
Journal Pre-proof

In-plane pipe whip: Post-failure dynamic response

D. Schiano Moriello, F. Bosi, R. Torii, P.J. Tan

PII: S0020-7683(22)00330-4
DOI: https://doi.org/10.1016/j.ijsolstr.2022.111860
Reference: SAS 111860

To appear in: International Journal of Solids and Structures

Received date : 25 April 2022
Revised date : 6 June 2022
Accepted date : 12 July 2022

Please cite this article as: D. Schiano Moriello, F. Bosi, R. Torii et al., In-plane pipe whip:
Post-failure dynamic response. International Journal of Solids and Structures (2022), doi:
https://doi.org/10.1016/j.ijsolstr.2022.111860.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

Crown Copyright © 2022 Published by Elsevier Ltd. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ijsolstr.2022.111860
https://doi.org/10.1016/j.ijsolstr.2022.111860
http://creativecommons.org/licenses/by/4.0/


Journal Pre-proof

Abstr

Pressu of

high-sp an

ultima nt

has bee ip.

The tw nd

elastop ed

from n rn

the flex ck

and th ly

plastic ng

very go us

area of ty,

cross-s ge

format ty

of indu

Keywo5

1. Int

Thi as

and liq ic

inelast en

a failu ed10

fluids e to

underg m

∗Cor
Ema k

(R. Tori

Preprin 22

Highlighted Revision
Jo
ur

na
l P

re
-p

ro
of

In-plane pipe whip: post-failure dynamic response

D. Schiano Morielloa, F. Bosia,∗, R. Toriia, P.J. Tana

aDepartment of Mechanical Engineering, University College London, London, WC1E 6BT, UK

act

rized pipes are ubiquitous in chemical, nuclear and power plants. A sudden failure and release

eed fluid cause large inelastic displacements characterized by a whipping-type motion, which c

tely hinder the surrounding structural and functional systems. In this paper, a beam user eleme

n developed, implemented and applied to analyze the in-plane flexural dynamic response of pipe wh

o-dimensional Euler-Bernoulli beam element is based on the corotational kinematic formulation a

lastic constitutive models that include metal plasticity and moment-curvature relationships obtain

umerical bending tests, which highlighted the existence of two new dimensionless groups that gove

ural response of slender pipes and enable the creation of moment-curvature master curves for thi

in pipes. The corotational beam element formulation is compared against an analytical rigid-perfect

model, numerical simulations employing shell elements and available experimental results, showi

od accuracy in the prediction of the inelastic deformation response of pipe whip and its hazardo

influence. Furthermore, parametric studies are performed to investigate the effect of load intensi

ectional geometry and concentrated tip mass on the post-failure deformation modes, plastic hin

ion and extension of the hazard zone. The presented results represent valid tools to assess the safe

strial piping systems undergoing failure, and to optimally design pipe whip restraints.

rds: Corotational framework, Pipe rupture, Damage, Plastic hinges, Steel pipes

roduction

n-walled pipes are structural elements that offer manifold fields of engineering applications, from g

uid transportation systems to chemical, nuclear and power plants. The prediction of the dynam

ic response of pipes is of paramount importance to assess the safety of industrial systems wh

re occurs, and to design appropriate restraints. In particular, if a pipe transporting pressuriz

xperiences an accidental release of the internal fluid, the high-speed fluid jet will cause the pipe

o large displacements in a dynamic whipping-type motion. The schematic of a pipe whip proble
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Connector
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Fluid release
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1: Schematic of pipe whip break, where a pipe transporting pressurized fluid experiences a sudden failure

nector (left), thus releasing a high-speed fluid jet that causes the pipe to deform in a dynamic whipping-ty

(right). The hazard zone, which represents the area of influence of the pipe after failure, is reported as

line.

ng a sudden guillotine break is presented in Fig. 1, where the fluid jet generates an intense loadin

the initially intact pipe to deform at high speed. Hence, pipe whip constitutes a serious haza

the likelihood of impacting nearby structures and causing extensive damage to equipment, structur

tional components [1, 2]. To increase the safety of the system, pipe whip restraint devices a

d, which absorb the kinetic energy of the pipe before it damages neighbouring structures. Desp

roved safety, the installation of restraints can severely reduce access to the system, thus compromisi

formance of maintenance operations.

h the aim of optimising the number of restraints and the design of piping systems, pipe whip moti

n studied in detail [3, 4]. The R3 Impact Assessment Procedure [5, 6] and the code ANSI/ANS 58.8

een used to assess the hazards of pipe rupture. Baum conducted an experimental investigation

pes to understand the influence of pipeline geometry and fluid pressure on in-plane pipe whip [8]. F

periment, the study measured the hazard zone, which is the extent of the area of influence of the pi

s failure and release of high-pressure fluid. Stronge and Yu [9] developed a theoretical rigid-perfect

model for predicting the collapse of slender structures in bending, later applied to the analysis

e pipe whip where the fluid jet is modelled through a follower impulsive force [10, 11]. The mod

s with satisfying accuracy the hazard zone of pipe whip when additional mass, such as that of

or connector, is not present. However, when the mass is significant, it underestimates the plas

osition. Subsequent upgrades to the model were made to include inelastic and strain-hardeni

[3].

advancements of computing technology have enabled the development of numerical models to an

e deformation of pipe whip. Reid et al. [3] created a finite difference model for in-plane pipe wh

2
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ing non-linear constitutive laws that simulate metal plasticity and the bending behaviour of pip

mework predicted with accuracy the response of relatively thick pipes, but was less successful f

pes, when the deformation is dominated by the collapse of the cross-section. Finite element analys

ing shell elements were performed to assess the hazard zone and the cross-sectional collapse mec

, at the expense of computational time due to the need for a sufficiently refined mesh. Micheli a

ni [12] used pipe elements to obtain conservative predictions of the whip motion and reduce t

tational time. However, pipe elements (sometimes referred to as elbow elements [13]) have shown lim

iability in capturing the cross-sectional collapse mechanism [14], while beam-general-section elemen

xcessive collapse when employed to simulate thin pipes [13].

ired by the aforementioned research, and to overcome the limitations of the currently available e

a novel beam element is here developed for modelling pipes undergoing in-plane large deformation

ement employs an elastoplastic hardening-softening constitutive model for bending, predicting wi

ccuracy pipes deformation, the hazard zone and the development of plastic hinges. The formu

s a significantly reduced computational cost, compared to shell element analyses. It relies on t

ional kinemetic framework, which enables the decomposition of motion into rigid-body and pure d

ional counterparts. One of the first corotational finite element models is attributed to Belytschko a

15], who developed beam and triangular shell elements for transient small-strain analyses and notic

e evaluation of the strains in the deformed frame increases the computational speed by simplifyi

erning equations. Later, Crisfield et al. [16, 17] developed a consistent corotational formulation f

shell and solid elements, where the stiffness matrix transformation is consistent with that appli

force vector. Felippa and Haugen [18] framed a unified small-strain theory for corotational elemen

ic analyses, noting that a consistent stiffness matrix can be equilibrated and symmetrisable, th

g the use of Newton solvers without loss of quadratic convergence. Le et al. [19, 20] framed the th

lastoplastic corotational beam elements in two-dimensional and three-dimensional dynamic analys

ing a consistent mass matrix to obtain high levels of accuracy and stability even with a coarse mes

ramework was later extended to consider contact analyses for planar elements [21].

paper is organised as follows: the corotational framework for beam elements and the elastoplas

utive relations are presented in Sect. 2, where moment-curvature master curves are developed f

nd thin pipes. The analytical rigid-perfectly plastic model for the dynamic response of pipe wh

ed to follower force and tip mass is derived in Sect. 3. The numerical implementation of the develop

ional beam element subroutine is reported in Sect. 4 alongside its validation against experimen

e literature and FE analyses employing shell elements. Finally, the numerical results are discuss

. 5, where the predictions of parametric studies are presented to show the influence of load intensi

ectional geometry and concentrated tip mass on the deformation modes, plastic hinge formation a

on of the hazard zone.

