.

6.2 Experiments for Application HH
In this section, we validate the performance of DUET for applica-

tion HH. Specifically, we first show the performance comparison

between DUET and prior algorithms on different data sets. Then,

we show the effects of parameters ϕ1 and ϕ2 on the performance

of all the algorithms used in HH.

8

(a) CAIDA1. (b) CAIDA2. (c) Reddit. (d) Stack.

Figure 6: Throughput of the six algorithms for application HH on the four data sets.

(a) CAIDA1. (b) CAIDA2. (c) Reddit. (d) Stack.

Figure 7: Precision of the six algorithms for application HH on the four data sets.

(a) CAIDA1. (b) CAIDA2. (c) Reddit. (d) Stack.

Figure 8: F1 score of the six algorithms for application HH on the four data sets.

(a) CAIDA1. (b) CAIDA2. (c) Reddit. (d) Stack.

Figure 9: ARE of the six algorithms for application HH on the four data sets.

Table 3: Algorithms used in application HH.

Algorithms Data Structures
CU_DUET DUET with CUS [19]

CM_DUET DUET with CMS [17]

SS_DUET DUET with SS [48]

CUSS_HH CUS + SS

GlobalHH [39] CMS + SS

FamilyHH [32, 39] SS + SS

6.2.1 Algorithms and Their Settings. We first show all the al-

gorithms used in experiments and their associated data structures

in Table 3, and introduce them in the following:

• CU_DUET, CM_DUET, and SS_DUET. All these three al-
gorithms are based on our framework DUET, and they set

the sketch in DFilter as CU sketch (CUS) [19], CM sketch

(CMS) [17], and Stream-Summary (SS) [48], respectively.

• CUSS_HH. This algorithm uses CUS to approximately esti-

mate the frequency of items and uses SS to track frequent

quadratic elements.

• GlobalHH. The original GlobalHH [39] uses an SS to track

frequent quadratic elements, and assumes that there is enough

memory to fully record all items, which is not realistic for

data streams. To tackle that, we use CMS to approximately

estimate the frequency of items.

• FamilyHH. The key idea of both FamilyHH [39] and CSS-

CHH [32] is to use two SS instances to track frequent items

and quadratic elements separately. We refer to these two

algorithms collectively as FamilyHH.

6.2.2 Performance Comparison on Different Data Sets. We

vary the memory from 100KB to 500KB and conduct experiments

on four different data sets. To compare the performance of all the

9

algorithms used in HH, we choose four metrics: throughput, preci-

sion, F1 score, and ARE, and the experimental results are displayed

in Fig. 6-9. In particular, we divide all the six algorithms into three

groups according to the data structure for recording items for com-

parison. That is, CU_DUET and CUSS_HH are a group; CM_DUET

and GloablHH are a group; SS_DUET and FamilyHH are a group.

Throughput (Fig. 6): On average, the throughput of CU_DUET

on CAIDA1, CAIDA2, Reddit, and Stack is around 2.1, 2.4, 3.5, and,

2.0 times higher than that of CUSS_HH, respectively; the through-

put of CM_DUET on CAIDA1, CAIDA2, Reddit, and Stack is around

2.1, 2.3, 3.3, and, 2.0 times higher than that of GlobalHH, respec-

tively; the throughput of SS_DUET on CAIDA1, CAIDA2, Reddit,

and Stack is around 1.8, 2.0, 2.7, and, 1.5 times higher than that of

FamilyHH, respectively.

Precision (Fig. 7): On average, the precision of CU_DUET on

CAIDA1, CAIDA2, Reddit, and Stack is around 1.3, 2.3, 3.9, and, 2.4

times higher than that of CUSS_HH, respectively; the precision of

CM_DUET on CAIDA1, CAIDA2, Reddit, and Stack is around 1.3,

2.3, 4.0, and, 2.4 times higher than that of GlobalHH, respectively;

the precision of SS_DUET on CAIDA1, CAIDA2, Reddit, and Stack

is around 1.6, 3.5, 3.7, and, 7.5 times higher than that of FamilyHH,

respectively.

