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Abstract

For l-homogeneous linear differential operators A of constant rank, we study the im-
plication

vj ⇀ v in X

Avj → Av in W−lY

}
=⇒ F (vj) F (v) in Z,

where F is an A-quasiaffine function and  denotes an appropriate type of weak con-
vergence. Here Z is a local L1-type space, either the space M of measures, or L1, or
the Hardy space H 1; X, Y are Lp-type spaces, by which we mean Lebesgue or Zygmund
spaces. Our conditions for each choice of X, Y, Z are sharp. Analogous statements are
also given in the case when F (v) is not a locally integrable function and it is instead de-
fined as a distribution. In this case, we also prove H p-bounds for the sequence (F (vj))j ,
for appropriate p < 1, and new convergence results in the dual of Hölder spaces when (vj)
is A-free and lies in a suitable negative order Sobolev space W−β,s. The choice of these
Hölder spaces is sharp, as is shown by the construction of explicit counterexamples. Some
of these results are new even for distributional Jacobians.
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1 Introduction

The interaction between nonlinear functionals and weak convergence is a recurring theme
in the study of nonlinear partial differential equations. Typically, one has a sequence of func-
tions (vj)j satisfying certain bounds leading to weak convergence and would like to understand
the convergence properties of a given nonlinear function composed with the terms of the se-
quence. In particular, the theory of compensated compactness studies the weak convergence
of (F (vj))j for weakly convergent sequences (vj)j , where F is a nonlinear function (for rea-
sons we will see below, F will always be taken to be a polynomial). In the absence of further
constraints, it is easy to see that if (vj)j converges weakly in some Lp-space, the convergence

F (vj) F (v)(1.1)

cannot be expected to hold in any meaningful sense: one simply takes F = | · |p and an
oscillating or concentrating sequence (vj)j to see that there need be no such relation in the
limit between limj→∞ F (vj) and F (v).

However, under certain conditions, such an identification of the limit may hold true.
The first known positive example is the weak continuity of the Jacobian subdeterminants,
under the restriction vj = Duj [4, 30, 34, 35]. Subsequently, the celebrated div-curl lemma
[41] has led to remarkable developments which we will summarize roughly here as follows:
under a compensation condition (of linear PDE type, relating to an operator A) on (vj),
the convergence (1.1) holds weakly-∗ in the sense of distributions precisely for a class of
(polynomial) nonlinearities F determined by A, the so-called A-quasiaffine functions.

This theory of compensated compactness rapidly found applications in many areas of
nonlinear PDE, covering hyperbolic conservation laws, elasticity and geometric analysis, to
name just a few areas. Tartar [41] applied the div-curl lemma to demonstrate the existence
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of entropy solutions to scalar hyperbolic conservation laws. His techniques were extended by
DiPerna [15] to cover 2 × 2 strictly hyperbolic systems and the isentropic Euler equations.
Ball [4], Müller [31] and others used the weak convergence of the determinant to prove ex-
istence theorems in nonlinear elasticity. Moreover, compensated compactness has been used
to demonstrate regularity of harmonic maps between manifolds in [24], see also [16] for an
exposition.

Later, and in parallel to the development of the compensated compactness theory, a re-
markable observation by Müller led to a different direction of study: it was shown in [31]
that if v = Du ∈ Lnloc(Rn,Rn×n) has non-negative determinant, then det Du ∈ L logLloc.
This inspired Coifman–Lions–Meyer–Semmes to prove in [10] that if Du ∈ Ln(Rn,Rn×n),
then det Du lies in the Hardy space H 1. A natural question to ask is what is the class of
pairs of compensating operators A and nonlinearities F . It was speculated and verified for
several examples in [10] that this is precisely the class of A-quasiaffine functions. This claim
was subsequently checked for further examples in [29] and, more recently, a positive result
covering a large class of operators and exponents was given by the first two authors in [22].
To present this result accurately, we introduce some notation.

Given finite-dimensional inner product spaces V,W, we will consider a linear, l-th homo-
geneous constant coefficient operator

(1.2) A =
∑
|α|=l

Aα∂
α, where Aα ∈ Lin(V,W),

acting on maps v : Ω ⊂ Rn → V. In this paper, Ω ⊂ Rn will always denote an open, bounded
domain. We define (using multi-index notation)

A(ξ) =
∑
|α|=l

Aαξ
α,

a polynomial in ξ ∈ Rn and we will assume that A has constant rank, i.e. there is r ∈ N
such that

(1.3) rankA(ξ) = r for all ξ ∈ Sn−1.

The reader may find other characterizations of constant rank operators in [23, 32]. We shall
also make the non-degeneracy assumption that

(1.4) ΛA ≡
⋃

ξ∈Sn−1

kerA(ξ) spans V;

the set ΛA is called the wave cone of A. We recall that a locally bounded measurable function
F : V→ R is said to be A-quasiaffine if and only if

F (v0) =

 
Tn
F (v0 + v(x)) dx

for all v0 ∈ V and v ∈ C∞(Tn) such that

Av = 0,

 
Tn
v(x) dx = 0,
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where Tn = Rn/Zn is the n-dimensional torus. It is known from the work of Murat and
Tartar [41, Remark following Theorem 18] that these functions are necessarily polynomials.

In [22], the following result was proved:

Theorem 1.5. Let Ω ⊂ Rn be a bounded open set. Let A be as in (1.2) and assume (1.3)
and (1.4) hold. Then for a homogeneous A-quasiaffine integrand F : V → R of degree s ≥ 2,
we have the implication

(1.6)
vj ⇀ v in Ls(Ω,V),

Avj → Av in W−l,s(Ω,W)

}
=⇒ F (vj)

∗
⇀ F (v) in M (Ω).

Moreover, the following bound holds:

‖F (v)‖H 1(Rn) ≤ C‖v‖sLs(Rn) for v ∈ Ls(Rn) such that Av = 0,

which implies that, with an exact constraint imposed, Avj = 0, we have the convergence

(1.7) vj ⇀ v in Ls(Rn,V) =⇒ F (vj)
∗
⇀ F (v) in H 1(Rn).

In [22], (1.6) was derived from a more general lower semicontinuity result. Here we shall
give a simple direct proof, see Section 6 below.

We remark, however, that the two topologies used in (1.6) and (1.7) are different and that
it is possible that the convergences claimed may be sensitive to these topologies. The aim of
this paper is to show that this is indeed the case: if we allow for perturbations (Avj)j that
are compact in the strong topology of a space W−lY , it can indeed happen that (F (vj))j
converges in M , but not in H 1. This is already the case if Y = Ls, see Example 5.4.

We note that also the weak convergence of (F (vj))j in L1 to F (v) is to be expected in the
case when (F (vj))j is equi-integrable, c.f. [12] in the case of the standard div-curl lemma. By
the Dunford–Pettis theorem, this is a statement referring to the identification of the weak L1

limit, as the existence of a weakly convergent subsequence in L1 already follows from the equi-
integrability. Such a result requires only the very weak compactness assumption Avj → Av
in W−l,1 in the constraint (see Theorem A below for the precise statement), an advantage
exploited in both [11] and [37].

In view of these considerations, the theme of the first part of this paper is as follows:
we work with A-quasiaffine functions F and determine precise conditions on the convergence
of (vj)j , (Avj)j to ensure that (F (vj))j converges suitably in M , L1, or H 1. Moreover,
since H 1

loc contains all functions with L logLloc integrability, we will show that the differences
in convergence can be seen very clearly on the scale of the Zygmund (or, more precisely,
Orlicz) spaces Lp logα L. For the sake of clarity of exposition, we give only local statements
to avoid overburdening the reader with unnecessary details. The interested readers will have
no difficulty in applying our results to related scenarios.

In the final sections of this paper, we investigate the case below integrability or below
differentiability, that is, working with an s-homogeneous A-quasiaffine function F and a se-
quence (vj)j bounded in either Lq with q < s or in W−β,s with β > 0. We investigate first

conditions sufficient for a bound in the Hardy space H
q
s , and secondly for the convergence

of F (vj) to hold in the dual of a homogeneous Hölder space.
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For each of these results, two key components of the corresponding proof are the ob-
servation that A-quasiaffine functions are necessarily polynomials, and the Helmholtz-Hodge
decomposition of [22]. Combining these facts allows for a reduction to the setting of Jacobian
sub-determinants for which we may adapt the classical proofs in some cases and provide new,
direct proofs in others.

1.1 L1-type spaces: M vs. L1 vs. H 1

We suppose F is an A-quasiaffine integrand of s-growth. Our first main theorem is then
as follows.

Theorem A. Let A and F satisfy the assumptions of Theorem 1.5 where s ≥ 2.

Take α ≥ 0 and let r ≥ 1, β ∈ R be such that Lr logβ Lloc ⊆ L1
loc. Consider a sequence

(vj)j such that

vj ⇀ v in Ls logα Lloc(Rn,V)

Avj → Av in W−llocL
r logβ L(Rn,W).

The following hold:

(i) If Lr logβ Lloc ⊆ Lsloc, then F (vj)
∗
⇀ F (v) in Mloc(Rn).

(ii) If α > 0, then F (vj) ⇀ F (v) in L1
loc(Rn).

(iii) If α ≥ 1 or Lr logβ Lloc ⊆ Ls logs Lloc, then F (vj) is bounded in H 1
loc(Rn).

More generally, the conclusion of (ii) holds whenever F (vj) is equi-integrable.

We refer the reader to Section 2.1 for the definition of W−lLp logα L(Rn); Section 2 con-
tains more details on the Zygmund spaces Lp logα L and Hardy spaces.

We give a precise estimate for the Hardy bound of Theorem A(iii) in Theorem 4.2 (see
also the Appendix). The statements in Theorem A(i),(ii) are sharp, as can be seen from the
examples in Section 5. There, we show that for the classical example A(v, ṽ) = (div v, curl ṽ)
and F (v, ṽ) = v · ṽ, in each of the first two cases above, the failure of the assumption can lead
to the failure of the convergence or boundedness.

Remark 1.8. For the sake of completeness, we remark that in fact Theorem A(iii) may be
improved in two ways:

(i) In the case when α > 1, the statement in Theorem A(iii) can be replaced with the
slightly finer statement that F (vj) ⇀ F (v) in L logLloc.

(ii) The two conditions given in Theorem A(iii) may actually be interpolated. Such an
interpolation is best stated in the language of Orlicz functions and so we leave this to
an Appendix. The sharp result is stated precisely in Theorem A.3.

For better readability of the paper, we present the first main result on the Lebesgue scale:

Corollary B. Let 1 ≤ q, r <∞ be such that q ≥ s. Consider a sequence (vj)j such that

vj ⇀ v in Lqloc(R
n,V)

Avj → Av in W−l,rloc (Rn,W).

Then:
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(i) If r ≥ s, then F (vj)
∗
⇀ F (v) in Mloc(Rn).

(ii) If q > s, then F (vj) ⇀ F (v) in L1
loc(Rn).

(iii) If r > s or q > s, then (F (vj))j is bounded in H 1
loc(Rn).

Minor adaptations of the examples in Section 5 show that these statements are sharp as
well (on the Lebesgue scale). Note that in both Theorem A(iii) and Corollary B(iii), the H 1

loc

boundedness can be used to strengthen the convergence of F (vj) to F (v) in the following
sense: if ρ ∈ C∞c (Rn), then

ρF (vj)
∗
⇀ ρF (v) in h1(Rn),

where we refer to Section 2 for the definition of the Goldberg–Hardy space h1(Rn); in partic-
ular, one can test the convergence against functions in a local version of VMO(Rn), known
as vmo(Rn). Local variants of the div-curl lemma and the relationship between h1 and vmo
were discussed previously in [13, 14]. A variant of the Hardy space bound on domains, taking
account of boundary values, was proved in [25].

1.2 Distributional null Lagrangians and H p spaces

As is well known from [4], even if the quantity F (v) is not integrable, one can define
suitable distributional variants. In particular, in [22, Remark 7.4] the quantity F (v) was,
roughly speaking, defined for A-free fields v, as the distributional limit of the quantities F (vj),
where vj is a smooth, A-free approximation of v. Here, we will allow for a perturbation in
the constraint (i.e. we will require convergence of Avj , but not that Avj = 0 for all j), but
work with a slightly less general set up than in Section 1.1, for better readability of the paper.
Alternative statements can be obtained with minor alterations of our methods.

We freeze a bounded open set Ω ⊂ Rn, an A-quasiaffine integrand F of s-growth, and the
exponents

q ∈
(

ns

n+ 1
, s

)
, r∗ ≡

q

q − s+ 1
,

so that s−1
q + 1

r∗
= 1. We will essentially define F (v) for fields v ∈ Lq with support in Ω:

Definition 1.9. Let (vj)j ⊂ C∞c (Ω,V) be such that

vj ⇀ v in Lq(Ω,V)

Avj → Av in W−l,r∗(Ω,W).