3
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rotational beam element framework and constitutive modelling

eam user element has been developed to predict the flexural dynamic response of slender pip

has been implemented in the finite element software Abaqus v2018 (Dassault Systèmes) through

ement subroutine (VUEL). The beam model is based on the corotational kinematic formulation

fast convergence and provide a rapid, yet accurate, tool that overcomes the limitation of current

le beam element formulations and reduces the computational time required when shell elements a

ed. Using the corotational framework enforces material-frame indifference and consents to use no

constitutive models for the relation between local rotations and cross-sectional moments based

ental observations from bending tests performed on pipes [22]. Furthermore, the method involves

on of the number of degrees of freedom when operating in the local frame, which contributes to t

s simplicity and has the potential to reduce the computational cost. A corotational beam eleme

loped following the approach of Felippa and Haugen [18] and Le et al. [19], Sect. 2.1, where t

utive models include metal plasticity and moment-curvature master curves obtained from numeric

ion of bending tests on thick and thin pipes, Sect. 2.2.

Euler-Bernoulli corotational beam element

formulation of a user-defined 2D beam element within the corotational framework follows the a

of Felippa and Haugen [18] in the definition of the local strains, and that of Le et al. [19] in t

on of the mass matrix and a transformation matrix that is not limited to small rotations. Assumi

circular pipes with a ratio between length L and diameter D greater than 15, the Euler-Bernou

heory is used. In this study, pipes with hollow circular cross-section and a slenderness ratio L/D >

sidered. Under these assumptions, bending is the predominant deformation mode and the effect

rse shear can be safely neglected from the corotational formulation.

corotational framework for a planar beam with two nodes is presented visually in Fig. 2. Each no

ified in the global reference frame by the coordinates (xi, yi)i=1,2 and it is assigned with three degre

om: the horizontal and vertical displacements, ui and wi, and the rotation θi. The deformation vect

associated internal force vectors are

u = {u1, v1, θ1, u2, v2, θ2}T ,

f = {Fx,1, Fy,1,M1, Fx,2, Fy,2,M2}T ,
(

{ }T indicates the transpose operator. The beam’s initial configuration is defined by the rotati

0 and the element length l. Upon deformation, a corotated frame CR that moves rigidly wi

ment can be defined through the angle β, Fig. 2. The local frames CD
1 and CD

2 are introduced

e the deformational and rigid components of motion. They follow the rotation of each node, wi

rientations θ̄1 and θ̄2 with respect to the frame CR. The motion decomposition allows for arbitrar

4
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2: Reference frames for a planar beam element with two nodes. The Cartesian coordinates (x, y) define t

eference frame, and C0 is the initial configuration of the element. At any time increment, CR identifies t

corotated reference frame, whereas CD
1 and CD

2 the deformed configuration at each node.

otations at each end, provided that a sufficiently small number of elements is employed [19]. Henc

al deformation vector and its associated local force vector can be written as

ū =
{
ū, θ̄1, θ̄2

}T
,

f̄ =
{
N̄ , M̄1, M̄2

}T
.

(

mponents of the local deformation vector ū are

ū = ln − l =

√
(x2 + u2 − x1 − u1)

2
+ (y2 + v2 − y1 − v1)

2 −
√
(x2 − x1)

2
+ (y2 − y1)

2
,

θ̄i = θi − α = θi − β + β0 , i = 1, 2 ,
(

l and ln are the lengths of the element in the undeformed and deformed configuration, respective

β0 represents the rigid rotation, and the angles β0 and β can be evaluated from the nodal coordinat

i=1,2 and displacements (ui, vi)i=1,2.

components of the local force vector are the axial force N̄ , determined through the element elong

nd the bending moments M̄i associated with the rotations θ̄i. These components can be evaluat

e local deformation vector ū is defined, based on the definition of the local nominal strain ε = ū

the axial force is N̄ = σAn, where σ = σ(ε) is the stress acting on the cross-section along the lon

l direction, which depends on the opportune choice of a constitutive model (Sect. 2.2), and An is t

cross-sectional area, obtained through incompressibility assumption from the initial cross-section

rotational element employs the Euler-Bernoulli beam theory to evaluate the curvature in the loc

ce frame, with the Hermitian shape functions [19]

S1 = x̄
(
1− x̄

l

)2

, S2 = −
(
1− x̄

l

) x̄2

l
, (

5
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x̄ is the local coordinate along the longitudinal axis. The curvature k is then expressed as a functi

k(x̄) =
∂2

∂x̄2

[
S1θ̄1 + S2θ̄2

]
. (

ment formulation is completed by the specification of a constitutive law relating the bending mome

nodes, M̄i, to the curvatures ki, as described in Sect. 2.2.

the corotational framework, the expression of the force vector, f , is obtained by noting that t

t internal energy is independent of the reference frame and through the principle of virtual work

f̄ , where the transformation matrix B is defined as

B =
∂ū

∂u
=




−c −s 0 c s 0

s/ln −c/ln −1 −s/ln c/ln 0

−s/ln c/ln 0 s/ln −c/ln 1


 , (

c = cosβ and s = sinβ.

explicit solution algorithm to be used for dynamic analyses requires the definition of a mass matr

was chosen as a lumped mass matrix to reduce the computational cost [13, 19]:

M =
ρAl

2
diag

{
1, 1,

l2

12
, 1, 1,

l2

12

}
, (

ρ is the density. The first two terms on the diagonal, corresponding to the displacement degrees

, are obtained by dividing the total mass of the element between the two end nodes, whereas t

erm, which corresponds to the rotational degree of freedom, represents the inertia of a rigid rod th

ing about its centre of mass. Finally, the user element subroutine requires a stable time increme

explicit integration algorithm, which was chosen as [13]

∆t = f

√
ρ l ln
E

, (

E is Young’s modulus and f is a small multiplicative factor that ensures the satisfaction of t

t-Friendrichs-Lewy (CFL) condition [23]. The value of f was found through an iterative process wh

ing the deformation of pipewhips. When f is close to unity, the overestimation of the stable tim

ent leads to instability in the solution algorithm, which is evidenced by excessive element distortion

reasing f , the algorithm stabilises at the expense of the computational time. The optimum ran

nd in the interval f = 0.2–0.01 where the algorithm retains stability whilst keeping the solution tim

than 2 min.

onstitutive model and moment-curvature master curves

stress-strain response employed to define the material constitutive model is representative of duct

, characterised by an elastic phase, followed by strain hardening until necking is reached, after whi

6
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terial is modelled as perfectly plastic [3]. In the material subroutine, described in Sect. 4.1, t

hardening phase is discretized through a piece-wise linear approximation with kinematic hardeni

tion. The material considered is mild steel, with model parameters that followed the experiment

erisation and investigation of circular pipes carried out by Reid et al. [3].

