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A B S T R A C T 

As part of the cosmology analysis using Type Ia Supernovae (SN Ia) in the Dark Energy Surv e y (DES), we present photometrically 

identified SN Ia samples using multiband light curves and host galaxy redshifts. For this analysis, we use the photometric 
classification framework SUPERNNOVA trained on realistic DES-like simulations. For reliable classification, we process the DES 

SN programme (DES-SN) data and introduce impro v ements to the classifier architecture, obtaining classification accuracies of 
more than 98 per cent on simulations. This is the first SN classification to make use of ensemble methods, resulting in more 
robust samples. Using photometry, host galaxy redshifts, and a classification probability requirement, we identify 1863 SNe Ia 
from which we select 1484 cosmology-grade SNe Ia spanning the redshift range of 0.07 < z < 1.14. We find good agreement 
between the light-curve properties of the photometrically selected sample and simulations. Additionally, we create similar SN Ia 
samples using two types of Bayesian Neural Network classifiers that provide uncertainties on the classification probabilities. We 
test the feasibility of using these uncertainties as indicators for out-of-distribution candidates and model confidence. Finally, we 
discuss the implications of photometric samples and classification methods for future surv e ys such as Vera C. Rubin Observatory 

Le gac y Surv e y of Space and Time. 

Key words: methods: data analysis – surv e ys – supernovae: general – cosmology: observations. 
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 I N T RO D U C T I O N  

o fully exploit the power of current and future time-domain surv e ys,
t is necessary to classify astrophysical objects using only photom- 
try. Surv e ys such as the Supernova Legacy Survey (SNLS), Sloan
igital Sky Survey ( SDSS ) SN Surv e y (SDSS-II), Pan-STARRS

PS1), and the Dark Energy Surv e y (DES) hav e disco v ered thousands
f supernovae (SNe) but the majority have not been spectroscopically 
lassified (Astier et al. 2006 ; Frieman et al. 2008 ; Bernstein et al.
012 ; Rest et al. 2014 ; F ole y et al. 2018 ; Sako et al. 2018 ; Smith
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t al. 2020 ). Photometric classification will be particularly crucial 
or the upcoming Le gac y Surv e y of Space and Time (LSST) at the
era C. Rubin Observatory, which is expected to discover up to 10 7 

Ne o v er the ne xt decade (LSST Science Collaboration 2009 ). 
The Dark Energy Surv e y Superno va programme (DES-SN) ob-

ained photometry of more than 30 000 candidate SNe o v er its five
ears of operation. These include thousands of high-redshift SNe Ia, 
f which only several hundred have been spectroscopically classified. 
he first three years of the DES-SN detected and spectroscopically 
lassified 251 SNe Ia (Smith et al. 2020 ). Together with low-redshift
Ne from the Harvard–Smithsonian Center for Astrophysics surv e ys 
CfA3, CfA4; Hicken et al. 2009 , 2012 ) and the Carnegie Supernova
roject (CSP; Contreras et al. 2010 ; Stritzinger et al. 2011 ), these SNe
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ere used to constrain cosmological parameters (Dark Energy Sur-
 e y 2019 ). The DES-SN candidate sample also contains other types
f transients that have been used for astrophysical and cosmological
tudies: core-collapse SNe (de Jaeger et al. 2020 ), superluminous
Ne (SLSNe; Smith et al. 2018 ; Angus et al. 2019 ; Inserra et al.
021 ), rapidly evolving transients (Pursiainen et al. 2018 ; Wiseman
t al. 2020b ) and ‘peculiar’ events (Guti ́errez et al. 2020 ; Grayling
t al. 2021 ). 

To classify SNe without spectroscopy, a number of methods
ave been developed to classify them using their light curves, i.e.
heir observed brightness evolution in different filters. Due to their
osmological use, much work has focused on disentangling SNe
a from other SN types. The majority have been trained and tested
n simulations, with only a handful applied to large SN surv e ys
Sako et al. 2011 ; M ̈oller et al. 2016 ; M ̈oller & de Boissi ̀ere
019 ; Muthukrishna et al. 2019 ; Villar et al. 2019 , 2020 ). Several
hotometric classifiers have been developed and incorporated into
he SNIa-cosmology analysis pipeline PIPPIN (Hinton & Brout 2020 ),
ncluding SNIRF (based on the architecture developed by Dai et al.
018 ), SUPERNNOVA (M ̈oller & de Boissi ̀ere 2019 ), and SCONE (Qu
t al. 2021 ). 

In this work, we use the non-parametric framework SUPERNNOVA

SNN; M ̈oller & de Boissi ̀ere 2019 ) to obtain photometrically
lassified SN Ia samples from DES-SN. SNN has several strengths it:
i) requires only photometric information (fluxes and time) for clas-
ification, (ii) does not rely on the extraction of features, (iii) can be
rained to classify any type of transient e vent, (i v) can use redshifts to
mpro v e accurac y, (v) has been thoroughly tested using simulations,
vi) includes algorithms that assign uncertainties to classification
robabilities such as Bayesian Neural Networks (BNNs), and (vii) is
lready being applied to real surv e y data, including early light-curve
lassification in alert streams ( FINK broker; M ̈oller et al. 2021 ). 

Photometrically classified SN Ia samples have started to be used
n cosmology. First constraints on the cosmic expansion using data
rom SDSS-II and PS1 have shown the feasibility of using these
amples for cosmology and their competitive constraining power on
he Dark Energy (Sako et al. 2011 ; Hlozek et al. 2012 ; Campbell
t al. 2013 ; Jones et al. 2017 , 2018 ). Most of these results use the
ayesian Estimation Applied to Multiple Species method (BEAMS;
unz, Bassett & Hlozek 2007 ) and its extension ‘BEAMS with
ias Corrections’ (BBC; Kessler & Scolnic 2017 ). These methods

ncorporate classification probabilities of SNe Ia into the analysis,
hus requiring accurate classification probabilities. Recent work
stimates the contamination for cosmological constraints in the DES-
N sample using SNN at less than 1.4 per cent (Vincenzi et al.
022 ). Aside from cosmology, photometrically classified samples
ith SNN have also been used to study SN Ia rates (Wiseman et al.
021 ). 
This paper is organized as follows: We introduce the DES surv e y

nd DES-SN candidate sample in Section 2 . In Section 3 , we present
re-processing needed for accurate classification, SUPERNNOVA ,
ealistic simulations, training and classification mechanisms and
heir metrics. In Section 4 , we select photometrically classified SNe
a using host galaxy redshift information together with multiband
hotometry. We explore the use of BNNs for classification in
ection 5 . Finally, in Section 6 , we discuss our results and their

mplications for future surv e ys such as LSST. 

 DES-SN  5 - Y R  

he Dark Energy Surv e y (DES) was a 6-yr photometric surv e y that
sed the Dark Energy Camera (DECam; Flaugher et al. 2015 ) on
NRAS 514, 5159–5177 (2022) 
he Victor M. Blanco telescope in Chile to surv e y 5000 de g 2 of the
outhern hemisphere. For time-domain science, DES imaged ten
-deg 2 in the griz filters during the first 5 yr (Abbott et al. 2018 ).
ight of these ten fields (X1, X2, E1, E2, C1, C2, S1, and S2) were
bserved to a single-visit depth of m ≈ 23.5 mag (‘shallow fields’),
nd the other two ‘deep fields’ (X3,C3) were observed to a depth of
 ≈ 24.5 mag. 

.1 DES-SN candidate sample 

ransients were identified using the DES Difference Imaging
ipeline DIFFIMG (Kessler et al. 2015 ) coupled with a machine-

earning algorithm (Goldstein et al. 2015 ) to reduce artefacts. A
andidate SN is defined from the difference image measurements by
equiring at least two detections with a signal-to-noise ratio (SNR)
arger than five in any filter. This criteria is designed to remove
rtefacts and asteroids. 

Each DES-SN candidate was originally associated with a host
alaxy using the shallower SVA surv e y, created from DES Science
erification data. For the DES-SN analysis, we use deep co-adds in
iseman et al. ( 2020a ). The major source of host galaxy redshift

nformation was the Australian Dark Energy Surv e y (OzDES)
rogramme obtaining spectra with the 2dF fibre positioner and
AOmega spectrograph on the 3.9-m Anglo-Australian Telescope

Yuan et al. 2015 ; Childress et al. 2017 ; Lidman et al. 2020 ). SN
osts in OzDES were observed up to a limiting r magnitude of ≈24.
urther details on host galaxy association can be found in Gupta et al.
 2016 ), Vincenzi et al. ( 2020 ). 

For the 31 636 candidates, 29 113 have an identified host and
1 350 have a spectroscopic redshift ( ∼30 per cent of the candidates).
A sub sample of candidates were selected for real-time spectro-

copic follo w-up observ ations for classification. For the first 3 yr
f the surv e y, the spectroscopically classified sample is presented in
mith et al. ( 2020 ). In this work, we use for comparison a preliminary
pectroscopic sample containing additional classifications from the
ull 5 yr of DES-SN. This sample contains 415 spectroscopically
onfirmed SNe Ia (including all 251 spectroscopically classified SNe
a from the DES-SN 3-yr analysis), 84 core-collapse SNe, 2 peculiar
Ne Ia, 20 SLSNe, 55 AGN, 1 Tidal disruption event (TDE), and
 M-stars. We highlight that this spectroscopically classified sample
s not complete (Kessler et al. 2019b ) and does not represents the
rue abundances of different transients in nature. 