F1 score (Fig. 8): On average, the F1 score of CU_DUET on

CAIDA1, CAIDA2, Reddit, and Stack is around 1.2, 1.7, 2.1, and, 2.0

times higher than that of CUSS_HH, respectively; the F1 score of

CM_DUET on CAIDA1, CAIDA2, Reddit, and Stack is around 1.2,

1.7, 2.2, and, 2.0 times higher than that of GlobalHH, respectively;

the F1 score of SS_DUET on CAIDA1, CAIDA2, Reddit, and Stack

is around 1.2, 2.0, 2.2, and, 3.7 times higher than that of FamilyHH,

respectively.

ARE (Fig. 9): On average, the ARE of CU_DUET on CAIDA1,

CAIDA2, Reddit, and Stack is around 2480.0, 722.7, 326.0, and,

8262.2 times lower than that of CUSS_HH, respectively; the ARE

of CM_DUET on CAIDA1, CAIDA2, Reddit, and Stack is around

1876.4, 1526.3, 288.6, and, 8754.2 times lower than that of GlobalHH,

respectively; the ARE of SS_DUET on CAIDA1, CAIDA2, Reddit,

and Stack is around 2732.7, 1828.8, 294.1, and, 9187.6 times lower

than that of FamilyHH, respectively.

Analysis: Firstly, it is obvious that the algorithms based on

DUET have higher throughput and lower ARE than the other algo-

rithms by comparing each group of algorithms. The reason is that

the cardinality of quadratic elements is much larger than the num-

ber of counters in SS, and using SS without filtering will cause lots

of eviction operations to lower the throughput and increase the esti-

mation error. Secondly, the algorithms based on DUET have higher

F1 scores than the other algorithms. The reason is that the special

quadratic elements found by CUSS_HH, GlobalHH, and FamilyHH

need to satisfy more strict conditions than our problem definition,

for that they first need to be frequent enough with respect to all

quadratic elements to be recorded in SS. Thirdly, CU_DUET has the

best performance on accuracy among the three algorithms based

on DUET. The reason is that the conservative updating greatly

improves the accuracy of the estimation of items. For SS, it needs to

allocate space to record the ID of items. Therefore, SS_DUET has a

lower F1 score than CM_DUET when the memory is tight. Besides,

the precision of SS_DUET decreases as the memory increases on

some data sets. The reason is that when the memory is very tight,

(a) F1 score vs. ϕ1 . (b) ARE vs. ϕ1 .

Figure 10: Experimental results with varying ϕ1 for applica-
tion HH.

(a) F1 score vs. ϕ2 . (b) ARE vs. ϕ2 .

Figure 11: Experimental results with varying ϕ2 for applica-
tion HH.

SS can record a few items with very high frequencies accurately. As

the memory increases, SS overestimates more items, which leads

to a decrease in precision.

6.2.3 Effects of Parameters ϕ1 and ϕ2. Recall that for applica-
tion HH, there are two user-defined parameters ϕ1 and ϕ2 that

directly effect the estimated results. To explore the effect of the pa-

rameter ϕ1, we fix all the other parameters of the basic framework

and set it from 0.05 to 0.25. Analogously, for the parameter ϕ2, we
vary it from 2 × 10

−4
to 10

−3
. Due to the space limitation, we focus

on two metrics: F1 score, and ARE, and merely show the related

results of CAIDA2 in Fig. 10-11.

Firstly, it is clear that the algorithms based on DUET always have

higher F1 scores and lower ARE than the other three algorithms

under all the settings of ϕ1 and ϕ2. Secondly, we analyze why all

the algorithms based on DUET have certain performance improve-

ments when ϕ1 or ϕ2 increases. The reason is that when ϕ1 or ϕ2
increases, the smallest frequency of special quadratic elements in-

creases. Note that the quadratic elements with higher frequencies

have higher probabilities to be recorded, which leads to higher

accuracy when ϕ1 or ϕ2 increases. Next, we analyze why F1 scores

of CUSS_HH, FamilyHH, and GlobalHH decrease, as is shown in

Fig. 10(a). The reason is that SS overestimates quadratic elements,

and some normal quadratic elements are misreported as special

quadratic elements. As ϕ1 increases, the number of true special

quadratic elements decreases, and the probability of misreporting

increases. Generally, the advantages of the algorithms based on

DUET are not effected by the settings of ϕ1 or ϕ2.

