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Abstract 
Geothermal energy is a renewable source of base-load power that could facilitate decarbonising the 

power generation sector. This work proposes novel simplified models based on Life Cycle Assessment 

(LCA) that enable rapid but accurate estimates of the environmental impacts of geothermal power. 

The proposed approach not only reduces the variability of LCA estimates due to methodological 

choices, but also substantially facilitates data collection by identifying the most important input 

parameters. These parameters are selected using Sobol’ total order indices from Global Sensitivity 

Analysis to a general parametric model. The models are applicable to both conventional and enhanced 

geothermal technologies, and cover numerous environmental impact categories. We determine the 

level of correlation between the simplified models and the general model. Our analysis shows that the 

simplified models correlate well with the general model, with correlation coefficients above 0.75 for 

both types of geothermal technologies and for all environmental categories. We also evaluate the 

performance of the simplified models by comparison with literature data. The results are positive, 

especially for conventional technologies where the relative difference with literature data on climate 

change impacts averages 14%. Finally, we identify the most appropriate model for each technology 

archetype and environmental category. 
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Highlights 
• Simplified geothermal models rely on 1-5 influential parameters  

• Influential parameters are obtained from Sobol’ total order indices 

• Models cover conventional/enhanced technologies and multiple environmental categories 

• Carbon footprint estimates are validated against literature data 

• Open-source python script for easy updates or customisation. 
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1 Introduction 
Geothermal energy embodies the natural heat content of the Earth. It is a renewable source adequate 

for providing base-load power that is continuously replenished by decay of radioactive elements such 

as uranium, thorium and potassium at a rate that is comparable with current human consumption 

(Gando et al., 2011). Unlike solar and wind, geothermal energy can generate base-load power because 

it is independent of seasonal and climatic conditions. These features make it a key energy source that 

could help the decarbonisation of the power generation sector, and thus the transition to a low-

carbon economy needed to mitigate long-term and possibly irreversible consequences of global 

warming (Masson-Delmotte et al., 2018). 

Life Cycle Assessment (LCA) is the prevailing tool for the quantification of environmental impacts of 

technologies. The LCA methodology (ISO, 2006a, 2006b), has two important features: it covers the 

whole life-cycle, and considers a number of environmental issues that include but are not limited to 

climate change (Hauschild et al., 2018). These features enable identification of trade-offs (i.e. burden-

shifting between environmental categories and between life cycle phases), making LCA a widely-

adopted tool for facilitating decisions-making. However, LCA studies on geothermal power exhibit a 

significant variability; for instance, the carbon footprint of electricity from geothermal spans over two 

orders of magnitude, from ~5 and up to ~800 gCO2-eq./kWh (Paulillo et al., 2019a, 2019b). This 

variability is only in part due to LCA methodological choices like the definition of the system boundary, 

but it is also due to differing site-specific conditions such as the composition of the geothermal fluid 

or the depth of the geothermal reservoir (Bayer et al., 2013; Tomasini-Montenegro et al., 2017). 

Notably, the latter emphasizes the importance of collecting high-quality field data, which arguably is 

the most time-consuming phase of the LCA methodology for any application.  

Meta-analysis of LCA studies offers an approach to handle variability (Brandão et al., 2012; Warner et 

al., 2010). It aims at harmonizing methodological choices and identifying most commonly observed 

parameter values to provide a reduced range of possible environmental impacts (Farrell et al., 2006). 

An alternative approach hinges on the development of simplified LCA models based on a small set of 

influential parameters that are responsible for most of the variability of the LCA results (Padey et al., 

2013); these parameters are typically identified by means of Global Sensitivity Analysis (GSA) (Saltelli 

et al., 2008). Because simplified LCA models require relatively small site-specific data, they enable 

quick estimations of the environmental impacts. They can be used by policy makers to support the 

development of energy policies using simple, yet reliable approximations, and by geothermal 

companies lacking LCA expertise or accurate datasets to quantify the environmental performance of 

their plants. Early simplified LCA models in the energy sector were developed for wind power (Padey 

et al., 2013) and for enhanced geothermal systems - an emerging technology for geothermal power 

generation (Lacirignola et al., 2014). A notable limitation of these early models is that they focus on a 

single environmental impact category: climate change. More recently, simplified models covering 

additional categories have been developed by Douziech and colleagues for several geothermal 

technology archetypes (Douziech et al., 2021, 2020). 

In this study we introduce novel simplified LCA models based on previously published GSA results 

(Paulillo et al., 2021) that enable quick estimations of the environmental impact of electricity 

generation from geothermal energy. Similar to Douziech et al., our models cover multiple 

environmental categories; but unlike their models, ours encompass two generic archetypes: 

conventional and enhanced geothermal technologies. Conventional geothermal technologies 

represent most of the geothermal installed capacity (Bertani, 2016; IGA, 2015), and harness high-

enthalpy hydrothermal reservoirs by means of well-known conversion technologies such as dry-steam 

and flash plants. By contrast, Enhanced Geothermal Systems (EGS) were developed to harness 

unconventional geothermal reservoirs that lack either water or sufficient permeability; the technology 
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uses hydraulic stimulation to create an “engineered” reservoir, and generates electricity typically by 

means of binary cycle plants (MIT, 2006; Sanchez-Roa et al., 2021). This work builds upon a previous 

study in which we identified the most influential parameters for the quantification of the 

environmental impacts associated with both conventional and enhanced geothermal technologies 

(Paulillo et al., 2021). In that study, we developed a complex model based on multiple parameters 

(termed “general model”), and then applied GSA to quantify the contribution of the variance of each 

input parameter to the model output. Those results are used here to develop the simplified models. 