In this work we use the fluxes and uncertainties obtained from
IFFIMG (Kessler et al. 2015 ) for the DES-SN candidate sample. 

.2 Filtering multiseason and other transients 

he DES-SN 5-yr candidate sample contains not only supernovae
ut also astrophysical events such as fast transients and AGNs. These
vents, called out-of-distribution (OOD) or anomalies, can be hard
o characterize and thus simulate, therefore photometric classifiers
re usually not trained to identify them. 

To reject fast, very low SNR transients or transients that have
 limited photometric sampling (e.g. transients occurring near the
nd or beginning of the observing season), we select only transients
hat have at least 3 nights with a detection that has passed the DES
eal/Bogus image classifier (Goldstein et al. 2015 ). 
To reduce the number of slowly evolving transients that span

everal observing seasons or multiseason candidates (e.g. AGNs)
nd spurious detections we make use of two selection criteria. First,
e compute the ratio between number of epochs with detections that
ass the Real/Bogus classifier, and the total number of epochs with
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etections. To reject light curves with long variability periods, we 
equire this ratio to be the same as in the real-time classification
ipeline in Smith et al. ( 2020 ). Secondly, we remo v e artefacts and
ransients that have detections in multiple observing seasons. We 
ote that this cut can remo v e real supernovae, i.e. multiple SNe very
lose-by in the same galaxy, and is not 100 per cent efficient. 

With this filtering, the sample is reduced from 31 636 to 14 070
andidates. This reduces the number of candidates and their contami- 
ation; ho we ver, some residual AGN and other types of SNe remain.
e find that this sample includes 405 spectroscopically classified 

Ne Ia (247 of which are in the DES-SN 3yr sample), 83 core-
ollapse SNe, 2 peculiar SNe Ia, 19 SLSNe, 37 AGN, 1 TDE, and
 M-star. 

.3 Selection r equir ements (cuts) 

e apply a series of selection cuts on both the quality of the light
urves and the quality of the redshifts. A thorough re vie w on these
uts and their impact on systematics can be found in Vincenzi et al.
 2022 ). 

.3.1 Loose selection cuts 

e select transients that have redshifts obtained from spectra from 

ither the SN or its host galaxy (Lidman et al. 2020 ) using quality
ags in Vincenzi et al. ( 2020 ). In this work, we also include lower
esolution redshifts from PRIMUS since they are precise enough for 
hotometric classification. 1 After this selection cut we obtain 6635 
N candidates. 
Furthermore, we restrict these redshifts to be within the range of

he SNe Ia expected for DES-SN and thus in our simulations, z ∈
0.05,1.3]. This cut also remo v es stars in our catalogues. 

We fit the light curves using the SALT2 model (Guy et al. 2007 ).
e require that: (i) at least two filters have at least one observation
ith SNR larger than 5, (ii) at least one photometric measurement 
efore peak brightness t 0 , and (iii) at least one photometric point ten
ays after peak brightness. 
We select a sample of 2381 light curves that satisfy these sampling

riteria and have a SALT2 fit that converges and is within SALT2
odel boundaries for stretch, x 1 ∈ [ −4.9, 4.9] and colour c ∈ [ −0.49,

.49]. We photometrically classify these candidates in the following. 
his sample contains a subsample of spectroscopically classified 
andidates which we will use as a reference: SNe Ia: 366 (DES-SN 3
r: 228), CC 13, SLSN 2, AGN 3. The SALT2 parameters (amplitude,
tretch, and colour) are not used by SNN. 

.3.2 JLA-like cuts 

e will consider an additional set of cuts after photometric classifi-
ation based on the criteria in Vincenzi et al. ( 2022 ). They will only
e applied when specified. 
These cuts are designed to select cosmology-grade SNe Ia and 

re based on those from the Joint Light-curve Analysis: −3.0 < 

 1 < 3.0, −0.3 < c < 0.3, and σx 1 < 1 and σ t 0 < 2 (Betoule et al.
014 ). Where c , x 1 , σ t 0 , σx 1 are estimated using SALT2 and represent
 The redshifts from the PRIsm MUlti-object Surv e y (PRIMUS) were obtained 
sing the Inamori Magellan Areal Camera and Spectrograph camera on the 
agellan I Baade 6.5 m telescope (Coil et al. 2011 ). They are less accurate 

nd the y hav e a higher rate of catastrophic failure, thus not suitable for 
osmological constraints. 

(  

f
i
w  

w  

i  

o

olour, stretch, and uncertainty on t 0 and x 1 , respectively. These
uts are implemented in SN Ia cosmology analyses to restrict SNIa
arameters to the valid model range, and to reject peculiar SNIa. We
lso use a SALT2 fit probability > 0.001 selection. 

 PHOTOMETRI C  CLASSIFICATION  

e use the photometric classification algorithm SUPERNNOVA ( SNN ) 
o select SN Ia from the DES-SN 5-yr candidate sample that pass
oose selection cuts. We introduce pre-processing necessary for accu- 
ate photometric classification of our DES-SN 5-yr data (Section 3.1 ). 

e generate realistic simulations of the DES-SN surv e y to train
nd test our photometric classification method (Section 3.2 ) and the
ramework SNN (Section 3.3 ). We evaluate performance and find 
he best configuration for our framework using small simulations 
Section 3.4 ). We then train optimized models for photometric 
lassification of the DES-SN 5-yr sample using larger simulations 
Section 3.5 ). 

.1 DES-SN data pr e-pr ocessing 

or accurate photometric classification, the simulations used to train 
he models and the data to be classified should be similar. While light-
urv e simulations striv e to resemble surv e y data, pre-processing of
he surv e y data is required to assure this. 

First, DES-SN data were taken o v er fiv e consecutiv e seasons.
ach DES season represented about five months of observations per 
ear. SNe last only for months, thus are only detected in a subset
f this photometry. In our simulations (see Section 3.2 ), supernovae
re simulated within a rest-frame time-span, e.g. −30 d before to
00 d after peak luminosity. To select an equi v alent time windo w
n the DES-SN 5-yr data, we first obtain an estimated time of peak
rightness ( t 0 ) using the SuperNova ANAlysis software (SN AN A;
essler et al. 2009 ). This t 0 estimate is not obtained using SALT2

Guy et al. 2007 ), but instead based on max flux in region of dense
etections to a v oid pathological estimates from a single pathological
ux in another season. Once the peak has been determined for each

ight curve, we select and classify photometric points within an 
bserved time-window around the light-curve peak of [ −30, 100] d.
Light curves may contain photometry that has been flagged as 

awed. We require that SNN discard photometry that is not reliable
sing the bitmap flag provided by SOURCE EXTRACTOR (Bertin & 

rnouts 1996 ) and DIFFIMG (Kessler et al. 2015 ). These photometric
utliers are not present in the simulations used to train our photomet-
ic classifier. This is in particular important when using normalization 
chemes, which will be introduced in Section 3.3.1 , since they use
aximum fluxes to normalize the light curves. If that maximum flux

omes from a bad photometric point, the light curve will be distorted
nd therefore classification will not be accurate. This photometry 
uality criteria reduces the number of photometric measurements by 
 per cent but keeps the number of transients unchanged. 

.2 Simulations of the DES-SN sur v ey 

NN is used with simulations from the supernova analysis software 
snana Kessler et al. 2009 ) and within the PIPPIN orchestration
ramework (Hinton & Brout 2020 ). The simulations incorporate 
nformation from DES-SN observations (PSF, sky noise, zero-point), 
ith detection efficiencies versus SNR estimated on f ak e SNe that
ere o v erlaid on images and processed with DIFFIMG . Simulations

nclude SNe that have partial light curves due to season boundaries
r observing gaps imitating realistic weather conditions. Detailed 
MNRAS 514, 5159–5177 (2022) 
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M

Table 1. Simulations used for training and testing SNN . Columns 
indicate simulation name, approximate number of light curves generated 
and number of light curves when balancing simulations to have the same 
number of normal Type Ia and other SNe. 

Simulation Number of Balanced number of 
name light curves (10 6 ) light curves (10 6 ) 

TRAIN-SIM 4.5 3.63 
S-TRAIN-SIM 2.0 1.4 
TEST-SIM 0.8 Not applicable 
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Figure 1. SNN classification for the DES-SN candidate DES17C2hqm 

at redshift 0.473 ± 0.001 using three different neural networks: baseline 
RNN, BNN MC dropout (MC), and BNN Bayes by Backprop (BBB). All 
methods were trained with the TRAIN-SIM simulation. Top row shows the 
SN candidate light curve from DES (normalized flux with cosmo quantile 
method in band-passes g, r, i, z ; time in Observer Frame days). Bottom rows 
shows the classification scores for each method (SN Ia: maroon, non-SN Ia: 
orange). Classification scores use all the data before a given date. The BNN 

methods provide classification uncertainties (shadowed regions show 68 and 
95 per cent contours). Each BNN method provides different estimations, 
this is explored in Section 5.2 . The large uncertainties in the classification 
probability represent the lack of confidence in this classification. For this 
example, uncertainties around days 20–30 are correlated with the lower SNR, 
while around days 50–60 that correlation is less straight forward to interpret 
and could be linked to the secondary peak visible in most filters. 
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2 Long short-term memory (LSTM; Hochreiter & Schmidhuber 1997 ). 
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nformation on the inputs necessary to obtain realistic DES-SN
imulations can be found in Kessler et al. ( 2019b ). We also make
se of recent updates in the library of simulated host galaxies for
ES-SN as introduced by Vincenzi et al. ( 2020 ). This host galaxy

ibrary includes the dependence of SN rates on galaxy properties
uch as stellar mass and galaxy star formation rate. 