6.3 Experiments for Application TH
In this section, we validate the performance of DUET for application

TH. Specifically, we first introduce the settings of all the algorithms

used in TH, and show the performance comparison between DUET

and prior algorithms. Then, we show the effect of parameter k on

all the algorithms.

10

Table 4: Algorithms used in application TH.

Algorithms Data Structures
CUH_DUET DUET with CUS + heap [26]

SS_DUET DUET with SS

GlobalTH CUS + heap + SS

FamilyTH SS + SS

(a) Throughput. (b) Precision.

(c) F1 score. (d) ARE.

Figure 12: Experimental results for application TH.

6.3.1 Algorithms and Their Settings. All the algorithms used

in application TH and their associated data structures are shown in

Table 4, and we describe them in the following:

• CUH_DUET and SS_DUET. Both of these algorithms are

based on our framework DUET, and they set the sketch in

DFilter as CUS + heap and SS, respectively.

• GlobalTH. This algorithm uses CUS + heap to maintain top-

k items and SS to approximately record quadratic elements.

• FamilyTH. FamilyHH can be directly used in this applica-

tion TH. To distinguish it from the previous experiments, we

rename it FamilyTH.

6.3.2 Performance Comparison. To compare the performance

of all the algorithms used in TH, we choose four metrics: through-

put, precision, F1 score, and ARE, and illustrate the experimental

results on CAIDA1 in Fig. 12. Similar to HH, we vary the memory

from 100KB to 500KB and divide all these four algorithms into two

groups for comparison. That is, CUH_DUET and GlobalTH are a

group; SS_DUET and FamilyTH are a group.

Throughput (Fig. 12(a)): The throughput of CUH_DUET is

around 2.6 times higher than that of GlobalTH; the throughput of

SS_DUET is around 1.8 times higher than that of FamilyTH.

Precision (Fig. 12(b)): The precision of CUH_DUET is around

1.4 times higher than that of GlobalTH; the precision of SS_DUET

is around 1.7 times higher than that of FamilyTH.

F1 score (Fig. 12(c)): CUH_DUET has the highest F1 score while

FamilyTH has the lowest, and the F1 score of CUH_DUET is around

1.5 times higher than that of FamilyTH.

ARE (Fig. 12(d)): The ARE of CUH_DUET is around 1328.8

times lower than that of GlobalTH; the ARE of SS_DUET is around

2383.2 times lower than that of FamilyTH.

Analysis: Firstly, the speed gap of CUH_DUET and SS_DUET

in this application is smaller than that of CU_DUET and SS_DUET

in application HH. Besides, the F1 score of SS_DUET is higher

than that of CUH_DUET when the memory usage is less than

150KB. The reason is that CUH_DUET needs to allocate a part of the

memory to a heap to maintain top-k items. Secondly, the precision

of CUH_DUET and SS_DUET is much higher than that of FamilyTH

and GlobalTH. The reason is that the quadratic elements found by

FamilyTH and GlobalTH need to satisfy more strict conditions than

our definition, for that they need to be frequent enoughwith respect

to all the quadratic elements in data streams. Thirdly, the ARE of

CUH_DUET and SS_DUET is much lower than that of FamilyTH

andGlobalTH. The reason is that DUETfilters out a part of quadratic

elements and estimates special quadratic elements more accurately.

6.3.3 Effect of Parameter k . To explore the effect of k , we fix
all the other parameters of DUET and vary k from 500 to 2500,

and show the experimental results in Fig. 13. Firstly, CU_DUET

and SS_DUET have higher precision, higher F1 score, and lower

ARE compared with the other two algorithms under all the settings

of k . Besides, CU_DUET and SS_DUET always have higher recall

than GlobalTH and FamilyTH, respectively, except for that when

k = 500. Secondly, the performance of all the algorithms degrades

as k increases. The reason is that the memory usage is fixed, but

the number of special quadratic elements that need to be found

increases as k becomes larger. In general, the advantages of the

algorithms based on DUET are not effected by the settings of k .

(a) Precision vs. k . (b) Recall vs. k .

(c) F1 score vs. k . (d) ARE vs. k .

Figure 13: Experimental results with varying k for applica-
tion TH.