The remainder of this article is organised as follows: in Section 2 we present the proposed simplified 

models and their parameters; in Section 3 we validate the simplified models first against the general 

model, and then against literature data; finally, we discuss the results of our analyses in Section 4, and 

summarise the key conclusions in Section 5.   

2 Methods: generation of simplified LCA models 
In Paulillo et al. (2021), we developed a general parametric LCA model for estimating the 

environmental impacts of conventional and enhanced geothermal power technologies. Notably, we 

assumed that the former covers dry steam and single/multiple flash plants but not binary cycle ones, 

which only make up a small portion of global installed capacity (Bertani, 2016). By contrast, we only 

considered binary cycle plants for enhanced geothermal systems. The general model relies on the 

ecoinvent database (v3.6, cutoff) (Wernet et al., 2016) and the Environmental Footprint 2.0 (EF2.0) 

(Fazio et al., 2018) method to quantify environmental impacts (Fazio et al., 2018). It adopts a 

functional unit of 1 kWh of electricity and cradle-to-grave system boundaries, covering all activities 

from the construction of wells/plant to their decommissioning; all other assumptions are presented 

and discussed in Paulillo et al. (2021). The model relies on 25 input parameters, which describe aspects 

of both the geothermal reservoir and the power plant. Paulillo et al. (2021) applied GSA to 21 of the 

25 parameters – i.e., those for which a range of variability was determined – to identify parameters 

that affect the most the variability of the model output, and by extension that of LCA results on 

geothermal power generation. We used the variance-based methodology developed by Sobol’ (2001) 

to quantify the importance of each parameter, which was expressed in terms of first and total order 

indices using estimators based on Monte Carlo simulations (Jansen, 1999; Saltelli et al., 2010).  

Unlike first-order indices, total-order indices account for interaction effects between parameters. Low 

total-order indices identify non influential parameters which can be fixed anywhere within their range 

of variability without significantly affecting the model output (Saltelli et al., 2008). Thus, using total 

order indices we can identify those parameters that can be assigned a pre-compiled value, within a 

range of acceptable values, as this choice will not strongly affect the model prediction. Using fewer 

parameters, the model will be simpler in the sense that fewer data will be needed to make predictions. 

However, the selection of the value of total order index that distinguishes between influential and 

non-influential parameters is arbitrary and consequential. The higher the threshold, the higher the 

number of non-influential parameters; therefore, the resulting simplified model is simpler but less 

accurate. On the contrary, the lower the threshold, the higher the number of influential parameters, 

ultimately recovering the original model. In this study we present several simplified models developed 

using four thresholds of the total order index; these correspond to 0.2, 0.15, 0.1, 0.05. For instance, a 

threshold of 0.2 means that all parameters having contributions, including interaction effects, lower 

or equal to 20% of the variance of the model output are considered non-influential.  

From the general model, we developed the simplified models for each environmental category or 

group of environmental categories featuring the same influential parameters, by fixing all non-

influential parameters to their median values (Table S19 in the Supporting Information). The non-

influential parameters are lumped together alongside other coefficients of the general model to 
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generate numerical coefficients (namely α, β,  χ and δ, as defined in Section 2.1 and 2.2), which are 

reported in Section S1 of the Supporting Information. The simplified models and their parameters for 

conventional and enhanced geothermal technologies are reported in Sections 2.1 and 2.2, 

respectively. The models were developed using Brightway2 (Mutel, 2017); the Python code is available 

at https://github.com/a-pau/gsa_geothermal.  

2.1 Conventional geothermal technologies 
Equations 1-4 report the proposed simplified LCA models for conventional geothermal technologies; 

the parameters of the simplified models for each threshold of the total order index are given in Table 

1. In the climate change category, the parameter “operational CO2 emissions” (which features the 

highest total order index) explains nearly 100% of the variance of the general model’s output. The 

remaining parameters of the general model present negligible total order indices (Paulillo et al., 2021). 

However, an additional parameter must be considered: operational emissions of CH4. This was not 

covered by the general model because a range of variability could not be determined; but it can 

significantly affect the carbon footprint of conventional geothermal technologies when methane is 

present in above-average concentration in the geothermal fluid, for instance in the region of Tuscany, 

Italy (Basosi et al., 2020; Bravi and Basosi, 2014). Therefore, for the climate change category the 

general model can be simplified to a two-parameter equation, which is shown in Equation 1. We 

assume that this simplified model applies to all thresholds, even though a total order index was not 

calculated for the parameter “operational CH4 emissions”. In Equation 1, α1 and α2 respectively 

represent the characterisation factors for CO2 and CH4 using Global Warming Potentials for a 100-year 

time frame (Fazio et al., 2018; IPCC, 2013), whilst α3 corresponds to the impacts of the other terms of 

the general model obtained using median values for the non-influential parameters and the Ecoinvent 

database (v3.6). The numerical values for α1, α2 and α3 are reported in Table S1 in the Supporting 

Information. 

