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Abstract

Bivariate survival outcomes arise frequently in applied studies where the occurrence of two events of interest are

associated. Often the exact event times are unknown due to censoring which can manifest in various forms. A general

and flexible copula regression model that can handle bivariate survival data subject to various censoring mechanisms,

which include a mixture of uncensored, left-, right-, and interval-censored data, is proposed. The proposal permits to

specify all model parameters as flexible functions of covariate effects, flexibly model the baseline survival functions

by means of monotonic P-splines, characterise the marginals via transformations of the survival functions which

yield, e.g., the proportional hazards and odds models as special cases, and model the dependence between events

using a wide variety of copulae. The algorithm is based on a computationally efficient and stable penalised maximum

likelihood estimation approach with integrated automatic multiple smoothing parameter selection. The proposed

model is evaluated in a simulation study and illustrated using data from the Age-Related Eye Disease Study. The

modelling framework has been incorporated in the newly-revised R package GJRM, hence allowing any user to fit the

desired model(s) and produce easy-to-interpret numerical and visual summaries.

Keywords: Additive predictor, Bivariate survival data, Copula, Link function, Mixed censoring scheme,

Simultaneous penalised parameter estimation.

1. Introduction

Bivariate survival outcomes arise frequently in many research areas such as health and epidemiology. For example,

bivariate survival data are often used in clinical trials studying diseases concerning paired organs, where the outcomes

of interest are measured on the same individual and as a consequence are associated. The main feature of survival

data is censoring. For instance, bivariate interval censoring occurs when the events are not precisely observed due to5

intermittent assessment times and are indeed only known to belong to intervals. When individuals do not experience

the two events at their last assessment times, the event statuses are undefined (bivariate right censoring). If some
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individuals have already experienced both events at the times they enter the study then the data are bivariate left-

censored. Sometimes various types of censoring arise simultaneously. This would be the case when, e.g., a disease

occurs in one of the paired organs between two consecutive visits and the condition does not occur in the other organ10

by the end of the study. The aim of this paper is to introduce a flexible regression modelling framework that can

handle bivariate survival data under any censoring mechanisms.

Several approaches for modelling bivariate censored data have been proposed. The literature is vast and here

we mention a handful of works. Some of them are based on the frailty technique (e.g., Chen et al., 2009, 2014;

Martins et al., 2019; Wen & Chen, 2013; Wang et al., 2015; Zhou et al., 2017; Zeng et al., 2017). Others, based on15

copule and hence more relevant to this paper, are Barthel et al. (2018), Cook & Tolusso (2009), Hu et al. (2017),

Kwon et al. (2021), Lo et al. (2020), Marra & Radice (2020), Romeo et al. (2018), Sujica & Van Keilegom (2018),

Sun & Ding (2021a) and Wang et al. (2008). These works are not as general and versatile as our proposal. In fact,

our modelling framework allows for: a) any bivariate combination of censoring types, whether left-, right-, interval-,

or non-censored; b) the exploration of a wide array of dependence structures via copulae; c) all model parameters20

to be specified as functions of flexible covariate effects via the penalised regression spline methodology (e.g., Wood,

2017); d) the margins of the copula to be modeled via transformations of the survival functions, which give rise to

link-based models with the proportional hazards and odds models being particular cases (e.g., Liu et al., 2018); e)

the baseline survival functions to be modeled by means of monotonic P-splines which are theoretically advantageous

and computationally tractable (e.g., Pya & Wood, 2015). There are currently no such models (and related fitting25

procedures) available in the literature nor software implementations.

Despite the proposed model is complex in that it allows for many layers of structure, there is no price to pay

in terms of usability and interpretability. In fact, the model has been incorporated in the newly-revised software

package GJRM (Marra & Radice, 2022), written for the programming language R (R Development Core Team, 2022),

which significantly eases the use of the framework. An additional benefit is that post estimation functions have been30

extended and integrated within GJRM to allow any user to produce interpretable results. Parameter estimation relies on

an extension of the stable and fast algorithm presented in Marra & Radice (2020) which is based on a simultaneous

penalised maximum likelihood approach with integrated automatic multiple smoothing parameter selection. The

proposed model together with fast and reliable software implementation represents a significant advance in modelling

bivariate survival data. An interesting feature of the proposal is that it is very flexible and at the same time parametric.35

Sir David R. Cox, among others, has encouraged the broader use of parametric models for empirical modelling (e.g.,

Reid, 1994). In that spirit, our modelling framework enables a large amount of exploration via many and diverse

functional structures which may help to uncover new patterns and trends in the data.

The potential of the approach is illustrated via a simulation study as well as using data from the Age-Related

Eye Disease Study (AREDS), a multi-center randomised clinical trial exploring the development and progression of40

age-related macular degeneration (AMD), sponsored by the National Eye Institute (Group, 1999). The analysis aims
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to quantify the effect of clinical risk factors on the joint risks of AMD progression as well as to predict the progression

profiles of AMD patients with different characteristics.