6.4 Experiments for Application PP
In this section, we validate the performance of DUET for application

PP. Specifically, we first introduce the settings of DUET and prior

algorithms used in PP. Then, we show the performance comparison

between DUET and prior algorithms.

6.4.1 Algorithms and Their Settings. As no prior work can be

directly applied to this application, we propose several comparison

algorithms based on existing works. All the algorithms used in PP

and their associated data structures are shown in Table 5, and we

describe them in the following:

11

Table 5: Algorithms used in application PP.

Algorithms Data Structures
FLAG_DUET Flag bits + DUET

BF_DUET BF [42] + DUET

On-Off_PP PE [23] + FPI [23]

Small-Space_PP 2 × small space [25]

(a) Throughput. (b) Precision.

(c) F1 score. (d) ARE.

Figure 14: Experimental results for application PP.

• FLAG_DUET. We implement the algorithm mentioned in

Section 5.3, which sets the sketch as a CU sketch and adds a

flag bit to each counter of DUET.

• BF_DUET. We also implement the naive method mentioned

in Section 5.3, which adds a Bloom Filter on the top of DUET

to remove duplicates.

• On-Off_PP. The key idea of On-Off_PP is to record items

and quadratic elements separately. It uses PE [23] to esti-

mate the persistence of items and FPI [23] to find persistent

quadratic elements.

• Small-Space_PP. The key idea of Small-Space_PP is to use

two small space [25] instances to maintain persistent items

and quadratic elements separately.

6.4.2 Performance Comparison. To compare the performance

of all the algorithms, we choose four metrics: throughput, precision,

F1 score, and ARE. We vary the memory from 100KB to 500KB and

show the experimental results on CAIDA1 in Fig. 14.

Throughput (Fig. 14(a)): The throughput of FLAG_DUET is

the highest, and it is around 5.0, 1.2, and 3.1 times higher than that

of BF_DUET, On-Off_PP, and Small-Space_PP, respectively.

Precision (Fig. 14(b)): FLAG_DUET and BF_DUET have higher

precision than the other two algorithms. Specifically, the precision

of FLAG_DUET is around 2.4 and 3.0 times higher than that of

On-Off_PP and Small-Space_PP, respectively.

F1 score (Fig. 14(c)): FLAG_DUET and BF_DUET have higher

F1 scores than the other two algorithms. Specifically, the F1 score

of FLAG_DUET is around 1.7 and 3.4 times higher than that of

On-Off_PP and Small-Space_PP, respectively.

ARE (Fig. 14(d)): The ARE of On-Off_PP is highest, and the

ARE of the other three algorithms is basically the same.

Analysis: Firstly, Small-Space_PP has the worst performance in

terms of the first three metrics, but its ARE is not large. The reason

is that small space can accurately estimate the quadratic elements or

items with a large persistence under our memory settings. However,

those quadratic elements only occupy a small part of all true spe-

cial quadratic elements, which results in a low F1 score. Secondly,

BF_DUET and FLAG_DUET have comparable performance in terms

of accuracy. Nevertheless, as the hash calculations increase the over-

head of updating, the throughput of BF_DUET is lower than that

of FLAG_DUET. Thirdly, comparing On-Off_PP with FLAG_DUET

(both of which use flags for indicating), we can find that benefit

from our framework, FLAG_DUET has better performance.

7 DISCUSSION
In this section, we briefly discuss some practical extensions of our

framework DUET.

Sliding window case: Our proposed framework DUET pro-

cesses tasks in a fixed time window. However, in some scenarios

like real-time monitoring, recent data streams always outweigh out-

dated streams along the time dimension. This requires the extension

of our framework to the sliding window model [49]. To this end, we

incorporate the sliding sketch model presented in [50] by dividing

each of counters in DUET into several time zones. When inserting a

quadratic element, we reuse the original method to update the latest

time zone of each part. Moreover, we apply the scanning approach

[50] to the DFilter and STable to delete the outdated information.

For query, we also follow the original method to query the latest

time zone in DUET.

Distributed scenarios: We also extend DUET to distributed

processing scenarios. Take the application HH as an example. We

deploy DUET with the same parameter setting in N distributed

nodes, and an STable in the centralized controller. Suppose that

the stream of each item passes through P (P ≤ N) nodes, and

uniformly distributes its quadratic elements to P nodes. Besides,

denote the stream size as N .