The remaining categories in the EF2.0 method feature the same influential parameters for each 

threshold. This is because these parameters either affect the overall amount of electricity generated 

(e.g. producers capacity) or they determine the number of wells to be drilled; in both cases, all 

categories are affected in a similar manner. Two parameters contribute to more than 15% of the 

variance of the general model’s results; these parameters are: producers’ capacity 𝐶𝑊𝑛𝑒, i.e. the 

maximum electric energy that each production well is capable of generating, and the average depth 

of wells 𝑊𝑑. Therefore, for these categories and for both 15 and 20% thresholds, a two-parameter 

simplified model can be developed from the general model; this is shown in Equation 2, where the 

impact for each environmental category k is obtained as a combination of 𝑊𝑑, 𝐶𝑊𝑛𝑒 and four numerical 

coefficients β1…4,k that are specific to each environmental category. Note that the capacity of the 

production wells is used in the general parametric model to predict the number of production wells 

that are required to meet the installed capacity of the plant.   

When the total order index threshold is reduced to 10%, one additional parameter needs to be 

included in the simplified model: the initial harmonic decline rate of the production wells (Sanyal, 

2004), which is used in the general model to estimate the number of make-up wells required during 

the lifetime of the plant. The simplified model at 10% is reported in Equation 3.  

Finally, for a threshold of the total order index of 5%, the simplified model employs one additional 

parameter, the success rate of primary wells 𝑆𝑅𝑝: the general model assumes that some wells may be 

unsuccessful (e.g. due to unexpected mechanical problems encountered during drilling) and thus 

considers that the number of wells drilled is higher than that required to meet the installed capacity 

of the plant. (The success rate is defined as the percentage of successful exploration, primary and 
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make-up wells.) The simplified model for a threshold of 5% is reported in Equation 4. The numerical 

coefficients β1…6,k for each threshold and each environmental category are reported in Tables S2 to S4 

in the Supporting Information.  

 

 

Table 1 – Parameters of the simplified models for conventional geothermal technologies. 

Acronym Parameter Unit Threshold 

𝐸𝐶𝑂2
 Operational CO2 emissions kg CO2/kWh 20%,15%,10%, 5% 

𝐸𝐶𝐻4
 Operational CH4 emissions kg CH4/kWh 20%,15%,10%, 5% 

𝐶𝑊𝑛𝑒  Producers’ capacity MW/well 20%,15%,10%, 5% 

𝑊𝑑  Average depth of wells m/well 20%,15%,10%, 5% 

𝐷𝑖 Initial harmonic decline rate - 10%, 5% 

𝑆𝑅𝑝 Success rate, primary wells % 5% 

 

2.2 Enhanced geothermal technologies 
The simplified models for enhanced geothermal technologies are reported in Equation 5-8, whilst 

Table 2 includes the relevant parameters for each threshold. Like for conventional technologies, we 

grouped together the environmental categories that feature the same influential parameters and thus 

can be described by the same equations. We note that the grouping of categories is only intended to 

facilitate their description: it does not represent any specific relation between categories. Equation 5 

and 6 apply to the environmental categories included in Group 1, whilst Equation 7 and 8 apply to the 

categories included in Group 2. The categories that belong to Group 1 and 2 differ according to the 

specific threshold considered, as detailed in Table 3. In essence, the simplified models for Group 2 

categories differ from those for Group 1 in that they include an additional parameter: the average 

diesel consumption for drilling one meter of well, 𝐷; this is because the categories in Group 2 (e.g. 

marine and terrestrial eutrophication) are those that are most affected by impacts associated with 

diesel production and burning in a diesel-electric generator set. (It must be noted that our model does 

not account for the possibility of using electricity directly from the grid. Although this is a reasonable 

assumption because most wells are drilled in this way, future model improvements should consider 

this aspect.)The parameter “installed capacity” (𝑃𝑛𝑒) represents the maximum gross electric power 

output of the power plant without considering auxiliary power requirements. This is the most 

influential parameter for enhanced geothermal technologies, and the only one that contributes to 

more than 20% of the variance of the general model output in all environmental categories (see 

Paulillo et al., 2021). Therefore, for a threshold of 20% the simplified model for all environmental 

categories is represented by Equation 5. (Note that, as shown in Table 3, at 20% all environmental 

categories are included in Group 1.) At 15% and 10% thresholds, the same simplified model (Equation 

5) can be used for the categories in Group 1 (see Table 3). As noted above, for Group 2 categories the 

simplified model needs the specific diesel consumption for drilling wells 𝐷; therefore, for 15% and 

10% thresholds the general model can be simplified to Equation 7. Finally, at the 5% threshold, two 

Climate 
change 

All thresholds 𝐼𝑚𝑝𝑎𝑐𝑡 = 𝐸𝐶𝑂2
∙ 𝛼1 + 𝐸𝐶𝐻4

∙ 𝛼2 + 𝛼3 (1) 

Remaining 
categories 

20/15% 𝐼𝑚𝑝𝑎𝑐𝑡𝑘 =
𝑊𝑑 ∙ 𝛽1,𝑘 + 𝛽2,𝑘

𝐶𝑊𝑛𝑒

+ 𝑊𝑑 ∙ 𝛽3,𝑘 + 𝛽4,𝑘 (2) 