The article is organised as follows. Section 2 discusses various details of the proposed model. Section 3 introduces

the model log-likelihood and explains how parameter estimation, whereas Section 4 shows some inferential results. In45

Section 5, data from the AREDS are analysed and the main findings presented. Section 6 concludes the paper with a

discussion. The On-line Supplementary Material provides more details on the log-likelihood construction, reports the

analytical expressions for the score and Hessian matrix, discusses the findings of a simulation study, and illustrates

the use of GJRM on the AREDS data.

2. The Model50

Let us consider the pair of survival times (T1i, T2i), a vector of covariates xi, for i = 1, 2, . . . , n where n represents

the sample size, and a generic parameter vector δ ∈ R
W of dimension W . We assume that T1i and T2i have marginal

survival functions written as Sv(tvi|xvi;βv) = P (Tvi > tvi|xvi;βv) ∈ (0, 1), for v = 1, 2, and a joint survival

function expressed as S(t1i, t2i|xi; δ) = P (T1i > t1i, T2i > t2i|xi; δ). The survival times are linked via a copula as

follows

S(t1i, t2i|xi; δ) = C (S1(t1i|x1i;β1), S2(t2i|x2i;β2);m {η3i(x3i;β3)}) ,

where δT = (βT

1 ,β
T

2 ,β
T

3 ), x1i, x2i and x3i are vectors of covariates, which can be sub-vectors of or equal to xi, with

associated coefficient vectors β1 ∈ R
W1 , β2 ∈ R

W2 and β3 ∈ R
W3 , W = W1 + W2 + W3, C : (0, 1)2 → (0, 1)

is a uniquely defined 2-dimensional copula function with coefficient θi = m {η3i(x3i;β3)} modelling the potentially

varying dependence of (T1i, T2i) across observations, η3i(x3i;β3) ∈ R is a predictor which includes generic addi-

tive covariate effects, and m is a monotonic and differentiable one-to-one transformation function ensuring that the55

restriction on the space of the parameter being considered is not violated. A similar specification has been previously

adopted; see, e.g., Emura et al. (2021), Geerdens et al. (2018) and Marra & Radice (2020). The copulae implemented

in GJRM are reported in Table 1, which also shows the relation between θ and the Kendall’s τ ∈ [−1, 1]. If a cop-

ula can only account for positive dependence (e.g., Gumbel) then its counter-clockwise rotated versions can also be

obtained (Brechmann & Schepsmeier, 2013).60

The marginal survival functions can be written as

gv [S(tvi|xvi;β)] = ηvi(tvi, xvi; fv(βv)), (1)

where gv : (0, 1) → R is a monotone and twice continuously differentiable link function with bounded derivatives,

ηvi(tvi, xvi; fv(βv)) ∈ R is an additive predictor which models the baseline hazard and several types of covariate

effects, and fv(βv) has the role of imposing a monotonicity constraint when evaluating the baseline function of

time contained in the additive predictor (see the next section). Equation (1) can also be written as S(tvi|xvi;βv) =
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Table 1: Definition of the copulae implemented in the R package GJRM, with corresponding parameter range of association parameter θ, one-to-

one transformation function of θ, relation between Kendall’s τ and θ, and range of τ . Φ2(·, ·; θ) denotes the cumulative distribution function

(cdf) of the standard bivariate normal distribution with correlation coefficient θ, and Φ(·) the cdf of the univariate standard normal distribution.

t2,ζ(·, ·; ζ, θ) indicates the cdf of the standard bivariate Student-t distribution with correlation θ and fixed ζ ∈ (2,∞) degrees of freedom, and

tζ(·) denotes the cdf of the univariate Student-t distribution with ζ degrees of freedom. A(t) = 1 −
[

t−θ + (1− t)−θ
]

−
1
θ is the Pickands

dependence function of the Galambos copula. D1(θ) = 1
θ

∫ θ
0

t
exp(t)−1

dt is the Debye function and D2(θ) =
∫ 1
0 t log(t)(1 − t)

2(1−θ)
θ dt.

Quantities Q and R are given by 1+(θ−1)(u1+u2) and Q2−4θ(θ−1)u1u2, respectively. The Kendall’s τ for "PL" is computed numerically

since no analytical expression is available. Argument BivD of gjrm() in GJRM allows the user to employ the desired copula and can be set to any

of the values within brackets next to the copula names in the first column; for example, BivD = "C0". For Clayton, Galambos, Gumbel and Joe,

the number after the capital letter indicates the degree of rotation required: the possible values are 0, 90, 180 and 270. The rotations are defined

as C90(u1, u2; θ) = u2 −C(1−u1, u2), C180(u1, u2; θ) = u1 +u2 −1+C(1−u1, 1−u2) and C270(u1, u2; θ) = u1 −C(u1, 1−u2).