itionally, the bending behaviour of the pipe must be modelled through the definition of momen

re (M−k) relationships. The typical flexural behaviour of circular pipes is characterised by an init

elastic regime up to the yield point, (MY , kY ), followed by a hardening phase up to the maximu

MC , kC) and a softening region that terminates with failure, (MF , kF ), after which the bendi

t is assumed constant for increasing values of curvature [8, 3]. Similarly to the stress-strain respon

ment-curvature relation is approximated through a piece-wise linear model and expressed as [24]

M(k) =





ME(k) = EIk , |k| < kY

MHS(k) = sign(k)

(
Mi +

Mi+1 −Mi

ki+1 − ki
|k − kY |

)
, |k| ≥ kY , |k| < kF

MF (k) = sign(k)MF , |k| ≥ kF

(

I indicates the second moment of area of the pipe cross-section and the index i denotes the points

ve discretisation.

sidering the limited number of experimental data for the definition of the moment-curvature relati

ular pipes [25, 26], numerical simulations were performed to investigate the bending response of pi

ifferent cross-section geometries. Several combinations of external diameter D and wall thickness

alysed, Table 1. The chosen dimensions are based on the standards ASTM A312M, ASME B36.19M

STM A106M and ASME B36.10M-2004. The nomenclature used to distinguish thick (Pi) from th

ipes follows the Mariotte’s formula for cylinders under pressure, where D/H = 20 denotes the critic

hen D/H ≤ 20, a pipe is considered relatively thick, and an overall uniform ovalization in bendi

cted. On the contrary, when D/H > 20, the pipe is considered thin, and displays pronounced cro

al collapse. Please note that the nomenclature of thin and thick pipe is referred to the ratio betwe

meter and the cross-sectional thickness, while the slenderness ratio remains L/D > 60, thus justifyi

of Euler-Bernoulli beam model.

e 1: Typical values of outside diameter D and wall thickness H for stainless steel and carbon steel pipes.

Pipe P1 P2 P3 P4 P5 P6 TP1 TP2

D (mm) 48.3 48.3 48.3 42.2 33.4 48.3 48.3 42.2

H (mm) 2.77 3.68 5.08 2.77 2.77 3.18 1.65 1.65

D/H (-) 17.4 13.1 9.5 15.2 12.1 15.1 29.3 25.5

7



Journal Pre-proof

Figure a)

prescrib le

of discr

The al

structu ks125

analysi ns

remain ne

strain id

walls, w ed

in Fig. ts130

with re ry

conditi al

degree to

a refer he

experim n-135

Cook p he

materi

The ).

The mo n,

wherea re

shows t le
Jo
ur

na
l P

re
-p

ro
of

3: Simulation setup for the Riks analysis for the determination of the moment-curvature relationship. (

ed rotation imposed at two rigid walls to generate constant curvature and bending moment, and (b) examp

etisation of the pipe cross-section with generalised plane strain elements.

deformation of a pipe in bending is a strongly non-linear problem due to the ovalization and eventu

ral instability leading to the collapse of the cross-section as the rotation increases. Hence, a Ri

s was performed, and considering the pipe’s high slenderness and the assumption that plane sectio

planar after deformation, the static response in bending can be studied using a generalised pla

model. A unit length of a pipe, straight in its undeformed configuration, was bounded by two rig

here an increasing rotation was prescribed to induce constant bending and curvature, as illustrat

3(a). One half of the pipe cross-section is discretised using 4-nodes generalised plane strain elemen

duced integration (CPEG4R) and a minimum of six elements along the thickness, with symmet

ons prescribed, as in Fig. 3(b). The elements are allowed to distort in plane, and have an addition

of freedom in the out-of-plane direction, tied to the relative rotation of the walls with respect

ence point. The material considered was mild steel and the stress-strain curve was taken from t

ents performed by Reid et al. [3], shown in Fig. 7(b), with metal plasticity fitted through the Johnso

ower law model, σ̄ = a + bε̄n, where σ̄ and ε̄ are the equivalent stress and strain, respectively. T

al parameters are reported in Table 2.

moment-curvature relations extracted from the simulation of bending tests are displayed in Fig. 4(a

ment was obtained by integrating the stresses acting in the out-of-plane direction on the cross-sectio

s the curvature is calculated from the relative rotation imposed on the bounding planes. The figu

hat thick pipes, labelled Pi, are characterised by an extended hardening region, followed by negligib

8
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Table 2: Material properties used in the numerical bending tests on mild steel pipes.

ρ E ν σY a b n

(kg/m3) (GPa) - (MPa) (MPa) (MPa) -

7850 200 0.33 295 266.1 530.5 0.5608

(a) (b) (c)

: Moment-curvature relations obtained from the numerical bending tests on mild steel pipes. Dimensional (

ensionless (b) relations for thick (Pi, solid curves) and thin (TPi, dashed curves) pipes with cross-section

ries defined in Table 1. The insets show the undeformed (light green) and deformed (green) cross-sections

op) and thin (bottom) circular pipes, respectively. (c) Dimensionless moment-curvature master curves

) and thin (– –) pipes.

ng, whereas the curves for thin pipes, labelled TPi, are distinguished by a short hardening regio

d by a lengthy softening branch. The insets report the cross-sectional deformation of the pipes P

1. Despite the small difference in wall thickness, the pipes display completely different behaviou

ubjected to the same loading, with the geometry TP1 exhibiting a noticeable collapse, while P1 sho

rm ovalization. Furthermore, each dimension of the cross section leads to a different response, n

nically related to the ratio D/H. Therefore, a dimensional analysis using Buckingham’s theore

rformed to identify the parameters affecting the shape of the moment-curvature curves. It was fou

e flexural behaviour of the pipes is completely identified by three dimensionless groups

π1 =
D

H
, π2 =

Mc

σY HD2
, π3 =

kcD
2

H
, (1

the parameters Mc = Mc (σY , D,H) and kc = kc (σY , D,H) identify the maximum point in the M

rranging the M -k curves of Fig. 4(a) with the dimensional groups π2 and π3, it is possible to o

9
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lations of dimensionless moment, M/(σY HD2), versus dimensionless curvature, kD2/H, as shown

b). It can be seen that the dimensionless curves tend to overlap in the elastic and hardening pha

he maximum point. Beyond this point, two different behaviours can be distinguished, where th

xhibit a more pronounced softening phase compared to thick pipes. Based on these observation

ster curves can be defined, Fig. 4(c). The advantage of establishing these master curves is that th

ependent of the yield strength and cross-section dimensions, so that they can be used to define t

t-curvature relationship for thin and thick pipes. In this study, the master curves will be employ

xperimental data from the literature are not available. To the best of the authors’ knowledge, the d

of the dimensionless groups π2 and π3, and of the master curves for describing the behaviour of pip

ing have not been previously reported in the literature, which suggested that ad-hoc experiment

erical studies should be performed for each cross-sectional geometry [25, 26, 27].

hould be noted that, at the current stage, the constitutive model neglects the strain rate effects a

eraction between tensile and flexural components in the definition of the yield surface. Furthermo

dy only considers pipes with circular cross-section. The derivation of similar M -k curves and th

ental validation should be considered for future investigations.