10% 𝐼𝑚𝑝𝑎𝑐𝑡𝑘 =
𝐷𝑖 ∙ 𝑊𝑑 ∙ 𝛽1,𝑘 + 𝐷𝑖 ∙ 𝛽2,𝑘 + 𝑊𝑑 ∙ 𝛽3,𝑘 + 𝛽4,𝑘

𝐶𝑊𝑛𝑒

+ 𝑊𝑑 ∙ 𝛽5,𝑘 + 𝛽6,𝑘 (3) 

5% 𝐼𝑚𝑝𝑎𝑐𝑡𝑘 =
𝑆𝑅𝑝 ∙ 𝐷𝑖 ∙ 𝑊𝑑 ∙ 𝛽1,𝑘 + 𝐷𝑖 ∙ 𝑆𝑅𝑝 ∙ 𝛽2,𝑘 + 𝑆𝑅𝑝 ∙ 𝛽3,𝑘 + 𝑊𝑑 ∙ 𝛽4,𝑘

𝑆𝑅𝑝 ∙ 𝐶𝑊𝑛𝑒

+ 𝑊𝑑 ∙ 𝛽5,𝑘 + 𝛽6,𝑘 
(4) 
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additional parameters are required for both Group 1 and Group 2 categories, these are the average 

depth of wells 𝑊𝑑 and the success rate of primary wells 𝑆𝑅𝑝; the simplified models for Group 1 and 

Group 2 categories at 5% threshold are reported in Equation 6 and 8, respectively. The numerical 

values of the coefficients χ and δ for each environmental category are reported in Table S5 to S11 in 

the Supporting Information. 

 

Group 1 

20/15/10% 𝐼𝑚𝑝𝑎𝑐𝑡𝑘 =
𝜒1,𝑘

𝑃𝑛𝑒

+ 𝜒2,𝑘 (5) 

5% 𝐼𝑚𝑝𝑎𝑐𝑡𝑘 =
𝑆𝑅𝑝 ∙ 𝑊𝑑 ∙ 𝜒1,𝑘 + 𝑆𝑅𝑝 ∙ 𝜒2,𝑘 + 𝑊𝑑 ∙ 𝜒3,𝑘

𝑆𝑅𝑝 ∙ 𝑃𝑛𝑒

+ 𝜒4,𝑘 (6) 

Group2 

15/10% 𝐼𝑚𝑝𝑎𝑐𝑡𝑘 =
𝐷 ∙ 𝛿1,𝑘 + 𝛿2,𝑘

𝑃𝑛𝑒

+ 𝛿3,𝑘 (7) 

5% 𝐼𝑚𝑝𝑎𝑐𝑡𝑘 =
𝐷 ∙ 𝑊𝑑 ∙ 𝑆𝑅𝑝 ∙ 𝛿1,𝑘 + 𝐷 ∙ 𝑊𝑑 ∙ 𝛿2,𝑘 + 𝑆𝑅𝑝 ∙ 𝑊𝑑 ∙ 𝛿3,𝑘 + 𝑆𝑅𝑝 ∙ 𝛿4,𝑘 + 𝑊𝑑 ∙ 𝛿5,𝑘

𝑆𝑅𝑝 ∙ 𝑃𝑛𝑒

+ 𝛿6,𝑘 (8) 

 

Table 2 - Parameters of the simplified models for enhanced geothermal technologies 

Acronym Parameter Unit Threshold 

𝑃𝑛𝑒 Installed capacity MW 20%,15%,10%, 5% 

𝐷 Diesel consumption MJ/m 15%,10%, 5% 

𝑊𝑑  Average depth of wells m/well 5% 

𝑆𝑅𝑝 Success rate, primary wells % 5% 

 

Table 3 – Environmental categories belonging to Group 1 (green) and Group 2 (orange), according to 

the thresholds considered in the simplified models for enhanced geothermal technologies. 

 20% 15% 10% 5% 

climate change         

human toxicity: carcinogenic         

ionising radiation: human health         

human toxicity: non-carcinogenic         

ozone depletion         

photochemical ozone formation: human health         

particulate matter formation         

acidification         

ecotoxicity: freshwater         

eutrophication: freshwater         

eutrophication: marine         

eutrophication: terrestrial         

material resources: metals/minerals         

water use         

energy resources: non-renewable         

land use         

 

3 Results: Validation of the simplified models 
3.1 Comparison with the general model 
We use two statistical measures to validate the simplified models against the general model: the 

Pearson correlation coefficient (r) and the Spearman rank correlation coefficient (ρ). The former 

measures the level of linear correlation between two variables (in this case the results of the general 

model and those of the simplified models); the latter quantifies the level of correlation between the 

ranking of two variables. Both coefficients vary between 1 and -1. Values of 1 and -1 indicate 
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respectively perfect positive and negative correlation between the results (for Pearson) and the 

ranking of the results (for Spearman) of the general model and of the simplified models. Values close 

to 0 indicate negligible correlation. Evaluating both Pearson and Spearman correlation coefficients is 

useful because it enables understanding how well the relationship between the general and the 

simplified model can be described by linear and/or monotonic relationships, respectively. For 

example, a low value of the Pearson coefficient combined with a high value for Spearman suggests 

the existence of a monotonic, non-linear relationship. 