Then we define
F (v) ≡ w*- lim

j→∞
F (vj) in D ′(Rn).

The following theorem shows that F (v) above is well defined. Moreover, we obtain a
Hardy space bound generalizing the results of [10] (see also [7] for a variant):

Theorem C. Let Ω ⊂ Rn be a bounded open set, F : V→ R be an homogeneous A-quasiaffine
map of degree s ≥ 2, and ns/(n+ 1) < q ≤ s, r ≥ r∗. For a sequence (vj)j ⊂ C∞c (Ω,V),

vj ⇀ v in Lq(Ω,V)

Avj → Av in W−l,r(Ω,W)

}
=⇒ F (vj)

∗
⇀ F (v) in D ′(Ω).
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Moreover, if Av is bounded in W−lLr∗ logr∗ L (or simply r > r∗), we also have that (F (vj))j
is bounded in H q/s(Rn) with the estimate

‖F (vj)‖H q
s
≤ C

(
‖vj‖Lq + ‖Avj‖W−lLr∗ logr∗ L

)s
.

Aside from the convergence and boundedness results concerning distributional quantities,
while proving Theorem C in Section 6, we also include a new proof of (1.6). A third proof
will be sketched in Remark 6.9.

It was observed in [9] that, as well as being defined below integrability, in fact the distri-
butional Jacobian could be defined below differentiability in the following sense. Defining the
Jacobian operator J(u) = det(Du) formally (for smooth functions, say), it is clear that J(u)
is meaningful for u ∈ W 1,n. [9, Theorem 3] proved that J(u) could be given a distributional

meaning even for u ∈ W
n−1
n
,n, that is, with differentiability strictly below the usual setting.

In fact, they prove a stronger result: that the distributional Jacobian defined on this space
takes values in the dual of the homogeneous Lipschitz space C0,1, and an estimate on the
difference of the Jacobians of functions u and v in the dual Lipschitz norm may be obtained

in terms of the W
n−1
n
,n difference of u and v.

In our final main theorem, we prove firstly that this result extends to more general s-
homogeneous A-quasiaffine functions, and secondly that under differentiability conditions
between the critical s−1

s and 1, the estimate may be strengthened to one in the dual of a
homogeneous Hölder space. We remark that some estimates for the Jacobian in fractional
Sobolev spaces W−β,p have been proved in [28, Theorem 1.1] by adapting the methods of [9].

Theorem D. Let Ω ⊂ Rn be either a bounded Lipschitz domain or Ω = Rn, F : V → R an
homogeneous A-quasiaffine map of degree s ≥ 2. Suppose that u, v ∈ C∞c (Ω,V) are A-free.
Let α ∈ (0, 1] and β = 1− α

s . Then, for any ϕ ∈ C0,α(Ω), we obtain the estimates∣∣∣ ˆ
Ω

(
F (u)− F (v)

)
ϕ dx

∣∣∣ ≤ C[ϕ]C0,α [u− v]W−1+β,s

(
[u]W−1+β,s + [v]W−1+β,s

)s−1
.

Theorem D appears to be new even in the case of the Jacobian operator, see Theorem 7.4.
Earlier results due to [9, Theorem 1] for the Jacobian and [22, Proposition 7.1] forA-quasiaffine
functions controlled the difference F (u) − F (v) in the dual Lipschitz norm in terms of the
Lp norms of u and v and their difference in some W−1,q (where q and p satisfy a suitable
relation). Such results may be partially recovered as corollaries of Theorem D, as explained
in [9] for the special case of the Jacobian, see Section 7.

Finally, Theorem D is sharp on the scale of fractional Sobolev spaces. That is, we show

for the Jacobian that on a bounded domain Ω, if W β,p(Ω) 6↪→W
n−α
n

,n(Ω), there are uniformly
bounded sequences (uk)k in W β,p(Ω) and (ϕk)k in C0,α(Ω) such that

ˆ
Ω

det(Duk)ϕk dx→∞ as k →∞.

In order to prove this, we split the analysis into three cases. The construction of the se-
quence uk in the two more complicated cases is modelled on that of [9, Lemma 5] and it is
based on a frequency decomposition, adding appropriately weighted oscillations at increasing
frequencies. To allow for the range of values of α that we must consider, the construction
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needs to be modified and, in particular, we need to consider a sequence of test functions,
instead of a fixed test function as in [9]. This sequence ϕk is constructed through a further
frequency decomposition. We refer the reader to Proposition 7.13 for more details and to [2]
for optimality results for the Hessian determinant.

Let us briefly describe the organisation of this paper. In §2, we provide basic definitions
and results concerning Zygmund spaces as well as the Hardy spaces and their local variants.
We state a useful version of the standard Hörmander–Mihlin multiplier theorem adapted
to the Zygmund spaces and finally state and prove an extension of the standard Lipschitz
truncation to higher order operators. In §3, we employ this Lipschitz truncation to prove a
compensated compactness weak convergence result under a W−l,1 compactness assumption.
This is followed in §4 by the proofs of the Hardy space estimates of Theorem A. In §5, we use
the results of §3–4 to prove Theorem A and give a series of counterexamples to demonstrate
the sharpness of Theorem A. After the proof of Theorem C in §6, we conclude the proof of
Theorem D and related results, including the construction of the counterexamples mentioned
above, in §7. A final Appendix states and demonstrates the sharp conditions for the Hardy
bound of Theorem A in terms of Orlicz functions, as claimed in Remark 1.8(ii).

2 Function spaces and harmonic analysis

In this section we gather in a concise way some facts and definitions about functions spaces
that we shall use. For simplicity we will only work with Zygmund spaces, but more general
versions of the results stated here can be found in the monograph of Rao–Ren [33]. For results
about harmonic analysis we refer the reader to the monograph [40].

2.1 Zygmund spaces

We will work extensively with the Zygmund spaces Lp logα L(Ω,V), defined as the space
of those measurable functions f : Ω → V such that

´
Ω |f(x)|p logα(1 + |f(x)|) dx < ∞. For

1 < p <∞, α ∈ R or p = 1, α ≥ 0, Lp logα L is a Banach space under the norm

‖f‖Lp logα L(Ω) ≡
(ˆ

Ω
|f(x)|p logα

(
1 +
|f(x)|
‖f‖p

)
dx

) 1
p

,

see e.g. the appendix in [27]. It is convenient to record the following fact concerning duals of
Zygmund spaces, see [6, Theorem 8.4]:

Theorem 2.1. Let 1 < p <∞ and α ∈ R. Then the dual of the Banach space Lp logα L can

be identified, up to an equivalence of norms, with Lp
′
logL

− p
′
p
α

, where 1
p + 1

p′ = 1.

In particular, we have the Zygmund version of Hölder’s inequality,

(2.2) ‖f1 . . . fm‖Lp logα L . ‖f1‖Lp1 logα1 L . . . ‖fm‖Lpm logαm L,

which holds whenever pi > 1, αi ∈ R are such that 1
p = 1

p1
+ · · ·+ 1

pm
and α

p = α1
p1

+ · · ·+ αm
pm

.

For later use, it will be important to deal with Zygmund–Sobolev spaces, defined as an
extension of Sobolev spaces.
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Definition 2.3. Let p > 1 and k ∈ N. Then:

(i) W kLp logα L(Ω,V) is the space of those distributions f ∈ D ′(Ω,V) such that, for all
multi-indices α with |α| ≤ k, we have ∂αf ∈ Lp logα L(Ω,V);

(ii) W−kLp logα L(Ω,V) is the space of k-th order distributional derivatives of functions in
Lp logα L(Ω,V);

(iii) Ẇ−kLp logα L(Ω,V) is the homogeneous version of (ii) and is defined as the space of
f ∈ S ′(Rn) which have support in Ω and

‖f‖Ẇ−kLp logα L(Rn) ≡
∥∥∥∥F−1

(
Ff(ξ)

|ξ|k

)∥∥∥∥
Lp logα L(Rn)

<∞.

The local versions of these spaces are defined in the obvious way.

To conclude this subsection we recall that it is possible to interpolate results from the
scale of Lebesgue spaces to that of Zygmund spaces. In particular, Lp-multipliers extend
to bounded operators on Zygmund spaces, see [26, §12.12]. The analogue of the classical
Hörmander–Mihlin multiplier theorem, in this generalized setting, is the following:

Theorem 2.4. Let m be a Hörmander–Mihlin multiplier, so m corresponds to a Calderón–
Zygmund operator Tm which, for any p ∈ (1,∞), is a bounded operator Tm : Lp(Rn)→ Lp(Rn).
Then, for p ∈ (1,∞) and α ∈ R, there is a constant C = C(p, α) > 0 such that

‖Tmf‖Lp logα L(Rn) ≤ C‖f‖Lp logα L(Rn).

2.2 Hardy spaces, their local versions, and duality

We fix a test function φ such that
´
Rn φ 6= 0. Given a distribution f ∈ D ′(Rn), we define

the Hardy–Littlewood maximal function, together with its local version, by

Mf(x) ≡ sup
0<t<∞

|f ∗ φt|(x),

Mlocf(x) ≡ sup
0<t<1

|f ∗ φt|(x).

For a number 0 < p ≤ ∞, the real Hardy space H p(Rn) is

(2.5) H p(Rn) ≡ {f ∈ S ′(Rn) :Mf ∈ Lp(Rn)}

and it is equipped with the (quasi-)norm ‖f‖Lp(Rn) ≡ ‖Mf‖Lp(Rn). The maximal theorem
shows that, for p > 1, H p(Rn) ∼= Lp(Rn). The case p = 1 is particularly important and we
have H 1(Rn) ( L1(Rn). The local Hardy space is defined by

H 1
loc(Rn) ≡ {f ∈ L1

loc(Rn) :Mlocf ∈ L1
loc(Rn)}.

Similarly, the Goldberg–Hardy space [21] is defined by

h1(Rn) ≡ {f ∈ L1(Rn) :Mlocf ∈ L1(Rn)}.
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A celebrated theorem due to Fefferman–Stein [19] shows that the definition of H p(Rn)
does not depend on the choice of φ, and neither do the definitions of its local variants.
Furthermore, it is easy to see, c.f. [18, Lemma 5.1], that given f ∈H 1

loc(Rn) and φ ∈ C∞c (Rn),
φf ∈ h1(Rn).

Our interest in local Hardy spaces comes from the following classical result [39]:

Proposition 2.6. Let f ∈ L1
loc(Rn). If f ∈ L logLloc(Rn) then f ∈ H 1

loc(Rn). The converse
also holds if f ≥ 0.

The reader may find further information on local Hardy spaces in [13, 14, 38].

We also recall that both H 1(Rn) and h1(Rn) are endowed with a genuine weak-∗ topology,
induced from their preduals (more generally, the balls in H p(Rn) are weakly-∗ precompact in
the sense of distributions). We refer the reader to [13] for the definition of the space of func-
tions of vanishing mean oscillation VMO(Rn) and its local version vmo(Rn). Moreover,
see [13, 36],

H 1(Rn) = VMO(Rn)∗, h1(Rn) = vmo(Rn)∗.

2.3 Further properties of constant rank operators

An important tool used in [22] was the observation from [32] that a linear differential
operator A as defined in (1.2) satisfies Murat’s constant rank condition (1.3) if and only if
there exists, for some k ∈ N, a k-homogeneous linear partial differential operator B with
constant coefficients,

B ≡
∑
|β|=k

Bβ∂
β, Bβ ∈ Lin(U,V),

where U is a finite-dimensional inner product space and such that

kerA(ξ) = imB(ξ) for ξ ∈ Rn \ {0}.

This does not imply a Poincaré lemma, i.e. it is not the case that Av = 0 =⇒ v =
Bu over simply-connected domains. However, such an implication holds whenever we have
access to Fourier analysis. This is reflected in the Helmholtz–Hodge type decomposition of
Proposition 4.1, which can be summarized as follows: for test functions v ∈ C∞c (Rn,V), we
have a decomposition

v = Bu+A∗w, ‖Dku‖X . ‖Bu‖X . ‖v‖X , ‖A∗w‖Y . ‖Av‖W−lY ,

where X, Y are spaces on which zero-homogeneous multiplier operators are bounded.