alytical model

s section presents analytical solutions for the dynamic response of cantilever beams constituted

erfectly plastic (RPP) material. These simplified closed-form solutions provide a valuable tool

assess the deformation mechanisms, comparing them with the finite element response through t

ed corotational user element.

en a cantilever beam of length L is loaded at its free end with a concentrated follower force

d orthogonally to the beam’s longitudinal axis (see inset of Fig. 5), its response depends on t

ude of the force with respect to the critical force that causes plastic hinge formation at the fixed en

MP /L [9, 28]. In particular, the beams exhibits three behaviours depending on the dimensionle

= F/FC : (i) if f < 1, the beam remains stationary, (ii) if f ∈ [1, 3], it rotates about the fixed en

he plastic hinge forms, while (iii) if f > 3, the beams rotates about a plastic hinge that develops alo

m length. The length of the plastic hinge is approximately equal to the pipe’s external diamet

f > 1, the beam deforms dynamically with a mechanism that is influenced by the loading intensi

lse shape. Assuming a constant force f0 = F0/FC , from the translational and rotational equations

it was demonstrated that a plastic hinge forms at a dimensionless distance [9]

λ =
3

f0
(1

e beam free end, and it only depends on the load intensity. Hence, the beam’s hazard zone ζ (i

ximum extent of the area of influence of the pipe after failure) can be approximated by the hin

10
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n, ζ ≈ λ [24]. Solving the equations of motion for the case of a load intensity that changes over tim

t), leads to [9]

λ =
3τ

p(τ)
, p(τ) =

∫ τ

0

f(τ̃) dτ̃ (1

τ = t/t0 is the dimensionless time, t the time, t0 = L
√

ρ/FC a characteristic time and p(τ) the pu

ty. From Eq. (12) it can be deduced that, once formed, a plastic hinge will move towards either e

beam with a velocity

λ̇ =
dλ

dτ
=

3

p(τ)2
[p(τ)− τf(τ)] . (1

olution of the tip force f(τ) determines the sign of λ̇. The hinge will be stationary for λ̇ = 0, it w

owards the fixed end for λ̇ > 0 when the loading decreases over time, and will move towards the fr

λ̇ < 0 when the loading is increasing.

onge and Yu [9] further studied the RPP model for a cantilever beam hit by a falling object of ma

he coefficient of restitution is null (i.e. the mass stays attached to the beam after the impact), t

n of the plastic hinge can by determined by

λ =
1

2 γ v0

(
3τ +

√
9τ2 + 24γ2v0τ

)
, (1

γ = m/(ρAL) is the dimensionless mass, ρ the material density of the beam, A the cross-section

d v0 its initial dimensionless velocity.

onge and Yu [9] did not investigate the case of beams loaded with a follower tip force and simult

hit by a travelling mass at the free end. The extension of the RPP model to this particular ca

ng null coefficient of restitution, initial dimensionless velocity v0 of the mass and a generic for

hape p = p(τ), can be obtained through the translational and rotational equations of motion

ionless form 



1

2
λv = γ(v − v0) + p ,

1

6
λ2v = τ.

(1

v = v(t) is the post-impact dimensionless velocity of the free-end. Solving the system of equatio

he hinge position λ = (τ, γ, v0) as a function of time, the relative mass and initial velocity,

λ =
1

2(γv0 + p(τ))

(
3τ +

√
9τ2 + 24γ2v0τ + 24γp(τ)τ

)
. (1

uting v0 = 0 gives the hinge position for a cantilever beam loaded with a concentrated follower for

initially static mass at its tip

λ =
1

2p(τ)

(
3τ +

√
9τ2 + 24γp(τ)τ

)
. (1

11
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limit of τ → 0, Eq. (17) provides the initial hinge position

λ0 =
1

2f0

(
3 +

√
9 + 24γf0

)
. (1

s analytical solution can be applied to the case of pipe whip, where the load is generated by the sudd

of a high pressure fluid. The intensity of the blow-out force is initially determined by the reservoi

e, and gradually decays over time as the pipe deforms. According to the experimental observatio

eid et al. [3], the force is extinguished when cross-sectional collapse causes the obstruction of the flu

therwise, the force decays to a stationary value. It is suggested that in the case of pipe whip the for

an be substituted with a linearly decaying pulse of the type [3, 9]

f =





f0

(
1− τ

τD

)
τ < τD ,

0 τ ≥ τD ,

(1

τD is the pulse duration in dimensionless unit. The pulse intensity then becomes

p(τ) =





f0τ

(
1− τ

2τD

)
τ < τD ,

f0τD/2 τ ≥ τD .

(2

uting the relations above in Eqs. (12) and (17), it is possible to obtain an explicit expression for t

n of the hinge position over time in pipe whip

λ(τ) =
3

f0(1− τ/2τD)
, (2

the case of a pipe with a concentrated dimensionless tip mass γ

λ(τ, γ) =
3 +

√
9 + 24γf0(1− τ/2τD)

2f0(1− τ/2τD)
. (2

rves predicted by Eqs. (21) and (22) are plotted in Fig. 5 for a linearly decaying pulse. A pu

n of tD = 0.68 s (τD = 3.97) was chosen to reflect the typical pulse duration observed in t

ental studies on pipe whips [3]. In the figure, solid lines represent the hinge location predicted

whereas dashed lines indicate the hinge position at t = 0.2 s (τ = 1.17). The dimensionless ma

was used, which corresponds to that of the pipe whip experiments from Reid et al. [3], typical of t

f the flange or connector that fails and causes the release of the fluid in an industrial environment

merical implementation and validation

ser element VUEL architecture

architecture of the developed corotational beam element subroutine VUEL, and its location with

licit solution procedure, is illustrated in Fig. 6. At any increment, for each finite element, the expli

12
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5: Theoretical predictions of plastic hinge position, λ, for pipe whip subjected to a linearly decaying for

f initial intensity f0. The black lines labelled λ0 and λ(τ) are obtained through Eqs. (18) and (21), a

the hinge position at the time t = 0.0 s and t = 0.2 s, respectively. The green lines λ0(γ) and λ(τ, γ) a

d through Eqs. (18) and (22), and indicate the response predicted at the same instants for pipe whip w

ntrated mass at the tip, γ = 0.2. The inset shows the schematic of the cantilever slender pipe of length

ction dimensions D,H and dimensionless tip mass γ subjected to a dimensionless follower force f0.

n algorithm provides the current nodal coordinates (xi, yi), and the translational and rotation

of freedom associated with each node, ui, vi, θi, i = 1, 2. The scope of the user element is

e the internal force vector f and the mass matrix M necessary to solve Newton’s equation a

e the state of the element at the end of the increment. In particular, the corotational framework fir

rms the displacement vector from the global to the local reference frame, u → ū through Eq. (3

the material module is called to evaluate the components of the local force vector, f̄ , starting fro

ial local strains ε and curvatures ki, Eq. (5), and employing the constitutive models of Sect. 2

the corotational framework converts the forces back to the global reference frame, f̄ → f throu

nsformation matrix B, Eq. (6), before the accelerations ü and nodal displacements u are obtain

rting Newton’s law. The next time increment ∆t is then computed by means of Eq. (8).

lidation of the VUEL code

developed corotational beam element was validated by comparing its numerical predictions with t

lement simulations and experiments performed by Reid et al. [3] to determine the in-plane flexur

se of pipe whip.