Figure 1 and Figure S1 (in the Supporting Information) report the Pearson and Spearman coefficients 

for conventional and enhanced geothermal technologies, respectively. The coefficients were 

calculated from results of Monte Carlo simulations with 10,000 iterations using the same ranges of 

variability and distributions of the parameters of the general model that were used for GSA purposes 

(Paulillo et al., 2021). For this analysis we disregard the parameter operational CH4 emissions (which 

applies to the climate change category and conventional technologies) because this was not included 

in the general model (Section 2.1). In Figure S3 and Figure S4 in the Supporting Information, we also 

compare the results of the general model and those of the simplified models for each threshold, for 

conventional and enhanced geothermal technologies, respectively. Notably, for enhanced 

technologies, Figure S4 shows the presence of a small number of outliers where the general model 

predicts significantly higher environmental impact than the simplified models. Because the Spearman 

correlation coefficients is highly sensitive to the presence of outliers, the coefficient in Figure 1 is 

calculated disregarding the highest 0.1% values from the general model. For completeness, the 

Pearson coefficient including outliers is reported in Figure S2 in the Supporting Information. 

Figure 1 shows that the simplified models correlate well with the general model for both conventional 

and enhanced geothermal technologies. The level of correlation increases with decreasing thresholds, 

i.e. from 20% to 5%. Overlapping data points entail that the simplified models at different thresholds 

use the same equation (see Section 2). For conventional technologies, a near perfect correlation exists 

between the simplified model and the general model for the climate change category. For the 

remaining category, the simplified models at 20%/15% yield Pearson correlation coefficients of ~0.87, 

which increases above 0.9 for a threshold of 10% and above 0.95 for a threshold of 5%. For enhanced 

technologies, the simplified models yield comparable, albeit smaller, correlation coefficients, which 

are in the 0.8-0.9 range for 20%/15%/10% thresholds, and above 0.9 for 5%. Figure S2 in the 

Supporting Information shows that the Pearson correlation coefficient for enhanced plants including 

outliers is on average 0.05 smaller, but still high enough to indicate good correlation. 
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Figure 1 – Pearson correlation coefficient (r) between the general model and the simplified model for 20%, 15%, 
10% and 5% thresholds, for the categories included in the EF2.0 method. 

Similar results are obtained for the Spearman rank correlation coefficient (ρ); these are reported in 

Figure S1. Our results demonstrate the presence of a good level of correlation of the ranking of results 

between general and simplified models, and that this correlation increases with decreasing the 

threshold of simplified models. As for the Pearson correlation coefficient, the simplified models and 

the general model for conventional geothermal technologies exhibit near perfect correlation for the 

climate change category. For the remaining categories, ρ increases from 0.84-0.88 at 20/15% to 0.91-

0.94 at 10% and above 0.95 at 5%. For enhanced technologies, ρ is included in the 0.83-0.88 range for 

20%, 15% and 10%, and it is above 0.9 for 5%. 

3.2 Comparison with carbon footprint estimates from literature 
To validate the simplified models, in Figure 2 we compare carbon footprints obtained from literature 

studies with results from the simplified models. The latter are calculated using values of the relevant 

parameters obtained from the literature. Numerical values of the carbon footprints and of the 

simplified models’ parameters are reported in Table S20 and S21. In Figure 2 we also include the 

overall variability of the general model (Paulillo et al., 2021). The comparison is limited to a single 

environmental category – climate change – because i) most LCA studies focus on this category, and ii) 

when other environmental impact categories were considered, impact assessment models different 

than EF2.0 were used to quantify the environmental impacts, and therefore no systematic comparison 

was possible. The comparison encompasses six studies and ten scenarios for conventional geothermal 

technologies (Basosi et al., 2020; Bravi and Basosi, 2014; Buonocore et al., 2015; Marchand et al., 

2015; Paulillo et al., 2019a; Sullivan et al., 2010), and eight studies and fifteen scenarios for enhanced 

geothermal technologies (Bauer et al., 2017; De Rose et al., 2020; Frick et al., 2010; Lacirignola and 

Blanc, 2013; Menberg et al., 2021; Paulillo et al., 2020a; Pratiwi et al., 2018; Treyer et al., 2015).  

For conventional geothermal technologies only one point estimate is provided for the simplified 

models; this is because for the climate change category the simplified models use the same equation 

for all thresholds (Section 2.1). The chart shows that the simplified model yields estimates that are 

close to literature data; notably, our model estimates do not differ from literature data by more than 

18% for all scenarios considered. The relative difference is lowest (<2%) for Marchand et al. (2015) 

and Sullivan et al. (2010) data, and highest for Bravi and Basosi (2014) (scenarios PC4 and PC5) and 

Buonocore et al. (2015). The simplified model is more accurate when operational CH4 emissions are 

low (i.e. below 1 g/kWh1, like in Buonocore et al., 2015; Marchand et al., 2015; Paulillo et al., 2019a; 

Sullivan et al., 2010) with an average discrepancy of 8%. The relative difference for case studies with 

high CH4 emissions (Basosi et al., 2020; Bravi and Basosi, 2014) is larger, averaging 14%. The general 

model does not include CH4 emissions. This explains why case studies with high CH4 emissions are well 

above the median value of the general model, with those with very high emission values (Bravi and 

Basosi, 2014) being even above 99th percentile.  

To demonstrate the importance of operational CH4 emissions, in Figure S5 we report the same 

comparison when the simplified model does not include CH4 emissions as an input parameter. 

Notably, this is accomplished by setting α2 = 0. The chart shows that the “modified” simplified model 

performs well when CH4 emissions are low, which is expected; however, it significantly underestimates 

the carbon footprint when operational CH4 emissions are large, thus justifying their inclusion as an 

additional parameter.   