In each node ni , DUET finds the local quadratic elements that

satisfy Fun(x) ≥ ϕ2
N

P
and Fun((x ◁ y)) ≥ ϕ1Fun(x), and returns

these quadratic elements and their frequencies in a set Ei . At the

end of such processing, the sketch Ki in DFilter and the set Ei are

sent to the controller. In the controller, the STable records quadratic

elements in each Ei . Meanwhile, the corresponding positions of

each Ki are simply added up to get the final sketch K , which is

used to query the frequency of items. Finally, we execute Query in

Algorithm 4 to obtain the special quadratic elements.

8 CONCLUSION
In this paper, we study the problem of finding special quadratic

elements in data streams. We propose a new framework DUET,

which is generic and efficient, and apply it into three important

applications related to our problem, HH, TH, and PP. We conduct

theoretical analysis to obtain the error bound of DUET and measure

the performance of DUET by five metrics on four data sets. Our

experimental results show that DUET can achieve up to 3.5 times

higher throughput and reduce the average relative error by three

orders of magnitude compared with prior algorithms. Besides, we

discuss some extensions of DUET to more practical scenarios.

12

REFERENCES
[1] Seref Sagiroglu and Duygu Sinanc. Big data: A review. In Proceedings of Interna-

tional Conference on Collaboration Technologies and Systems, pages 42–47. IEEE,
2013.

[2] Alexandros Labrinidis and Hosagrahar V Jagadish. Challenges and opportunities

with big data. Proceedings of the VLDB Endowment, 5(12):2032–2033, 2012.
[3] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-

tus, Rong Pan, Navindra Yadav, et al. Conga: Distributed congestion-aware load

balancing for datacenters. In Proceedings of ACM Conference on SIGCOMM, pages

503–514. ACM, 2014.

[4] Andrew R Curtis, Jeffrey C Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet

Sharma, and Sujata Banerjee. Devoflow: Scaling flow management for high-

performance networks. In Proceedings of ACM Conference on SIGCOMM, pages

254–265. ACM, 2011.

[5] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and

Walter Willinger. Sonata: Query-driven streaming network telemetry. In Pro-
ceedings of ACM Conference on SIGCOMM, pages 357–371. ACM, 2018.

[6] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat

Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim.

Language-directed hardware design for network performance monitoring. In

Proceedings of ACM Conference on SIGCOMM, pages 85–98. ACM, 2017.

[7] Biswanath Mukherjee, L Todd Heberlein, and Karl N Levitt. Network intrusion

detection. Network, 8(3):26–41, 1994.
[8] Pedro Garcia-Teodoro, Jesus Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique

Vázquez. Anomaly-based network intrusion detection: Techniques, systems and

challenges. Computers & Security, 28(1-2):18–28, 2009.
[9] Qun Huang, Patrick PC Lee, and Yungang Bao. SketchLearn: relieving user

burdens in approximate measurement with automated statistical inference. In

Proceedings of ACM Conference on SIGCOMM, pages 576–590. ACM, 2018.

[10] Tong Yang, Haowei Zhang, Dongsheng Yang, Yucheng Huang, and Xiaoming

Li. Finding significant items in data streams. In Proceedings of International
Conference on Data Engineering, pages 1394–1405. IEEE, 2019.

[11] Jing Cao, Yu Jin, Aiyou Chen, Tian Bu, and Zhi-Li Zhang. Identifying high

cardinality internet hosts. In Proceedings of International Conference on Computer
Communications, pages 810–818. IEEE, 2009.

[12] Lu Tang, Qun Huang, and Patrick PC Lee. SpreadSketch: Toward invertible

and network-wide detection of superspreaders. In Proceedings of International
Conference on Computer Communications, pages 1608–1617. IEEE, 2020.

[13] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. Sketch-

based change detection: Methods, evaluation, and applications. In Proceedings of
ACM Conference on SIGCOMM, pages 234–247. ACM, 2003.

[14] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir

Braverman. One sketch to rule them all: Rethinking network flow monitoring

with univmon. In Proceedings of ACM Conference on SIGCOMM, pages 101–114.

ACM, 2016.