We simulate a variety of SNe using volumetric rates and input
arameters as described in Vincenzi et al. ( 2020 ). Our simulations
re performed o v er a redshift range 0.05 < z < 1.3. These simulations
ontain normal SNe Ia, peculiar SNe Ia, and core-collapse SNe. 

Normal SNe Ia are generated using the SALT2 SED model
resented in Guy et al. ( 2007 ), trained for the JLA sample (Betoule
t al. 2014 ) and extended to UV and IR wavelengths (Pierel et al.
018 ) to impro v e the redshift co v erage of our simulated SNe.
olumetric rates from Frohmaier et al. ( 2019 ) are used. The intrinsic
tretch and colour distributions are taken from Scolnic & Kessler
 2016 ) and we use the G10 intrinsic scatter model from Kessler
t al. ( 2013 ) based on Guy et al. ( 2010 ). Peculiar SNe Ia include
N91bg-like (Kessler et al. 2019a ) and SNe Iax (Jha 2017 ) with
odels updates in Vincenzi et al. ( 2022 ). 
We make use of three different core-collapse SN template col-

ections: V19 (Vincenzi et al. 2019 ), J17 (Jones et al. 2017 ),
nd templates used in the Supernova Photometric Classification
hallenge (SPCC; Kessler et al. 2010 ). The main differences between

hese templates include: the number of SNe used to create them, the
ates used, and the interpolation methods and wavelength coverage.
etailed information on these templates can be found in Vincenzi

t al. ( 2019 ). 
Our baseline simulations, and used unless specified, are generated

sing V19 core-collapse SN templates. Relative core-collapse SN
ates are given by Li et al. ( 2011 ) updated in Shivvers et al. ( 2017 )
nd the total rate is assumed to follow the cosmic star formation
istory presented in Madau, Weisz & Conroy ( 2014 ) normalized by
he local SN rate of Frohmaier et al. ( 2019 ). 

We generate different simulations to train (TRAIN-SIM and a
maller S-TRAIN-SIM for computing efficiency of certain e v aluation
asks) and test (TEST-SIM) SNN as shown in Table 1 . For training,
fter generating the simulation, we randomly trim the simulation to
nsure a balanced training sample, with the same number of normal
Ne Ia and non-normal Ia (core-collapse SNe and peculiar SNe
a). Volumetric rates guarantee that the mixture of non-Ia SNe is
onsistent with measured rates. We note that the size of the S-TRAIN-
IM training set is the same as the complete sample used in M ̈oller &
e Boissi ̀ere ( 2019 ). Having defined our simulated samples we now
urn to methods of classifying them. 

.3 SUPERNNOVA (SNN) 

UPERNNOVA (M ̈oller & de Boissi ̀ere 2019 ) is a deep learning
ramework for light-curve classification. It makes use of fluxes and
NRAS 514, 5159–5177 (2022) 
heir measurement uncertainties o v er time for accurate classification
f time-domain candidates. Additional information such as host
alaxy redshifts can be included to impro v e performance. 

SNN includes different classification algorithms, such as LSTM 

2 

ecurrent Neural Networks (RNNs) and two approximations for
ayesian Neural Networks (BNNs). We show in Fig. 1 the classifi-
ation probabilities from different methods for a given SN light curve.

art/stac1691_f1.eps
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Table 2. Classification accuracies for models trained by replacing a subset 
of templates from the original configuration in Section 3.2 . 

Changed template Accuracy 

JLA instead of extended SNIa model 97.96 ± 0.05 
without peculiar SNe Ia 98.21 ± 0.01 
J17 instead of V19 core-collapse model 98.06 ± 0.07 
SPCC templates instead of V19 core-collapse model 98.59 ± 0.02 
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hese probabilities can be used to select a sample by performing a
hreshold cut or by weighting the contribution of candidates by their 
lassification score as in the BEAMS and BBC methods (Kunz et al.
007 ; Kessler & Scolnic 2017 ; Vincenzi et al. 2022 ). 
Light-curve simulations are used to train SNN to classify can- 

idates into different classes. For cosmology, it can be trained to 
ccurately classify SNe Ia versus other other kinds of transients. For
ime-domain astronomy, where brokers are designed to disentangle 

ultiple types of transients, SNN can classify subtypes of SNe or
ransients simultaneously. 

Throughout this work we only perform a binary classification, i.e. 
 normal SN Ia or a non-Ia SN. Our results are expressed in the form
f a prediction of the SN type by using a threshold on the obtained
N Ia probability, P , larger than 0.5. 

.3.1 SNN normalization schemes: cosmo and cosmo quantile 

ince light-curve fluxes and uncertainties exhibit large variations, 
NN supports different input data (e.g. fluxes, flux-uncertainties, 
nd time-steps) and normalization schemes (M ̈oller & de Boissi ̀ere
019 ). In previous work, the default was the global 3 normalization. 
o we ver, to a v oid cosmological bias when using redshifts for

lassification, it is important to a v oid using distance information 
ncoded in the apparent magnitudes. 

For classification using redshifts, we introduce two new normal- 
zation schemes in SNN that ignore distance information: cosmo and 
osmo quantile . 4 In these schemes, for a given light curve, fluxes,
nd their respective uncertainties are normalized by the maximum 

ight-curve flux in any filter ( cosmo ) or the 99th quantile of the flux
istrib ution to a v oid normalization using an outlier ( cosmo quantile ).
his normalizes the fluxes for each light curve to 1 or near 1, and

etains colour and signal-to-noise information for the classification. 
he normalization of the time-step, given as an input to SNN , remains

og transformed and displaced to zero as in the global normalization 
cheme. 

To e v aluate these ne w normalization schemes, we measure the
lassification accuracy of SN Ia versus non-SN Ia including redshift 
s an input using simulations from M ̈oller & de Boissi ̀ere ( 2019 ) since
hese were the simulations used to benchmark the SNN framework. 

e find that they slightly improve performance with accuracies 
f 99.33 ± 0.02 per cent for both cosmo and cosmo quantile as
ompared to the 98.43 ± 0.08 per cent accuracy of the global 
ormalization scheme using same data set, redshift information 
nd default settings (seeds and hyper-parameters). In the following 
nalysis, we will use only the cosmo quantile norm since it has
imilar accuracy to cosmo for the simulations but is more robust
gainst photometry outliers in real data. 

.4 SNN configuration for performance and robustness 

e next study the performance of SNN when classifying SNe using
hotometry and host galaxy redshifts. We also characterize the 
lassification robustness with respect to the training templates, and 
 Features, f , are log transformed and scaled. The log transform ( f l ) uses the 
inimum value of the feature in all band-passes min( f ) and a constant ( ε) to 

entre the distribution at zero as follows: f l = log ( − min( f ) + f + ε). Using 
he mean and standard deviation of the log transform ( μ, σ ( f l )), standard 
caling is applied: ˆ f = ( f l − μ( f l )) /σ ( f l ). 
 Both normalization schemes are available at: https://github.com/supernnov 
/SuperNNova 
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g

3

W
t  
nd the best set of hyperparameters for our DES-SNIa sample. 
e use the S-TRAIN-SIM simulations introduced in Section 3.2 , 

or computational efficiency and to compare results with those of 
 ̈oller & de Boissi ̀ere ( 2019 ), to train a classification model. Our

imulation was class-balanced (half normal SNe I and half non-Ia 
Ne) and randomly split in 80 per cent for training, 10 per cent for
alidation and 10 per cent for metrics e v aluation. Uncertainties in
he accuracy represent the standard deviation of predictions from 

ve models obtained with different seeds. 
Using the default configuration of SNN we obtain a classification 

ccuracy of 97 . 73 ± 0 . 04 per cent for the cosmo quantile norm.
hile this accuracy is high, it is ∼ 1 per cent lower than the

enchmark in M ̈oller & de Boissi ̀ere ( 2019 ) for a similar training set
ize. Since the SNN architecture has not been changed, we investigate
f this can be attributed to the more complex and realistic DES-SN
-yr simulations in Section 3.4.1 . We then investigate whether a
odified architecture can impro v e the classification model and thus

ts accuracy in Section 3.4.2 . We highlight that SNN does not reach
ts peak performance when trained using the smaller S-TRAIN- 
IMS. Thus, larger simulations are needed to impro v e the model
erformance. 

.4.1 Templates impact on performance 

ere, we study how the set of templates used to generate the training
imulation impacts the metrics of our classification algorithm. We 
rain different models using simulations that are similar in size 
equi v alent to S-TRAIN-SIM) but are generated by replacing a subset
f templates from the original configuration. Obtained accuracies are 
hown in Table 2 . 

Models trained with SPCC and J17 templates obtain higher 
ccuracies than those trained with V19 templates. This is consistent 
ith the accuracy decrease of our present model when compared 

o that of M ̈oller & de Boissi ̀ere ( 2019 ). This is evidence of the
ore complex classification task with the updated simulations. We 

ighlight that V19 uses a large variety of core-collapse templates 
ith greater diversity than previous core-collapse models, J17 and 
PCC. From these, SPCC has the fewest number of non-Ia templates
nd thus less diversity. SPCC templates were used in M ̈oller &
e Boissi ̀ere ( 2019 ) simulations. The impact of changes like using
he JLA SALT2 model is less. This shows that the complexity of
he classification task increases largely with the updated and more 
iverse core-collapse SN population in the V19 templates and the 
nclusion of peculiar SNe Ia. 