For enhanced geothermal technologies, the simplified models at 20%, 15% and 10% thresholds 

coincide, and are therefore shown as one data point in the chart. The comparison shows that the 

                                                            
1 Note that the values of CH4 emissions are reported in Table S18. 
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simplified model at 5% generally yield estimates closer to literature data, and lower than that 

estimated by the simplified model derived using 20/15/10% thresholds. The simplified models at 5% 

are more accurate because they employ four parameters, compared to only one for thresholds higher 

than 10%. They yield lower estimates because of the success rate parameter: at thresholds higher 

than 5%, this parameter is fixed to a value of ~72%, whilst the selected studies report no unsuccessful 

wells (i.e. success rate of 100%).  

The simplified models for enhanced technologies are less accurate than those for conventional 

technologies. The relative differences between literature data and our model’s estimates average 77% 

and 48% for thresholds higher than 10% and for a threshold of 5%, respectively. The largest 

discrepancies are found for Paulillo et al. (2020a) estimates, which differ by more than 100%, and for 

Lacirignola and Blanc (2013) (S2), where the estimates of the simplified model are 150 and 69% lower. 

The largest discrepancy in absolute terms is found for the case study of Frick et al. (2010) (D1), where 

the simplified models underestimate literature data by more than 400 gCO2-eq./kWh; notably, this is 

the only case where the literature data is above the 99th percentile of the general model. The reasons 

for some of these discrepancies are discussed in Section 4.3. 

 
Figure 2 – Comparison between estimates from the simplified model, literature data and variability of the 
general model for the climate change category, and for conventional (left) and enhanced (right) geothermal 
technologies. The y-axis of the right chart is broken for better visualisation of deviations at low impacts. For each 
literature study, the acronym reported within brackets represents a specific scenario.  

3.3 Extended comparison across multiple environmental categories  
We expand the comparison reported in Section 3.2 to the remaining categories in the EF2.0 method, 

to investigate whether the simplified model (and indeed the general model) performs well for 

categories other than climate change. Specifically, we compare the simplified models with literature 

data from two case studies for which we had access to the underlying models. One study focused on 
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Hellisheiði, a conventional double-flash geothermal power plant in Iceland (Paulillo et al., 2019a), and 

the other on the United Down Deep Geothermal Power (UDDGP) project, an enhanced plant under 

construction in Cornwall, United Kingdom (Paulillo et al., 2020a). The results from these studies 

(Paulillo et al., 2020b, 2019b) have been re-calculated using the EF2.0 method. The comparison, which 

also includes the variability of the general model, is reported in Figure 3 and Figure 4.  

Figure 3 shows that discrepancies between literature data and results predicted from the simplified 

models are minimal across all environmental categories. The estimates from literature are below the 

25th percentile in all categories, implying that the Hellisheidi plant yields lower environmental impacts 

that the median value estimated by the general model. The simplified models report similar (albeit 

slightly higher) estimates, which decrease with reducing the threshold from 20% to 5%. This is 

expected, as reducing the threshold increases the accuracy of the simplified models (Section 2.2). 

 

 
Figure 3 – Comparison between the variability of the general model, results from the simplified models and 
literature data for the Hellisheiði geothermal power plant. In the box-and-whisker plot, the horizontal lines 
represent median values, the boxes correspond to 25th and 75th percentiles, and the whiskers indicate 1st and 
99th percentiles 

For the United Downs geothermal plant (see Figure 4), the comparison is less positive. The estimates 

from literature are higher than the median value of the general model but lie within the 25-75th 

percentile range with the sole exception of the category minerals and metals (which is higher than the 

75th percentile). The simplified models systematically overestimate the literature data by a factor of 

2-3 for models at 20%, 15% and 10%, and by a factor of 1.5-2 for a threshold of 5%. However, all 

estimates from the simplified models are within the same order of magnitude as those from the 

literature. The results obtained from the model derived from the 5% threshold are substantially closer 

than those at higher thresholds; this indicates the importance of the additional parameters used by 

the model at 5%, which include the average depth of the wells and their success rate (Section 2.2). 

The comparison also highlights the importance of the parameter diesel consumption, which is evident 

for those environmental categories (see Table 3) where the estimates at 15% and/or 10% thresholds 

differ from those at 20%. 
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Figure 4 - Comparison between the variability of the general model, results from the simplified model and 
literature data for the united downs deep geothermal power project (UDDGP). In the box-and-whisker plot, the 
horizontal lines represent median values, the boxes correspond to 25th and 75th percentiles, and the whiskers 
indicate 1st and 99th percentiles. 

The systematic overestimation of environmental impacts by the simplified models in comparison to 

literature data is due to the exploratory wells. Although the number of exploratory wells that is 

estimated by the simplified models corresponds to the actual number drilled at the United Downs site 

(Paulillo et al., 2020a, 2020b), the models also make the simplifying assumption that these wells have 

the same depth of primary wells. By contrast, at United Downs the exploratory wells were drilled to a 

depth of only 200m, thus being practically negligible when compared to primary wells with an average 

depth of 4000m. When both the general and the simplified models are modified to exclude the 

construction of exploratory wells, the results from the simplified models decrease, approaching the 

estimates from the literature. This comparison, which is reported in Figure S6 in the Supporting 

Information, shows that the simplified models yield results approximately twice those from literature 

data for thresholds of 20%, 15% and 10%, whilst the results at 5% are not higher than 100% of the 

literature data. 