[15] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,

Roy Friedman, and Vyas Sekar. Nitrosketch: Robust and general sketch-based

monitoring in software switches. In Proceedings of ACM Conference on SIGCOMM,

pages 334–350. ACM, 2019.

[16] Lu Tang, Qun Huang, and Patrick PC Lee. MV-Sketch: A fast and compact

invertible sketch for heavy flow detection in network data streams. In Proceedings
of International Conference on Computer Communications, pages 2026–2034. IEEE,
2019.

[17] Graham Cormode and Shan Muthukrishnan. An improved data stream summary:

the count-min sketch and its applications. Journal of Algorithms, 55(1):58–75,
2005.

[18] Cristian Estan and George Varghese. New directions in traffic measurement

and accounting. In Proceedings of ACM Conference on SIGCOMM, pages 323–336.

ACM, 2002.

[19] Moses Charikar, Kevin Chen, andMartin Farach-Colton. Finding frequent items in

data streams. In Proceedings of International Colloquium on Automata, Languages,
and Programming, pages 693–703. Springer, 2002.

[20] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation

of frequent and top-k elements in data streams. In Proceedings of International
Conference on Database Theory, pages 398–412. Springer, 2005.

[21] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over

data streams. In Proceedings of International Conference on Very Large Databases,
pages 346–357. Elsevier, 2002.

[22] Tong Yang, Junzhi Gong, Haowei Zhang, Lei Zou, Lei Shi, and Xiaoming Li.

Heavyguardian: Separate and guard hot items in data streams. In Proceedings of
International Conference on Knowledge Discovery & Data Mining, pages 2584–2593.
ACM, 2018.

[23] Yinda Zhang, Jinyang Li, Yutian Lei, Tong Yang, Zhetao Li, Gong Zhang, and Bin

Cui. On-off sketch: a fast and accurate sketch on persistence. Proceedings of the
VLDB Endowment, 14(2):128–140, 2020.

[24] Haipeng Dai, Muhammad Shahzad, Alex X Liu, and Yuankun Zhong. Finding

persistent items in data streams. Proceedings of the VLDB Endowment, 10(4):289–
300, 2016.

[25] Bibudh Lahiri, Srikanta Tirthapura, and Jaideep Chandrashekar. Space-efficient

tracking of persistent items in a massive data stream. Statistical Analysis and
Data Mining: The ASA Data Science Journal, 7(1):70–92, 2014.

[26] Jizhou Li, Zikun Li, Yifei Xu, Shiqi Jiang, Tong Yang, Bin Cui, Yafei Dai, and Gong

Zhang. WavingSketch: An unbiased and generic sketch for finding top-k items in

data streams. In Proceedings of International Conference on Knowledge Discovery
& Data Mining, pages 1574–1584. ACM, 2020.

[27] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Vargaftik. Faster

and more accurate measurement through additive-error counters. In Proceedings
of International Conference on Computer Communications, pages 1251–1260. IEEE,
2020.

[28] Stuart Staniford, James A Hoagland, and Joseph M McAlerney. Practical auto-

mated detection of stealthy portscans. Journal of Computer Security, 10(1-2):105–
136, 2002.

[29] Advanced persistent threat. http://www.usenix.org/event/lisa09/tech/slides/daly.

pdf.

[30] Frederic Giroire, Jaideep Chandrashekar, Nina Taft, Eve Schooler, and Dina

Papagiannaki. Exploiting temporal persistence to detect covert botnet channels.

In Proceedings of International Workshop on Recent Advances in Intrusion Detection,
pages 326–345. Springer, 2009.

[31] Nicole Immorlica, Kamal Jain, Mohammad Mahdian, and Kunal Talwar. Click

fraud resistant methods for learning click-through rates. In Proceedings of In-
ternational Workshop on Internet and Network Economics, pages 34–45. Springer,
2005.

[32] Italo Epicoco, Massimo Cafaro, and Marco Pulimeno. Fast and accurate mining

of correlated heavy hitters. Data Mining and Knowledge Discovery, 32(1):162–186,
2018.

[33] Marco Pulimeno, Italo Epicoco, Massimo Cafaro, Catiuscia Melle, and Giovanni

Aloisio. Parallel mining of correlated heavy hitters on distributed and shared-

memory architectures. In Proceedings of International Conference on Big Data,
pages 5111–5118. IEEE, 2018.

