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The recent development of assays that accurately quantify neurofilament light, a neuronal cytoskeleton protein, in plasma has gener-
ated a vast literature supporting that it is a sensitive, dynamic, and robust biomarker of neuroaxonal damage. As a result, efforts are
nowmade to introduce plasma neurofilament light into clinical routine practice, making it an easily accessible complement to its cere-
brospinal fluid counterpart. An increasing literature supports the use of plasma neurofilament light in differentiating neurodegenera-
tive diseases from their non-neurodegenerative mimics and suggests it is a valuable biomarker for the evaluation of the effect of
putative disease-modifying treatments (e.g. in multiple sclerosis). More contexts of use will likely emerge over the coming years.
However, to assist clinical interpretation of laboratory test values, it is crucial to establish normal reference intervals. In this study,
we sought to derive reliable cut-offs by pooling quantified plasma neurofilament light in neurologically healthy participants (5–90
years) from eight cohorts. A strong relationship between age and plasma neurofilament light prompted us to define the following
age-partitioned reference limits (upper 95th percentile in each age category): 5–17 years= 7 pg/mL; 18–50 years=10 pg/mL; 51–60
years=15 pg/mL; 61–70 years=20 pg/mL; 70 + years=35 pg/mL. The established reference limits across the lifespan will aid the
introduction of plasma neurofilament light into clinical routine, and thereby contribute to diagnostics and disease-monitoring in
neurological practice.
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Graphical Abstract

Introduction
In recent years, there has been rapid progress in the field of fluid
biomarkers for brain disorders, facilitated by the advent of ultra-
sensitive techniques with capabilities of quantifying proteins at
sub-femtomolar concentrations.1 This has enabled many of
the biomarkers that were previously only possible to measure
in CSF to be translated to blood. One of the best examples of

this transition is neurofilament light chain (NfL), a neuroaxonal
intermediate filament protein, which is highly expressed espe-
cially in large myelinated axons,2 and is important for axonal
stability and growth.3 In response to neuroaxonal damage, it
is released into theCSF aswell as the bloodstream.3 The success-
ful development of a blood assay was first demonstrated inHIV
infected patients,4 adopting the Simoa technique.1 The strong
correlation with CSF NfL (R∼0.8–0.9)4,5 and the capability to
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quantify the very low concentrations found in normal indivi-
duals sparked interest in the assay, which then led to a vast lit-
erature reporting increased levels of plasma NfL in multiple
diseases of the nervous system.3 These include both acute neuro-
logical conditions, such as traumatic and vascular brain in-
jury,6,7 infections4 as well as in neurodegenerative and
neuroinflammatory conditions.8,9 Notable examples include
multiple sclerosis, for which NfL is now starting to be used as
a biomarker of disease activity and therapeutic response.10

Furthermore, it canbeused to strengthen thedifferential diagno-
sis between idiopathic Parkinson’s disease and atypical
Parkinsonian disorders, as well as between neurodegenerative
diseases and non-neurodegenerative mimics.9 In addition, the
concentrations remain stable over shorter time periods in nor-
mal individuals,11 and are resistant to alterations in preanalyti-
cal sample handling, such as repeated freeze-thaw cycles12,13

and delayed processing.14

The evidence suggesting that NfL is a dynamic, pre-
analytically and analytically robust biomarker of neuroaxo-
nal damage has led to an increasing interest in introducing
plasma NfL measurements into clinical laboratory routine.
One important step towards realizing this goal is to establish
cut-offs, which is commonly attained by determining the con-
centrations in a healthy reference sample. Since studies report
a marked age-dependent increase of plasma NfL,15 which is
also well known for NfL in CSF,16 we sought to measure
NfL in healthy individuals across the life span to derive reli-
able cut-offs to be used in clinical neurochemistry routine.