4 Discussion 
4.1 Correlation between general model and simplified models 
All simplified models proposed correlate well with the general model derived previously. As expected, 

the level of correlation (for both Pearson and Spearman coefficients) increases with decreasing the 

threshold of the total order indices that is used for developing the simplified models, and thus with 

increasing the number of parameters. However, even with the highest threshold of 20% (which 

translates to only 1-2 parameters used by the simplified models as opposed to 25 in the original model) 

the correlation coefficients are above 0.75 for all categories.  

The comparison between simplified and general models reported in the Supporting Information 

(Figure S4) highlight the existence of a small number of outliers (below 0.1% of all data points) for 

enhanced geothermal technologies where the results from the general model are significantly higher 

than those from the simplified ones. These outliers represent worst case (and unlikely) scenarios, 
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described by parameters that are not included in the simplified models. These scenarios include very 

low values of the success rate for exploratory wells (i.e.  below 10%), and high values of material 

requirements for the construction of wells, primarily steel for casing (e.g. above 130 kg/m). (The 

importance of exploratory wells for enhanced geothermal technologies is discussed in Section 4.2.) 

These outliers are shown to affect the Pearson correlation coefficient but not to an extent that 

invalidates the correlation between the simplified models and the general model. The Pearson 

correlation coefficient including outliers is above 0.7 for all environmental categories considered. 

4.2 Importance of exploratory wells for enhanced geothermal technologies 
The exploratory wells play an important role in the simplified models for enhanced geothermal 

technologies. As noted in Section 4.1, very low values of the success rate of exploratory wells cause 

significant discrepancies between the general model and the simplified models. The importance of 

the exploratory wells is also shown when the simplified models are compared with literature data for 

the United Downs geothermal plant (Figure 4). In this case, the simplified models yield estimates 

substantially higher (up to a factor of 3) than literature data; but when the models are modified to 

exclude exploratory wells (Figure S6), the results approach those from literature data.  Interestingly, 

for the Hellisheiði geothermal plant (Figure 3) the estimates for the simplified models are close to 

literature data even though no exploratory wells were considered in the study (Paulillo et al., 2019a).  

The environmental impacts associated with geothermal technologies – including both conventional 

and enhanced ones – are primarily attributed to the construction of wells, with the only exception of 

climate change impacts for conventional technologies, which are driven by discharges of CO2 and CH4 

occurring during the operation of the power plant. The general model assumes for both conventional 

and enhanced plants that three exploratory wells are required (DiPippo, 2016); these wells, which are 

assumed to have the same depth of the “operational” (i.e. production, injection and/or make-up) 

wells, are scaled by a factor of 0.3 to account for a lower diameter (Marchand et al., 2015). Therefore, 

three exploratory wells are equivalent to 0.9 operational wells; this represents a significant proportion 

of the number of wells drilled for enhanced geothermal technologies, but only a small fraction of the 

wells that are on average drilled for conventional ones. In fact, the general model assumes that 

enhanced geothermal plants feature either a single doublet or a single triplet configuration (i.e.  two 

or three wells including producers and injectors), whereas the median number of wells estimated by 

the general model for conventional plants is 36.  

Because of the importance of exploratory wells for enhanced geothermal operations, we include in 

the Supporting Information numerical coefficients for the simplified models that include the scenario 

of no exploratory wells being built. We recommend using these coefficients when it is known that no 

exploratory wells were built for the specific plant under investigation, and to use the original 

coefficients if the number of equivalent exploratory wells is either unknown or close to that assumed 

by the general model (i.e., 0.9).  

4.3 Selection of the appropriate simplified model 
As noted in Section 2, in general the choice of the simplified model at different thresholds entails a 

trade-off between accuracy and simplicity. Our analysis shows that the carbon footprint of 

conventional geothermal technologies can be accurately predicted by a two-parameters model, 

relying on operational emissions of CO2 and CH4 as parameters (Equation 1). When operational 

emissions of methane are not substantial, the carbon footprint can be predicted using only the 

amount of CO2 released during operations of the plant (Equation S1). This represents the conditions 

of most conventional power plants considered in published LCA studies. Notable exceptions are 

geothermal plants in Tuscany, Italy, which feature methane emissions from 2 and up to 12 g/kWh 

(corresponding to ~74 and ~444 gCO2-eq) (Bravi and Basosi, 2014; Buonocore et al., 2015). 
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For enhanced geothermal technologies, the comparison with climate change estimates from literature 

studies suggests that the simplified model at 5% threshold yields on average estimates closer to 

literature data. This is expected as at 5% the model employs a higher number of parameters, 

specifically diesel consumption, success rate of primary wells and depth of wells. Amongst these, the 

success rate of primary wells plays a more important role given that most studies report success rates 

of 100%, whilst the median value used in the simplified model equates to ~72% (Table S19). This 

means that when the simplified models do no not use such parameter, the number of drilled wells 

that the model estimates is higher by a factor of ~39% (i.e. 1/0.72). The simplified models yield 

estimates only in few cases significantly different from literature data. Notable examples are the case 

studies by Paulillo et al. (2020a), where the discrepancies are due to the number of depth of 

exploratory wells, as discussed in Section 4.2. Another example is scenario D1 by Frick et al. (2010); in 

this case the authors considered a worst case scenario where parameters relating to geothermal 

conditions of the site (i.e. temperature of the geothermal fluid and geothermal gradient) and to the 

power plant (e.g. lifetime, capacity factor, etc) are considerably below average. In addition to 

differences in technical/field data, it must also be noted that the comparative analysis is affected by 

differences in the underlying databases; for example, Lacirignola and Blanc (2013) used version 2.2 of 

the ecoinvent database, as opposed to version 3.6 that we used for our study. 