Copula C(u1, u2; θ) Range of θ Transf.of θ Kendall’s τ Range of τ

AMH ("AMH")
u1u2

1−θ(1−u1)(1−u2)
[−1, 1] tanh−1(θ)

− 2
3θ2

{

θ + (1− θ)2

log(1− θ)}+ 1
[−0.1817, 1/3]

Clayton ("C0")
(

u−θ
1 + u−θ

2 − 1
)

−1/θ
(0,∞) log(θ) θ

θ+2
(0, 1]

FGM ("FGM") u1u2 {1 + θ(1− u1)(1− u2)} [−1, 1] tanh−1(θ) 2
9
θ [−2/9, 2/9]

Frank ("F")
−θ−1 log {1 + (exp {−θu1} − 1)
(exp {−θu2} − 1)/(exp {−θ} − 1)} R\ {0} − 1− 4

θ
[1−D1(θ)] (−1, 1)\ {0}

Galambos ("GAL")
u1u2 exp

[{

(− log u1)−θ

+(− log u2)−θ
}

−1/θ
] (0,∞) log(θ)

∫ 1
0

t(1−t)
A(t)

A′′(t)dt (0, 1]

Gaussian ("N") Φ2

(

Φ−1(u1),Φ−1(u2); θ
)

[−1, 1] tanh−1(θ) 2
π
arcsin(θ) [−1, 1]

Gumbel ("G0")
exp

[

−
{

(− log u1)θ

+(− log u2)θ
}1/θ

] [1,∞) log(θ − 1) 1− 1
θ

[0, 1]

Joe ("J0")
1−

{

(1− u1)θ + (1− u2)θ

−(1− u1)θ(1− u2)θ
}1/θ (1,∞) log(θ − 1) 1 + 4

θ2
D2(θ) (0, 1]

Plackett ("PL")
(

Q−
√
R
)

/ {2(θ − 1)} (0,∞) log(θ) − (−1, 1]

Student’s t ("T") t2,ζ

(

t−1
ζ (u1), t

−1
ζ (u2); ζ, θ

)

[−1, 1] tanh−1(θ) 2
π
arcsin(θ) [−1, 1]

Gv {ηvi(tvi, xvi; fv(βv))}, where Gv is an inverse link function. The cumulative hazard and hazard functions are

defined as Hv(tvi|xvi;βv) = − log [Gv {ηvi(tvi, xvi; fv(βv))}], and

hv(tvi|xvi;βv) = −
G′

v {ηvi(tvi, xvi; fv(βv))}

Gv {ηvi(tvi, xvi; f(βv))}

∂ηvi(tvi, xvi; fv(βv))

∂tvi
, (2)

respectively, where G′

v {ηvi(tvi, xvi; fv(βv))} = ∂Gv {ηvi(tvi, xvi; fv(βv))} /∂ηvi(tvi, xvi; fv(βv)). Table 2 dis-

plays the functions g, G and G′ implemented in GJRM.

Table 2: Link functions implemented in GJRM. Φ and φ are the cumulative distribution and density functions of a univariate standard normal

distribution.
Model Link g(S) Inverse link g−1(η) = G(η) G′(η)
Prop. hazards ("PH") log {− log(S)} exp {− exp(η)} −G(η) exp(η)

Prop. odds ("PO") − log
(

S
1−S

)

exp(−η)
1+exp(−η)

−G2(η) exp(−η)

probit ("probit") −Φ−1(S) Φ(−η) −φ(−η)

2.1. Predictor specification

The key difference between ηvi(tvi, xvi; fv(βv)), for v = 1, 2, and η3i(x3i;β3), where in the latter f3 is the

identity vector function, is that the two former predictors must include smooth functions of times tvi which can65

be treated as regressors. In fact, the construction of the design matrices for the three additive predictors follows

the same philosophy. We, therefore, consider a generic ηνi (ν = 1, 2, 3), where the dependence on the covariates
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and parameters is momentarily dropped, an overall covariate vector zνi containing xνi and tνi when ν = 1, 2, and

z3i = x3i. For simplicity, the dimensions of z1i and z2i are assumed to be W1 and W2.

An additive predictor can be defined as

ηνi = βν0 +

Kν
∑

kν=1

sνkν
(zνkνi), i = 1, . . . , n, (3)

where βν0 ∈ R is an overall intercept, zνkνi denotes the kthν sub-vector of the complete vector zνi and the Kν

functions sνkν
(zνkν i) represent generic effects which are chosen according to the type of covariate(s) considered.