Methods
Study design and population
For this study, we collected data from eight cohorts, spanning
the ages of 5–90 where the subjects had no history or clinical
symptoms or signs of neurologic disorder. The selection was
made to maximize the clinical relevance of the reference ranges,
by including a sufficient number of individuals from research in
whichwehadNfLquantified in blood across the largest possible
age-span. The first cohort included children from the Child
Neuropsychiatry Centre (CNC)/Gillberg Neuropsychiatry
Centre in Gothenburg, Sweden (cohort one, ‘CNC’, age range
5–16 years), among which 10 were controls in the study and
17 had a neuropsychiatric illness, but with NfL concentrations
which did not differ from the control group.17 The second co-
hort consisted of individuals from the ALFA+ study, which
was established at the Barcelona βeta Brain Research Center,
Barcelona, Spain to study the preclinical features of
Alzheimer’s disease. From this study, we only included partici-
pants with no evidence of Aβ pathology, as measured by CSF
Aβ42/40, with a cut-off previously established18 (cohort two,
‘ALFA+’, age range: 50–68 years).19 Furthermore, we included
individuals from a study at the Institute for Stress Medicine in
which consisted of individuals with symptoms of exhaustion
disorder, but without any neurological comorbidities (n=150)
which hadmeasurements at baseline and at a second visit (range

7–12 years apart), and healthy controls (n=100) (cohort three,
‘Stress’, age range: 21–74 years). The fourth cohort consisted of
individuals from the Swedish longitudinal Betula study, which is
a population-based prospective study on aging, memory, and
dementia conducted inUmeå, Sweden. Participantswithdemen-
tia were excluded (cohort four, ‘Betula’, age range: 44–90
years).20 The fifth cohort encompassed the baseline blood sam-
ples from healthy individuals from an intervention study at the
Department ofGynaecology,GhentUniversityHospital,Ghent,
Belgium, investigating the effects of menopause in women (co-
hort five, ‘Estrogen’, age range: 34–67 years). In addition,
healthy individuals between20–75years of age providedplasma
samples at the blood donation facility at Sahlgrenska University
hospital,Gothenburg, Sweden.These individuals reportedbeing
at good general health, and passed the extensive screening re-
quired to donate blood in Sweden (cohort six, ‘Blood donors’,
age range: 20–75 years). Furthermore, we included healthy
young men from a study where the effects of sleep deprivation
on biomarkers were investigated at Sahlgrenska University
Hospital, Mölndal, Sweden (cohort seven, ‘Sleep’, age range:
21–35years).21 Finally,we includedhealthy controls fromabio-
marker study at the University of Brescia, Brescia, Italy. These
participants were recruited among spouses or caregivers and
underwent a brief standardized neuropsychological assessment
[Mini Mental State Examination (MMSE) ≥27/30]; psychiatric
or other neurological illnesseswere considered exclusion criteria
(cohort eight, ‘Brescia’, age range: 29–83 years).22 The study
was conducted according to theDeclaration ofHelsinki and ap-
proved by the local ethics committees at each participating site.