The other important observation that we will use is that we can write in jet notation

Bu = T (Dku),

where T is a tensor. Consequently, certain statements pertaining to the A-free setting can
be reduced to the setting of higher order gradients. For instance, under the spanning cone
condition (1.4), we have from [22, Lemma 5.6] that F is A-quasiaffine if and only if F ◦ T is
k-quasiaffine. The latter class is known from [3].
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2.4 Lipschitz truncation

In this section, we let p ∈ [1,∞). The following proposition is an extension to higher
order operators of the standard maximal function argument [17, 44]. As well as being of inde-
pendent interest, Lipschitz truncation will be useful in §3 in order to prove the compensated
compactness convergence result for constraints in L1-type spaces.

Proposition 2.7. Let v ∈ W k,p(Rn,V) and λ > 0 be arbitrary. There is u ∈ W k,∞(Rn,V)
such that

‖Dku‖L∞ ≤ Cλ(2.8)

|{v 6= u}| ≤ C 1

λp

ˆ
{|v|+···+|Dkv|>λ}

|v|p + · · ·+ |Dkv|p dx(2.9)

where the constants C > 0 only depend on k, n, p,V.

In fact, we also have the estimate

‖v − u‖p
Wk,p ≤ C

ˆ
{|v|+···+|Dkv|>λ}

|v|p + · · ·+ |Dkv|p dx.

Recall that for weakly differentiable functions u, v and a measurable set E, we have

u = v a.e. in E =⇒ Du = Dv a.e. in E.

In particular, for Sobolev functions u, v ∈W k,p,

(2.10)
k⋃
i=1

{Div 6= Diu} ⊂ {v 6= u}.

Proof: By working componentwise, after a choice of basis of V, we can assume that V = R.
Note also that, by approximation, we can assume that v is smooth and compactly supported
on a ball BR. Let us write f ≡ |u|+ |Du|+ · · ·+ |Dku| and consider the set

Eλ ≡

{
x ∈ Rn : there exists r > 0 such that

 
Br(x)

f(y) dy ≥ 2λ

}
.

An application of the Vitali Covering Theorem shows that the volume of |Eλ| satisfies (2.9):
indeed, one can find a countable collection of disjoint balls Bri(xi) such that B5ri(xi) covers
Eλ and

ffl
Bri (xi)

f dy ≥ 2λ. This implies the estimate

rni ≤ C
1

λ

ˆ
Bri (xi)∩{f>λ}

f dy

from which one deduces, with the help of Hölder’s and Markov’s inequalities, that

|Eλ| ≤ C5n
∞∑
i=1

rni ≤ C
1

λ

ˆ
{f>λ}

f dy ≤ C 1

λp

ˆ
{f>λ}

|v|p + · · ·+ |Dkv|p dy,
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as desired.

Let us further enlarge Eλ by a null set, so that all points in Rn\Eλ are Lebesgue points
of f . Consider the function

hr(x) ≡
 
Br(x)

|Dkv(x)−Dkv(y)| dy

which, for x 6∈ Eλ, goes to zero pointwise as r → 0 by Lebesgue’s differentiation theorem. By
Egorov’s Theorem, there is a set Fλ with measure |Fλ| ≤ |Eλ| and such that, in BR\(Eλ∪Fλ),
the function hr goes to zero uniformly as r → 0. Let us thus write Kλ ≡ Eλ ∪ Fλ; then there
is a function ω : (0,∞)→ (0, 4λ] such that

(2.11) |hr(x)| ≤ ω(r) for all x 6∈ Kλ

and moreover ω(r)→ 0 as r → 0.

We write P kx [v] for the k-th order Taylor polynomial of v centered at x. Note that, for
x 6∈ Kλ, we have the estimate

 
Br(x)

|v(y)− P kx [v](y)| dy ≤ Crkω(r).

This follows simply by integrating Taylor’s formula

v(y)− P kx [v](y) =
∑
|α|=k

k

α!
(y − x)α

ˆ 1

0
(1− t)k−1∂α [v(tx+ (1− t)y)− v(x)] dt

in y and using (2.11). Furthermore, it follows from the triangle inequality and the above
estimate that, whenever x, x′ 6∈ Kλ are such that |x− x′| = r, we further have

 
Br(x)∩Br′ (x′)

∣∣∣P kx [v]− P kx′ [v]
∣∣∣ (y) dy ≤ Crkω(r).

This estimate in fact yields a uniform estimate on the difference of the two polynomials P kx [v]
and P kx′ [v] over BR\Kλ. We therefore satisfy the necessary conditions to apply Whitney’s
extension theorem to see we can find a function u with the required properties.

3 Weak continuity under a W−l,1-compactness assumption

The main result of this section is Theorem 3.2, which is an extension of the result in [12].
We begin with the following lemma:

Lemma 3.1. Let p ∈ (1,∞) and let vj ∈ Lp(Ω,V) be a p-equi-integrable sequence, i.e. suppose
that there exists an increasing function ω : [0,∞)→ [0,∞) such that limm→0 ω(m) = 0 and

ˆ
E
|vj |p dx ≤ ω(m) for all measurable sets E such that |E| ≤ m.

If Avj → Av in W−l,1(Ω,W), then Avj → Av also in W−l,p(Ω,W).
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Proof: Without loss of generality, we suppose that v = 0. Note that

‖Avj‖W−l,p(Ω) = sup

{∣∣∣∣ˆ
Ω
A∗u · vj dx

∣∣∣∣ : u ∈ C∞0 (Ω), ‖u‖W l,p′ (Ω) ≤ 1

}
.

Let u be such a function and extend it by zero to Rn. Applying Proposition 2.7 with λ > 0,
to be chosen later, we obtain a function w ∈W l,∞(Rn) such that

‖Dlw‖L∞ ≤ Cλ,

|{w 6= u}| ≤ Cλ−p′
ˆ
|u|+···+|Dlu|>λ

|u|+ · · ·+ |Dlu| dx.

Let E ≡ {w 6= u} and recall from (2.10) that {Dlw 6= Dlu} ⊆ E. Then

ˆ
Ω
A∗u · vj dx =

ˆ
E

(A∗u−A∗w) · vj dx+

ˆ
Ω
A∗w · vj dx = I + II.

Estimating II first,

|II| ≤ C‖Dlw‖L∞‖Avj‖W−l,1(Ω) ≤ Cλ‖Avj‖W−l,1(Ω).

For I we have

|I| ≤ C
(ˆ

E
(|A∗u|+ λ)p

′
dx
) 1
p′
( ˆ

E
|vj |p dx

) 1
p

≤ C
(
1 + λ|E|

1
p′
)
ω(|E|)

1
p

≤ Cω(Cλ−p
′
)
1
p .

Thus choosing

λ = ‖Avj‖
− 1

2

W−l,1
,

we have that, as j →∞, |I|+ |II| → 0 and the lemma is proved.

Theorem 3.2. Suppose that s, A and F are as in Theorem 1.5. Then

vj ⇀ v in Ls(Ω,V)

Avj → Av in W−l,1(Ω,W)

F (vj) ⇀ ` in L1(Ω)

 =⇒ F (vj) ⇀ F (v) = ` in L1(Ω).

Proof: As |vj − v|p is a bounded sequence in L1, we may apply the biting lemma [5], to
obtain a sequence of measurable sets Ej ⊂ Ω such that |Ej | → 0 and, up to a subsequence,
|vj − v|p1Ecj is equi-integrable. Let

ṽj = vj1Ecj + v1Ej .

Now ṽj − v = (vj − v)1Ecj is p-equi-integrable. Also, we have the convergence

‖ṽj − vj‖L1(Ω) = ‖v − vj‖L1(Ej) ≤ |Ej |
1
p′ ‖vj − v‖Lp(Ω) → 0,
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i.e. ṽj − vj → 0 strongly in L1(Ω). Thus, in particular, we also have that ṽj ⇀ v in Lp(Ω).
Moreover, Dl(ṽj − vj)→ 0 strongly in W−l,1, and thus Aṽj → Av strongly in W−l,1 as well.

Next, we note that
F (ṽj)− F (vj) =

(
F (v)− F (vj)

)
1Ej .

It is clear that F (v)1Ej → 0 strongly in L1, and so we use the equi-integrability of F (vj) to
observe that ˆ

Ω
|F (vj)|1Ej dx =

ˆ
Ej

|F (vj)| dx→ 0.

Putting these together, we see that

F (ṽj)− F (vj)→ 0 strongly in L1.

By Lemma 3.1, as we have that ṽj−v = (vj−v)1Ecj is p-equi-integrable and that A(ṽj−v)→ 0

in W−l,1, we also have that

A(ṽj − v)→ 0 strongly in W−l,p(Ω,W).

Therefore, by Theorem 1.5, we have that, up to a subsequence,

F (ṽj)
∗
⇀ F (v) in D′(Ω).

As we know that F (vj) ⇀ ` in L1 and also F (ṽj)− F (vj)→ 0 strongly in L1, we obtain that
` = F (v) by uniqueness of weak limits. Moreover, as the limit is independent of subsequence
taken, we have that the limit holds along the entire sequence.

4 H 1 estimates and local L logL-integrability

We begin this section with a modification of the Helmholtz–Hodge decomposition of [22].

Proposition 4.1. Let 1 < s < ∞ and let v ∈ Ls(Rn;V) satisfy Av ∈ W−lLs logs L(Rn;W).
There are u ∈W k,s(Rn;U), w ∈W lLs logs L(Rn;W) such that

v = Bu+A∗w.

Moreover,

‖Bu‖Ls(Rn) ≤ C‖v‖Ls(Rn), ‖A∗w‖Ls logs L(Rn) ≤ C‖Av‖Ẇ−lLs logs L(Rn).

Proof: Since Ls logs L ⊂ Ls, from [22, Proposition 3.18], we have the (unique) decomposition

v = Bu+A∗w

with
‖Bu‖Ls(Rn) ≤ C‖v‖Ls(Rn), ‖A∗w‖Ls(Rn) ≤ C‖Av‖Ẇ−l,s(Rn).

To improve the estimate on w, we recall from the proof of that proposition that Av = AA∗w,
and hence that

A∗(ξ)ŵ(ξ) = A†(ξ)A(ξ)A∗(ξ)ŵ(ξ) = A†
( ξ
|ξ|

)Âv(ξ)

|ξ|l
,
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where we refer to [22] for the precise definition ofA†, simply noting here that it is a Hörmander–
Mihlin multiplier. By Theorem 2.4 we get the estimate

‖A∗w‖Ls logs L(Rn) ≤ C‖Av‖Ẇ−lLs logs L(Rn),

as required.

The main result of this section is Theorem 4.2 below. Before proceeding with the proof it
is helpful to note that, on a ball B ≡ BR(0),

‖f‖W−lLp logα L(BR(0)) ≈R ‖f‖Ẇ−lLp logα L(BR(0)).

Indeed, by Poincaré’s inequality, W lLp
′
log

α
1−p L(B) ∼= Ẇ lLp

′
log

α
1−p L(B) and, by standard

considerations about Sobolev spaces and Theorem 2.1, we have the identifications

W−lLp logα L(B) ∼=
(
W l

0L
p′ log

α
1−p L(B)

)∗ ∼= (Ẇ l
0L

p′ log
α

1−p L(B)
)∗ ∼= Ẇ−lLp logα L(B);

here Ẇ l
0X is defined as the closure of test functions in ‖Dl · ‖X , with a similar definition for

the inhomogeneous variant.

Theorem 4.2. Let F : V→ R be s-homogeneous and A-quasiaffine, where s ≥ 2. Then

v ∈ Lsloc(Rn,V)

Av ∈W−llocL
s logs L(Rn,W)

}
=⇒ F (v) ∈H 1

loc(Rn).

In fact, for any R > 0 we have the estimate

(4.3)

ˆ
BR(0)

Mloc[F (v)](x) dx ≤ C‖ηv‖Ls(BR+2(0))‖A(ηv)‖W−lLs logs L,

where η ∈ C∞c (BR+2(0)) is arbitrary.

Proof: We use Proposition 4.1 to write ηv = Bu + A∗w for u ∈ Ẇ k,s(Rn,U) and for w ∈
Ẇ lLs logs L(Rn,W) such that

‖Bu‖Ls(Rn) ≤ C‖ηv‖Ls(Rn),

‖A∗w‖Ls logs L(Rn) ≤ C‖A(ηv)‖W−lLs logs L(Rn)

(4.4)

Note that both Bu, A∗w are supported in BR+2(0) and, furthermore,

ˆ
BR(0)

Mloc[F (Bu)](x) dx ≤ ‖F (Bu)‖H 1(Rn) ≤ C‖Bu‖sLs(Rn),(4.5)

where the last estimate follows from Theorem 1.5.