numerical model reproduces the experimental apparatus and it is constituted of a straight pipe

L, external diameter D and thickness H with a flange of mass m at one end. Two pipe geometr

13
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: Schematisation of a dynamic FEA solution algorithm, which includes the main architecture of the develop

ional beam element VUEL module.

onsidered, representative of thick (labelled as V 1) and thin (labelled as V 2) pipes, respectively,

d in Table 3. The pipe was modelled as a cantilever beam clamped at one end, with a concentrat

t the free end subjected to a concentrated follower force of initial intensity F0. The load intensi

over time following the force pulse measured during the experiments of Reid et al. [3], Fig. 7(a

the pipe to deform in plane. It should be noted that the intensity of the load gradually decreas

the motion of the pipe due to its progressive cross-sectional collapse that reduces the fluid flow.

pipe was made of mild steel, with material properties reported in Table 2. Metal plasticity

ed following the approach described in Sect. 2.2; the strain-hardening behaviour is included in t

s as tabular data discretising the plastic stress-strain curve of the material reported in Fig. 7(b

ly, the constitutive relation between bending moment and curvature, which depends on the cro

al dimensions of each pipe, is included as tabular data discretising the experimental M -k curv

in Fig. 7(c).

simulations were carried out in Abaqus/explicit using the developed user elements. A mesh conve

14
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: Values of pipe dimensions, initial force intensity and flange mass used in the experimental tests on in-pla

ip performed by Reid et al. [3].

Test case D H D/H L F0 m

(mm) (mm) - (m) (kN) (kg)

V 1 50.8 2.60 19.5 3.00 11.25 1.80

V 2 50.8 1.58 32.2 2.73 11.25 1.04

t (ms)

(a) (c) 

D

H

(b)

e p 

s
 (
M
Pa

) 

nominal 

true 

7: (a) Force pulse measured in the test of in-plane pipe whip. (b) True (solid) and nominal (dashed) stress

strain from uniaxial tensile tests on mild steel employed in the simulation of pipe whip. (c) Moment-curvatu

for geometries V 1 and V 2 used in the simulation of in-plane pipe whip. The data are extracted from t

ents on in-plane pipe whip performed by Reid et al. [3], while the inset shows the schematisation of th

ental apparatus.

tudy proved that 20 beam elements were sufficient to capture the deformation of the pipes with

um error of 2% with respect to the reference solution obtained with 100 elements.

ure 8(a) shows the deformation history of the relatively thick pipe of the test case V 1 (D/H

20) as predicted by the simulation using VUEL elements. The results are compared with t

ental (label Exp) and numerical (label Num) results of Reid et al. [3]. As stated in the experiment

tions [3], the pipe undergoes continuous bending, and there is no discernible kinking of the pipe, whi

correspond to localised cross-sectional collapse. Both numerical models predict well the instantaneo

ation profile of the pipe. The maximum relative error for the position of the free end, between o

ion and the experimental data, is observed at the 60 ms time frame and is smaller than 3.5%. T

ent with the experimental data confirms that both numerical models are suitable for the simulation

lastic deformation of thick-walled pipes. The small discrepancy in the deformation profiles betwe

15
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Exp - Reid et al.[ ]2
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60ms 50ms
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20ms

10ms

30ms
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20ms

x (mm)

(a)

y 
(m

m
)

x (mm)

(b)

Exp - Reid et al.[ ]2
Num - Reid et al.[2
VUEL

8: Deformed shapes of the pipe whip from the test case V 1 (a) and V 2 (b) at several time frames. T

ions results obtained with the VUEL beam element code (—) are compared with the experimental resu

) and numerical predictions (Num, – –) from Reid et al. [3].

umerical solutions and the experimental results at early time frames might be attributed to t

imation of the initial part of the force pulse.

results of the study on the thin pipe V 2 (D/H = 32) are presented in Fig. 8(b). According

perimental observations, most of the deformation was localised in a small region at x ≈ 1.7

complete cross-sectional collapse was observed, starting at 30 ms. Subsequently, the deformati

ses with the rotation of the pipe about the fixed end. Very similar behaviour was observed wi

EL simulation. In the first 20 ms, the pipe starts bending, with the centre of rotation located

7 m. In the following time frames, the pipe continues to bend around this point, while the seco

of rotation forms at x = 0. The comparison with the experimental measurements in Fig. 8(b) sho

e user element subroutine captures well the time and the position where localisation occurs, with

um relative error for the position of the free end measured at 40 ms which is smaller than 5%. It

noticing that the numerical study by Reid et al. [3] predicts with less accuracy the evolution of t

ation profile, which could be due to the finite difference scheme employed in their study.

agreement with the experimental data confirms that the developed corotational user element VUE

ble of accurately predicting the large deformation of thick and thin slender pipes. It also captur

ations of maximum curvature, which correspond to localised mechanisms of cross-sectional collap

d experimentally.

16
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omparison with shell elements and rate-dependent material model

rder to complete the validation of the user element, and evaluate the computational efficiency, t

cal results are obtained for a thin pipe with D/H = 32, where D = 50.8 mm and H = 1.58 mm. T

ions from the model employing VUEL elements are compared with those obtained using standard sh

ts (type S4R) on an equivalent model run through Abaqus/explicit. The cross-section discretizati

ses 40 shell elements with an aspect ratio 1, so the final mesh is composed of 27360 shell elements

. 9(a) and (c) show that there is reasonably good agreement between the two models in terms

hinges location λi and hazard zone ζ. The maximum relative difference for λ1 was 6% measured

in Fig. 9(a), and for ζ was 35% at f0 = 10 in Fig. 9(c), and the two models have similar deviatio

e theoretical predictions obtained through Eqs. (18) and (21). When comparing the results from t

dels, one must take into account the limitations of the beam model, which is only able to captu

ormation of the longitudinal axis of the pipe, whilst the cross-sectional collapse is modelled throu

ment-curvature constitutive relation. On the other hand, the usage of shell elements allows for

ral representation of the cross-section, which can directly influence the deformation profile [29, 30

itionally, the results from a model employing shell elements and a strain-rate dependent constituti

our are plotted in Fig. 9(b) and (d). The strain rate dependence was added to the previously employ

dependent material model by using the Cowper-Symonds model, where D = 40.4 s−1 and q = 5 defi

e dependency for mild steel [31, 32]. There is in general negligible difference in results when strai

ects are considered, especially when comparing the hazard zone. The only substantial deviation w

d for λ2 at f0 = 20, where the high strain-rate causes an increase in the distance of the seconda

hinge from the free end.

comparison of the running time between the corotational user beam elements and standard sh

ation testifies the computational efficiency of the developed framework. In particular, the completi

r two simulations with a timestep of 45ms and the same output frequency are: 31 s with VUE

ts, 45 min and 36 s with shell elements, or 4 min and 39 s with shell elements when 12 paral

re used to speed-up the simulation. Therefore, a simulation employing VUEL elements is reported

es faster than an analogous shell-elements simulation, and 9 times faster than the same simulati

ing 12 parallel units.

sults and discussion

corotational beam user element subroutine was employed in Abaqus/explicit to investigate the effe

ipe geometry and load intensity on the dynamic response of pipe whip. The analytical model of Sect

that the dimensionless hazard zone, ζ, and plastic hinge location, λ, depend on two dimensionle