[34] Bibudh Lahiri and Srikanta Tirthapura. Finding correlated heavy-hitters over

data streams. In Proceedings of International Performance Computing and Com-
munications Conference, pages 307–314. IEEE, 2009.

[35] Jayadev Misra and David Gries. Finding repeated elements. Science of Computer
Programming, 2(2):143–152, 1982.

[36] Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic character-

istics of data centers in the wild. In Proceedings of ACM Conference on SIGCOMM,

pages 267–280. ACM, 2010.

[37] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,

Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and fast network-wide

measurements. In Proceedings of the ACM Special Interest Group on Data Commu-
nication, pages 561–575. ACM, 2018.

[38] Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Optimal ele-

phant flow detection. In Proceedings of International Conference on Computer
Communications, pages 1–9. IEEE, 2017.

[39] Katsiaryna Mirylenka, Themis Palpanas, Graham Cormode, and Divesh Srivas-

tava. Finding interesting correlations with conditional heavy hitters. In Pro-
ceedings of International Conference on Data Engineering, pages 1069–1080. IEEE,
2013.

[40] Amin Shokrollahi. Raptor codes. IEEE Transactions on Information Theory,
52(6):2551–2567, 2006.

[41] Bobhash. http://burtleburtle.net/bob/hash/evahash.html.

[42] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970.

[43] Andrei Broder and Michael Mitzenmacher. Network applications of bloom filters:

A survey. Internet Mathematics, 1(4):485–509, 2004.
[44] Source codes of DUET. https://github.com/callitwhatyouwannt13/DUET_Code.

[45] The caida anonymized internet traces. https://www.caida.org/data/passive/

passive_2016_dataset.xml.

[46] Social network: Reddit hyperlink network. http://snap.stanford.edu/data/soc-

RedditHyperlinks.html.

[47] Stack overflow temporal network. http://snap.stanford.edu/data/sx-

stackoverflow.html.

[48] The source codes of HeavyKeeper. https://github.com/papergitkeeper/heavy-

keeper-project.

[49] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining

stream statistics over sliding windows. SIAM Journal on Computing, 31(6):1794–
1813, 2002.

[50] Xiangyang Gou, Long He, Yinda Zhang, Ke Wang, Xilai Liu, Tong Yang, Yi Wang,

and Bin Cui. Sliding sketches: A framework using time zones for data stream

processing in sliding windows. In Proceedings of International Conference on
Knowledge Discovery & Data Mining, pages 1015–1025, 2020.

13

http://www.usenix.org/event/lisa09/tech/slides/daly. pdf
http://www.usenix.org/event/lisa09/tech/slides/daly. pdf
http://burtleburtle.net/bob/hash/evahash.html.
https://github.com/callitwhatyouwannt13/DUET_Code
https://www.caida.org/data/passive/passive_2016_dataset.xml
https://www.caida.org/data/passive/passive_2016_dataset.xml
http://snap.stanford.edu/data/soc-RedditHyperlinks.html
http://snap.stanford.edu/data/soc-RedditHyperlinks.html
http://snap.stanford.edu/data/sx-stackoverflow.html
http://snap.stanford.edu/data/sx-stackoverflow.html
https://github.com/papergitkeeper/heavy-keeper-project
https://github.com/papergitkeeper/heavy-keeper-project

	Abstract
	1 Introduction
	1.1 Background and Motivation
	1.2 Limitations of Prior Art
	1.3 Our Proposed Approach
	1.4 Our Contributions

	2 Related Work
	2.1 HH
	2.2 TH
	2.3 PP

	3 Design of DUET
	3.1 Solution Framework
	3.2 Insertion
	3.3 Query

	4 Theoretical Analysis of DUET
	4.1 Space and Time Complexities
	4.2 No Over-estimation of Quadratic Elements
	4.3 Error-bound Model of Quadratic Elements
	4.4 Error Bound Based on CM Sketch

	5 Implementation for Three Applications
	5.1 HH
	5.2 TH
	5.3 PP

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Experiments for Application HH
	6.3 Experiments for Application TH
	6.4 Experiments for Application PP

	7 Discussion
	8 Conclusion
	References