We now examine

F (Bu+A∗w)− F (Bu) =
∑
|α|=s

∑
β<α

cα,β(Bu)β(A∗w)α−β,(4.6)
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where the multi-indices are taken with respect to an orthonormal basis in V. Write i := |β| < s.
Note that (Bu)β ∈ Ls/i(Rn) with an obvious convention if i = 0. From (2.2), we deduce

‖|Bu|i|A∗w|s−i‖L logL ≤ C‖Bu‖iLs‖A∗w‖s−i
Ls log

s
s−i L

≤ CR‖Bu‖iLs‖A∗w‖s−iLs logs L,

where all norms are taken over BR+2(0).

Since R is arbitrary, we obtain that |F (Bu + A∗w) − F (Bu)| ∈ L logLloc(Rn) which,
together with Proposition 2.6, implies that |F (Bu+A∗w)−F (Bu)| ∈H 1

loc(Rn); this, in turn,
taking into account (4.4) and (4.5), implies the statement.

Remark 4.7. The above proof admits a simple extension to a more general Orlicz setting as
stated in Remark 1.8(ii). The crucial point is that the Hörmander–Mihlin multiplier used in
the proof of Proposition 4.1 is a bounded linear operator between Orlicz spaces satisfying the
appropriate assumptions. This allows us to interpolate the assumptions on the sequence and
the constraint in order to obtain a sharp statement. See Appendix A for details.

5 Theorem A: proofs and sharpness

We proceed with the proof of the main result:

Proof of Theorem A:. Theorem A(i) follows immediately from Theorem 1.5, which was
proved in [22]; see also the proof of Theorem C for a direct proof.

Assume that we are in the setting of Theorem A(ii), so that it is elementary to show
that F (vj) is locally equi-integrable. In particular, we have that (F (vj))j has a subsequence
weakly convergent in L1

loc, so that we are in a position to apply Theorem 3.2. In particular,
we obtain the claim along a subsequence, which is enough to conclude since the limit F (v) is
independent of the subsequence chosen.

Finally we address Theorem A(iii) by first noting that the case when Lr logβ L ⊆ Ls logs L
was already dealt with in Theorem 4.2. For the case where α ≥ 1, we claim that F (vj) is
bounded in L logLloc, which suffices by Proposition 2.6. We have that

‖F (vj)‖L logL ≤ C‖|vj |s‖L logL ≤ C‖vj‖sLs logL

by (2.2), which is bounded uniformly in j by assumption.

The remainder of this section is dedicated to show that Theorem A is sharp. For this, we
will only consider the classical div-curl case, namelyA(v, ṽ) ≡ (div v, curl ṽ) and F (v, ṽ) = v·ṽ,
so that s = 2. We will work in dimension n = 2, though it is easy to extend all of the examples
below to higher dimensions in a trivial way.

We briefly recall the set up of Theorem A: we assume

(vj , ṽj) ⇀ (v, ṽ) in Ls logα Lloc and A(vj , ṽj)→ A(v, ṽ) in W−llocL
r logβ L

and investigate the convergence

F (vj , ṽj) F (v, ṽ) in X,(5.1)
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where X ∈ {Mloc, L
1
loc,H

1
loc} is an L1-type space endowed with an appropriate weak(-∗)

topology.

We first establish the sharpness of Theorem A(i), concerning weak-* convergence of mea-
sures. We can only consider the case α = 0 since otherwise the weak* convergence in the
space of measures would hold by Theorem A(ii). The following example is easily checked:

Example 5.2. Let r, β be such that Lr logβ Lloc 6⊆ L2
loc and let vj = ṽj = 1(0,j−1)2je, for

some e ∈ S1. We have that

(vj , ṽj) ⇀ 0 in L2 and → 0 in Lr logβ L

A(vj , ṽj)→ 0 in W−1Lr logβ L

}
but

ˆ
(0,1)2

F (vj , ṽj) dx = 1.

An example due to Tartar gives optimality of Theorem A(ii) (X = L1,  =⇀):

Example 5.3 ([42, Lemma 7.3]). There exists a sequence (vj , ṽj)j supported in the unit ball
such that

(vj , ṽj) ⇀ 0 in L2

A(vj , ṽj) = 0

}
but

ˆ
B1/2(0)

F (vj , ṽj) dx 6→ 0.

We will also construct an example such that 0 ≤ F (v) ∈ L1
loc \L logLloc, which establishes

the optimality of Theorem A(iii):

Example 5.4. Suppose that Lr logβ Lloc 6⊆ L2 log2 Lloc and Lr logβ Lloc ⊆ L1
loc. Then there

exists (v, ṽ) ∈ L2
loc such that A(v, ṽ) ∈W−llocL

r logβ L but F (v, ṽ) /∈H 1
loc.

To see this, let w ∈ Lr logβ L \ L2 log2 L(−1, 1) be a compactly supported function such
that v(x) = (w(x1), 0) ∈ Lr logβ L \ L2 log2 L and

(5.5)
√
ψ(|v|)|v| log(1 + |v|) 6∈ L1,

where we write, for simplicity, ψ(s) ≡ |s|r logβ(1 + |s|). Let

ṽ = g(|v|2)v, where g(s2) =

√
ψ(s)

s2
.

Then we clearly obtain

div v(x1, x2) = w′(x1) ∈W−1L2 log2 L,

but also
ṽ ∈ L2, curl ṽ = 0.

Taking the dot product, we obtain, a.e. on {ψ(|v|) ≥ 1},

(5.6)

v · ṽ log(1 + v · ṽ) = |v|2g(|v|2) log
(
1 + |v|2g(|v|2)

)
= |v|

√
ψ(|v|) log

(
1 + |v|

√
ψ(|v|)

)
≥
√
ψ(|v|)|v| log(1 + |v|),

which is not in L1 by (5.5).
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Finally, we note that the examples above can be made more precise. In particular:

(i) In Example 5.2 we see that, without the assumption of Theorem A(i), the convergence
in (5.1) can fail for any choice of X;

(ii) Else, we can have weak-* convergence in M , but no better. This can be seen by taking
α = β = 0 and adding the Examples 5.3 and 5.4 (after arranging that the resulting
sequences have disjoint supports);

(iii) We can have weak-∗ convergence in M and H 1 without weak convergence in L1. This
follows from Example 5.3, the classical div-curl lemma, and the Hardy bound in [10,
Theorem II.1] (the latter results are generalized by Theorem 1.5);

(iv) Finally, we can have weak-∗ convergence in M and weak convergence in L1 without
weak-∗ convergence in H 1. This follows trivially from Example 5.4 by taking the
constant sequence in which each term is the example given.

We represent these findings graphically in Table 1.

M L1 H 1

(i) 7 7 7

(ii) 3 7 7

(iii) 3 7 3

(iv) 3 3 7

Table 1: Whenever one of the assumptions of Theorem A fails, there
is also a sequence (vj , ṽj) such that the convergence (5.1) fails for the
corresponding space X.

6 Distributional null Lagrangians and Hardy estimates

We now begin the proof of Theorem C. We recall that we are working with functions
defined on a bounded open set Ω, F : V → R an homogeneous A-quasiaffine map of degree
s ≥ 2, and ns/(n+ 1) < q ≤ s, r ≥ r∗. Let (vj)j ⊂ C∞c (Ω,V) be such that

vj ⇀ v in Lq(Ω,V)

Avj → Av in W−l,r(Ω,W).

Then the goal of this section is to prove that

(6.1) F (vj)
∗
⇀ F (v) in D ′(Rn).

In addition, if r > r∗ or (Avj) is bounded in W−lLr∗ logr∗ L, we also have the Hardy space
bound:

(6.2) (F (vj))j is bounded in H q/s(Rn).

More precisely, we will prove that

‖F (v)‖
H

q
s
≤ C

(
‖v‖Lq + ‖Av‖W−lLr∗ logr∗ L

)s
for v ∈ C∞c (Ω,V).
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Proof of (6.1): We first note that by the restrictions on the parameters, the uniformly
bounded support of vj , and the compact Sobolev embedding, we have that

vj ⇀ v in Lq =⇒ vj → v in W−1,r∗ .

By Proposition 4.1, we have the decompositions vj = Buj +A∗wj which obey{
Buj ⇀ Bu in Lq

Buj → Bu in W−1,r∗
and A∗wj → A∗w in Lr∗ .

We next fix ϕ ∈ C∞c (Ω) and claim that

lim
i,j→∞

ˆ
Ω
ϕ[F (vj)− F (vi)] dx = 0.(6.3)

To this end, we will split more carefully than in (4.6):

F (vj)− F (Buj) = F (Buj +A∗wj)− F (Buj) =

ˆ 1

0
〈A∗wj , F ′(Buj + tA∗wj)〉dt.

First, we use [22, Equation (7.2), Remark 7.4] to see that

lim
i,j→∞

ˆ
Ω
ϕ[F (Buj)− F (Bui)] dx = 0.

We further write, using Fubini’s Theorem,
ˆ

Ω
ϕ[F (vj)− F (Buj)] dx =

ˆ 1

0

ˆ
Ω
ϕ〈A∗wj , F ′(Buj + tA∗wj)〉dx dt.

We first note the simple bound independent of t ∈ (0, 1)

|〈A∗wj , F ′(Buj + tA∗wj)〉| ≤ C|A∗wj |(|Buj |s−1 + |A∗wj |s−1),

where the first term is bounded in Lr∗ = (Lq/(s−1))∗, and the latter is bounded in Lq/(s−1).
Therefore, upon proving that the inner integral converges in j, we will be able to apply the
dominated convergence theorem to interchange the limit in j with the integral dt. We now
recall that, if F is A-quasiaffine, then so are the components of F ′, which are in addition
(s− 1)-homogeneous. Noting that (F ′(Buj + tA∗wj))j is equi-integrable, since it is bounded
in Lq/(s−1) and q > s− 1, we can infer from Theorem 3.2 that

F ′(Buj + tA∗wj) ⇀ F ′(Bu+ tA∗w) in L1(Ω).

This is then automatically improved to weak convergence in Lq/(s−1) by the available bound.
Recalling that A∗wj → A∗w in Lr∗ , we can infer that

〈A∗wj , F ′(Buj + tA∗wj)〉
∗
⇀ 〈A∗w,F ′(Bu+ tA∗w)〉 in D ′(Ω).

We are thus in a position to indeed apply the dominated convergence theorem to conclude
that

(6.4) lim
j→∞

ˆ
Ω
ϕ[F (vj)− F (Buj)] dx =

ˆ
Ω
ϕ

ˆ 1

0
〈A∗w,F ′(Bu+ tA∗w)〉 dt dx.

This completes the proof of the well defined-ness of the distributional quantity F (v), and (6.1)
follows.
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It remains to prove the Hardy space bound.

Proof of (6.2): This proof will be done in two steps, first assuming exact constraint Avj = 0
and then incorporating the perturbation.

Step 1. We first prove that, if v ∈ C∞c (Rn,V) satisfies Av = 0, then

‖F (v)‖H q/s ≤ C‖v‖sLq .(6.5)

Though our proof of this inequality uses the techniques in [10, 22, 29], the result is probably
new. In particular, we adapt the approach used to prove [22, Proposition 6.3(b)].

We note that it is enough to prove (6.5) in the case when v = DU for a test function U
and F = M is an s× s minor. We explain why this is the case:

First, recall from [22, Proposition 3.16] that if Av = 0 in full space, then v = Bu for some
u ∈ Ẇ k,q(Rn,U) with the estimate

‖Dku‖Lq ≤ C‖v‖Lq .

We can then write in jet notation
Bu = T (Dku),

where T is a linear map between finite dimensional spaces (see also [22, Equation (3.7)]). By
[22, Lemma 5.6], we have that F is A-quasiaffine if and only if F ◦ T is k-quasiaffine. These
were characterized in [3, Theorem 4.1] as linear combinations of Jacobian subdeterminants of
DU , where U ≡ Dk−1u. Therefore, using the s-homogeneity assumption, we have that

F ◦ T (DU) =
∑

degM=s

cMM(DU),

where the sum runs over all s × s minors of the matrix DU . Assuming that (6.5) holds for
F = M and v = DU , we have that

‖F (v)‖
H

q
s

= ‖F ◦ T (DU)‖
H

q
s
≤ C

∑
degM=s

‖M(DU)‖
H

q
s
≤ C‖DU‖sLq = C‖Dku‖sLq ≤ C‖v‖sLq .

Therefore it remains to prove that

‖M(DU)‖
H

q
s
≤ C‖DU‖sLq for U ∈ C∞c (Rn,U),(6.6)

for an s × s minor M , where we write U for the space of symmetric, (k − 1)-linear, U-
valued maps on Rn. We introduce coordinates x = (x′, x′′), U = (U ′, U ′′), chosen such that
M(DU) = det Dx′U

′, where Dx′ is viewed as a differential operator on Rn.

We let 0 6≡ ψ ∈ C∞c (B1(0)) be non-negative. We recall from the proof of [22, Proposi-
tion 6.3(b)] that there exists a vector field Σ such that

M(DU) = 〈Dx′U
′
1,Σ〉Rs , D∗x′Σ = 0, |Σ| ≤ C

s∏
j=2

|DU ′j |,(6.7)
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where we allow the constants to depend on ψ also. These are just cofactor identities, written
in our coordinates. We next estimate

|ψt ∗M(DU)|(x) =

∣∣∣∣ 1

tn

ˆ
Rn
〈Dx′U

′
1(y),Σ(y)〉Rsψ

(
x− y
t

)
dy

∣∣∣∣
=

∣∣∣∣∣
 
Bt(x)

〈
Dx′
[
U ′1(y)− (U ′1)x,t

]
,Σ(y)ψ

(
x− y
t

)〉
Rs

dy

∣∣∣∣∣
=

∣∣∣∣∣1t
 
Bt(x)

(U ′1(y)− (U ′1)x,t)

〈
(Dx′ψ)

(
x− y
t

)
,Σ(y)

〉
Rs

dy

∣∣∣∣∣
≤ C

t

 
Bt(x)

|U ′1 − (U ′1)x,t||Σ|dy,

where we write  
Ω
≡ 1

L n(Ω)

ˆ
Ω
, ( • )x,t ≡

 
Bt(x)

, ψt(x) ≡ 1

tn
ψ
(x
t

)
.

We choose ns/(n + 1) < q̃ < q, p ≡ nq̃/(n − q̃), and p′ = p/(p − 1) to estimate by use of
Hölder and Poincaré–Sobolev inequalities

|ψt ∗M(DU)|(x) ≤ C

t

( 
Bt(x)

|U ′1 − (U ′1)x,t|p dy

)1/p( 
Bt(x)

|Σ|p′ dy

)1/p′

≤ C

( 
Bt(x)

|DU ′1|q̃ dy

)1/q̃ ( 
Bt(x)

|Σ|p′ dy

)1/p′

.

Writing M for the Hardy–Littlewood maximal function, we estimate further

sup
t>0
|ψt ∗M(DU)|(x) ≤ CM(|DU ′1|q̃)(x)1/q̃M(|Σ|p′)(x)1/p′ .

Finally, we apply Hölder’s inequality and the boundedness of the maximal function on Lebesgue
spaces to obtain that

‖M(DU)‖
q
s

H
q
s
≤ C

ˆ
Rn
M(|DU ′1|q̃)

q
sq̃M(|Σ|p′)

q
sp′ dx

≤ C
(ˆ

Rn
M(|DU ′1|q̃)

q
q̃ dx

)1/s(ˆ
Rn
M(|Σ|p′)

q
(s−1)p′ dx

)(s−1)/s

≤ C
(ˆ

Rn
|DU ′1|q dx

)1/s(ˆ
Rn
|Σ|

q
(s−1) dx

)(s−1)/s

≤ C
(ˆ

Rn
|DU ′1|q dx

)1/s
ˆ

Rn

s∏
j=2

|DU ′j |
q

(s−1) dx

(s−1)/s

≤ C
s∏
j=1

(ˆ
Rn
|DU ′j |q dx

)1/s

≤ C‖DU‖qLq ,
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which completes the proof of (6.6).

Step 2. We will again use the decomposition vj = Buj +A∗wj , of which we record:

‖Buj‖Lq ≤ C‖vj‖Lq , ‖A∗wj‖Lr∗ logr∗ L ≤ C‖Avj‖W−lLr∗ logr∗ L,

by an adaptation of Proposition 4.1. Since vj have support in Ω, it suffices to show that
(MlocF (vj))j is uniformly bounded in Lq/s. We therefore write Ω̃ ≡ {x ∈ Rn : dist(x,Ω) < 1}
and writeˆ

Rn
|MlocF (vj)|q/s dx =

ˆ
Ω̃
|MlocF (vj)|q/s dx

≤ C
ˆ

Ω̃
|MlocF (Buj)|q/s dx+ C

ˆ
Ω̃
|Mloc (F (vj)− F (Buj)) |q/s dx

≤ C‖Buj‖qLq + C

(ˆ
Ω̃
|Mloc (F (vj)− F (Buj)) |dx

)q/s
,

where in the last inequality we used (6.5) and Hölder’s inequality. The first term is thus
bounded by the Lq-norm of vj , whereas for the last term we apply Proposition 2.6 to estimate
Mloc in L1 by ‖F (vj) − F (Buj)‖L logL and will apply a simple argument to estimate this
quantity. To prove the remaining bound, we go back to (4.6) and note that we need to control
terms of the form (A∗wj)α(Buj)β with 0 < |α| = s − |β|. We write |α| = i ∈ {1, . . . , s} and
apply the Hölder–Zygmund inequality, (2.2), to get

‖|A∗wj |i|Buj |s−i‖L logL ≤ ‖A∗wj‖i
Lr∗ log

r∗
i L
‖Buj‖s−iLq ≤ C‖A

∗wj‖iLr∗ logr∗ L‖Buj‖
s−i
Lq .

The conclusion then follows by collecting the considerations above. In fact, we obtain the
estimate

‖F (v)‖
H

q
s
≤ C

(
‖v‖Lq + ‖Av‖W−lLr∗ logr∗ L

)s
for v ∈ C∞c (Ω,V),

from the bounds given by the Helmholtz decomposition of Proposition 4.1.

Remark 6.8. It follows from the proof of (6.2) that, at the endpoint q = ns
s+1 , there is a

weak-type estimate

‖F (v)‖
H

n
n+1 ,∞ ≤ C(Ω)

(
‖v‖

L
ns
s+1

+ ‖Av‖W−lLr∗ logr∗ L

)s
for v ∈ C∞c (Ω,V).

In general, one cannot improve this estimate to one of strong-type: indeed, it suffices to
consider the case A = curl and F = det. The Jacobian has only one cancellation (i.e. no

higher order moments vanish); however, if f ∈H
n
n+1 (Rn) then

´
Rn f dx =

´
Rn xf(x) dx = 0.

Remark 6.9. While proving above the well defined-ness of the distributional quantities in
Theorem C, we also reproved the critical exponent case q = s = r∗ = r of (1.6), originally
covered in [22]. In contrast with the proof there and even with the techniques we were aware
of to prove the statement for the supercritical case q = s = r∗ < r, here we have given a proof
that does not rely on semi-continuity methods. We now sketch an alternative self contained
method of proof here. First we recall the notation, with

vj ⇀ v in Ls(Ω,V) and Avj → Av in W−l,s(Ω,W),

we aim to show that F (vj) converges to F (v) in the sense of distributions, where F is an
s-homogeneous A-quasiaffine polynomial. So we fix ϕ ∈ C∞c (Ω) and outline the following
steps:
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(i) We can assume that vj ∈ C∞c (Ω,V) by a standard cut-off argument (see, e.g. the proof
of [20, Proposition 2.15]).

(ii) We use the Helmholtz decomposition vj = Buj +A∗wj and (6.4) to show that

F (vj)− F (Buj) ⇀ F (v)− F (Bu) in L1
loc(Ω).

(iii) It would remain to show that F (Buj) converges to F (Bu) in the sense of distributions.
By the reduction in Step 1 of the proof of Theorem C, we can assume that F = M is a
minor and Bu = DU , Buj = DUj . We can then use the div-curl structure given in (6.7)
and an adaptation of the simple proof of the div-curl lemma to conclude. Indeed, with
the notation of (6.7), we have, for any fixed ϕ ∈ C∞c (Rn),ˆ

Ω
〈Dx′(Uj)

′
1,Σj〉Rsϕdx = −

ˆ
Ω

(Uj)
′
1〈Σj ,Dx′ϕ〉Rs dx→ −

ˆ
Ω
U ′1〈Σ,Dx′ϕ〉Rs dx

=

ˆ
Ω
〈Dx′U

′
1,Σ〉Rsϕdx,

where we have used that D∗xΣj = D∗x′Σ = 0, the weak convergence Σj ⇀ Σ in L
s
s−1 ,

and the strong convergence (locally) of (Uj)
′
1 → U ′1 in Ls due to the compact Sobolev

embedding.

7 Quantitative dual Hölder estimates

In this last section, we prove Theorem D and its dual Hölder estimates. As in the proof
of Theorem C, the general result follows from the result for distributional Jacobians. As the
result for the Jacobian determinant is already new and may be of independent interest, we
first state and prove the result in this case in Theorem 7.4 below. The core of the proof
rests on the elegant observation of [9] that for sufficiently smooth functions u : Rn → Rn and
ϕ : Rn → R, one may writeˆ

Rn
det(Du)ϕdx =

ˆ
Rn+1
+

det
n+1

(
Dt,xΦ,Dt,xU

)
dx dt,

where U , Φ are extensions of u and ϕ to the upper half space. Throughout this section,
whenever we refer to the harmonic extension of a function defined on Rn, we mean the
extension to the half-space Rn+1

+ through convolution with the Poisson kernel.

We begin by recalling a useful fact concerning properties of the harmonic extension.

Proposition 7.1. Let f ∈ C∞c (Rn) and denote by F (t, x) the harmonic extension of f to
Rn+1

+ . Then, for any β ∈ [0, 1), p ∈ (1,∞), we have that

(7.2)
(ˆ

Rn+1
+

∣∣t1− 1
p
−β

Dt,xF (t, x)
∣∣p dx dt

) 1
p ≤ C[f ]Wβ,p(Rn),

where in the case β = 0, the semi-norm on the right is the Lp norm. Let α ∈ (0, 1), ϕ ∈
C0,α(Rn) and denote by Φ(t, x) the harmonic extension of ϕ to Rn+1

+ . Then we have

(7.3) sup
t,x

t1−α
∣∣Dt,xΦ(t, x)

∣∣ ≤ C[ϕ]C0,α .
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Inequality (7.2) in the case β 6= 0 may be found in [28, Proposition 10.2, (10.7), (10.9)].
In the case β = 0, this is a standard estimate, but may be seen also, for example, in [28,
Theorem 10.8], recalling that the Besov space B0

p,p = Lp for p ∈ (1,∞). Inequality (7.3) is
the estimate of [28, Theorem 10.6].

With the help of Proposition 7.1, we can prove the following result:

Theorem 7.4. Let β ∈ [n−1
n , 1), α ∈ (0, 1] such that α

n = 1 − β. Then there exists C > 0
such that, for any u ∈W β,n(Rn;Rn) and ϕ ∈ C0,α(Rn), the following estimate holds:

(7.5)
∣∣∣ ˆ
Rn

det(Du)ϕdx
∣∣∣ ≤ C[ϕ]C0,α

n∏
i=1

[ui]Wβ,n(Rn).

Moreover, given another function v ∈ W β,n(Rn;Rn), we may estimate the difference of the
Jacobians of u and v by
(7.6)∣∣∣ ˆ
Rn

(
det(Du)−det(Dv)

)
ϕdx

∣∣∣ ≤ C[ϕ]C0,α

n∑
j=1

(
[uj−vj ]Wβ,n(Rn)

j−1∏
i=1

[vi]Wβ,n(Rn)

n∏
i=j+1

[ui]Wβ,n(Rn)

)
.

Proof: The case α = 1, β = n
n−1 is proved in [9, Theorem 3]. We therefore take α ∈ (0, 1),

β ∈ ( n
n−1 , 1) and first assume that v ≡ 0. Let u, ϕ be as in the theorem and denote by U and

Φ their harmonic extensions by convolution with the Poisson kernel. Then we have the key
identity (see [9, 28]) ˆ

Rn
det(Du)ϕdx =

ˆ
Rn+1
+

det
n+1

(
Dt,xΦ,Dt,xU

)
dx dt,

which is a direct consequence of integration by parts, together with the decay of U and Φ at
infinity. Hence we can estimate∣∣∣ ˆ

Rn
det(Du)ϕdx

∣∣∣ ≤ ˆ
Rn+1
+

( n∏
i=1

|DUi|
)
|DΦ| dx dt

≤‖t1−α|Dt,xΦ|‖L∞t,x

ˆ
Rn+1
+

tα−1
( n∏
i=1

|DUi|
)

dx dt

≤C[ϕ]C0,α

ˆ
Rn+1
+

( n∏
i=1

t
α−1
n |DUi|

)
dx dt

≤C[ϕ]C0,α

n∏
i=1

(ˆ
Rn+1
+

∣∣tα−1
n |DUi|

∣∣n dx dt
) 1
n

≤C[ϕ]C0,α

n∏
i=1

[ui]Wβ,n(Rn),

where we have used in the last line that α−1
n = 1− 1

n − β and applied (7.2).

To address the case with a difference of functions, we recall the standard fact (see, for
example, [9]), that we may write

(7.7) det(Du)− det(Dv) =

n∑
j=1

W(j),
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where
W(j) = det(Dv1, . . . ,Dvj−1,D(uj − vj),Duj+1, . . . ,Dun).

Writing
w(j) = (v1, . . . , vj−1, uj − vj , uj+1, . . . , un),

so that W(j) = det(Dw(j)), we follow the argument above, replacing u with w(j), summing
over j to conclude.

Corollary 7.8. Let α ∈ (0, 1] and choose p ∈ (n− 1,∞), q ∈ (1,∞) such that α
q + n−α

p = 1.
Then

(7.9)
∣∣∣ˆ
Rn

det(Du)ϕdx
∣∣∣ ≤ C[ϕ]C0,α‖u‖αLq‖Du‖n−αLp .

If instead we determine p, q by 1
q + n−1

p = 1, then we have

(7.10)
∣∣∣ˆ
Rn

det(Du)ϕdx
∣∣∣ ≤ C[ϕ]C0,α [u]W 1−α,q‖Du‖n−1

Lp .

Proof: We recall the following Gagliardo–Nirenberg interpolation inequality from [8, Corol-
lary 3.2]: For θ ∈ (0, 1), 0 ≤ β1 < β2 < ∞, p1, p2 ∈ (1,∞), determining β = θβ1 + (1 − θ)β2

and 1
r = θ

p1
+ 1−θ

p2
, we have

‖u‖Wβ,r ≤ C‖u‖θWβ1,p1
‖u‖1−θ

Wβ2,p2
.

The first claimed inequality now follows from the choice β as in Theorem 7.4, that is, αn = 1−β.
We then choose β1 = 0, β2 = 1 and r = n. Then θ = 1 − β = α

n and we conclude that the
claimed relation for p and q implies that∣∣∣ ˆ

Rn
det(Du)ϕdx

∣∣∣ ≤ C[ϕ]C0,α‖u‖nWβ,n ≤ C[ϕ]C0,α‖u‖αLq‖Du‖n−αLp .

For the second inequality, we again take β as above, but now use θ = 1
n , so that β1 = 1− α,

β2 = 1, r = n, and derive the claimed relation between p and q.

To replace the norms with semi-norms, we make the usual observation that subtracting
constants from the components of u does not change the Jacobian determinant, and hence we
may eliminate the zeroth-order contributions to the norms.

Similar statements hold with differences, though note that using the method of Gagliardo–
Nirenberg interpolation (as in the above proof) means spreading the norms evenly across all
components. See Corollary 7.12 for a precise statement.

Remark 7.11. Anisotropic versions of these inequalities are also available. Let α ∈ (0, 1)
and βi ∈ (0, 1) for each i satisfy

∑n
i=1 βi = n − α, pi ∈ (1,∞) such that

∑n
i=1

1
pi

= 1. Then
we have the bound ∣∣∣ ˆ

Rn
det(Du)ϕdx

∣∣∣ ≤ C[ϕ]C0,α

n∏
i=1

[ui]Wβi,pi .

The proof is as in Theorem 7.4, using (7.2).
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Finally, we prove Theorem D by reducing to the situation in Theorem 7.4 and adapting
the proof.

Proof of Theorem D:. As in the proof of Theorem C, we may make the usual reduction to
the case of a Jacobian subdeterminant by using the Helmholtz decomposition to write v = Bũ
and then F (Bũ) = F ◦ T (Du) =

∑
degM=s cMM(Du) with u = Dk−1ũ.

We therefore begin by considering first subdeterminants of Du for u ∈ C∞c (Rn) and
then extend the estimate by density. To handle the case in which Ω is a bounded Lipschitz
domain, we recall that such domains are extension domains for general Besov spaces (including
fractional Sobolev spaces) so that we may extend u ∈ W β,s(Ω) to a compactly supported
function ū ∈ W β,s(Rn) with ‖ū‖Wβ,s(Rn) ≤ C(Ω)‖u‖Wβ,s(Ω) and apply the estimate in Rn
proved below. To replace the norms with semi-norms, we simply apply the standard argument
that subtracting constants from the function u does not affect its Jacobian determinant.

To address the subdeterminants, we make a simple modification of the proof of Theorem
7.4 in order to apply the extension identity of Brezis–Nguyen, [9]. Rather than employing
the notation of (6.7), we reorder the coordinates and the rows of the original matrix Du, so
that we may assume without loss of generality that we are working with the first principal
s-minor, i.e. the subdeterminant

det
s

(Dsu1, . . . ,Dsus),

where Ds =
(
∂1, . . . , ∂s

)>
. We then observe the trivial fact that

det
s

(Dsu1, . . . ,Dsus) = ± det
n

(Dsu1, . . . ,Dsus, es+1, . . . , en)

= ± det
n

(Du1, . . . ,Dus,D(ρ(x)xs+1), . . . ,D(ρ(x)xn)),

where ej is the standard basis vector, xj is the coordinate function, and we choose R > 0 such
that suppu ⊂ BR(0) and then take ρ ∈ C∞c (B2R(0)) such that 0 ≤ ρ ≤ 1, ρ = 1 on BR(0),
and |Dρ| ≤ 2

R .

We treat the cases α ∈ (0, 1) and α = 1 separately. First take α ∈ (0, 1). We then make
the usual harmonic extensions of u and ϕ to U and Φ by convolution with the Poisson kernel.
To extend each ρ(x)xj , j = s+ 1, . . . , n, we multiply with a function φ ∈ C∞c ((−1,∞)) such
that φ(0) = 1 and |φ′(t)| ≤ 1

R for all t ≥ 0, to obtain∣∣∣ ˆ
Rn

det
s

(Dsu1, . . . ,Dsus)ϕdx
∣∣∣

=
∣∣∣ˆ
Rn+1
+

det
n+1

(
Dt,xΦ,Dt,xU1, . . . ,Dt,xUs,Dt,x(ρ(x)xs+1φ(t)), . . . ,Dt,x(ρ(x)xnφ(t))

)
dx dt

∣∣∣
≤C[ϕ]C0,α

ˆ
Rn+1
+

tα−1|Dt,xU1| . . . |Dt,xUs| dx dt

≤C[ϕ]C0,α

s∏
j=1

(ˆ
Rn+1
+

(
t
α−1
s |Dt,xUj |

)s
dx dt

) 1
s

≤C[ϕ]C0,α [u]sWβ,s ,
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as required, where we have used that α
s = 1 − β and (7.2) in the last line, and that the

functions

Dt,x(ρ(x)xjφ(t)) = (ρ(x) + xj∂xjρ)φ(t)ej +

n∑
i=1
i 6=j

∂xiρxjφ(t)ei + ρ(x)xjφ
′(t)en+1

for j = s+ 1, . . . , n are all uniformly bounded due to the bounds on Dρ and φ′.

In the case α = 1, the estimate (7.3) fails, and so we instead employ the fact that W
s
s−1

,s

is the trace space of W 1,s. We take the extension of u by averages to U : (0, 1)× Rn → Rn:

U(t, x) =

 
Bt(x)

u(y) dy, so that ‖DU‖Ls((0,1)×Rn) ≤ C‖u‖W s
s−1 (Rn)

by standard trace theory. We extend ϕ to Φ ∈ C0,1
c ([0, 1)×Rn) such that ‖DΦ‖L∞([0,1)×Rn) ≤

C‖Dϕ‖L∞(Rn) and extend the coordinate functions as above. Then we again have the exten-
sion identity (note that the compact support of Φ with respect to t ensures that no other
boundary term appears) and estimate∣∣∣ ˆ
Rn

det
s

(Dsu1, . . . ,Dsus)ϕdx
∣∣∣

=
∣∣∣ˆ

(0,1)×Rn
det
n+1

(
Dt,xΦ,Dt,xU1, . . . ,Dt,xUs,Dt,x(ρ(x)xs+1φ(t)), . . . ,Dt,x(ρ(x)xnφ(t))

)
dx dt

∣∣∣
≤C‖DΦ‖L∞([0,1)×Rn)‖DU‖sLs((0,1)×Rn)

≤C[ϕ]C0,1(Rn)‖u‖s
W

s
s−1 ,s(Rn)

,

and we replace the norms with semi-norms by the usual considerations.

Returning now to our original function v, we note that, by the Helmholtz decomposition,

[u]Wβ,s = [Dk−1ũ]Wβ,s ≤ C[v]Wβ−1,s ,

which is justified as follows: First, recall from the Helmholtz decomposition that

F ũ(ξ) = B†(ξ)v̂(ξ), so û(ξ) = F(Dk−1ũ)(ξ) = B†(ξ)v̂(ξ)⊗ ξ⊗(k−1) = B†(ξ) v̂(ξ)

|ξ|
⊗ ξ⊗(k−1)|ξ|

(we again refer to [22] for the notation B†), so that [43, Theorem 5.2.2 and 5.2.3.1(i)] imply
that

[u]Wβ,s ≤ C
[
F−1

(
v̂(ξ)

|ξ|

)]
Wβ,s

≤ C[v]Wβ−1,s .

Finally, to obtain the statement in the case of a difference of functions, we make the same
reduction to the case of subdeterminants, recall (7.7) and estimate each term on the right as
above.

The following corollary is deduced from Theorem D by the Gagliardo–Nirenberg interpo-
lation theorem, following exactly the same argument as that used in Corollary 7.8.
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Corollary 7.12. Let Ω ⊂ Rn be either a bounded Lipschitz domain or Ω = Rn, F : V→ R be
an homogeneous A-quasiaffine map of degree s ≥ 2. Suppose that u, v ∈ C∞c (Ω,V) are A-free.
Let α ∈ (0, 1] and let p ∈ (s− 1,∞) and q ∈ (1,∞) be such that 1

q + s−1
p = 1. Then, for any

ϕ ∈ C0,α(Ω), we obtain the estimates∣∣∣ ˆ
Ω

(
F (u)− F (v)

)
ϕ dx

∣∣∣
≤ C[ϕ]C0,α [u− v]

1
s

W−α,q‖u− v‖
1− 1

s
Lp

(
[u]W−α,q + [v]W−α,q

) s−1
s
(
‖u‖Lp + ‖v‖Lp

) (s−1)2

s .

In the case that v ≡ 0, α = 1, this returns precisely the estimates of [9, Theorem 1], [22,
Proposition 7.1].

We conclude this section by proving that Theorem D is optimal on the scale of frac-
tional Sobolev spaces. More precisely, we work with the Jacobian determinant and prove the
following proposition.

Proposition 7.13. Let Ω ⊂ Rn, n ≥ 2, be an open, bounded domain, α ∈ (0, 1), and

suppose β ∈ (0, 1), p ∈ (1,∞) are such that W β,p 6↪→ W
n−α
n

,n. Then there exist sequences
(u(k))k ⊂ C1(Ω,Rn), (ϕ(k))k ⊂ C1

c (Ω) such that

‖u(k)‖Wβ,p , ‖ϕ(k)‖C0,α are uniformly bounded,

and also ˆ
Ω

det(Du(k))ϕ(k) dx→∞ as k →∞.

Proof: We begin by distinguishing three cases for which the embedding W β,p ↪→ W
n−α
n

,n

fails.
Case 1: p ≤ n and β + α

n <
n
p .

Case 2: p > n and β + α
n < 1.

Case 3: p > n and β = 1− α
n .

Case 1: The argument for Case 1 is simple, and follows almost immediately from the
construction in [9]. We recall from [9, Proof of Remark 1] that there exists a function g ∈
C∞c (B1(0)) such that the function gε(x) = ε−

1
n g(xε ) for ε > 0 satisfies that for all ϕ ∈

C1(B1(0)), ˆ
B1

det(Dgε)ϕdx =

n∑
j=1

aj
∂ϕ

∂xj
(0) +O(ε‖Dϕ‖L∞),

where a1 > 0 and, moreover, that for any β ∈ (0, 1), p ∈ (1,∞), we have

[gε]
p
Wβ,p ≈ εn−βp−

p
n .

We choose a sequence of test functions ϕ(k) ∈ C∞c (B1), uniformly bounded in C0,α, such that

∂ϕ(k)

∂xj
(0) =

{(
1
k

)α−1
if j = 1,

0 if j = 2, . . . n
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and also ‖Dϕ(k)‖L∞ ≤ Ck1−α where C is independent of k. Such a sequence can easily be
achieved by taking a mollification at order 1/k of the function ϕ(x) = ϕ1(x1)ϕ̃(x2, . . . , xn),
where

ϕ1(x1) =

{
xα1 x ≥ 0,

0, x < 0

and ϕ̃ ∈ C∞c (B1(0)) in Rn−1 with ϕ̃ ≡ 1 on B1/2(0).

We then define our sequence u(k) as

u(k)(x) = k
α−1
n

+γg1/k(x),

where γ > 0 is chosen such that γ < n
p −β−

α
n . Then we have the fractional Sobolev estimate

‖u(k)‖Wβ,p ≈ k−
1−α
n

+γ−n
p

+β+ 1
n → 0 as k →∞,

by definition of γ.

Finally, we note that

ˆ
B1

det(Du(k))ϕ(k) dx = kα−1+nγ
(
a1
∂ϕ(k)

∂x1
(0) +O(k−α)

)
= a1k

α−1+nγ+1−α + kα−1+nγO(k−α)

= a1k
nγ +O(k−1+nγ),

which tends to ∞ as k →∞ as γ > 0, α < 1.

The constructions for Cases 2 and 3 share many similarities. As the example we use in
Case 2 is much simpler than that for Case 3 (and the proof is correspondingly much shorter),
we choose to include the proof of Case 2 here to aid the reader’s comprehension. The basic
idea is to construct a sequence of oscillating terms (or, in Case 3, sums of oscillating terms) at
increasingly high frequencies, weighted by frequency dependent factors to ensure the uniform
boundedness in the fractional Sobolev norm. By choosing appropriate oscillating functions,
we ensure that after integration by parts in the Jacobian determinant, we obtain a function
whose integral is bounded below by a constant, while the frequency dependent weights tend
to infinity. In Case 3, we must choose the frequencies over which we sum to be sufficiently
sparse to ensure the boundedness of the cross-terms in the determinant product. Finally,
unlike in [9], it is not sufficient to choose a single test function, but rather the sequence ϕ(k)

is taken as an oscillatory sequence at increasing frequencies, with the oscillating factor chosen
to complement the oscillations of the sequence u(k).

Case 2. We assume without loss of generality that the ball B2(0) ⊂ Ω. Let β1 ∈ (β, n−αn )
and define, for k ∈ N,

u
(k)
i = k−β1 sin(kxi) for i = 1, . . . , n− 1,

u(k)
n = − k−β1 cos(kxn)φ(x), φ ∈ C∞c (B2), φ ≡ 1 on B1, 0 ≤ φ ≤ 1,

ϕ(k) = k−α sin(kxn)
n−1∏
i=1

cos(kxi).
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Throughout the proofs of Cases 2 and 3, constants C and c will always be independent of k.
Then we have the usual identity by integration by parts,ˆ

Ω
det(Du(k))ϕ(k) dx = −

ˆ
Ω
u(k)
n det(Du

(k)
1 , . . . ,Du

(k)
n−1,Dϕ

(k)) dx.

A simple computation gives that the determinant on the right is

det(Du
(k)
1 , . . . ,Du

(k)
n−1,Dϕ

(k)) = k(n−1)(1−β1)+1−α cos(kxn)
n−1∏
i=1

cos2(kxi).

Thus, as B1(0) ⊂ Ω, there exists c > 0 such that the integral is bounded below by

ˆ
Ω

det(Du(k))ϕ(k) dx =

ˆ
Ω
φ(x)k(n−1)(1−β1)+1−α−β1 cos2(kxn)

n−1∏
i=1

cos2(kxi) dx

≥ ck(n−1)(1−β1)+1−α−β1

= ckn−α−nβ1 ,

which tends to ∞ as k →∞ by construction of β1. To check that u(k) is uniformly bounded
in W β,p, we note that

‖u(k)‖L∞ ≤ Ck−β1 , ‖Du(k)‖L∞ ≤ Ck1−β1 ,

hence, by interpolation,
[u(k)]C0,β1 ≤ C.

Applying the embedding of C0,β1 ↪→W β,p (as β < β1), we get

‖u(k)‖W s,p ≤ C.

The uniform estimate
[ϕ(k)]C0,α ≤ C

follows similarly and so we easily conclude Case 2.

Case 3. For Case 3, we begin with the following preliminary notation:

For each k � 1, let n` = k
n2

α 8` for ` = 1, . . . , k. Then, trivially, we have the basic estimates

(7.14) n`+1 ≥ 4n` for all ` = 1, . . . k − 1,

and

(7.15) min
i 6=j
|n`i − n`j | ≥ k

n2

α .

Then set

u
(k)
i =

k∑
`=1

1

n
n−α
n

` (`+ 1)
1
n

sin(n`xi) for i = 1, . . . , n− 1,

u(k)
n = −

k∑
`=1

1

n
n−α
n

` (`+ 1)
1
n

cos(n`xn)φ(x), φ ∈ C∞c (B2), φ ≡ 1 on B1, 0 ≤ φ ≤ 1,

ϕ(k) =

k∑
`=1

1

nα`
sin(n`xn)

n−1∏
i=1

cos(n`xi).
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First we need to check that u(k) is uniformly bounded inW
n−α
n

,n and ϕ(k) is uniformly bounded
in C0,α. The first of these claims follows similarly to the proof of equation (3.16) in [9], where
we simply note that the change in fractional order n−α

n corresponds to the adjustment we

have made to the exponent of n` in the definition of u(k).

Checking ϕ(k) is uniformly bounded in C0,α is similarly straightforward. Indeed, the
Littlewood-Paley projection of ϕ(k) at order j, Pjϕ

(k) is

Pjϕ
(k) =

k∑
`=1

n`∈(2j−1,2j+1)

1

nα`
sin(n`xn)

n−1∏
i=1

cos(n`xi).

As there is at most one value of n`, which we call n`j , for each j ∈ Z such that n`j ∈ (2j−1, 2j+1)
by construction of n`, this is clearly bounded in L∞ as

‖Pjϕ(k)‖L∞ ≤ Cn−α`j , where n`j ∈ (2j−1, 2j+1).

Thus we obtain
‖ϕ(k)‖C0,α ≤ C

∥∥2αj‖Pjϕ(k)‖L∞
∥∥
`∞
≤ C,

where we have used the standard identification of the Besov space Bα
∞,∞

∼= C0,α as α ∈ (0, 1).

It therefore remains only to check that the integral of the Jacobian of u(k) tested against
ϕ(k) converges to infinity. We will show that this integral has a lower bound that grows
logarithmicly in k. First, we observe

∂nϕ
(k)(x) =

k∑
`=1

n1−α
` cos(n`xn)

n−1∏
i=1

cos(n`xi).

Thus a simple calculation shows

det( Du
(k)
1 , . . . ,Du

(k)
n−1,Dϕ

(k))

=
( n−1∏
i=1

k∑
`=1

n
α
n
`i

(`i + 1)
1
n

cos(n`ixi)
)( k∑

`n+1=1

n1−α
`n+1

cos(n`n+1xn)
n−1∏
j=1

cos(n`n+1xj)
)

=

k∑
`=1

1

(`+ 1)
n−1
n

n
αn−1

n
+1−α

` cos(n`xn)

n−1∏
i=1

cos2(n`xi)

+
∑

(`1,...,`n−1,`n+1) 6=(`,...,`)
for `=1,...,k

n1−α
`n+1

cos(n`n+1xn)
n−1∏
i=1

n
α
n
`i

(`i + 1)
1
n

cos(n`ixi) cos(n`n+1xi)

= I(x) + II(x).

Claim: For k sufficiently large, there exist constants c, C > 0, independent of k, such that

−
ˆ

Ω
I(x)u(k)

n (x) dx ≥ c log k,(7.16) ∣∣∣ˆ
Ω

II(x)u(k)
n (x) dx

∣∣∣ ≤ C.(7.17)
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Assuming the claim, we conclude the proof asˆ
Ω

det(Du(k))ϕ(k) dx = −
ˆ

Ω

(
I(x) + II(x)

)
u(k)
n (x) dx ≥ c log k − C,

which tends to infinity as k →∞.

To prove (7.16), we begin by expanding I(x)u
(k)
n :

−I(x)u(k)
n (x) =φ(x)

k∑
`=1

1

`+ 1
n
αn−1

n
+1−α−1+α

n
`

n∏
i=1

cos2(n`xi)

+ φ(x)
∑
`n 6=`

n
αn−1

n
+1−α

` n
−1+α

n
`n

(`+ 1)
n−1
n (`n + 1)

1
n

cos(n`nxn) cos(n`xn)
n−1∏
i=1

cos2(n`xi)

= I1(x) + I2(x).

For I1(x), we note that the exponent of n` is zero and that I1 ≥ 0, and hence obtain

ˆ
Ω

I1(x) dx ≥
ˆ
B1(0)

I1(x) dx ≥ c
k∑
`=1

1

`+ 1
≥ c log k.

Considering now I2, we note that when n`n 6= n`, we have the estimate∣∣∣ ˆ
Ω
φ(x) cos(n`nxn) cos(n`xn) dx

∣∣∣ ≤ C 1

|n`n − n`|
.

Hence each term in the sum may be bounded as

∣∣∣ n
n−α
n

` n
−n−α

n
`n

(`+ 1)
n−1
n (`n + 1)

1
n

ˆ
Ω
φ(x) cos(n`nxn) cos(n`xn)

n−1∏
i=1

cos2(n`xi) dx
∣∣∣

≤ C
n
n−α
n

`

n
n−α
n

`n

1

|n` − n`n |
≤ C 1

|n` − n`n |
α
n

,

where in the last step we have used that |n`−n`n | ≥ 1
2 max{n`, n`n} by (7.14). Thus, as there

are O(k2) terms in the sum, we have the estimate

I2 ≤ Ck2 max
i 6=j

1

|ni − nj |
α
n

≤ C by (7.15).

This proves the estimate (7.16) in the claim.

To verify (7.17), we must consider the product of II with the remaining factor:

II(x)u(k)
n (x) = φ(x)

k∑
`n=1

∑
(`1,...,`n−1,`n+1)6=(`,...,`)

for `=1,...,k

n1−α
`n+1

n
n−α
n

`n

1

(`n + 1)
1
n

cos(n`nxn) cos(n`n+1xn)

×
n−1∏
i=1

n
α
n
`i

(`i + 1)
1
n

cos(n`ixi) cos(n`n+1xi).
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When `n = `n+1, the contributions to this sum are

n
α
n
−α

`n

(`n + 1)
1
n

cos2(n`nxn)

n−1∏
i=1

n
α
n
`i

(`i + 1)
1
n

cos(n`ixi) cos(n`nxi)

=
cos2(n`nxn)

(`n + 1)
1
n

n−1∏
i=1

n
α
n
`i

n
α
n
`n

1

(`i + 1)
1
n

cos(n`ixi) cos(n`nxi).

For each i = 1, . . . , n − 1, if `i = `n, the factor in the product is bounded by 1. If `i 6= `n
(note that there exists at least one such i), then

∣∣∣ ˆ
Ω
φ(x)

cos2(n`nxn)

(`n + 1)
1
n

n
α
n
`i

n
α
n
`n

cos(n`ixi) cos(n`nxi)

(`i + 1)
1
n

dx
∣∣∣ ≤ C nαn`i

n
α
n
`n

1

|n`i − n`n |
≤ C 1

|n`i − n`n |
n−α
n

.

Thus the total contribution from terms of this form is bounded by

kn
1

|n`i − n`n |
n−α
n

≤ Ckn max
i 6=j
|n`i − n`j |

−n−α
n ≤ C by (7.15).

Finally, if `n 6= `n+1, we have

n1−α
`n+1

n
n−α
n

`n

1

(`n + 1)
1
n

cos(n`nxn) cos(n`n+1xn)
n−1∏
i=1

n
α
n
`i

(`i + 1)
1
n

cos(n`ixi) cos(n`n+1xi)

=
n
n−α
n

`n+1

n
n−α
n

`n

1

(`n + 1)
1
n

cos(n`nxn) cos(n`n+1xn)
n−1∏
i=1

1

(`i + 1)
1
n

n
α
n
`i

n
α
n
`n+1

cos(n`ixi) cos(n`n+1xi).

As at least one `i 6= `n+1 and also `n 6= `n+1, we have an estimate (with this i) on the integral
of

n
n−α
n

`n+1

n
n−α
n

`n

1

|n`n − n`n+1 |
n
α
n
`i

n
`
α
n
n

1

|n`i − n`n+1 |
≤ C max

i 6=j

1

|n`i − n`j |
.

Then, summing over all such terms, we have∣∣∣ˆ
Ω

II(x)u(k)
n (x) dx

∣∣∣ ≤ Ckn max
i 6=j
|n`i − n`j |

−n−α
n + Ckn+1 max

i 6=j
|n`i − n`j |

−1 ≤ C,

with C independent of k by (7.15). This completes the proof of (7.17), and hence of the
proposition.

A Sharp criteria for H 1 bounds

As will become transparent from the proofs below, sharp criteria for the Hardy bound of
Theorem A are only visible on the scale of Orlicz spaces. For references concerning Orlicz
spaces and Young functions and for the definitions of the concepts used here, we refer to the
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monographs of Adams–Fournier [1] and Rao–Ren [33] as well as Iwaniec–Martin [26]. Below
we give a short presentation of some concepts that are relevant for the main result of this
section, Theorem A.3.

An Orlicz function ϕ : [0,∞) → [0,∞) is a continuous, increasing function such that
ϕ(0) = 0, limt→∞ ϕ(t) =∞. We define the Luxemburg functional associated to ϕ by

‖f‖Lϕ(Ω) ≡ inf

{
λ > 0 :

ˆ
Ω
ϕ

(
|f(x)|
λ

)
dx ≤ 1

}
.

The Orlicz space Lϕ(Ω,V) is the space of equivalence classes of f : Ω → V such that
‖f‖Lϕ(Ω) < ∞ and it is a complete metric space. In general, ‖ · ‖Lϕ(Ω) is a not norm, but
when ϕ is convex it is and Lϕ(Ω,V) is a Banach space in that case; when ϕ is convex, we say
that it is a Young function.

An Orlicz function ϕ is said to satisfy the ∆2 condition globally (respectively near infin-
ity) if there exists k > 0 such that for all s ≥ 0 (respectively all s ≥ s0 for s0 > 0 fixed),

ϕ(2s) ≤ kϕ(s).

If ϕ satisfies the ∆2 condition globally we simply write ϕ ∈ ∆2. This is equivalent to the
existence of a constant c > 0 such that for all s ≥ 0 (respectively s ≥ s0),

1

c
sa(s) ≤ ϕ(s) ≤ csa(s).

If ϕ1 and ϕ2 are Orlicz functions, we say that ϕ2 dominates ϕ1 globally (respectively near
infinity) and write ϕ1 � ϕ2 if there exists k > 0 such that for all s ≥ 0 (respectively s ≥ s0),

ϕ1(s) ≤ ϕ2(ks).

If ϕ1 � ϕ2 and ϕ2 � ϕ1, we say that ϕ2 strictly dominates ϕ1 and write ϕ1 ≺ ϕ2.

For a given Young function ϕ, we define its Young conjugate ϕ∗ by the Legendre trans-
form

ϕ∗(t) ≡ max
s≥0
{ts− ϕ(s)}.

Thus for any s, t ≥ 0, we have Young’s inequality

st ≤ ϕ(s) + ϕ∗(t).

Theorem A.1. Let (ϕ,ϕ∗) be a pair of Young conjugate functions such that ϕ ∈ ∆2 globally.
Then the dual of Lϕ(Ω,V) is Lϕ

∗
(Ω,V).

We will also use Orlicz–Sobolev spaces, defined similarly to the Zygmund–Sobolev spaces
of Section 2.1. In order to speak of distributional derivatives, however, we require functions
in Lϕ(Ω,V) to be locally integrable, and so we now assume that ϕ is an Orlicz function
that dominates t near infinity. Under this assumption, we define the Orlicz–Sobolev space
W k,ϕ(Ω,V) as the space of those distributions f ∈ D ′(Ω,V) such that, for all multi-indices
α with |α| ≤ k, we have ∂αf ∈ Lϕ(Ω,V). We also define the negative Orlicz–Sobolev space
W−k,ϕ(Rn) as the space of those tempered distributions f such that

‖f‖W−k,ϕ(Rn) ≡
∥∥∥∥F−1

(
Ff(ξ)

|ξ|k

)∥∥∥∥
Lϕ(Rn)

<∞.
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We say that f ∈W−k,ϕloc (Rn) if, for any test function φ, we have fφ ∈W−k,ϕ(Rn).

Let Ω1, Ω2 be open sets and let T be a map from a linear subspace of the measurable
functions on Ω1 to the measurable functions on Ω2. We say T is quasilinear if there exists
C > 0 such that

|T (f + g)(x)| ≤ C(|Tf(x) + |Tg(x)|), |T (λf)(x)| ≤ |λ||Tf(x)|

for a.e. x ∈ Ω1, all f and g in the domain of T , and all λ ∈ R.

Given open sets Ω1,Ω2 ⊂ Rn, let L ⊂ L0(Ω) be a subspace of the space of measurable
functions in Ω1 and consider a linear operator T : L→ L0(Ω2). Given two Orlicz functions ϕ
and ψ, we say T is of strong type (ϕ,ψ) if there exists a constant C > 0 such that

‖Tf‖Lψ(Ω2) ≤ C‖f‖Lϕ(Ω1)

for all f ∈ Lϕ(Ω1). We say that T is of weak type (ϕ,ψ) if there exists C > 0 such that

|{x ∈ Ω2 : Tf(x) > λ} ≤ 1/ψ

(
λ

C‖f‖Lϕ(Ω1)

)
for all f ∈ Lϕ(Ω1) and λ > 0. For our purposes, T will be a Calderón–Zygmund operator
arising from a multiplier:

Theorem A.2 ([26, §12.12]). Let ϕ be an Orlicz function for which there are numbers 1 < p <
q <∞ such that t−pϕ(t) is increasing and t−qϕ(t) is decreasing. Let m be a zero-homogeneous
Hörmander–Mihlin multiplier, so m corresponds to a Calderón–Zygmund operator Tm.

Then Tm is of weak type (ϕ,ϕ) if and only if ϕ is ∆2 and is strong type (ϕ,ϕ) if and only
if ϕ,ϕ∗ ∈ ∆2.

We can now state the main result of this section, providing sharp assumptions on the nec-
essary and sufficient relationship between the integrability of the function v and its constraint
Av in order to obtain the H 1 bound:

Theorem A.3. Let F : V → R be s-homogeneous and A-quasiaffine, where s ≥ 2. We
suppose ϕ, ψ are Young functions such that there exist p, q ∈ (1,∞) such that t−pϕ and t−pψ
are increasing and t−qϕ and t−qψ are decreasing. Moreover, suppose ts � ϕ � ts log(1 + t)
and (

ϕ ◦ t
1
s−1
)∗ ◦ (t log(1 + t)

)
� ψ � ts logs(1 + t),

where ∗ denotes Young conjugate function. Then

v ∈ Lϕloc(R
n,V)

Av ∈W−l,ψloc (Rn,W)

}
=⇒ F (v) ∈H 1

loc(Rn),

In fact, for any R > 0 we have the estimate

ˆ
BR(0)

Mloc[F (v)](x) dx ≤ C‖ηv‖Lϕ(BR+2(0))‖A(ηv)‖Ẇ−l,ψ ,

where η ∈ C∞c (BR+2(0)) is arbitrary.
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Remark A.4. Before proceeding to the proof, we note that if either ts logs(1 + t) � ψ or

ts log(1 + t) � ϕ, then we already have either Lψloc ↪→ Ls logs Lloc or Lϕloc ↪→ Ls logLloc, and
hence may apply Theorem A directly.

Proof: The proof follows almost the same lines as the proof of Theorem 4.2. We now extend
the proof of that theorem to the general case for ϕ and ψ.
First, we note that the assumptions t−pϕ and t−pψ are increasing and t−qϕ and t−qψ are
decreasing are the assumptions necessary to obtain the Hörmander-Mihlin interpolation The-
orem A.2. Thus we may make the usual Helmholz-Hodge decomposition analogous to Propo-
sition 4.1 to obtain u ∈W k,ϕ(Rn;U), w ∈W l,ψ(Rn;W) such that

v = Bu+A∗w.

Moreover,
‖Bu‖Lϕ(Rn) ≤ C‖v‖Lϕ(Rn), ‖A∗w‖Lψ(Rn) ≤ C‖Av‖Ẇ−l,ψ(Rn).

We now proceed as in the proof of Theorem 4.2 in making the decomposition

F (Bu+A∗w)− F (Bu) =
∑
|α|=s

∑
β<α

cα,β(Bu)β(A∗w)α−β.(A.5)

As ts � ϕ � ts log(1 + t) and(
ϕ ◦ t

1
s−1
)∗ ◦ (t log(1 + t)

)
� ψ � ts logs(1 + t),

one obtains, via a simple calculation, that ψ � ts log(1 + t). The term |β| = 0 in (A.5) is
therefore controlled by A∗w in Ls logL, hence in Lψ. Dealing with the final term, |β| = n−1,

we write ϕ̃ = ϕ ◦ t
1
s−1 and make the estimate

ˆ
BR+2

|Bu|s−1|A∗w| log(1 + |A∗w|) dx ≤‖|Bu|s−1‖Lϕ̃‖|A∗w| log(1 + |A∗w|)‖Lϕ̃∗

. ‖Bu‖Lϕ‖A∗w‖Lψ

via an obvious duality. This allows us then to conclude the proof as before, with analogous
estimate.

Example A.6. To show that these interpolated conditions on ϕ and ψ are sharp, we follow
a similar procedure to that of Example 5.4. Suppose that ts � ϕ ≺ ts log(1 + t) and ψ ≺(
ϕ ◦ t

1
s−1
)∗

(t log(1 + t)), (as s = 2, this means ψ ≺ ϕ∗ ◦ (t log(1 + t))). Note that as we are
assuming t2 � ϕ, we therefore have that the conjugate ϕ∗ satisfies ϕ∗ � t2 � ϕ. Thus we
have that ψ is strictly dominated by ϕ◦ (t log(1 + t)). Without loss of generality, we therefore
assume

ϕ � ψ ≺ ϕ ◦ (t log(1 + t)).

We will again construct our example as

v = (f(x1), 0), ṽ = (f̃(x1), 0)
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for suitable choices of f , f̃ .
Choose f : (−1, 1)→ R such that f(x1) > 1 for all x1 ∈ (−1, 1) and

f ∈ Lψ ↪→ Lϕ,

satisfying that
fϕ−1(ψ(f)) log(1 + f) 6∈ L1.

This is possible as ψ ≺ ϕ ◦ (t log(1 + t)) implies directly that(
ϕ−1(ψ(t))

)2 ≺ t2 log2(1 + t).

Now let f̃(x1) = g(|f |)f(x1) where

g(t)t = ϕ−1(ψ(t)) for t > 0.

Then ṽ, defined above, is in Lϕ. Moreover, it is clear that

div v = ∂x1f ∈W−1,ψ, curl ṽ = 0 ∈W−1,ψ.

Taking the dot product, we obtain

(A.7)

v · ṽ log(1 + v · ṽ) = f2g(f) log
(
1 + f2g(f)

)
= fϕ−1(ψ(f)) log

(
1 + fϕ−1(ψ(f))

)
≥ cfϕ−1(ψ(f)) log(1 + f),

for some c > 0, which is not in L1 by assumption. For the final inequality, we have used that
as f > 1, ϕ−1(ψ(f)) ≥ ϕ−1(ψ(1)) and then possibly adjusted the constant.

References

[1] Adams, R. A., and Fournier, J. Sobolev Spaces. Elsevier, 2003.

[2] Baer, E., and Jerison, D. Optimal function spaces for continuity of the Hessian
determinant as a distribution. Journal of Functional Analysis 269, (2015), 1482–1514.

[3] Ball, J., Currie, J., and Olver, P. Null Lagrangians, weak continuity, and varia-
tional problems of arbitrary order. Journal of Functional Analysis 41, (1981), 135–174.

[4] Ball, J. M. Convexity conditions and existence theorems in nonlinear elasticity. Arch.
Ration. Mech. Anal. 63, (1977), 337–403.

[5] Ball, J. M., and Murat, F. Remarks on Chacon’s biting lemma. Proceedings of the
American Mathematical Society 107, (1989), 655–655.

[6] Bennett, C., and Rudnick, K. On Lorentz-Zygmund spaces. Instytut Matematyczny
Polskiej Akademi Nauk, 1980.

[7] Bonami, A., Feuto, J., and Grellier, S. Endpoint for the div-curl lemma in Hardy
spaces. Publicacions Matematiques 54, (2010), 341–358.

37



[8] Brezis, H., and Mironescu, P. Gagliardo-Nirenberg, composition and products in
fractional Sobolev spaces. Journal of Evolution Equations 1, (2001), 387–404.

[9] Brezis, H., and Nguyen, H.-M. The Jacobian determinant revisited. Inventiones
Mathematicae 185, (2011), 17–54.

[10] Coifman, R. R., Lions, P. L., Meyer, Y., and Semmes, S. Compensated com-
pactness and Hardy spaces. Journal de Mathématiques Pures et Appliquées 9, (1993),
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