Biochemical analysis
Bloodwas collected by venipuncture in ethylenediaminetetraa-
cetic acid (EDTA) tubes and was centrifuged within two hours
of collection at 20°C, centrifuged at 2000 g for 10 min and
stored at –80°C pending biochemical analysis in cohorts 2–7.
The exact time-interval between these procedures are not
known to us. However, we have previously shown that de-
layed centrifugation has very limited impact on the stability
of NfL measured in EDTA-plasma.14 All samples were mea-
sured in plasma, except for in cohort one and eight, in which
serum was used. In those cohorts, blood was collected in
serum-separating tubes, which was left to coagulate for
30 min before the sample was centrifuged and stored as previ-
ously mentioned pending analysis. NfL was measured in all
samples using commercial Quanterix® kits (Simoa®
NF-light Kit) on Simoa HD-X or HD-1 analyzers according
to the manufacturer’s instructions (Quanterix, Billerica, MA,
USA). Samples were run in singlicate and each assay plate in-
cluded internal quality control (QC) samples with high and
low plasma NfL concentrations, respectively, analyzed in du-
plicate both in the beginning and end of the plate. Since evi-
dence suggest that NfL in serum is consistently ∼20% higher
than EDTA plasma,12 all serum concentrations were divided
by 1.20 to harmonize with plasma concentrations. Two clear
outliers with concentrations of 272 pg/mL and 397 pg/mL, re-
spectively, were excluded from the final sample.
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Normalization procedure in clinical
chemistry routine
Another plasma pool, run in the same way as the QCs, has
been introduced to the protocol used in the clinical routine
analysis at the Clinical Neurochemistry Laboratory,
Sahlgrenska University Hospital, Mölndal, Sweden. This
sample, named internal calibrator (IC), has an assigned con-
centration, determined during the validation of the assay,
and is measured in quadruplicate in each analytical run
and used for normalization. Each run is approved based on
theWestgard rules23 13s (no QCs deviate more than 3 stand-
ard deviations (SD) from the QC mean) and 22s (not more
than two QCs are allowed to deviate more than 2 SD from
the QC mean) for the normalized QCs. Conceptually, the
use of an IC as described is similar to how random-access in-
struments are programmed with a master calibration curve,
built on many calibrators with different concentrations,
which is then adjusted based on only a couple of calibrators
included in each analytical run. This is performed to achieve
longitudinal stability of the assay across batches and other
potential factors which may be influencing the performance
over time.

Statistical analysis
Determination of distribution was conducted by inspecting
histograms of the data. Since there was a visible positive
skewness of NfL concentrations, the data was log10 trans-
formed for statistical analyses. For group comparisons, stu-
dent’s t-test was used. Linear regression models were used
to assess the relationship of NfL with age, and to estimate
the proportion of the variance in NfL explained by age and
sex, respectively. A local weighted regression (LOESS) plot
was generated to visualize the changing NfL concentrations
across the lifespan.24 As it is not believed that low concentra-
tions of NfL are associated with pathology, the upper 95th
percentile was estimated using a rank-based method, as re-
commended by the International federation for Clinical
Chemistry and Laboratory Medicine (IFCC).25 We per-
formed a sensitivity analysis, excluding the participants
from cohort three, and comparing if this significantly af-
fected the mean NfL concentrations in the relevant
age-ranges (19–50, 51–60, 61–70 and >70). Since no signifi-
cant mean differences were seen when excluding the partici-
pants from cohort three, they were included in the
determination of the reference values. A summary table of
the results can be seen in the supplementary material
(Supplementary Table 1). There were no missing data in
this study. Statistical analyses and graphs were generated
using GraphPad Prism v9.0 (La Jolla, CA) or SPSS
(v. 27.0). Test results with a two-sided P< 0.05 were consid-
ered significant.

Data availability
All data are available upon reasonable request.

Results
Demographic characteristics
In total, 1724 measurements were included, among which
1104 (64%) were from women. For description of each co-
hort, see Table 1. Plasma NfL concentrations increased sig-
nificantly with increasing age (r2= 0.53, β= 0.012,
P < 0.001). This increase is seemingly more prominent after
∼65 years of age (Fig. 1). The age [mean years (SD)] of the
women across the cohorts included were slightly higher
than the male participants [54.9 (13.5) versus 51.2 (16.0),
95% confidence interval (CI) (2.3–5.1)] and had slightly
higher concentrations of plasma NfL (10.1 versus 8.9 pg/
mL, 95%CI [0.47–1.8], both P< 0.001). However, when in-
cluding both factors in a regression model, age was much
more strongly associated with NfL concentrations than sex
(age: β= 0.73, P= 0.001; sex: β=−0.041, P=0.014).

Derivation of age-stratified cut-offs
Since we and others previously have reported age-dependent
increases in NfL, we determined age-specific cut offs for the
following age categories by visually inspecting a scatter plot
where plasma NfL was regressed against age: 5 to <18 (n=
27), 18 to <51 (n= 369), 51 to <60 (n= 614), 61 to <71
(n= 366), >70 (n= 150). Based on the 95th percentile in
each of the groups, the following reference limits were estab-
lished: 7 pg/mL in the group between ages 5–17, 10 pg/mL
between the ages of 18–50, 15 pg/mL in the ages ranging
from 51–60, 20 pg/mL in the group ranging between
61–70, and 35 pg/mL for individuals older than 70 years
(Fig. 2 and Table 2).

Achieving traceability to the
reference ranges
As an example of how the normalization affects the disper-
sion of the QCs included in each analytical run, 20 randomly
picked runs from a time period of >3 months, resulted in a
decrease in the intermediate precision from 7.2% to 6.1%
and 13% to 11% for the high and low QCs, respectively.
Laboratories that plan to introduce plasma NfL in clinical
routine practice are welcome to send samples to the
Clinical Neurochemistry Laboratory at Sahlgrenska
University Hospital, Mölndal, Sweden, to achieve traceabil-
ity to the data presented here.

Discussion
In this study, we present a large material of normal plasma
NfL concentrations from a large number of healthy partici-
pants spanning the ages 5–90 years. We derived specific cut-
offs in five different age categories to reflect the clear effect of
age on concentrations of plasma NfL. A clear effect of age
was also reported in a study where Hviid et al.13 aimed to
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establish reference ranges for NfL. However, in that study,
which used serum as the reference matrix, the proposed cut-
offs was significantly higher, especially in the group of indi-
viduals above the age of 65 (n= 60) (<53 pg/mL versus
<35 pg/mL for individuals >70 in our study)13, possibly re-
flecting a larger degree of sub- or preclinical neuroaxonal
pathology in their study, the use of a different matrix12

and also the smaller sample size. Furthermore, since the
study by Hviid et al.13 only included individuals >18, we
are the first to report that NfL in children is lower than in
young adults (7 pg/mL <18 years versus 10 pg/mL 18–41
years). The establishment of cut-offs in children also pro-
vides an opportunity to identify neuroaxonal injury to assist
clinical diagnosis and monitor neurological disease also in
pediatric patients. An example where this has been successful
is spinal muscular atrophy, where CSF NfL normalizes in re-
sponse to treatment.26

NfL has the potential to be widely used both in primary
care as well as in secondary and tertiary settings as a diagnos-
tic marker of apparent damage to the central nervous system,

aswell as tomonitor treatment response and disease progres-
sion. Examples of the diagnostic utility of NfL is its ability to
differentiate between idiopathic Parkinson’s disease and
atypical parkinsonian syndromes,5,9 as well as between pri-
mary psychiatric syndromes and frontotemporal dementia,
where levels are roughly five-fold higher.9,27 However, as
with most clinical chemistry analyses, changes due to the
normal biology exist also for NfL. In normal individuals,
there is a significant inter-individual variability, which needs
to be considered when interpreting plasma NfL.11

Nonetheless, the normal intra-individual variability over a
short time frame (days) is almost negligible, making repeated
measures of NfL reliable.11 A recent study suggested that an
intra-individual change of 24.3% can be considered signifi-
cant on an individual level, based on biological and analytic-
al variation.11 Thus, it is likely that the increases that are seen

Table 1 Cohort characteristics

Cohort Name Measurements, n Mean age, years (SD) Sex, females/male (% females)

Cohort 1 CNC 27 11.0 (3.3) 12/15 (44%)
Cohort 2 ALFA+ 184 60.2 (4.5) 124/60 (67%)
Cohort 3 Stress 397 45.7 (11.5) 284/113 (72%)
Cohort 4 Betula 407 66.0 (10.7) 207/200 (51%)
Cohort 5 Estrogen 321 54.2 (4.7) 321/0 (100%)
Cohort 6 Blood donors 304 45.5 (13.4) 104/198 (35%)
Cohort 7 Sleep 21 25.4 (3.3) 0/21 (0%)
Cohort 8 Brescia 63 65.4 (12.1) 50/13 (79%)
Total 1724 53.5 (14.5) 1104/620 (64%)

Figure 1 The age-related increase of plasma NfL
accelerates across the lifespan. The increasing NfL
concentrations with age are visualized using a LOESS plot (locally
estimated scatterplot smoothing) between ages 5–90. Three data
points with concentrations 63.9, 82.6, and 77.7 pg/mL are not
shown for visualization purposes, but were included in all statistical
analyses in the paper.

Figure 2 Age-stratified cut-offs for plasma neurofilament
light. This graph displays the age-dependent increase in plasma NfL
concentration in individuals aged 5–90. The black solid lines, as well
as the grey dashed lines represent the cut-offs derived from a
rank-based method estimating the 95th percentile in each age
category. The estimated 95th percentiles are shown in brackets
after the respective age-categories: (i) 5–17 (7 pg/mL), (ii) 18–50
(10 pg/mL), (iii) 51–60 (15 pg/mL), (iv) 61–70 (20 pg/mL), and (v)
>70 (35 pg/mL). Male individuals are indicated by purple dots, and
females with blue dots. Three data points with concentrations 63.9,
82.6, and 77.7 pg/mL are not shown for visualization purposes, but
were included in all statistical analyses in the paper.
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over time (likely over one/a few years rather than weeks or
months) in neurodegenerative conditions with a relatively
fast progression can be longitudinally monitored in a reliable
manner, aiding clinical management.28–30 As mentioned
above, NfL has the potential to be used in the monitoring
of pharmacological therapy, which has been robustly de-
monstrated in patients with multiple sclerosis where levels
normalize in response to treatment with disease modifying
therapies.31 As novel pharmacological treatments that inter-
vene with the natural course of neurological diseases, the ac-
cessibility and relatively low cost of NfL entails a large
clinical utility.

Strengths of this study include the large number of partici-
pants across the lifespan, providing an opportunity to de-
rived reliable age-partitioned reference limits for clinical
use. Furthermore, all individuals in this study had concentra-
tions above the lower limit of quantification, reflecting the
large dynamic range of the assay, which allows for monitor-
ing also of participants that are ‘low producers’. Another
strength of this study is that all participants had NfL quanti-
fied using Simoa, which is by far the most used method to
quantify NfL in blood. Efforts are currently ongoing within
the IFCC to harmonize measurements across several analyt-
ical platformswhich, after adjustment to referencematerials,
will make it possible to generalize these reference ranges also
to other platforms.

Limitations of this study include the relatively small num-
ber of children included in this study – a higher number of
participants below the age of 18 would increase the certainty
of the reference limit for these groups of individuals. Still, the
NfL concentration in these age-groups were very narrowly
distributed, and we believe that this reflects the absence of
clinically silent comorbidities that give rise to higher NfL
concentrations in plasma. In addition, we did not have any
values for children between zero and five years of age, but
our clinical experience is that the levels in this age-span is
not significantly different from older children, unlike tau,
which is present in very high levels in CSF during early brain
development and the first year of life.32 Furthermore, in most
of the cohorts included, we did not have the possibility to
perform advanced imaging and thus exclude participants
with sub- or preclinical neuronal injury. This may be re-
flected in the greater variability of plasma NfL concentra-
tions with increasing age, as seen in Fig. 1. Another
possible confounder is the effect of low body mass index,
which has been reported to be associated with increased

plasma NfL concentration in some recent publications.10,33

According to Benkert et al.,10 however, this effect was small,
explaining around 5% of the total variance of plasma NfL.
Thus, we believe that clinically meaningful changes in neu-
roaxonal integrity are still found using these reference limits.
To conclude, here we present the largest material of normal
values of NfL across the lifespan to derive age-partitioned
reference values, greatly aiding the clinical implementation
of NfL.
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