For the remaining categories in the EF2.0 method, the comparison reported in Figure 3 for 

conventional geothermal technologies shows that there is little difference between all simplified 

models. This comparison suggests that there is no reason for using a lower threshold, and therefore a 

higher number of parameters model. However, for enhanced geothermal technologies Figure 4 shows 

a clear advantage in using lower thresholds models (in particular that at 5%), and that when no 

exploratory wells are built, the appropriate coefficients need to be employed (see Section 4.2). 

4.4 Limitations 
The simplified models proposed in this study for estimating the environmental impacts of 

conventional and enhanced geothermal technologies were developed from the general model and 

the results from a Global Sensitivity Analysis carried out by Paulillo et al. (2021). Therefore, the 

simplified models carry the same limitations of the study on which they are based; these limitations 

include assumptions on the distributions of some parameters, lack of distributions for a small number 

of parameters, and lack of data for few parameters (primarily operational emissions of non-

condensable gases other than CO2, e.g. SO2, NH3).  

In this study, we performed a comprehensive validation of the simplified models for the climate 

change category; the comparison could only be extended to other environmental categories for two 

specific case studies because i) most studies do not report categories other than climate change, ii) 

because, even when they do, impact assessment methods other than EF2.0 are employed, and iii) we 

had access to the underlying LCA models of the two case studies. The extended comparison leads to 

generally positive results, but it should be extended to a larger number of studies to comprehensively 

assess the reliability of the models proposed. In addition, future studies should compare our simplified 

models with those developed by Douziech et al. (2021, 2020), to investigate the relative advantages 

and disadvantages of our approaches. Notably, their models differ from ours in two key aspects: first, 

they apply to specific geothermal plant archetypes (e.g.  “geothermal flash power plants producing 

electricity and limited amount of heat from a geothermal source with moderate to high content of 

NCGs”); second, they were developed from first (rather than total) order indices. We could not 

perform this comparison because Douziech et al.’s models use a different impact assessment method 

(i.e. ILCD 2018).  

Finally, we identify two additional limitations pertaining to the simplified models. First, the simplified 

models (and the general model from which the simplified models are derived) are based on the 
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ecoinvent database (v3.6 cut-off) for calculating the impacts of processes in the system boundary. This 

means that the numerical coefficients require constant updating unless the relevant processes are 

known not to have been affected by updates of the database. A similar limitation applies to the impact 

assessment method: the numerical coefficients require updating each time a new version of the 

Environmental Footprint method is released. However, updating the simplified models and the 

numerical coefficients is straightforward and can be carried out with the openly available Python 

scripts at https://github.com/a-pau/gsa_geothermal. 

5 Conclusions 
This article presented novel simplified models for the rapid estimation of the environmental impacts 

of geothermal power generation. The models are “simplified” because they rely on a small set of 

influential parameters, thus significantly facilitating data collection. The parameters were identified 

via Global Sensitivity Analysis (GSA) applied to a complex general parametric model developed in a 

previous study by the same authors. Our simplified models cover both conventional and enhanced 

geothermal technologies, and include all environmental categories in the Environmental Footprint 2.0 

(EF2.0) method. The models are represented by algebraic equations that can be easily (and quickly) 

resolved, even by hand. For each technology archetype, we developed two sets of models to account 

for the fact that influential parameters differ across categories. In addition, we developed several 

simplified models according to different thresholds of Sobol’ total order indices.  

We validated the simplified models via determination of the correlation with the general model, and 

comparison with literature data. We quantified the level of correlation via Pearson and Spearman 

correlation coefficients; our results show that the simplified models correlate well with the general 

model, with both coefficients being above 0.75 even for the high Sobol’ total order index threshold of 

20%. We compared the simplified models estimates with literature data for the climate change 

category, and we performed an extended comparison across multiple categories for two specific case 

studies. The results of the comparison, which are generally positive, highlight two criticalities. First, 

operational emissions of methane for conventional technologies (which were not included in the 

general model due to lack of data) can play an important role in the climate change category; but 

when CH4 emissions are not substantial, one parameter – operational CO2 emissions – is sufficient to 

estimate the carbon footprint of conventional technologies. Second, the number of exploratory wells, 

which is set to a pre-compiled value due to lack of data, can substantially affect the estimations for 

enhanced technologies because they account for a large portion of the total number of wells; for this 

reason, we have developed a modified version of the simplified models that assume no construction 

of exploratory wells. The results of the comparative analysis also show that i) there is little difference 

between thresholds for conventional technologies, and ii) the models at 5% thresholds are the most 

appropriate for enhanced technologies.  A minor limitation of our simplified models is that they 

require constant updates of the underlying LCA database and EF2.0 factors; however, updating the 

models in the future can be straightforward, and the Python code is openly available on GitHub. The 

method proposed in this article for the development of simplified models is not restricted to 

geothermal applications, rather it can be applied to any product system upon appropriate 

parametrization. 
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