: the loading intensity f0 = F0L/MP and the mass ratio γ = m/(ρAL). Hence, assuming a linear

17
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(a) strain-rate neglected (b) strain-rate dependent

(c) strain-rate neglected (d) strain-rate dependent

9: Plastic hinges location λi (a,b) and hazard zone ζ (c,d) reported as a function of the dimensionless appli

for the numerical simulations of pipe whip with D/H = 32 using VUEL elements and shell elemen

esults for strain-rate independent material response and (b,d) for shell elements with strain-rate depende

tive model. The solid (—) and dashed (– –) curves represent the analytically-derived hinge position λ

0.0 s (λ0) and t = 0.2 s, respectively.

g force with τD = 3.97, expressed by Eq. (19), parametric studies were here conducted to analy

uence of the parameters F0, L, m and MP .

pipes have fully-constrained boundary conditions at the fixed end, referred to as the pipe’s roo

e loaded at the opposite end with a concentrated follower force that is initially orthogonal to t
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: Values of pipe dimensions, plastic moment and collapse force for the first parametric study on pipe wh

h the load intensity varies in the range f0 ∈ [3, 30].

Test case D H D/H L MP FC

(mm) (mm) (m) (kNm) (kN)

T1 50.8 2.60 20 3.00 0.220 0.733

T2 50.8 1.58 32 2.73 0.133 0.486

T3 508.0 12.70 40 10.0 1046 104.6

longitudinal axis. Although it was shown that a mesh of 20 beam elements is sufficient to captu

e-end displacement of the pipe whip, a finer mesh of 80 elements is here employed to analyse in mo

he location and extension of plastic hinges. The elements employ the moment-curvature relationshi

d in Sect. 2.2, and the same material properties for mild steel there described. For each cross-secti

erised by the external diameter D and wall thickness H, the plastic moment MP is defined as [33,

MP =
4

3

[(
D

2

)3

−
(
D

2
−H

)3
]
σY α , (2

α =

(
1− σU

σY

)
D

80H
+

σU

σY
, (2

α is a strain-hardening factor depending on the yield stress σY = 279 MPa and the ultimate stre

92 MPa.

ffect of load intensity and cross-sectional geometry

first parametric study analyses the deformation of pipes with two different combinations of cro

al dimensions to investigate the response of thick and thin pipes. The pipes dimensions are report

le 4 and correspond to those of the pipe whip from the experimental investigation of Reid et al.

T1 and T2), and one representative of the typical dimensions of a pipeline employed for petrochemic

tions [34] (case T3). The free end of the pipe is subjected to linearly-decaying force pulses, whe

tial force intensity falls within the range f0 ∈ [3, 30].

deformation profiles of the pipe whip, and their time history, are presented in Fig. 10 and Fig. 11 f

lues of f0 = [3, 5, 6, 10]. The dimensionless plots on the left-hand side correspond to thick pipes (te

), and on the right-hand side to thin pipes (test case T2). Similar behaviours were observed betwe

t cases T2 and T3, therefore only the plots belonging to the case T2 are reported. The referen

s positioned on the initial position of the tip, which is located on the right-hand side of each plot.
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(b) D/H = 32, f0 = 3
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(c) D/H = 20, f0 = 5
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(d) D/H = 32, f0 = 5

10: Dimensionless deformation profiles of thick and thin pipe whip (D/H = 20 and D/H = 32, respectivel

ed to orthogonal follower forces of initial intensity f0 = 3 (a, b) and f0 = 5 (c, d). The dimensionless verti

is compared with the hazard zone predicted by the analytical RPP model, ζ = 3/f0. A circular arc w

equal to the pipe length and centred in the fixed end is used to represent the maximum deformation ran

.

predicted by the analytical model of Sect. 3, when f0 = 3, the pipes rotate about the root a

zard zone reaches the maximum range allowed, equal to the pipe length. When f0 > 3, a differe

ation mechanism is observed, which is characterised by the formation of multiple plastic hinges.

ases, the deformation range is reduced and is comparable to the extent of hazard zone ζ ≈ λ = 3/f
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(a) D/H = 20, f0 = 6
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(b) D/H = 32, f0 = 6
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(c) D/H = 20, f0 = 10
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(d) D/H = 32, f0 = 10

11: Dimensionless deformation profiles of thick and thin pipe whip (D/H = 20 and D/H = 32, respectivel

ed to orthogonal forces of initial intensity f0 = 6 (a, b) and f0 = 10 (c, d). The dimensionless vertical positi

ared with the hazard zone predicted by the analytical RPP model, ζ = 3/f0. A circular arc with radius equ

ipe length and centred in the fixed end is used to represent the maximum deformation range allowed.

mechanisms were observed numerically, depending on the loading intensity and the relative thickne

pipe. In order of increasing load intensity, they are:

antilever mode – when a stationary hinge develops at the root;

ouble-hinge mode – when a plastic hinge develops along the pipe, followed by the formation of

condary hinge at the root;
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riple-hinge mode – similar to the previous mode, characterised by the formation of three plas

inges, the last being formed at the root. This mechanism is observed only for thin pipes;

elf-intersecting mode – when the pipe collapses on itself, forming a loop. Three or more plastic hing

evelop along the pipe, but there is negligible rotation about the fixed end.

lf-intersecting pipe produces a significantly reduced hazard zone, thus decreasing the probability

ing external bodies. However, the curvature is not always high enough to cause complete obstructi

fluid flow [3, 25], leading to the uninterrupted release of the internal fluid, increasing the hazard

tem (e.g. temperature increase, release of chemicals, risk of explosion). When modelling the case

ersecting collapse, the simulation was stopped at the moment of self-contact, to avoid the use of

tationally expensive contact model. Loading intensities in the range f0 > 30 are not considered he

are expected to cause deformations with a small hazard zone (ζ < 0.1).

ore precise analysis of the formation and growth of plastic hinges is conducted by looking at t

ution of curvature along the pipe, as presented in Fig. 12 and Fig. 13. Initially, the deformati

ates from the free end as an elastic bending wave. It can be seen that, for all values of f0, t

t adjacent to the free end stays in elastic conditions throughout the simulation. A small region

e curvature forms at the fixed end as a consequence of the elastic properties of the beam. This is

ent with the analytical observations of reverse bending from Stronge and Yu [9]. The relatively lo

f negative curvature causes negligible deformation, which cannot be appreciated in the deformati

of Fig. 10 and Fig. 11. After no more than 20 ms the rest of the pipe starts deforming plastical

e curvature goes above the yield value (ky/kc = 0.03 for thick pipes and ky/kc = 0.08 for thin pip

ing to the moment-curvature relation used). It is here assumed that plastic hinges form when t

re exceeds the critical value k/kc ≥ 1.

ure 12(a) and (b) show that, for f0 = 3, as the deformation progresses, the curvature at the pip

nd increases until it exceeds k/kc = 1, and a plastic hinge forms at x/L = 1, in accordance to t

ver mode identified in Fig. 10(a) and (b). As the force is increased (f0 = 5), the double hinge mo

rved, with the first hinge forming at a distance x/L ≈ 0.5 from the free end, and the second hin

g at the root.

the loading is increased further, Fig. 13, we assist at the formation of three or more hinges, eventua

to the self-intersecting mode. Figure 13(c) and (d) highlight a fundamental difference in the collap

ism of relatively thick and thin pipes. In Fig. 13(c), the consecutive hinges are connected by regio

igh levels of curvature, resulting in the formation of an extended plastic region, as observed