Each sνkν
(zνkνi) can be represented as a linear combination of Jνkν

basis functions bνkνjνkν
(zνkνi) and regression

coefficients fνkνjνkν
(βνkνjνkν

) ∈ R, that is (e.g., Wood, 2017)

Jνkν
∑

jνkν
=1

fνkνjνkν
(βνkνjνkν

)bνkνjνkν
(zνkν i). (4)

The above formulation implies that the vector of evaluations {sνkν
(zνkν1), . . . , sνkν

(zνkνn)}
T

can be written as

Zνkν
fνkν

(βνkν
) with fνkν

(βνkν
) = (fνkν1(βνkν1), . . . , fνkνJνkν

(βνkνJνkν
))T and design matrix Zνkν

[i, jνkν
] =

bνkνjνkν
(zνkνi). Therefore, equation (3) can be written as

ην = βν01n + Zν1fν1(βν1) + . . .+ ZνKν
fνKν

(βνKν
), (5)

where 1n is an n-dimensional vector made up of ones, or in a more compact way as ην = Zνfν(βν), where Zν =70

(1n,Zν1, . . . ,ZνKν
) and fν(βν) = (βν0, fν1(βν1)

T, . . . , fνKν
(βT

νKν
))T. Note that smooth functions are subject to

centering identifiability constraints (Wood, 2017). Each βνk has an associated quadratic penalty λνkν
βT

νkν
Dνkν

βνkν

which has to be used during model fitting to enforce specific properties on the kthν function, such as smoothness.

Smoothing parameter λνkν
∈ [0,∞) controls the trade-off between fit and smoothness, whereas Dνkν

only depends

on the choice of the basis functions. The overall penalty can be defined as βT

ν Dνβν , where Dν = diag(0, λν1Dν1, . . . ,75

λνKν
DνKν). The above formulation allows for many types of flexible covariate effects (e.g., non-linear, random,

spatial, interactions). In fact, several definitions of basis functions and penalty terms are supported in GJRM which

are based on Wood (2017). The time effects are instead modelled using the monotonic P-spline approach which

will guarantee that the estimated survival functions are monotonically decreasing or equivalently that the hazard

functions are positive. Specifically, using a slightly simplified notation, let sv(tvi) =
∑Jv

jv=1 fvjv (βvjv )bvjv (tvi),80

where the bvjv are B-spline basis functions of at least second order built over the interval [a, b], based on equally

spaced knots, and the fvjv (βvjv ) are spline coefficients. A sufficient condition for s′v(tvi) ≥ 0 over [a, b] is that

fvjv (βvjv ) ≥ fvjv (βvjv−1), ∀j (e.g., Leitenstorfer & Tutz, 2006). Such condition can be imposed by re-parametrising

the spline coefficient vector so that fv(βv) = Σv {βv1, exp(βv2), . . . , exp(βvJv
)}T and Σv[ιv1, ιv2] = 0 if ιv1 < ιv2
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and Σv[ιv1, ιv2] = 1 if ιv1 ≥ ιv2, with ιv1 and ιv2 denoting the row and column entries of the respective matrix.85

When setting up the penalty term we penalise the squared differences between adjacent βvjv , starting from βv2, using

Dv = D∗T

v D∗

v where D∗

v is a (Jv − 2)× Jv matrix made up of zeros except that D∗

v[ιv, ιv + 1] = −D∗

v[ιv, ιv + 2] = 1

for ιv = 1, ..., Jv−2 (Pya & Wood, 2015). Matrix Σv can be absorbed into Zv . An alternative approach to modelling

baseline hazards in the copula context is provided by Kwon et al. (2021) who adopted M-splines.

2.2. Remarks90

When working with interval-censored observations, the model set up needs to account for the information con-

tained in the lower and upper bounds of the censoring intervals. Therefore, for each margin, two distinct design

matrices (based on the two bounds) and hence additive predictors are required. The covariates and parameter vector

βv used in their construction will be the same.

In equation (2), ∂ηvi(tvi, xvi; fv(βv))/∂tvi is required. Based on the results of the previous paragraph,95

ηvi(tvi, xvi; fv(βv)) can be written as Zvi(tvi, xvi)
Tfv(βv) which means that the quantity of interest can be calcu-

lated as lim
ε→0

{

Zvi(tvi+ε,xvi)−Zvi(tvi−ε,xvi)
2ε

}T

fv(βv) = Z′T

vifv(βv), where Z′

vi can be conveniently obtained by finite

differencing.

Formulation (4) requires a value for Jνkν
. This is especially relevant when modelling the effects of continuous

covariates. As explained by Vatter & Chavez-Demoulin (2015), among others, all that is required is to set Jνkν
to100

an arbitrary value that allows for enough flexibility in estimating the related smooth term; penalisation during model

fitting will then ensure that a good balance between fit and parsimony is achieved.

The general model formulation introduced in the previous two sections yields the proportional hazards and odds

models as special cases; for details on this, we refer the reader to, e.g., Liu et al. (2018) whose developments are based

on the same conceptual survival modelling framework adopted here. Other important benefits are that quantities such105

as hv(tvi|xvi;βv) can be directly obtained without the need for numerical integration, and that time-dependent effects

can be easily incorporated in the model via terms like svkv
(tvi)xvkvi.

3. Parameter Estimation

Let Tvi denote the true event time, for v = 1, 2. In the case of censoring, Tvi is only known to lie within the

interval (Lvi, Rvi), where Lvi and Rvi represent left and right censoring times. If Lvi = 0 then the ith observation110

for the v margin is defined as left-censored. When Rvi = ∞, the observation is classified as right-censored. If Lvi and

Rvi take on finite distinct non-zero values then the observation is interval-censored. Exact observations relate to the

case Lvi = Rvi. Since we are dealing with a bivariate response, there will be sixteen possible censoring combinations

to account for; these can be characterised through the indicator functions γIvi
and γUvi

, where γIvi
takes value 1 if

the ith observation is interval-, right- or left-censored and 0 otherwise. Similarly, γUvi
is 1 if the ith observation is115

uncensored and 0 otherwise.
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ℓ(δ) = γU1i
γU2i

n
∑

i=1

log f(t1i, t2i) + γI1iγI2i

n
∑

i=1

logP (T1i ∈ (l1i, r1i], T2i ∈ (l2i, r2i])

+ γU1i
γI1i

n
∑

i=1

log

[

r2i
∫

l21

f(t1i, y)dy

]

+ γI1iγU1i

n
∑

i=1

log

[

r1i
∫

l1i

f(y, t2i)dy

]

= γU1i
γU2i

n
∑

i=1

log

[

∂2

∂t1i∂t2i
C {G1(η1i(t1i)), G2(η2i(t2i)); θi}

]

+ γI1iγI2i

n
∑

i=1

log

[

C{G1(η1i(l1i)), G2(η2i(l2i)); θi} − C{G1(η1i(l1i)), G2(η2i(r2i)); θi}

− C{G1(η1i(r1i)), G2(η2i(l2i)); θi}+ C{G1(η1i(r1i)), G2(η2i(r2i)); θi}

]

+ γU1i
γI1i

n
∑

i=1

log

[

∂

∂t1i

(

C{G1(η1i(t1i)), G2(η2i(r2i)); θi} − C{G1(η1i(t1i)), G2(η2i(l2i)); θi}

)]

+ γI1iγU1i

n
∑

i=1

log

[

∂

∂t2i

(

C{G1(η1i(r1i)), G2(η2i(t2i)); θi} − C{G1(η1i(l1i)), G2(η2i(t2i)); θi}

)]

.

The case of interval censoring incorporates both right and left censoring. So, if the ith observation for the v margin

is right-censored then rvi = ∞. If it is left-censored then lvi = 0. The terms of the above log-likelihood have been

derived as follows:

• T1i uncensored and T2i uncensored (in this case, t1i = r1i = l1i and t2i = r2i = l2i):

f(t1i, t2i) =
∂2

∂t1i∂t2i
F (t1i, t2i) =

∂2

∂t1i∂t2i
[1− S(t1i)− S(t2i) + S(t1i, t2i)]

=
∂2

∂t1i∂t2i
C{G1(η1i(t1i)), G2(η2i(t2i)); θi}.

• T1i interval-censored and T2i interval-censored:

P (l1i < T1i < r1i, l2i < T2i < r2i) = P (T1i < r1i, T2i < r2i)− P (T1i < l1i, T2i < r2i)

− P (T1i < r1i, T2i < l2i) + P (T1i < l1i, T2i < l2i)

= F (r1i, r2i)− F (l1i, r2i)− F (r1i, l2i) + F (l1i, l2i)

= S(l1i, l2i)− S(l1i, r2i)− S(r1i, l2i) + S(r1i, r2i)

= C{G1(η1i(l1i)), G2(η2i(l2i)); θi} − C{G1(η1i(l1i)), G2(η2i(r2i)); θi}

− C{G1(η1i(r1i)), G2(η2i(l2i)); θi}+ C{G1(η1i(r1i)), G2(η2i(r2i)); θi}.

Recall that, using the above formulation, all scenarios deriving from any combination of right-, left- and120

interval-censored bivariate outcomes can be produced.
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• T1i uncensored and T2i interval-censored (the “swapped” case can be trivially derived by switching the sub-

scripts where required):

r2i
∫

l2i

f(t1i, y)dy =

r2i
∫

0

f(t1i, y)dy −

l2i
∫

0

f(t1i, y)dy =
∂

∂t1i
F (t1i, r2i)−

∂

∂t1i
F (t1i, l2i)

=
∂

∂t1i
[1− S1(t1i)− S2(r2i) + S(t1i, r2i)]−

∂

∂t1i
[1− S1(t1i)− S2(l2i) + S(t1i, l2i)]

=
∂

∂t1i
[C{G1(η1i(t1i)), G2(η2i(r2i)); θi} − C{G1(η1i(t1i)), G2(η2i(l2i)); θi}] .

As above, the right- and left-censored cases can be easily worked out.

The reader is referred to Supplementary Material-Section A for the more explicit version of the log-likelihood. As

explained in Section 2.1, quadratic penalties have to be employed during model fitting to calibrate the trade-off

between fit and smoothness. Therefore, we maximise

ℓp(δ) = ℓ(δ)−
1

2
δTSδ, (6)

where ℓp is the penalised log-likelihood, S = diag(D1,D2,D3), D1, D2 and D3 are overall penalties that take the

form specified in Section 2.1 and which contain include λ1, λ2 and λ3 , and λν = (λν1, . . . , λνKν
)T. The smoothing

parameters can be collected in the vector λ = (λT

1 ,λ
T

2 ,λ
T

3 )
T.125

Model fitting is challenging in this context because of the non-linear dependence of fv(βv) on βv , the requirement

of estimating λ in a data driven manner, and the need for providing a stable and fast implementation that is compu-

tationally solid and practically usable. To this end, we employ the stable and fast trust region algorithm presented in

Marra & Radice (2020) which is based on a simultaneous penalised maximum likelihood approach with integrated

automatic multiple smoothing parameter selection. A major challenge with the implementation of such algorithm is130

that the analytical score vector and Hessian matrix of ℓ(δ) are required. Given the generality and complexity of the

model, deriving such quantities has been a rather tedious and time-consuming task; these are given in Sections B

and C of the Supplementary Material, and have been thoroughly checked and verified numerically. Starting values

for the marginal survival models are obtained by combining the use of the shape constrained smoothing approach

of Pya & Wood (2015) with the procedure detailed in Liu et al. (2018). An initial value for the copula parameter is135

worked out by using a transformation of the empirical τ between the responses. The simulation study in Supple-

mentary Material-Section D supports the empirical effectiveness of the estimation framework. Briefly, several sample

sizes (n = 300, 1000, 1500 and 2000) are considered as well as both mild (62.86% and 44.98%) and high (84.82%

and 77.13%) censoring levels. Overall, the modelling framework performs consistently well, even for the lowest

sample size. The parametric effects and smooth effects were properly recovered in all of the scenarios considered,140

exhibiting both low bias and RMSE. The estimation of the quantities related to the copula dependence parameter is
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more challenging and shows some bias when compared to the other model parameters, although performance is still

deemed satisfactory. As expected, parameter estimation is more difficult in the presence of high censoring, due to

the loss of information implied by censoring itself. Note, however, that both of these challenging settings improve

markedly as the sample size increases.145

The number of parameters in the model can be quantified using the notion of number of effective degrees of

freedom (edf ). The edf for a model containing only unpenalised terms would clearly be equal to W , whereas that for

a penalised model can be written as W −ζ, where ζ = tr
{

(−H + S)
−1

S
}

and H is the Hessian matrix. This shows

the role that λ (contained in S) plays in determining the model edf , which indeed is a value in the range [W − ζ,W ].

The definition of the edf of a single smooth or penalised term follows the same logic and has a value smaller than or150

equal to Jνkν
.

4. Inference

Inferential results can be borrowed from known theory for general penalised likelihood-based models. Specifi-

cally, at convergence, reliable confidence intervals for any linear or non-linear function of δ are obtained by exploiting

the Bayesian large sample approximation (e.g., Wahba, 1983; Wood et al., 2016)

δ
·

∼ N (δ̂,Vδ), (7)

where δ̂ = argmax
δ

ℓp(δ) and Vδ = (−H(δ̂) + S)−1.

Employing the Bayesian framework for penalised models implicitly assumes that overly complex models are

less likely than simpler or smoother ones; this translates into the prior specification fδ ∝ exp
(

−1/2δTSδ
)

. As155

elaborated by Wood (2017, Section 6.10, see also references therein), the Bayesian covariance matrix gives close to

across-the-function frequentist coverage probabilities since it includes both the bias and variance components in a

frequentist sense. Intervals for nonlinear functions of δ can be conveniently obtained via posterior simulation (see,

e.g., Marra & Radice (2020) for an example. P-values for the terms in the model can be reliably obtained by using the

results summarised in Wood (2017, Section 6.12) which are based on Vδ . Note that for the parametric (unpenalised)160

terms in the model, the corresponding entries in S (contained in Vδ) are equal to zero. This would be equivalent to

using the classical frequentist result, based on −H(δ̂), for such terms.

5. Application to AREDS data

The proposed approach is applied to a dataset from the AREDS available through the R package CopulaCenR

(Sun & Ding, 2021b), which includes 629 Caucasian participants. The event of interest is the progression to late-165

AMD disease, which is the most common cause of blindness in developed countries (Swaroop et al., 2009). Due

to intermittent assessment times (every 6 months up to the first 6 years and every 1 year thereafter), the exact time

9



when each eye progressed to late-AMD is only known to lie in a certain interval. More specifically, less than half of

the subjects developed late-AMD in both eyes (bivariate interval-censored); around 20% of the subjects developed

late-AMD in one eye and did not develop late-AMD in the other eye before the end of the study (mixed interval- and170

right-censored); more than one third of the subjects did not develop late-AMD in both eyes (bivariate right-censored).

The dataset contains three covariates potentially related with AMD progression: SevScaleBL for baseline AMD

severity score (a factor variable with values between 4 and 8 with a higher value indicating more severe AMD),

ENROLLAGE for baseline age (a numeric variable), and rs2284665 for a genetic variant (a factor variable with

levels 0, 1 and 2 which represent GG, GT and TT, respectively).175

For the marginal equations, the smooth functions of ENROLLAGE and the time variables were represented using

penalised thin plate regression splines with second order penalty (Wood, 2017) and monotonic penalised B-splines

(see Section 2.1), respectively. The number of bases used for each smooth was 10; increasing this value did not lead

to visible changes in the estimated curves. The remaining variables entered the predictors of the marginals linearly.

All link functions shown in Table 2 were considered in the modelling. For both margins, PO was found to yield the180

smallest AIC and BIC. As for the copula, we started off with the Gaussian and then, based on the (negative or positive)

sign of the dependence, we tried out alternative specifications that were consistent with this initial finding. Using a

2.60-GHz Intel(R) Core(TM) computer running Windows 10, the average computing time to fit a model was about 9

seconds and the length of the model parameter vector was 43. Using the AIC and BIC, where, in their construction,

the model edf was used in place of the number of model parameters, the chosen model is based on the Plackett185

copula with PO margins. The R code used to fit the models, and to produce all the numerical and visual summaries

commented below can be found in Supplementary Material-Section E. Using the second and third best copulae did

not change the conclusions of the analysis.

Table 3: AREDS data. Parameters estimates, standard errors and p-values obtained from fitting the model using gjrm().

Left Eye Right Eye

Parametric Eff. Estimate (Std.error) Pr(> |z|) Estimate (Std.error) Pr(> |z|)
(Intercept) -18.0368(4.39) 4.09e-05 -33.2811 (10.89) 0.002246

ENROLLAGE - - 0.0364 (0.01) 0.011592

SevScale5 0.6707 (0.24) 0.00556 0.8187 (0.25) 0.001365

SevScale6 1.0049 (0.22) 6.90e-06 1.2957 (0.23) 4.81e-07

SevScale7 1.9255 (0.23) < 2e-16 2.4270 (0.25) < 2e-16

SevScale8 2.8208 (0.31) < 2e-16 3.2793 (0.32) < 2e-16

rs22846651 0.3269 (0.16) 0.04966 0.4589 (0.16) 0.006467

rs22846652 0.6058 (0.23) 0.00927 0.7874 (0.22) 0.000481

All coefficients in the two model marginal equations as well as the dependence parameter are significant (see Table

3). The estimated regression coefficients of SevScaleBL, which are 0.67, 1.00, 1.93, 2.82 in the equation for the190

left eye and 0.82, 1.21, 2.43, 3.28 in that for the right eye, imply, as expected, that the subjects with higher baseline

AMD severity score have a higher risk than the subjects with lower baseline AMD severity score. As for the genetic

variant, rs2284665, the estimated parameters are 0.33 and 0.61 for the left eye equation, and 0.46 and 0.79 for the
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right one. This is consistent with the interpretation that participants with TT genotype group have the highest risk of

developing the disease, followed by participants with GT genotype group.195

Figure 1 shows the estimated functional forms for the effect of ENROLLAGE and times of the selected model.

Note that the smooth function for ENROLLAGE in the second equation has not been reported as the effect was linear

(edf = 1), which indeed indicates that there is a constantly increasing risk associated with age. As for the first

equation, the estimated smooth function confirms this increasing trend. Also, since there are few subjects who are

younger than 60 and older than 80, the point-wise intervals are larger at lower and higher age values. The plots for200

the time variables exhibit increasing monotonic trends, suggesting again that the risk increases with time.
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Figure 1: AREDS data. Baseline risks and smoothed effect of baseline age (ENROLLAGE), for the first equation only. 95% point-wise intervals

are based on the result mentioned in Section 3. The rug plot, at the bottom of each graph, shows the values of the considered variable. The number

in brackets in the y-axis caption of each plot represents the edf of the respective estimated smooth function.

The estimated Kendall’s τ is 0.36 which implies moderate dependence in AMD progression between the two

eyes. Given the capabilities of the proposed modelling framework, we also specified a model where the dependence

parameter is expressed as a flexible function of the covariates. This feature can help understand how and which

covariates modify the strength of the dependence across observations. In this case, however, the coefficients were205

found not to be significant (see Supplementary Material-Section E). It is worth noting that such specifications are

likely to be more successful in finding covariate patterns when the number of observations is higher than that available

for this study.

Using the chosen model, we produced joint survival functions under several scenarios. The left panel of Figure 2

displays the joint progression-free probability contours for subjects who are 69 years old, with AMD severity score210

equal to 6 for both eyes, but with different rs2284665 genotypes. The middle panel of Figure 2 shows the joint

progression-free probability contours for subjects who are 69 year old, with GT genotype, but with different severity

scores (4, 6 and 8). Finally, the right panel of the figure plots the joint progression-free probability contours for GT

genotype subjects, with AMD severity score equal to 6 in both eyes, but different ages (56, 69 and 81). In the left panel,

it can be clearly seen that the three genotype groups are separated, with the GG group having the largest progression-215

free probabilities. In the middle panel, the difference between the three AMD severity groups is rather pronounced,

with the highest AMD severity group having the smallest progression-free probabilities. Finally, the right panel shows
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how the progression-free probabilities are higher for younger subjects as compared to older subjects. The scenarios

considered here illustrate how valuable the proposed modelling framework is in characterising and identifying AMD

patients at a higher risk of developing late-AMD. Of course, several other scenarios can be considered and other220

quantities of interest worked out. For example, one could be interested in visualising conditional and marginal survival

probabilities.

Years (Left Eye)

0
2

4

6

8

10

12
Years (R

ight E
ye)

0

2

4

6

8
10

12

P
ro

g
re

s
s
io

n
−

fre
e
 P

ro
b
a
b
ility

0.0

0.2

0.4

0.6

0.8

1.0
GG

GT

TT

Years (Left Eye)

0
2

4

6

8

10

12
Years (R

ight E
ye)

0

2

4

6

8
10

12

P
ro

g
re

s
s
io

n
−

fre
e
 P

ro
b
a
b
ility

0.0

0.2

0.4

0.6

0.8

1.0
4

6

8

Years (Left Eye)

0
2

4

6

8

10

12
Years (R

ight E
ye)

0

2

4

6

8
10

12

P
ro

g
re

s
s
io

n
−

fre
e
 P

ro
b
a
b
ility

0.0

0.2

0.4

0.6

0.8

1.0
56

69

81

Figure 2: AREDS data. Joint progression-free probability contours for progression to late-AMD disease (in years) in the left and right eyes, under

different scenarios. In left panel, age is set to 69, and AMD severity score to 6 for both eyes. In the middle panel, age is set to 69, and genotype to

GT. In the right panel, genotype is set to GT, and AMD severity score to 6 in both eyes.

6. Discussion

We have introduced a copula link-based additive model for bivariate time-to-event outcomes under various types

of censoring mechanisms. Model fitting is based on the simultaneous estimation of all model parameters and relies225

on a penalised maximum likelihood approach with integrated stable and efficient automatic multiple smoothing pa-

rameter selection. Inferential results are also readily available. All developments have been integrated within the R

package GJRM whose modularity allows for easy inclusion of potentially any parametric link marginal function and

copula. The proposed approach makes a significant contribution in applied statistics as it is methodologically flexible,

computationally sound and practically usable.230

Although the literature in this area is reasonably ample, to the best of our knowledge, only Sun & Ding (2021a)

provided a methodological framework together with software for modelling bivariate censored data. Unlike their cop-
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ula approach, which allows the margins to be specified through semi-parametric transformation models, the baseline

survival functions to be modelled using Bernstein polynomials and the dependence between events to be captured

via one-parameter and two-parameter copulae, our proposal permits to specify all model parameters (including the235

dependence parameter) as flexible functions of covariate effects, model the baseline survival functions by means of

monotonic P-splines which are theoretically and computationally advantageous, and conveniently characterise the

marginals via links of the survival functions. Methodologically speaking, both approaches have been conceived

to handle any combination of censoring mechanisms as well as have two different sets of regression coefficients

for the marginal survival functions. However, from a computational point of view, the implementation provided by240

Sun & Ding (2021a) does not simultaneously support all possible bivariate combinations of censoring types and forces

the two set of regression parameters to be the same.

Future research will focus on extending the approach to more than two event times (e.g., multi-morbidity) ex-

ploring, for instance, the use of multivariate Archimedean copulae, mixtures of powers, pair-copulae constructions,

the multivariate Gaussian and Student’s t distributions, and the composite likelihood approach (see, e.g., the supple-245

mentary material of Filippou et al., 2019, and references therein, which illustrates succinctly these ideas in a different

context). Other potentially interesting extensions would be to account for informative and/or dependent censoring

(e.g., Dettoni et al., 2020) as well as consider the case of excess hazard modelling (Eletti et al., 2022).
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