We thus attribute the decrease on accuracy to the more complex
ask of disentangling SNe Ia from core-collapse and peculiar SNe Ia
enerated with updated templates. 

.4.2 Hyperparameters 

e investigate whether network hyperparameters could be modified 
o impro v e performance (for a list of available hyperparameters,
MNRAS 514, 5159–5177 (2022) 
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Table 3. SNN Baseline Performance versus method on TRAIN-SIM without 
cuts. The chosen method in this work is the Ensemble (probability average) 
and is highlighted in bold. 

Method Balanced accuracy Efficiency Purity 

cosmo 

Single model 98.33 ± 0.01 98.65 ± 0.05 98.03 ± 0.06 
Ensemble (target av.) 98.43 ± 0.02 98.81 ± 0.02 98.08 ± 0.02 
Ensemble (prob. av.) 98.45 ± 0.01 98.80 ± 0.02 98.11 ± 0.02 

cosmo quantile 

Single model 98.35 ± 0.01 98.68 ± 0.07 98.03 ± 0.05 
Ensemble (target av.) 98.45 ± 0.00 5 98.84 ± 0.02 98.09 ± 0.01 
Ensemble (prob. av.) 98 . 46 ± 0 . 01 98 . 83 ± 0 . 03 98 . 10 ± 0 . 03 

5 We provide only two-significant figures. The uncertainties are negligible and 
less than 0.005. 

Table 4. SNN baseline performance versus method on TEST-SIM with loose 
selection and JLA-like cuts. 

Method Balanced accuracy Efficiency Purity 

with loose selection cuts 

Single model 98.61 ± 0.03 99.61 ± 0.02 99.43 ± 0.02 
Ensemble (prob. av.) 98.69 ± 0.01 99.68 ± 0.01 99.45 ± 0.00 5 

+ JLA-like cuts 

Single model 98.26 ± 0.06 99.81 ± 0.01 99.7 ± 0.01 
Ensemble (prob. av.) 98 . 36 ± 0 . 01 99 . 86 ± 0 . 01 99 . 71 ± 0 . 00 5 
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ee M ̈oller & de Boissi ̀ere 2019 ). We train our models using
sing 20 per cent of the S-TRAIN-SIM simulations (280 033 light
urves). We modify: batch size (128, 512), dropout (0.05, 0.1, 0.2),
idirectional (True, False), hidden dimensions (32, 64, 128), number
f layers (2,3,4), two learning policies (cyclic and non-cyclic), and
ifferent cyclic phases when using cyclic ([5, 10, 15], [20, 40, 60]).
e find that the accuracy in different configurations varies up to
2 per cent . We find that deeper (3 or 4 layers) and wider networks

up to 64 hidden dimensions) result in the biggest changes to the
ccuracy. This reflects the increasing complexity of the classification
ask with updated SN templates. Our chosen configuration for S-
RAIN-SIM is: batch size 512, dropout 0.05, bidirectional network,
4 hidden dimensions, 4 layers, and non-cyclic learning policy. Using
he whole S-TRAIN-SIM data set with this new configuration, the
lassification accuracy rises to 98.10 ± 0.06 per cent. 

.5 SNN trained models for DES-SN 5-yr analysis 

n the following, we use SNN models trained with a larger data set to
mpro v e classification accurac y, TRAIN-SIM, and the best configura-
ion of SNN found in the previous section. We increase the batch size
o 1024 for efficient resource allocation. The larger simulation and
ptimized hyperparameters provide a better classification accuracy
ith accuracies abo v e 98 per cent as shown in Table 3 . Accuracies

re computed with a balanced test set, where half of the candidates
re SNe Ia and half are non-Ia SNe. 

To e v aluate the accuracy, ef ficiency, and purity of our photometric
amples, we estimate the performance of our models in the indepen-
ent TEST-SIM. This simulation is not balanced and thus reflect the
elative rate between SN types. We present performance metrics for
if ferent le vels of selection cuts in T able 4 . W e highlight that we
rovide the balanced accuracy which shows that after the JLA-like
NRAS 514, 5159–5177 (2022) 
uts, the remaining non-Ia SNe are harder to disentangle. A thorough
nalysis on systematics linked to this classification method can be
ound in Vincenzi et al. ( 2022 ). 

In this work, the traditional classification method is named
single model’. This method represents classifications done using
robabilities obtained from one SNN trained model with a single
eed. In the following, we provide a mean value and uncertainty
n the metric or classified sample of the ‘single model’ method by
aking the probabilities obtained with 5 models trained with different
eeds. These probabilities are then used to compute the mean and
tandard deviation of the metrics listed in Table 3 . 

.5.1 Ensemble methods 

or cosmology, we aim to have a classification method that is not
ighly sensitive to statistical fluctuations in the model and training
ata set. In ML, ensemble methods have been shown obtain more
obust predictions (Dietterich 2000 ; Lakshminarayanan, Pritzel &
lundell 2017 ) and have been introduced for regression in astron-
my (Carrasco Kind & Brunner 2014 ; Kim, Brunner & Carrasco
ind 2015 ). To produce ensemble classifications, predictions from
ultiple models are combined. This can be viewed as a mechanism

f Bayesian marginalization (Wilson & Izmailov 2020 ; Izmailov
t al. 2021 ) and an alternative to Bayesian Neural Networks using
ariational Inference explored in Section 5 . 
We explore two possible ensemble methods: ‘probability averag-

ng’ and ‘target averaging’. Probability averaging uses the probability
cores and averages them to select light curves that are abo v e
he 0.5 probability threshold of being SN Ia. The ‘target average’

ethod averages the predictions and selects the most common one.
ncertainties are computed using the standard deviation of the metric

or three different sets of five models with different seeds. 
We find that ensemble methods increase the accuracy and purity ≈

 . 1 per cent from just using one model prediction, or ‘single model’,
s can be seen in Table 3 . We find a 99 . 4 per cent o v erlap between
hotometrically selected Type Ia SNe using both the ensemble and
ingle model methods. In the following, we will use the ‘probability
verage’ from different models as our ensemble method. 

Each ensemble in this work is obtained using the predictions of
 models trained with different seeds, also called an ‘ensemble set’.
o study the performance of ensemble methods, we compute metrics
sing the output of 3 ensemble sets, quoting their mean and standard
eviation. 

.5.2 Generalization 

n this Section, we verify the ability of our trained models to classify
ata generated using different simulation templates. This is called
eneralization and showcases the adaptation of our SNN models to
ew unseen data. 
We e v aluate the accuracy of our models when trained with

imulations generated using SNe Ia, peculiar SNe and the V19 core-
ollapse templates but applied to simulations generated using other
ore-collapse templates such as J17 or SPCC. We observe a decrease
f < 0 . 5 per cent in accuracy, which shows that our V19 trained
odels generalize well to other templates of core-collapse SNe. 
We find that ensemble methods such as probability avera g e

educes the loss in accuracy due to changes in the data by 0 . 2 per cent
elative to the single model. This is expected as ensemble methods
re usually more robust and thus generalize better than single models.
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Table 5. Performance metrics of BNNs e v aluated using TEST-SIM simu- 
lations with JLA-like cuts. These simulations are indicative of the expected 
purity and efficiency of our photometrically classified samples. 

Method Accuracy Efficiency Purity 

MC with JLA-like cuts 
Single model 98.01 ± 0.03 98.41 ± 0.03 97.63 ± 0.07 
Ensemble (prob. av.) 98.11 ± 0.01 98.51 ± 0.06 97.73 ± 0.05 

BBB with JLA-like cuts 
Single model 98.01 ± 0.03 98.41 ± 0.03 97.63 ± 0.07 
Ensemble (prob. av.) 98.11 ± 0.01 98.51 ± 0.06 97.73 ± 0.05 
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.6 Bayesian Neural Networks (BNNs) 

n scientific analyses using machine-learning outputs, it is important 
o e v aluate the reliability of a model’s predictions, expressed through
ncertainties. Uncertainties can be divided into: Aleatoric , usually 
inked to measurement uncertainties (e.g. noise or other effects of 
ata acquisition); Epistemic or model uncertainty, which encom- 
asses uncertainties in the training set and NN architecture. 
In this section, we introduce BNNs which are a promising method 

o provide uncertainties reflecting the model’s confidence on the 
rediction. 
To compute uncertainties, we obtain different classification prob- 

bilities for a given input and e v aluate their v ariance. In NNs, this
s equi v alent to finding a posterior distribution of weights. Typically,
his posterior distribution is intractable for deep neural networks, thus 
ifferent methods have been developed to approximate it. A review 

n BNNs, approximation methods and their use in astronomy can be 
ound in Charnock, Perreault-Le v asseur & Lanusse ( 2020 ). 

In this Section, we use two BNN implementations approximating 
he posterior distribution of weights: MC dropout (Gal & Ghahramani 
016 ) and Bayes by Backprop (Fortunato, Blundell & Vinyals 2017 ).
C dropout (MC in the following) provides a Bayesian interpretation 

y using the same dropout mask at the different NN layers including
he recurrent ones (each time-step). Bayes by Backprop (BBB in the 
ollowing) learns a posterior distribution of weights which can then 
e sampled. Both methods have been previously implemented and 
ested on simulations in SNN (M ̈oller & de Boissi ̀ere 2019 ). 

.6.1 BNN classification probabilities and uncertainties 

or both methods, to obtain the classification probability distribution, 
e sample the predictions from our BNN 50 times. This sampling 
umber is also known as the number of inference samples , n s . In the
ollowing we compute the classification probability, P i for a given 
ight curve, x i as the mean of sampled probabilities: 

 i = 

1 

n s 

⎛ 

⎝ 

n s ∑ 

j= 1 

p j ( x i ) 

⎞ 

⎠ , (1) 

here j ∈ [1, n s ] is the index of inference samples, p j ( x i ) is the j th 

ample of the classification probability distribution for the light-curve 
 i . 
We compute the classification probability uncertainty for a given 

ight-curve x i as the standard deviation of sampled probabilities: 

 i = 

1 

n s 

√ √ √ √ 

n s ∑ 

j= 1 

(
p j ( x i ) − P i 

)2 
, (2) 

here j ∈ [1, n s ] is the index of inference samples, p j ( x i ) is
 classification probability for the giv en light-curv e x i for each
nference sample j , and P i is given by equation ( 1 ). 

.6.2 BNN trained models 

sing the TRAIN-SIM simulations we train the two Bayesian 
odels, MC and BBB, for light-curve classification with host galaxy 

edshifts. Both methods obtain high classification accuracies for the 
nsemble probability average method, 98.33 ± 0.01 and 98.11 ± 0.01 
or MC dropout and BBB, respectively. Balanced accuracies are 
lightly lower than the ensemble method in Table 3 . These may be
mpro v ed by adjusting of the hyperparameters. We choose to keep the
urrent configuration and focus on the behaviour of the classification 
ncertainties. 
Traditionally, BNNs are not used in ensembles, combining pre- 

ictions by different models. To do so, ideally, the probability 
istributions for each model in the ensemble set should be con-
atenated into a ‘joint probability distribution’. Then, the ensemble 
lassification probability would be computed using equation ( 1 ) 
ampling n s times the ‘joint probability distribution’. Ho we ver, this
an be computationally e xpensiv e. Using TEST-SIM simulations, 
e find that averaging the mean probability obtained for each 
odel in the ensemble set is a close approximation of the one

btained using ‘joint probability distribution’. We find that the 
ifferences between probabilities using the approximation and the 
joint distribution’ are centred at 0.00 ± 0.01 and accuracies change 
y less than 0 . 1 per cent . We use this approximation in the following
or computational efficiency. 

We also test approximating ensemble uncertainties as the sum 

f uncertainties from each model in the ensemble set assuming 
he covariance between models is zero. We find on average that
he uncertainties obtained with this approximation and from the 
joint probability distribution’ are similar. Ho we ver, we note that
he approximation for the BBB method has a larger dispersion than
he one for the MC method. We will e v aluate the potential use of
NN classification uncertainties in Section 6.2 . 
We use TEST-SIM to e v aluate the expected metrics for our

hotometrically classified samples with JLA-like cuts in Table 5 . The
amples obtained with BNNs have less than 3 per cent contamination
ut that is higher than our Baseline DES-SNIa samples with JLA-
ike cuts. BNN performance could be eventually be improved with 
 different network configuration and initialization. However, for 
omparison we keep this architecture for the analysis in Section 5 . 

 DES-SN  5 - Y R  P H OTO M E T R I C A L LY  

LASSIFIED  SNE  IA  

n this Section, we photometrically classify DES-SN 5-yr candidates 
ith host spectroscopic redshifts using our baseline RNN trained in 
ection 3.5 . 
First, we classify candidates that pass loose cuts using SNN trained

ith host galaxy redshifts in Section 4.1 . We further constrain the
ample using JLA-like cuts and visual inspection in Section 4.2 . We
iscuss possible contamination of this sample in Section 4.3 and its
lassification efficiency in Section 4.4 . We summarize the properties 
f the baseline photometrically classified SN Ia sample with JLA-like 
uts in Section 4.5 . 

.1 Photometric classification 

e use our baseline RNN model to select photometrically clas- 
ified SNe Ia. We show the number of selected light curves in
MNRAS 514, 5159–5177 (2022) 
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Table 6. DES-SNIa photometric samples with different selection cuts. In the 
last row, we define the Baseline DES-SNIa sample using a single ensemble 
set probability threshold. Columns indicate: the number of photometrically 
selected SNe Ia and the number of spectroscopically classified SNe Ia 
contained in that sample. 

Loose selection cuts + JLA-like cuts 
Method photo Ia spec Ia photo Ia spec Ia 

Single model 1861 + 17 
−13 353 + 3 −3 1478 + 10 

−11 320 + 3 −2 

Ensemble (prob. av.) 1867 + 3 −4 354 + 1 −0 1482 + 2 −2 321 + 1 −0 

Baseline DES-SNIa sample 1863 354 1484 321 
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able 6 and their o v erlap with spectroscopic SN samples defined in 
ection 2 . 
As shown in Sections 3.5.1 and 3.5.2 , ensemble methods provide
ore robust predictions than single model methods. We select our
aseline SNe Ia sample using the ‘probability average’ method and

he cosmo quantile norm. This normalization is more robust towards
hotometry outliers present in our analysis. We note that the o v erlap
etween cosmo and cosmo quantile probability average sample is
arger than 98 per cent and between cosmo quantile probability
verage and single model samples is larger than 99 per cent . 

Our Baseline DES-SNIa sample contains 1863 photometrically
dentified SNe Ia passing loose selection cuts. In this sample, 12
pectroscopically classified SNe Ia are not selected, representing
ess than 1 per cent of the photometric sample. We do not find a
articular redshift or SALT2 parameter preference for these lost SNe
a. Visual inspection reveals some light curves have variable quality
hotometry which could contribute to the misclassification. 
The baseline sample with loose selection cuts can be used to

tudy astrophysical properties of SNe Ia like correlations with their
ost galaxies, diversity, and rates. In the following, we further
onstrain this sample with cosmology-grade cuts as in Vincenzi et al.
 2022 ). 

.2 Cuts towards a cosmology sample (JLA-like) 

e further constrain our sample by applying selection cuts based on
ALT2 light-curve fits and redshift quality. 
First, we implement additional requirements on the fitted SALT2

arameters of the photometrically selected SNe Ia. As in Vincenzi
t al. ( 2022 ), we implement the JLA-like SALT2 cuts from the
oint Light-curve Analysis (Betoule et al. 2014 ) introduced in
ection 2.3.2 . Secondly, we select only candidates which have a
igh-precision spectroscopic redshift. We eliminate those candidates
hat have redshifts provided by PRIMUS since the spectra are of
ower resolution, more prone to catastrophic failures and not high-
uality enough for cosmology analysis. 
The results of these cuts in the photometrically selected samples

re shown in Table 6 . We highlight that the JLA-like cuts reduce the
catter in the number of SNe, as can be seen by the reduced standard
eviation in the table when compared to the sample without JLA-like
uts. We obtain a Baseline DES-SNIa sample with JLA-like cuts of
484 photometrically classified SNe Ia. The missing spectroscopic
Ne Ia are found to be redder in average and at all redshifts with a
edian around 0.5. 
A summary of the selection criteria used to obtain this sample can

e found in Table 7 . General properties of these samples are further
tudied in Section 4.5 . 
NRAS 514, 5159–5177 (2022) 
.3 Contamination 

s shown in Vincenzi et al. ( 2022 ) and in Table 4 contamination
rom core-collapse and peculiar SNe in a SNN classified sample
ith quality cuts is expected to be less than 1 per cent . This estimate
as obtained using SN simulations containing various types of

ore-collapse and peculiar SNe. We inspect the Baseline DES-SNIa
ample with JLA-like cuts obtained in the previous section and do not
nd any spectroscopically identified core-collapse or peculiar SNe.
e note that spectroscopic samples are not complete and DES-SN

ollow-up preferentially targeted suspected Type Ia SNe. 
In this section, we explore a different type of potential con-

aminant, ‘out-of-distribution’ candidates such as AGNs and other
nknown transients. These candidates can be erroneously classified
ince they are not present in the simulated training sample and thus
e do not know how SNN classifies them. 
We find no spectroscopically identified AGN, SLSNe, or other SN

pectral types in our Baseline DES-SNIa sample but 5 candidates
ith host spectra showing AGN features. We find that DES16E2nb,
ES16X1ext, DES13X3dbe are displaced by more than 1 arcsec

rom the centre of the galaxy (additionally DES16E2nb is a spec-
roscopic Type Ia SN) and the other two candidates are displaced
etween 0.5 and 1 arcsec. At these separations, the light curves
rom these candidates are not dominated by the AGNs which we
onfirm by inspection of the light curves. Therefore we keep these
hotometrically selected SNe Ia in our Baseline DES-SNIa sample. 
We also perform visual inspection of the light-curves in the

aseline DES sample. We find three candidates that can be visually
agged as multiseason visually: DES16E2nb a spectroscopic SN Ia
ith close by AGN, DES16C3nd two SN Ia in a galaxy (Scolnic

t al. 2020 ), DES14E2rpm a spectroscopic SN Ia with a f ak e SN
nserted at the same coordinates (f ak es were inserted to e v aluate the
etection efficiency in DES-SN images, see Brout et al. 2019 ).We
eep all these candidates since they are real supernovae with f ak e or
ther SN light curves that do not overlap. 
Photometrically classified Type Ia SNe samples are expected to

av e some lev el of contamination from core-collapse and peculiar
Ne and possibly by other transients. For the Baseline DES-SNIa
ample in this work we find no clear evidence of contamination from
ore-collapse and peculiar SNe or long-term variables such as AGNs.

.4 Classification efficiency 

raditionally, in cosmology analyses using spectroscopically classi-
ed SNe samples, modelling selection effects is crucial to estimate
iases and systematic uncertainties. 
Selection effects arise from a combination of SN detection and

ther effects. They are usually modelled as an efficiency with respect
f an observed magnitude. For host galaxy selection, Vincenzi et al.
 2020 ) use the host galaxy r band magnitude, m 

host 
r . For spectroscopic

lassification, Smith et al. ( 2020 ) and Kessler et al. ( 2019b ) use the
odelled supernova peak magnitude in the i band, i peak computed

rom the best-fitting SALT2. 
To determine if there is a selection efficiency decrease due to

hotometric classification, we inspect the differences between the
eak observed magnitude in the i band of our Baseline DES-SNIa
ample compared to simulated SNe Ia in DES-SN 5-yr in Fig. 2 .
ur Baseline DES-SNIa photometric sample follows the expected
N Ia peak magnitude distribution from simulations but we find an
xcess on the maximum magnitude with a reduced χ2 

ν = 2 . 1. We do
ot find evidence for additional selection efficiency effects from the
hotometric classification procedure. 
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Table 7. Effect of the selection cuts on the candidate sample. We show results for the shallow and deep fields, as well as the total 
number. Note that some events belong to both shallow and deep fields due to field o v erlap. Columns show the cut, the number of selected 
candidates, the number of spectroscopic SN Ia in the sample and the Section where the sample is described. 

Cut Shallow Deep Total 
Selected spec Ia Selected spec Ia Selected spec Ia Section 

DES-SN 5-yr candidate sample 29 203 415 7500 93 31 636 415 2.1 
Multi-season 13 868 405 4428 88 14 070 405 2.2 
Redshifts in 0.05 < z < 1.3 6556 401 1812 85 6590 401 2.3.1 
SALT2 loose selection 2380 366 698 77 2381 366 2.3.1 
RNN > 0.5 ( Baseline DES-SNIa ) 1863 354 502 76 1863 354 4.1 
JLA-like ( Baseline DES-SNIa JLA ) 1484 321 408 73 1484 321 4.2 

Figure 2. Distributions of redshift, SALT2 x1, SALT2 c, and peak magnitude in i band i peak for our Baseline DES-SNIa sample from Section 4 for the shallow 

(yellow) and deep (maroon) fields. We show one simulated realization of DES-SN 5-yr sample. Poisson uncertainties are assumed. Both the simulation and data 
pass JLA-like cuts. The goodness of fit for each histogram is shown as the χ2 /number of bins on each plot. 
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.5 Colour and stretch evolution 

e study the properties of the Baseline DES-SNIa sample with JLA-
ike cuts and compare it to that expected from realistic simulations.
n Section 4.4 , we found that the effects of classification efficiency
re negligible, thus we do not correct for this efficiency and 
se simulations including only detection and host galaxy redshift 
fficiency introduced in Section 3.2 . 

Fig. 2 shows the redshift zHD and SALT2 fitted colour c ,
tretch x 1 and i peak distributions for the DES-SNIa 5-yr photometric 
ample classified using host galaxy redshifts. Fig. 2 also shows one 
ealization of a DES-SN 5-yr simulated SNe Ia. Uncertainties are 
alculated as the square-root of the number of candidates per bin. 
here is decent agreement between the simulation and data, although 

he reduced χ2 
ν are somewhat larger than expected from statistical 

uctuations. 
In Fig. 3 , we show the redshift evolution of our sample’s colour
nd stretch. Our baseline sample matches the trends expected from 

he simulation. Although there are some slight differences outside 
he 68 per cent simulation contour (equi v alent to 1 σ for a Gaussian
istribution) in particular for the shallow fields. 
These differences might result from the small number of can- 

idates (the last two redshift bins have only 24 and 16 SNe Ia),
naccounted classification contamination, unaccounted selection 
ffects or whether there is redshift evolution in the intrinsic SN
opulation (Scolnic & Kessler 2016 ; Nicolas et al. 2021 ; Popovic
t al. 2021 ) or the effect of dust needs to be introduced (Jha, Riess &
irshner 2007 ; Mandel, Narayan & Kirshner 2011 ; Mandel et al.
017 ; Brout & Scolnic 2021 ). The optimization of the simulation
nd systematics studies is outside the scope of this work. 

We now turn to select other photometric samples using the no v el
ayesian Neural Networks and explore their possible use. 
MNRAS 514, 5159–5177 (2022) 
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Figure 3. Redshift dependence of SALT2 c and x 1 for he Baseline DES-SNIa photometric sample and simulated SNe Ia for shallo w (yello w, left) and deep 
(right, maroon) fields using the DES-SN host galaxy spectroscopic efficiency (Vincenzi et al. 2020 ) both with JLA-like cuts. For the simulation, orange lines are 
rolling averages of the measured parameters, in grey 150 realizations of SNe Ia in the DES-SN 5-yr surv e y and in solid grey the area co v ered by the 68 per cent 
of these realizations. The mean and the standard deviation are shown for data using black markers. 
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 P H OTO M E T R I C A L LY  CLASSIFIED  SNE  IA  

ITH  BAYESIAN  N E U R A L  N E T WO R K S  

n this section we explore the use of BNNs for classification. While
he accuracy of these Networks is equi v alent to the baseline RNN
sed in Section 4 , BNNs also provide classification uncertainties. 
We first obtain photometric samples using two BNN schemes

MC and BBB, Section 5.1 ). We then e v aluate the classification
ncertainties from BNNs (Section 5.2 ), and summarize our findings
Section 5.3 ). 

.1 BNN photometric sample 

e apply our BNN trained models to candidates passing loose and
LA-like cuts introduced Sections 2.3.1 and 2.3.2 . This candidate
ample contains 1701 light curves that are then photometrically
lassified, as shown in Table 8. 

Using BNN probabilities, the average probability ensemble
ethod and a threshold of P larger than 0.5, we obtain about
 per cent more candidates than our Baseline DES-SNIa sample with
LA-like cuts in Table 6 for both BNN methods. The additional
NN selected supernovae, 52 MC and 51 BBB, have distributions of
olour, stretch, and redshifts that are representative of the Baseline
ES-SNIa sample selected using the RNN models (Section 4 ). We
nd that 1 and 6 SNe Ia in the Baseline DES-SNIa sample are not
elected by MC and BBB methods. These missing SNe Ia have red
olours and are at median redshifts close to 0.5. The BNN samples
re thus probing a similar parameter space to the Baseline DES-SNIa
ample. 

As in the previous sample, we find no spectroscopically identified
GNs, SLSNe, or other SN spectral types in our BNN photometric

ample. We find the same 5 candidates with nearby spectra showing
GN features which are kept due to their large enough separation
 0.5 arcsec, with the AGNs. In a cosmological sample, ho we ver,
NRAS 514, 5159–5177 (2022) 
hese candidates will be eliminated due to possible issues with the
easured photometry. 

.2 BNN uncertainties 

n this Section we try to interpret which types of uncertainties are
aptured in the outputs of the BNN model: aleatoric or epistemic .
NNs provide classification probability distributions that a priori

ndicate a confidence level on the prediction. These uncertainties are
hown in Fig. 1 for each classification step. Here, we only e v aluate
he final uncertainty (final time-step) for each event. 

In Fig. 4 , we show the distribution of classification uncertainties
or different samples. We compare the uncertainties derived from
he data and from simulations. For most samples, the simulation
nd data uncertainty distributions are similar. This indicates that the
imulations and data resemble closely after JLA-like cuts. Ho we ver,
 large difference is found where there is no selection cut which is
urther explored in Section 6.2 . 

Both BNN methods provide different order of magnitude of
ncertainties estimates and distribution of mean uncertainties (e.g.
BB is more clustered in low uncertainty regions), possibly due to

nitialization parameters or intrinsic properties of the method. Ac-
ounting for those differences is not straight-forward, see M ̈oller &
e Boissi ̀ere ( 2019 ) for a discussion on this topic. 
We compare BNN uncertainties as a function of light-curves

roperties in Fig. 5 . We find that MC dropout and BBB exhibit
ifferent behaviours for both data and simulations. 
We find both indications in fa v our ( + ) and against ( −) interpreta-

ion of classification uncertainties as a particular type: 

a. aleatoric uncertainty : linked to measurement uncertainties 
 + ) classification uncertainties are correlated to SNR in data. Bright
andidates and those with higher quality light curves have on average
maller classification uncertainties for both BNNs. 

art/stac1691_f3.eps
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Figure 4. Classification uncertainties obtained for BNN ensemble models. 
Columns indicate which sample is used. For each event in a given sample, 
we obtain their classification uncertainties from the two BNN methods, MC 

and BBB (orange and blue, respectively). We show median uncertainties for 
data in circles for: all DES-SN 5-yr data (no selection cuts), and Baseline 
BNN SNIa samples with JLA-like cuts. For comparison, we show in squares 
the median uncertainties obtained for the whole simulation (first column) and 
simulated photometric samples with JLA-like cuts (second column). For both 
the data and simulations, we show as errorbars the extent of the 68 per cent of 
the distribution. The different behaviour of simulated MC uncertainties and 
that of DES-SN 5-yr candidate sample is further studied in Fig. 7 . 
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 −) this correlation is not seen in the simulations for any of the
NNs. 
b. epistemic uncertainty : linked to training sets or model 

 + ) Large uncertainties are more pre v alent in classification proba-
ilities far from 1 (high probability of being a SN Ia) and 0 (low
robability of being SN Ia) for both simulations and DES-SN 5-yr
ata. 
 −) candidates that fulfil selection cuts should more closely resemble 
imulated SNe Ia, thus it is puzzling the increase on median 
ncertainty when applying cuts in particular for the MC method 
see Fig. 4 ). 

These various behaviour highlights the challenges on quantifying 
ncertainties in complex problems such as astronomical data clas- 
ification. In Appendix A , we explore further correlations between 
lassification uncertainties and SALT2 fit light-curve properties. 

We continue exploring the interpretability of the BNNs uncer- 
ainties by adding a threshold on the uncertainties for SNIa sample 
election, as in M ̈oller & de Boissi ̀ere ( 2019 ) and more recently
n Butter et al. ( 2022 ). We note that establishing a threshold for
ncertainties is not straight-forward. While the whole probability 
istribution has a calibration that can be verified using diagnostic 
s reliability diagrams (DeGroot & Fienberg 1983 ; M ̈oller & de
oissi ̀ere 2019 ), the probability uncertainties do not. We chose 

o eliminate candidates with the highest uncertainties (eliminating 
andidates that are outside of 99 percentile of the uncertainty 
istribution). This cut rejects candidates that were in the RNN 

ample: 12 for the MC model and 45 for BBB. These candidates are
ot found to be distributed preferentially in a c , x 1 , or redshift. We
isually inspect these light-curves and found that a large proportion 
ave photometry that are outliers. 

.3 BNN photometric sample contribution 

he SNIa samples obtained using BNN methods are found to be 
imilar to the one provided by our Baseline DES-SNIa sample 
n Section 4 . We e v aluate BNN uncertainties and sho w that they
re consistent between simulations and data in average after JLA- 
ike cuts, showing a good agreement between data and simulation 
redictions. Ho we ver, BNN uncertainties are difficult to interpret and
ssess quantitatively (e.g. assigning an uncertainty threshold). 

We find that uncertainties exhibit different behaviours in the two 
NN methods and between data and simulations. While the higher 
ncertainties in the MC BNN method for the data could point
owards the presence of out-of-distribution candidates, the evidence 
s not conclusive and is not seen in the BBB method. We will
urther explore the possible contribution of BNNs in photometric 
lassification without any selection cuts in Section 6.2 . 

Cuts on uncertainty values potentially impro v e our photometric 
NIa samples by rejecting candidates with photometry that contains 
utliers. These is a promising avenue shown to improve the quality
f samples, both in quality of the data and rejection of out-of-
istribution events, in previous work using simulations M ̈oller & 

e Boissi ̀ere ( 2019 ) and more recently with astronomical data in
utter et al. ( 2022 ). 

 F RO M  D E S  TO  RU BIN  O B S E RVATO RY  LSST  

or the LSST survey, where up 10 7 SNe will be detected over 10 yr,
hotometric classification will become increasingly important. 
In this work, we have presented different methods for photometric 

lassification with redshift information. We compare the samples 
btained with these different methods in Section 6.1 and explore 
ossible applications of Bayesian Neural Networks in future surv e ys,
uch as LSST, in Section 6.2 . 

.1 DES-SNIa photometric samples 

he DES-SN 5-yr data contains thousands of potential SNe Ia. We
how in Table 7 the different steps used in this work to obtain our
aseline DES-SNIa JLA sample from the DES-SN 5-yr candidate 

ample. Cuts applied before photometric classification reduce the 
andidate sample by 90 per cent. Photometric classification and JLA- 
ike cuts refine the sample with a small 20 per cent reduction. While
his reduction is small, it reduces contamination from ∼ 10 per cent 
o below 1.4 per cent, as shown in Vincenzi et al. ( 2022 ) and in
ection 4 . 
In addition to our Baseline DES-SNIa sample classified using 

NN probabilities, we hav e e xplored identifying samples with 
ayesian Neural Networks. We compare these samples with with 

he preliminary DES-SN 5-yr spectroscopically classified SNe Ia 
ample in Fig. 6 . As expected, we find that photometric samples
sing RNNs or BNNs provide larger numbers of SNe Ia than the
pectroscopic sample, probing a larger parameter space. We do not 
nd a substantial difference in the parameter distributions between 
ifferent photometric classification methods. 
We highlight that the photometric samples peak at fainter mag- 

itudes and higher redshifts than the preliminary DES-SN 5-year 
pectroscopic SNe Ia sample.This has the potential to reduce selec- 
ion biases and opens the possibility of stronger statistical analyses 
ith the large numbers of SNe Ia. This will also be true for the

mmense SN samples obtained with LSST. 

.2 Bayesian Neural Networks as a proxy 

ntroduced as a promising method to quantify model uncertainties, 
NNs have not yet been widely used in classification tasks. In
ection 5 , we have shown the difficulties for uncertainty interpre-

ation given the different uncertainty values for the BNN methods. 
MNRAS 514, 5159–5177 (2022) 
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Figure 5. Distribution of classification uncertainty for Baseline MC dropout (upper row) and Bayes by Backprop technique (lower row). We show uncertainties 
as a function of classification probability for all fields (left), SNR of the third brightest point in the light curve (SNRMAX3, columns 2 and 3), and redshift 
(zHD, columns 4 and 5). Coloured lines show the median of the data with solid blue representing all fields, dotted yellow representing shallow fields, and 
dotted–dashed red representing the deep fields. Simulations are shown by the grey-dashed lines. Shaded regions show the 68 per cent percentile. 

Table 8. Photometric classification of light-curves with Bayesian Neural 
Networks. Columns indicate: the number of photometrically selected events 
and the number of spectroscopic SNe Ia contained in that sample. We show 

these samples with JLA-like SALT2 cuts as in Section 4.2 and when adding 
a cut in the BNN classification uncertainty. 

+ JLA-like + JLA-like + unc 
Method photo Ia spec Ia photo Ia spec Ia 

MC dropout 

Single model 1532 + 7 −4 335 + 1 −1 1513 + 6 −3 333 + 0 −0 

Ensemble (prob. av.) 1535 + 3 −2 336 + 0 −0 1520 + 2 −1 333 + 0 −0 

Baseline MC sample 1535 336 1520 333 

BBB 

Single model 1526 + 8 −6 334 + 1 −0 1487 + 5 −2 328 + 2 −0 

Ensemble (prob. av.) 1528 + 1 −1 335 + 1 −0 1483 + 0 −0 324 + 1 −0 

Baseline BBB 

sample 
1529 336 1483 324 
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o we ver, a potential use could be rejecting candidates with large
ncertainties, as they sometimes have light curves with photometry
utliers. 
Here, we explore other possible uses of BNN uncertainties, using

amples that have not been constrained with selection cuts. We aim
o answer two questions: (i) can BNN uncertainties be used as an
ndicator of the representativity of the training set for a given data
et? (ii) can BNN uncertainties replace selection cuts? We address
hese questions in Sections 6.2.1 and 6.2.2 , respectively. The former
ould be useful to choose the set of SED templates to simulate a
urv e y. As some selection cuts require feature extraction, the latter
ould be valuable to a v oid this time-consuming process by using
nstead classification uncertainties from non-parametric classifiers
s SNN . 
NRAS 514, 5159–5177 (2022) 
.2.1 BNNs uncertainties versus simulation r epr esentativity 

irst, we use simulations to assess the expected behaviour of
ncertainties when training sets are not representative of the testing
ata. 
We examine how the uncertainties change when using the trained
odel in Section 3.6.2 and applied to individual simulations with

ormal Type Ia supernovae and core-collapse SNe generated with
he V19, SPCC and J17 templates. We expect that the trained model
s representative of the V19 simulation. This will not be true for J17
nd SPCC. 

We find that both the single seed and ensemble methods have
ccuracies which decrease for J17 and SPCC simulations by

0 . 5 per cent for both types of BNNs. We see an increase in
he mean model uncertainty on classified light curves generated
ith J17 and SPCC, ho we ver this change is within uncertain-

ies. For both BNNs we find a longer and more significant
ail for the uncertainty distributions when classifying J17 and
PCC simulations (ending at ∼0.4–0.43 compared to ∼0.35 for
19). 
Next, we compare uncertainties when classifying DES-SN 5-yr

ata with independent BNN models trained with the V19, J17, and
PCC simulations. We find that the mean model uncertainty increases
or SPCC and J17 classification models for MC dropout but not for
BB SPCC model but again within uncertainties. The tail of the
ncertainties varies between ∼0.40 and 0.47 for all classification
odels. We see a longer tail for the uncertainty distributions for
BB but not for MC SPCC classification. 
In summary, we do not find strong evidence of BNN uncertain-

ies being sensitive to models trained with different core-collapse
emplates. There is a small but inconclusive tendency to increase
ncertainties for J17 and SPCC in simulations. While these templates
re different, the changes may be too small to be captured by BNN
ncertainties. 
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Figure 6. Distributions of redshift, SALT2 c, x1 and peak magnitude in the i band i peak , for the samples with JLA cuts: preliminary DES-SN 5-yr SNIa 
spectroscopically classified (maroon), Baseline DES-SNIa (RNN) (blue) and Baseline MC and BBB SNIa samples, purple and orange, respectively. We note 
that the MC and BBB samples distributions almost completely o v erlap one other. 
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.2.2 BNN uncertainties as a proxy for selection cuts? 

e further study the distribution of classification uncertainties for 
amples selected with different cuts. 

First, we check the behaviour of uncertainties with simulations. 
ncertainties are distributed with a peak at low values and a 
ecreasing long tail. We find that as the sample is refined through
uts in redshift, SALT2 convergence, and others, the maximum 

ncertainty is reduced. For example, if the simulated sample passes 
oose selection cuts and then a JLA-like cut is applied, the maximum
ncertainty in the distribution reduces from 0.37 to 0.26 in MC
ropout and from 0.34 to 0.25 in BBB. We do not find a significant
hange in the median distribution since it is dominated by small
ncertainty values. 
For the DES-SN 5-yr data we show the distribution of classification

ncertainties in Fig. 7 with different selection cuts (see Section 2.3.1 ).
s selection cuts are applied, the maximum uncertainties reduces for 
oth methods as in simulations. 
We highlight an interesting behaviour seen for MC dropout 

lassification uncertainties. We find that this method assigns high 
ncertainties to candidates that do not have a secured redshift and 
andidates that are filtered with the multiseason cut. While the model 
as trained to use host galaxy redshifts, it can provide a classification

or objects using a default value provided, here an assigned redshift of
9. While these candidates are clearly outliers (the redshift provided 

or classification is −9) and can be eliminated using simple cuts, this
ould indicate that MC dropout uncertainties are indicative of out-of- 
istribution candidates. Importantly, many of these high-uncertainty 
andidates are classified with probability larger than 0.5 which, 
ithout selection cuts, would end up in our photometric sample 

f no selection cuts were applied. We do not see this behaviour in the
BB model. 
The multiseason veto and redshift availability cut effectively 

liminates the light curves producing the high-uncertainty peak for 
C dropout. After these cuts, the most impactful cut for higher 

ncertainties is linked to the SALT and JLA quality cuts. This is not
urprising since these cuts restrict the SN properties range to the ones
or normal SNe Ia. 

In summary, we find that BNN methods behave differently when 
lassifying out-of-distribution candidates defined as light curves 
ithout redshift. Interestingly, the high-uncertainty peak found for 

he MC dropout method in Fig. 7 reflects a possible interpretability 
f these uncertainties. This interpretability could help to quickly 
dentify the presence of anomalies in the data set which were not in
he training sets of the model. 
d
For current surveys, our candidate samples are small enough to 
asily identify out-of-distribution events using feature distributions. 
o we ver, for future surveys such as Rubin LSST this may pro v e
if ficult gi v en the e xpected detection of 10 million transient can-
idates per night. Here we find that BNN uncertainties from MC
ropout scheme can provide an indication whether there are out-of- 
istribution events in a given candidate sample and further selection 
uts may be required. 

 C O N C L U S I O N S  

n this work we train Type Ia versus non Ia classification models using
arge realistic DES-like simulations and apply them to DES-SN 5-yr 
ata. 
We introduce pre-processing of DES-SN light curves for accurate 

hotometric classification. This includes selection of light curve 
ime-span, photometry quality cuts, and selection cuts to limit out- 
f-distribution candidates that are not included in the training set 
e.g. AGNs). 

We present samples classified with host galaxy redshifts using 
NN Recurrent Neural Networks and explore the use of Bayesian 
eural Networks. We introduce the use of ensemble predictions for 
N classification. We find that selecting SNe using an ensemble of
odels is more robust and stable than any single model. 
Using host galaxy spectroscopic redshifts, we select a Baseline 

ES-SNIa sample of 1863 photometrically identified Type Ia SNe. 
his sample can be used for astrophysical studies of the properties of
Ne Ia and their environments. For cosmology, we apply JLA-like 
uts and select 1484 photometrically classified SNe Ia. This sample is
ore than three times larger than the DES-SN 5-yr spectroscopically 

onfirmed SN Ia sample and co v ers a larger redshift range. Most of
he spectroscopically identified SNe Ia in DES-SN are included in 
his photometric sample. These 1484 photometrically identified SNe 
a are currently the largest single-surv e y high-quality SN Ia sample
nd is being used for studies such as rates and SNe Ia host-galaxy
roperties. 
We find that the properties of the SNe Ia in our Baseline DES-

a sample are reproduced in the simulations. We anticipate that 
ith further refinements (impro v ed host galaxy libraries and more

ccurate dust models), the agreement between the simulations and 
he data will impro v e. 

Additionally, we explore the use of uncertainties provided by 
ayesian Neural Networks for identifying out-of-distribution can- 
idates and defining representative training sets. We highlight some 
MNRAS 514, 5159–5177 (2022) 
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M

Figure 7. Uncertainties obtained with the two BNN methods (MC and BBB) for the DES-SN 5-yr candidate sample, through different selection cuts: multiseason 
filtering, redshifts, SALT2 convergence and JLA-like cuts; and our photometrically identified sample (filled histograms). We show the number of events in the 
y -axis in log scale. MC dropout uncertainties seem to identify those out-of-distribution candidates that have no redshift information (black line) or are filtered 
multiseason events. This secondary peak drives the mean uncertainty behaviour for MC dropout in Fig. 4 . 

o  

u  

t  

f  

s  

o
 

o  

d  

t  

f  

p  

a  

S
 

b  

s  

c  

p  

t  

i  

i  

a  

F  

a

A

A  

e  

b  

F
 

r  

D  

M  

o  

F  

i  

t  

C  

O  

a  

e  

E  

C  

e  

o  

I  

i  

t  

t  

B  

T  

t  

t  

F  

t  

E  

N  

t  

N  

o
C

 

O  

P  

f  

w
 

t  

a  

a  

P  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/514/4/5159/6611691 by U
C

L Library Services user on 27 July 2022
f the BNN pitfalls and the difficulty of comparing classification
ncertainties between variational inference methods. We find that
he MC dropout BNN provides potentially interpretable uncertainties
or out-of-distribution event detection and improving the photometric
ample. This work is the first known application of two BNN methods
n real astrophysical data for classification tasks. 
This work is part of the DES-SN 5-yr cosmology analysis. We have

ptimized simulations, the SNN architecture, as well as developed
ata pre-processing methods. These methods are a revision from
hose presented in Vincenzi et al. ( 2022 ) where contamination is
ound to be less than 1.4 per cent for photometrically classified sam-
les. We find that photometric quality is key for robust classification,
nd an impro v ed sample can be expected from using high-quality
cene Modelling Photometry (Brout et al. 2019 ). 
F or future surv e ys such as LSST, photometric classification will

e key to fully harness the power of these surv e ys. Photometric clas-
ification with host redshift information will enable using large, low-
ontamination, high-quality samples for measuring cosmological
arameters. Potentially, MC BNN could provide useful information
o filter transient samples in large surv e ys. Extensions to this work
nclude photometric classification without redshift, which will assist
n the allocation of follow-up resources for host galaxy redshift
cquisition (such as Time-Domain Extragalactic Surv e y TiDES;
rohmaier et al. in preparation; Swann et al. 2019 ) and for other
strophysical studies. 
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PPENDIX  A :  UNCERTAINTIES  A N D  FITTED  

A R A M E T E R S  

n Section 5.2 , we explored the interpretability of BNN uncertainties.
e concluded that this interpretation was not straight forward from

ur results. Here, we extend this discussion by exploring possible
orrelations with other light-curve properties derived from a SALT2
t in Fig. A1 . 
In general, we find that uncertainties tend to be larger for the data

hen compared with simulations. The uncertainties in BBB method
aries more with the parameters. 

We note that the classification uncertainties are large for red and
igh stretch SNe in the DES 5-yr sample. The median classification
robability is also lower for these candidates. If the uncertainties are
pistemic due to a smaller training set, then they would be large for
he ends of the normal SNe Ia SALT2 parameter distributions since 
NRAS 514, 5159–5177 (2022) 

igure A1. Distribution of classification uncertainties for DES 5-yr data (maroo
ackprop. We show uncertainties as a function of SNR of the third brightest point
edian and 68 percentile are shown as a dashed line and filled coloured area. Data

in and a maroon coloured area representing the 68 per cent percentile of the distri
raining sets have fewer such candidates. Ho we ver, we do not
nd this behaviour. Another possible effect could be that bluer SNe
a are more easily standardizable as previous literature suggests
nd thus their classification is more robust (Brout & Scolnic 2021 ;
elsey et al. 2021 ). However, as this tendency is only observed in
ata and not simulations, no conclusion can be confidently drawn. 
The peak magnitude in i -band behaviour in data agrees with that

f the SNR of the light curve. Brighter candidates are classified with
igher confidence than fainter ones. Ho we ver, as in the previous
ection we do not see such a behaviour in the simulation. 
While the correlation between supernova properties and classifi-

ation uncertainties are interesting to e xplore, the y are difficult to
nterpret since multiple effects could be contributing to the uncer-
ainties. Tests based on simple physical systems could provide hints
owards further interpretability, such as recent work by Caldeira &
ord ( 2020 ). 

PPENDI X  B:  D E S  5 - Y R  P H OTO M E T R I C A L LY  

ELECTED  SNE  IA  

 table with photometrically classified SNe Ia from all selection
ethods with their respective probabilities for a subsample of DES

-yr data is provided at https:// doi.org/ 10.5281/ zenodo.5904368 .
amples are selected using P larger than 0.5 for each method plus
election cuts. 
n) and simulation (grey) using the two BNNs, MC dropout and Bayes by 
 in the light curve, redshift, colour, stretch and peak i -band magnitude. The 
 is shown as diamonds coloured by the median probability in that parameter 
bution. 
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