(c). Instead, in Fig. 13(d) plastic hinges are separated by regions of low curvature, resulting

alised collapse mechanism of Fig. 11(d). These observations are coherent with what was observ

entally in [3].
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(d) D/H = 32, f0 = 5

12: Time history of dimensionless curvature distributions along the pipes, k/kc, for loading intensity f0 =

= 5. Black lines (—) indicate the yield point, red lines (—) indicate the critical point k/kc = 1. Solid lin

ent colours (—) indicate curvature distributions from the time t = 0 ms up to the moment of formation o

hinge, while dashed lines (- -) are used in the time frames subsequent to plastic hinge formation.

hinge position predicted by the analytical model, Sect. 3, at t = 0 s and t = 0.2 s (previous

d in Fig. 5 with λ0 and λ(τ), respectively), are compared with the numerical predictions in Fig.

three pipe geometries considered, D/H = [20, 32, 40]. Different symbols are used to highlight t

1), second (λ2) and third (λ3) plastic hinges, whereas the error bars indicate the length of the plas

that is observed for thick pipes. Figures 14(a, b, c) show that the theoretical model of Eqs. (11) a
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(d) D/H = 32, f0 = 10

13: Time history of dimensionless curvature distribution along the pipes, k/kc, for loading intensity f0 =

= 10. Black lines (—) indicate the yield point, red lines (—) indicate the critical point k/kc = 1. Solid lin

ent colours (—) indicate curvature distributions from the time t = 0 ms up to the moment of formation o

hinge, while dashed lines (- -) are used in the time frames subsequent to plastic hinge formation.

nds to over predict the λ1 length, especially for the thick pipe. This phenomenon can be attribut

ral causes. The analytical model allows rotation only at a single plastic hinge (a travelling hinge

e of a decaying pulse), which is in disagreement with the observation of multiple hinges and extend

regions obtained numerically and from previous experiments [3, 25]. Furthermore, the analytic

fails to take into account elastic effects. Nevertheless, the theoretical model is in excellent agreeme
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umerical predictions for the extent of the hazard zone, ζ, as reported in Fig. 14(d) and previous

d in Figs. 10 and 11.

(a) D/H = 20 (b) D/H = 32

(c) D/H = 40 (d) Hazard zone ζ

14: Numerical predictions of the hinge position λi (a,b,c) and of the hazard zone ζ (d) reported as a functi

imensionless follower force f0 ∈ [3, 30] to assess the influence of pipe geometry, D/H = 20, 32, 40, on t

c deformation response. The solid (—) and dashed (– –) curves represent the analytically-derived hin

λ at time t = 0.0 s (λ0) and t = 0.2 s, respectively.
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: Values of pipe dimensions for the second parametric study on pipe whip, where each pipe has a concentrat

at its tip. All other parameters are unvaried from Table 4.

Test case D/H m (kg) γ = m/(ρAL)

M1 20 1.8 0.2

M2 32 1.4 0.2

M3 40 1700 1.1

ffect of concentrated tip mass

second parametric study investigates the formation of plastic hinges and the extent of the haza

uring the dynamic deformation of pipes that have an additional concentrated mass m at their fr

hich aims to simulate the weight of a flange or connector. The values of concentrated mass for t

ses M1 and M2, reported in Table 5, are taken from [3]. The mass for test case M3 corresponds

a typical flange for high-pressure pipelines [34].

m the numerical results shown in Fig. 15, it can be observed that the presence of the concentrat

ss has the effect of extending the range of f0 in which the cantilever deformation mode occurs.

lar, this was the only mode of deformation observed for the test case M3 in the whole range of

red. For this reason, the plot of the case M3 results is omitted. In the test case M1, Fig. 15(a),

r deformation mode takes place for f0 = 14, in which the first plastic hinge forms at the fixed e

), followed by the formation of a secondary hinge at λ ≈ 0.42. At f0 = 15, an abrupt transiti

n cantilever mode and self-intersecting mode is observed.

erical predictions of ζ for the two cases are shown in Fig. 15(a) and (b) as white circles and triangl

ively. The results are compared with those obtained with the analytical model using Eq. (18) f

0.2), and Eq. (22) for λ(τ = 1.17, γ = 0.2), that are reported in the figure with green solid a

lines, respectively. In both cases, the theoretical model provides a considerable underestimation

stic hinge position, compared to numerical observations. For this reason, the parametric study

d for different values of γ. The plot points in Fig. 16 indicate the hazard zone predicted for a pi

/H = 32 as a function of the dimensionless follower force range f0 ∈ [3, 30], loaded with a variab

trated mass at its free end. The value of γ is increased until the only deformation mode observed

ce range is the cantilever mode.

theoretical model of Eq. (18) is not capable of predicting accurately the hazard zone, therefore

tric phenomenological relation is employed to fit the numerical data when the deformation mo

s from the cantilever mode

ζ =
3

f0 − a1γ a2
+ b1γ

b2 . (2
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(a) D/H = 20 (b) D/H = 32

15: Numerical predictions of the hinge position λi and the hazard zone ζ reported as a function of t

ionless follower force f0 ∈ [3, 30] for thick (a) and thin (b) pipe whip with a mass γ = 0.2 at its tip. The gre

) and dashed (– –) curves represent the analytically-derived hinge position λ at τ = 0 (λ0) and τ = 1.1

ively.

6: Numerical predictions of hazard zone ζ reported as a function of the dimensionless follower force f0 ∈ [3, 3

pipe whip with γ ∈ [0.1, 0.8]. Solid lines represent the fitting curves using the model of Eq. (25).

st-fit parameters found are a1 = 10.44, a2 = 0.6968, b1 = 1.057, b2 = 0.8102. The parametric mod

s to ζ = 3/f0 when γ = 0, which successfully predicts the hazard zone for both thick and thin pip

ady demonstrated in Fig. 14(d).
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nclusion

eam element code has been developed to study the inelastic dynamic response of pressurised pip

ing in a whip-like motion under the influence of an intense follower force generated by the escape

aused by a sudden guillotine break. The developed user element employs a corotational kinema

ation and a constitutive relationship that idealises the cross-sectional collapse mechanisms of tub

ding. The pipes flexural constitutive behaviour has been obtained through numerical experimen

s in bending, which highlighted the existence of three dimensionless groups, namely π1, π2 and π

g dimensionless moment-curvature master curves for thick and thin pipes.

beam user element has been implemented in a commercial FE software through a user eleme

tine VUEL and it has been used to perform FE simulations that model the in-plane deformation

thick and thin pipe whips. The numerical results have been compared with experimental measur

performed by Reid et al. [3], analytical predictions from a rigid-perfectly plastic beam model, a

lement results employing shell elements. It has been proven that the developed corotational bea

t correctly captures the experimental and numerical deformation mechanisms and the pipe haza

hilst reducing by two orders of magnitude the computational time required by simulations employi

ements. Additionally, modelling the deformation of pipes with VUEL elements has the practical a

e of simplifying the analysis of the deformation modes that follow the pipe collapse and improving t

cy in identifying the plastic hinges. In a model employing shell elements, the variation in curvatu

the deformation needs to be calculated by integrating the rotation of all elements at a given cro

, and comparing it to the rotation of the longitudinal axis. In the employed finite element softwa

asurement of the curvature can only be performed at the end of the analysis on predetermined sit

he pipe, which must be defined before the analysis, thus limiting the capability of analysing wi

cy the collapse mechanism and the extension of plastic hinges. On the contrary, using the VUEL e

allows to readily measure the curvature variation, and thus the collapse, in each element througho

lysis. A possible limiting factor in the accurate identification of plastic hinges with the VUEL is t

t size, which is recommended to be smaller than the pipe’s external diameter. Employing the VUE

ts has allowed the characterisation of the diverse deformation mechanisms described in Sect. 5.1.

thermore, the beam element code has been used to perform parametric studies to analyse the effec

intensity, cross-sectional geometry and concentrated tip mass on the plastic hinge formation, t

on of the dangerous pipe area of influence and the identification of different deformation mechanism

ng cantilever mode, double or triple hinge modes, and self-intersecting mode. These studies have al

that the analytical rigid-perfectly plastic model provides conservative predictions for the formati

tic hinges and defines with satisfying accuracy the hazard zone of pipe whip only in the absence

tip flanges. On the contrary, the results obtained with the developed user element enable a fast a
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te prediction of the hazard area, thus being effective tools for the design of pipe whip restraint devic

current work can be improved by including in the constitutive model the effects of strain rate a

eraction between axial forces and bending moment, which are currently neglected. Additionally, t

ment of a three-dimensional element to simulate the out-of-plane deformation of initially bent pip

simultaneous bending and twisting is part of an ongoing study. Lastly, the loading caused by t

t was modelled as a concentrated follower force, and its intensity was assigned by a pre-determin

g pulse calculated from experiments. In a real-life pipe whip scenario, the initial load intensity

ined by the fluid pressure, and its evolution is dictated by the cross-sectional collapse as the pi

s. Future improvements to the element code should focus on the development of a subroutine th

tes the decrease of the force intensity caused by the reduction of the inner cross-sectional area, whi

urn, a function of the curvature.
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S Dassault Systèmes, SIMULIA Abaqus 2017 Documentation, Dassault Systèmes, Providence, RI, 2016.

Zeng, L. G. Jansson, Y. Venev, On pipe elbow elements in abaqus and benchmark tests, in: Proc. ASME 2014 Pre

sel. Pip. Conf., no. 10, American Society of Mechanical Engineers, 2014. doi:10.1115/PVP2014-28920.

Belytschko, B. J. Hsieh, Non-linear transient finite element analysis with convected co-ordinates, Int. J. Numer. Metho

g. 7 (3) (1973) 255–271. doi:10.1002/nme.1620070304.

A. Crisfield, A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements, Comput. Metho

pl. Mech. Eng. 81 (2) (1990) 131–150. doi:10.1016/0045-7825(90)90106-V.

Crisfield, G. Moita, A unified co-rotational framework for solids, shells and beams, Int. J. Solids Struct. 33 (20) (199

9–2992. doi:https://doi.org/10.1016/0020-7683(95)00252-9.

A. Felippa, B. Haugen, A unified formulation of small-strain corotational finite elements: I. theory, Comput. Metho

pl. Mech. Eng. 194 (21-24 SPEC. ISS.) (2005) 2285–2335. doi:10.1016/j.cma.2004.07.035.

N. Le, J.-M. Battini, M. Hjiaj, Efficient formulation for dynamics of corotational 2d beams, Comput. Mech. 48

11) 153–161. doi:10.1007/s00466-011-0585-6.

N. Le, J.-M. Battini, M. Hjiaj, A consistent 3D corotational beam element for nonlinear dynamic analysis of flexi

ctures, Comput. Methods Appl. Mech. Eng. 269 (2014) 538–565. doi:10.1016/j.cma.2013.11.007.

Cho, H. Joo, S. Shin, H. Kim, Elastoplastic and contact analysis based on consistent dynamic formulation of

ational planar elements, Int. J. Solids Struct. 121 (2017) 103–116. doi:https://doi.org/10.1016/j.ijsolstr.201

019.

M. Brannon, Frame indifference, in: Rotation, Reflection, and Frame Changes, 2053-2563, IOP Publishing, 2018, p

1 to 19–49. doi:10.1088/B978-0-7503-1454-1.00019-1.

Courant, K. Friedrichs, H. Lewy, On the partial difference equations of mathematical physics, IBM J. Res. Dev. 11

67) 215–234. doi:10.1147/rd.112.0215.

Schiano Moriello, Failure of impulsively loaded thin-walled pipes and plates, Ph.D. thesis, University College Lond

21).

rdening-softening behaviour of circular pipes under bending and tension, Int. J. Mech. Sci. 36 (12) (1994) 1073–10

:10.1016/0020-7403(94)90059-0.

R. Reid, J. L. Yang, Pipe whip: In-plane whipping of bent cantilever pipes, J. Press. Vessel Technol. 120 (2) (199

. doi:10.1115/1.2842236.

K. Prinja, N. R. Chitkara, Finite-element analyses of post-collapse plastic bending of thick pipes, Nucl. Eng. Des. 91

86) 1–12. doi:10.1016/0029-5493(86)90179-2.

Yu, J. Yang, S. Reid, Deformable body impact: dynamic plastic behaviour of a moving free–free beam striking the tip

antilever beam, Int. J. Solids Struct. 38 (2) (2001) 261–287. doi:https://doi.org/10.1016/S0020-7683(00)00019-

Karagiozova, M. Alves, Transition from progressive buckling to global bending of circular shells under axial impact––p

xperimental and numerical observations, Int. J. Solids Struct. 41 (5) (2004) 1565–1580. doi:https://doi.org/1

6/j.ijsolstr.2003.10.005.

Bosi, A. Schlothauer, C. Leclerc, S. Pellegrino, Cure-induced deformation of ultra-thin composite laminates, in: 20

A/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018, p. 2241. doi:https://do

/10.2514/6.2018-2241.

N. Nurick, G. C. Shave, The deformation and tearing of thin square plates subjected to impulsive loads - an experimen

30



Journal Pre-proof

stu475

[32] D. led

Str

[33] S. nt

and

[34] Sta480

Jo

ur
na

l P
re

-p
ro

of

dy, Int. J. Impact Eng. 18 (1) (1996) 99–116. doi:10.1016/0734-743X(95)00018-2.

Schiano Moriello, F. Bosi, R. Torii, P. Tan, Failure and detachment path of impulsively loaded plates, Thin-Wal

uctures 155 (2020) 106871. doi:10.1016/j.tws.2020.106871.

R. Reid, M. Aleyaasin, B. Wang, Out-of-plane pipe whip for a bent cantilever pipe: Comparison between experime

fem models, J. Appl. Mech. Trans. ASME 79 (1) (2012) 011005. doi:10.1115/1.4004712.

ndard ASME B36. 19M-2004: Stainless Steel Pipe, American Society of Mechanical Engineers, 2004.

31



Journal Pre-proof

Decla
 

 Th ps ☒
that 
 

 Th red ☐
as po

 
 
 

Jo
ur

na
l P

re
-p

ro
of

ratio if ioterettt

e authors declare that they have no known competng fnancial interests or personal relatonshi
could have appeared to infuence the work reported in this paper.

e authors declare the following fnancial interests/personal relatonships which may be conside
tental competng interests:


