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ABSTRACT
Information leaks in software can unintentionally reveal private

data, yet they are hard to detect and fix. Although several methods

have been proposed to detect leakage, such as static verification-

based approaches, they require specialist knowledge, and are time-

consuming. Recently, we introduced HyperGI, a dynamic, hypertest-

based approach that can detect and produce potential fixes for

hyperproperty violations. In particular, we focused on violations

of the noninterference property, as it results in information flow

leakage. Our instantiation of HyperGI was able to detect and reduce

leakage in three small programs. Its fitness function tried to balance

information leakage and program correctness but, as we pointed

out, there may be tradeoffs between keeping program semantics

and reducing information leakage that require developer decisions.

In this work we ask if it is possible to automatically detect and re-

pair information leakage in more realistic programs without requir-

ing specialist knowledge. We instantiate a multi-objective version

of HyperGI in a tool, called LeakReducer, which explicitly encodes

the tradeoff between program correctness and information leakage.

We apply LeakReducer to six leaky programs, including the well-

known Heartbleed bug. LeakReducer is able to detect leakage in all,

in contrast to state-of-the-art fuzzers, detecting leakage in only two

programs. Moreover, LeakReducer is able to reduce leakage in all

subjects, with comparable results to previous work, while scaling

to much larger software.
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1 INTRODUCTION
Information leakage from programs has led to high profile security

bugs such as the Heartbleed bug.
1
Typically, information leaks from

a program either when it contains information flow control (IFC)

errors or when a data structure such as a buffer or stack can be

accessed in an unbounded manner. The Heartbleed bug was due to a

problem in the OpenSSL cryptographic library. When pinged with a

malformed query, it was possible to read past the buffer and return

unencrypted data from the server’s memory, hence providing a

backdoor for eavesdropping on network traffic. This bug existed for

several years in a library used by programs and servers worldwide.

While it represents a common type of information leakage, more

subtle IFC leaks can occur, and these may also lead to exposure of

private information.

Take, for instance, the program below which accepts an integer

variable var and returns 0, 1 or 2. It has two predicates, one which

compares var against a variable called magic_number and one that

uses the value of a secret variable (protected_var).
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1 INTRODUCTION
Information leakage from programs has led to high profile security

bugs such as the Heartbleed bug.
1
Typically, information leaks from

a program either when it contains information flow control (IFC)

errors or when a data structure such as a buffer or stack can be

accessed in an unbounded manner. The Heartbleed bug was due to a

problem in the OpenSSL cryptographic library. When pinged with a

malformed query, it was possible to read past the buffer and return

unencrypted data from the server’s memory, hence providing a

backdoor for eavesdropping on network traffic. This bug existed for

several years in a library used by programs and servers worldwide.

While it represents a common type of information leakage, more

subtle IFC leaks can occur, and these may also lead to exposure of

private information.

Take, for instance, the program below which accepts an integer

variable var and returns 0, 1 or 2. It has two predicates, one which

compares var against a variable called magic_number and one that

uses the value of a secret variable (protected_var).

int leaking_secrets(int var){
...
if(var > magic_number}{

leak_info=2;
}
else if(var < protected_var){

leak_info=1;
}
else

leak_info=0;
...
return leak_info; }

1
https://heartbleed.com/
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An important part of information leakage is setting a security

policy (beyond the scope of this work). Based on a given security

policy, we can assume that 1) var and magic_number are publicly
known (a.k.a low security variables), and 2) protected_var is con-

sidered high security; it is a secret. Given this policy, it is not hard

to see that repeated querying of this program with different values

of var can expose information about protected_var. Let’s assume

magic_number=6 and protected_var=5. If we run the program re-

peatedly using the inputs 8, 3, 5, we get different return values of 2,

1, 0. Using inputs 0, 1, 2, we get return values of 1, 1, 1. These results

give us information about the content of protected_var, i.e. infor-
mation is leaking. As we can see, the value of magic_number could
impact the visibility of this information. Even in this simple program

the ability to discover the leak dynamically depends on multiple

variables (and control flows). If, for instance, magic_number is set
to a large negative value, then for most inputs of var no informa-

tion about protected_var will be revealed. The program always

returns 2.

Finding information leakage in programs is non-trivial, with

the most common approach being static analysis [24, 38]. There

have also been some combined static/dynamic techniques [34], but

these have not necessarily been applied to real-world programs

nor can they provide patch suggestions if the problem is found.

Moreover, as we show in our study, current techniques may be able

to detect information leakage related to memory overflows, but

they may still miss those related to a program’s control flow as is

exemplified in the example program leaking_secrets. Mechtaev

et al. [30] were able to use automated program repair to fix the

Heartbleed bug suggesting automated ways to handle these types

of faults. However, that work assumes the leakage would break

program functionality and requires failing test cases. As in our

earlier work [32], we call such tests functional tests. Information

leakage can occur even if a program passes all functional tests,

making information leakage difficult to detect and fix.

Previously, we presented a general approach, called HyperGI,

which uses hypertests and genetic improvement to repair software’s

hyperproperty violations. We implemented an instantiation of Hy-

perGI for the confidentiality problem: i.e. detection and repair of

information leakage in programs [32]. While this work made ad-

vances in reducing information leakage it was preliminary. Our

implementation was applied only to small functions (less than 40

lines of code) and results were obtained in a partially automated

setting, since a user needed to insert some domain knowledge (i.e.,

extra variables with their types) to improve search. Nor did it allow

any flexibility in trading semantic invariance for leak repair.

A key finding of our previous work was that the patches pro-

duced presented a tradeoff between preserving original functional-

ity (as exposed by functional tests) and reducing information leak-

age (as exposed by hypertests). Returning to our example above,

the only way to reduce information leakage completely, would be

to change the predicate related to protected_var. However, that
would change the initial, intended program and some functional

tests are likely to fail. This suggests repairing information flow

leakage should be viewed as a multi-objective problem. We should

consider the option of balancing the leakage of secrets with the

need for particular program behavior.

In this paper, we present an automated multi-objective frame-

work called LeakReducer for estimating and reducing information

leakage. It requires only a program and its security policy. More-

over, we improve upon our previous work [32] by: (1) using mul-

tiple functional test sets as input; (2) using automatically derived

repair ingredients; (3) including both single and multi-objective

search strategies; and (4) scaling to real programs. We have evalu-

ated LeakReducer on the prior subjects from our previous work as

well as on three other programs, including two modules from the

OpenSSL library. We were able to both detect and reduce leakage

in two files, each around 1,000 lines of code, including the original

Heartbleed bug. One of our detected leaks in a real-world program

turned out to be a false positive (confirmed by developers), but it

points to a different use case and class of information leakage faults

which we aim to study as future work. Furthermore, we examine

the quality of Pareto fronts for different multi-objective algorithms,

and explore a few interesting patches in depth.

In summary, the contributions of this work are:

(1) LeakReducer, a multi-objective instantiation and implemen-

tation of HyperGI for finding and reducing information leak-

age;

(2) An empirical study demonstrating the effectiveness of LeakRe-

ducer; and

(3) An evaluation of patch diversity produced by LeakReducer,

detailing tradeoffs between change in original semantics of

the given program and reduction in information leakage.

The rest of this paper is structured as follows: We present back-

ground and related work in the next section. We then present

LeakReducer in Section 3. We follow this with our study and results

(Sections 4-5). We conclude and suggest future work in Section 6.

2 BACKGROUND AND RELATEDWORK
The information flow control problem of maintaining data confi-

dentiality across program executions has a long history, part of

which was surveyed in the early 2000s by Sabelfeld and Myers [37].

Software should be designed so that it obeys a security flow policy

via a noninterference property, namely lower security users should

not be aware of the actions of higher security users [21]. The se-

curity flow policies we consider are expressed using Lattice Based

Access Control (LBAC) [18] where a subject can only access an

object if the security level of the subject is greater than or equal to

the object. Security levels are expressed in a lattice, a partial order

where least upper bounds and greatest lower bounds are defined

for any set. Such models are consistent with the “no write down, no

read up” principles of Bell-LaPadula access control [9]. In this paper,

all security policies are expressed in terms of a two point, High-Low

labels lattice. Although LBAC allows complex multi-level policies,

this lattice is sufficient to express the security policies for our pro-

grams under experimentation. Subjects and objects are mapped to

the two points in this lattice and the noninterference property can

be formulated purely in terms of these lattice points as follows.

We partition data containers, e.g., a memory address or a variable

in an imperative program, and users using High/Low labels, then

use the partition to formally define the noninterference property

for the program and security policy pair. We say that a pair of

states, 𝑠1, 𝑠2, are Low equivalent, 𝑠1 ≡𝐿 𝑠2, if the values in the
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data containers labelled Low are the same. Then we can define the

property:

Definition 1 (Noninterference property). A program 𝑃 sat-
isfies the noninterference property for the High-Low security policy if
for every pair of initial states 𝑠1, 𝑠2, 𝑠1 ≡𝐿 𝑠2 ⇒ 𝑃 (𝑠1) ≡𝐿 𝑃 (𝑠2).

In this flow and termination insensitive definition, noninterfer-

ence means the program will map all Low equivalent initial state

pairs to Low equivalent final state pairs.

Noninterference is not a property of single executions but of

pairs of executions. Clarkson and Schneider generalized this idea,

calling such program properties hyperproperties as they are only

expressible using sets of sets of executions [14]. The “preservation of

Low equivalence” property partitions all distinct pairs of executions

that begin in Low equivalent states into the set of pairs that preserve

the Low equivalence in the final states and the set of pairs that do

not. The noninterference property effectively says that the latter set

is empty. If it is not, information leaks from the High labelled parts

of initial states to the Low labelled parts of final states. This last

observation leads to what Kinder called Hypertests [25], using pairs
of Low equivalent inputs with differing High inputs with a “built in”

oracle that fails the hypertest if the outputs are not Low equivalent.

This is the method we use to detect information leaks in this paper.

To repair information leaks, we need to estimate leak size.

2.1 Quantified Information Flow
Historically, much of the research focused on how to check that

code obeys its designated security policy before deployment and
was heavily influenced by Volpano, Irvine, and Smith’s work on

security type systems [45]. This led to tools such as the Jif compiler

and IDE [7]. One difficulty lies not in the type system approach

itself, but in the noninterference property, recognized to be overly

restrictive for real programs – for example, a password checking

program famously will not satisfy the property for a security pol-

icy that protects correct passwords as every failure leaks a small

amount of information. Attempts to ameliorate this more relevant

to this paper is research in Quantified Information Flow (QIF) using

information theory which had the original aim that quantitative

security policies could allow information to leak, but only in a

bounded way [4, 12]. While it was eventually realized that bound-

ing QIF or exact calculation of QIF for programs is, in the worst

case, computationally feasible though intractable (see Terauchi and

others [48]), the attractiveness of the idea means research continues

on approaches to the bounding problem [11].

We, however, aim to detect the existence of a leak via hypertesting,
localize its cause in the code, then use Genetic Improvement (GI) to

eliminate or reduce the leak size. The localization and elimination

steps rely onQIF estimates but we do not need to provide guarantees

for the leak bound.While it is true that eliminating leaks completely

is provably equivalent to satisfying noninterference [13], as a test-

based methodology, we do not guarantee the absence of leaks, only

that we may find and fix them.

We follow our prior work [32] in using the conditional Shan-

non entropy of Low outputs given Low inputs as the measure of

leakage, then estimating this using test sets that we assume are

sampled from a discrete uniform distribution. Ultimately, the funda-

mental definitions were provided by Shannon [16], and the leakage

definitions by Clark et alia [13]. In what follows we present two

leakage definitions and comment on how they relate to programs

and security policies.

Definition 2 (Leakagemeasure for deterministic programs).

Let 𝐻 and 𝐻 ′ be the random variables in the High parts of the ini-
tial and final states of program 𝑃 , respectively while 𝐿 and 𝐿′ are
the corresponding random variables in the Low parts. Then if 𝑃 is a
deterministic program and High and Low parts partition each state,
L(𝑃), the leakage from 𝐻 into 𝐿′ for 𝑃 is given by L(𝑃) = H(𝐿′ |𝐿)
whereH is the Shannon entropy of a random variable.

This measures the information that flows from a random variable

in the High part of the initial states to another random variable

in the Low part of the final states, on the following assumptions:

(1) we account for all contributions to the initial states, (2) these

are partitioned between High and Low, and (3) the program is

deterministic; once we account for the Low part of the initial states

any remaining entropy in the Low part of the final states must be

due to the High part of the initial states.

The advantage in this specialized definition is that you do not

need to know anything about the random variable in the High

part of the initial states. But its underlying assumptions break if

some other source of information correlates with the Low part of

the final state during execution. In particular, use of the definition

in a test-based scenario can be sensitive to external and internal

nondeterminism during executions, e.g., changing configuration

parameters or race conditions in threads. In the presence of noise,

Clark et al. recommend using the more general definition, L(𝑃) =
I(𝐻 ;𝐿′ |𝐿), where I is mutual information, and show that the two

definitions are equivalent under the assumptions [13].

In ourmethod, because we don’t need a precise bound on leakage,

some flakiness in hypertests is tolerable. The tradeoffs inherent

in multi-objective solutions will not always include reducing the

leakage to zero. Also, using a definition that is agnostic about the

entropy in the High part of states allows us to perform experiments
where control and observation is partial as opposed to true testing

where control and observation is complete. A common security

policy for Unix utilities is to label inputs and outputs Low and

designate data in the memory of the process as High [28]. We use

the hypertest set to estimate leakage. A conventional test set could

be used but a hypertest set is more focused on potential leakage.

While much software is open source, security policies tend to

be implicit at best and certainly not open source. We thus re-use

ones from previous work [32], outlining others in Section 4.1.

2.2 Related Work
In our prior work [32] we proposed the use of hyper-testing and

genetic improvement to detect and fix information leaks.We demon-

strated the initial promise of this approach on a small set of pro-

grams. However, by using a single-objective approach, our method

necessarily folded tradeoff decisions between leakage and function-

ality into our chosen fitness function. We believe that this tradeoff

should be available to developers and consequently that leakage

repair should be based onmulti-objective search. In order to achieve

good repair results we reported user input was necessary. In partic-

ular, the user had to add ingredients (e.g., variables) to the search

engine to help find a repair. In this work we have automated all
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the steps that previously required user input. The user of LeakRe-

ducer is now only required to provide a program, its security policy,

and two test suites (see Sections 3.2 and 3.1).

Some interest in hypertesting programs for information leaks has

been evident in the fuzzing research community. Rather than focus

on semantic leaks as we do, the interest has been in side channel

leaks. CT-fuzz [22] and QFuzz [35] are examples of recent research

in this area. Neither deals with automating repair. CT-Fuzz looks

for failing hypertests as evidence of leakage. Its oracle is coarse,

with an observation power limited to path divergence but including

timing differences. QFuzz uses a leakage measure based on min

entropy to analyse the size of leaks from timing channels. Our

work relates to that of the automated program repair community,

but our methodology is very different. There does exist work on

automated program repair in the side channel leakage community,

for example, Athanasiou et alia’s work [8]. This work ultimately

derives from Agat’s work on masking timing channels [3], but is

more sophisticated, exploiting creation of statistical independence

in the representation of secret data to do the masking.

3 LEAKREDUCER
We now present our framework for multi-objective information

leakage reduction, LeakReducer. Figure 1 shows an overview.

First, a user needs to provide a program and a security policy

(stage (a) in Figure 1). Next, LeakReducer requires two test sets:

(1) a hypertest set, described in Section 3.2, stage (b) in Figure 1;

and (2) a functional test set, described in Section 3.1, stage (c) in

Figure 1. The functional test set is used to check whether current

functionality is preserved; and the hypertest set is used to quantify

information leakage. Assuming the hypertests discover a non-zero

information leak, then, the repair stage, stage (d) in Figure 1, can

start. This stage follows the usual genetic improvement process

(Section 3.3): localization of the most promising parts of program for

optimization (in our case leak reduction, described in Section 3.3.2);

generation of candidate patches, (Section 3.3.3); and search over

the generated patches guided by a fitness, (Section 3.3.4). Finally,

we discuss tool integration details in Section 3.4.

To recap, the only manual steps required are: provision of a

program with its security policy, and two test sets. LeakReducer au-

tomates leak localization, detection, and repair.

3.1 Automated Functional Test Generation
We automatically generate test sets that capture the current func-

tionality of the given software. Any existing test suite could be

used, but such tests are not always available. For instance, no tests

covered the faulty function in OpenSSL before the Heartbleed bug

was discovered. We always assume a real-world scenario where

it’s simply unknown whether a bug exists or not and discover any

problems using hypertests, in contradiction to, say, Mechtaev et

al. [30] where their automatic repair of the HeartBleed bug was

reliant on test cases only added after the bug was discovered.

There is a plethora of automated test generation techniques to

choose from [6, 20, 46]. We decided to use fuzzers due to their

effectiveness at finding software vulnerabilities [29] and the exis-

tence of multiple open source fuzzers for C which is the language

of our experimental subjects. We leave alternative functional test

generation approaches as future work.

We have introduced two improvements to fuzzing described next.

Intuitively, normal use of a given program is unlikely to trigger

information leaks (assuming the developers did their due diligence).

It is the rare, perhaps malicious, inputs that are likely to reveal

such faults. Grey-box fuzzers generate inputs, driven by the goal

of maximizing code coverage, and might sometimes miss such

rare events. Therefore, we use a program transformation technique,

HashFuzz [31], in conjunction with a fuzzer to increase the diversity

of generated inputs for one of our test generation techniques. Given

the rare nature of leakage triggering paths, and inability to rely

on coverage feedback for discovering leaks, we felt that increased

input diversity could be key to automated discovery of future leaks.

Moreover, we noticed that even with HashFuzz certain branches

can be missed. As an example, Atalk [23] (one of our subject pro-

grams) has a branch that is only reachable by matching a 32-bit

variable with a specific constant: TCP_ ESTABLISHED. If the fuzzer
was only generating values for this particular 32-bit variable, then

the probability of discovering this branch for each generated input

would be just 1/232. To further increase code coverage, we allow

for the user to provide input seeds as a basis to begin fuzzing.

3.2 Automated Hypertest Generation
As shown in HyperGI [32], traditional tests are not always able

to reveal information leaks. Therefore, hypertests are needed to

detect and measure the amount of leakage from the target program.

We use a strategy from our previous work [32] to automatically

generate these. We prepare a set of Low and High inputs based

on the security policy. The user provides 1) the security policy

mapping, 2) the number of Low values (𝐾 ) to use in the hypertests

(𝐾 = 50 in our case), and (3) the number of High values (𝑁 = 5) to

use. In the case where the High value is an input to the program,

we generate 𝑁 High inputs. If the High value is internal we simply

run the test 𝑁 times using the same Low value.

Our algorithm uses a nested binary search and a priority queue

of size 𝐾 , keeping the 𝐾 hypertest sets with the largest quantified

information flow (QIF). These sets are ultimately merged (removing

duplicate pairs) into a single, large, hypertest set which will be used

on the program during repair. The algorithm halves the Low input

space at each iteration (if we have a 32 bit Integer type then there

are 32 possible ranges), until it cannot be divided any further.

For each half Low inputs are randomly selected from within its

range using 𝐾 in combination with an amplifier variable𝑀 (in our

case𝑀 = 4).𝑀 is used to ensure we generate a sufficient number

of values since the search spaces can be very large. We end up with

approximately 200 Low inputs at the end.

For each of the Low inputs, if High inputs are needed, an inner

binary search repeatedly divides the High input space in a similar

fashion. 𝑁 High inputs are randomly generated from each half. The

hypertest sets are then run on the target program and the QIF is

calculated. The hypertest sets are added to a priority queue; those

with the smallest QIF are dropped. This process repeats until the

binary search on the Low input space is complete. The tests are

then merged and the result is a single hypertest set optimized for

leakage detection.
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(b) Generate HyperTests
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Figure 1: Overview of LeakReducer. The starting point is a potentially leaky program. First a security policy is used to generate
hypertests for leak detection. Automated test generation is used for functional tests. Using these test suites the program is
improved using either a single or multi-objective algorithm. The result is either a single program or a Pareto front (PF) of
programs from which the developer can choose the preferred patch.

3.3 Genetic Improvement
Once LeakReducer has generated functional (Section 3.1) and hyper-

test (Section 3.2) test sets, we can define the fitness functions which

will guide the search algorithms in the leak reduction stage (stage

(d) in Figure 1).This stage utilizes Genetic Improvement (GI) [36]

to find improved program versions. The following subsections de-

scribe each of the steps of the process.

3.3.1 Fitness Function. The aim of LeakReducer is to find a patch

that will reduce information leakage, whilst preserving software

functionality. Since the two objectives can be in conflict with each

other (albeit not always), we need to quantify them separately.

The first objective is quantified by the fail rate of the functional

tests. That is, all functional tests should pass when run on the

unmodified program, as they are used as a proxy for the intended

program behaviour.

The second objective is quantified by using a hypertest set to

estimate the leak size. We use the same calculation as in previous

work [32] (see Definition 2 in Section 2), and henceforth use QIF to

refer to estimate for quantified information leakage.

3.3.2 Leak Localization. Before starting the search process, possi-

ble leak locations need to be identified. Similar to previouswork [32],

we use a lightweight form of dynamic analysis for this purpose,

albeit on the whole leaky file not just the function. Based on the

security policy, we first identify the file where leakage occurs. Next,

we remove each statement from the target, one-by-one, and observe

the impact on QIF when the hypertests are run.

When a statement is removed, if the program fails to compile or

run, then QIF for that statement is assumed to be zero. Otherwise,

we calculate and store the absolute change in QIF of this modified

program from the original. Finally, statement leakages are normal-

ized with respect to the highest absolute difference. The higher

the absolute difference, the greater the probability that the fault is

coupled with that statement. We use these probabilities during the

search process to prioritize statements that have higher impact on

information leakage based on this analysis. The assumption is that

changes to those statements should have highest impact on (and

hopefully reduce) the leakage.

3.3.3 Patch Generation. Once we have identified statements that

have influence on information leakage, we mutate them to create

new program variants. In genetic improvement the standard muta-

tion operators simply insert, delete and replace software fragments,

e.g., code statements.We observe that information leakage problems

are caused by information flow between Low and High variables in

a given program. Therefore, aside from traditional GI operators, we

use the NewIf and NewFor mutation operators, introduced in our

previous work [32]. In LeakReducer, we fully automate this step of

the process. In order to create a new statement, we need expressions

to populate the parentheses for for and if statements. To reduce

the search space, we construct comparison expressions using ex-

isting identifiers and type match them, so that, e.g., a number is

compared with another number. For both NewIf and NewFor, the
body statement to be executed is either selected from existing code

or one of four code fragments, 1) 𝑟𝑒𝑡𝑢𝑟𝑛 0; 2) 𝑟𝑒𝑡𝑢𝑟𝑛 1; 3) 𝑖𝑑1 = 𝑖𝑑2;

or 4) 𝑖𝑑2 = 𝑖𝑑1; are inserted.

3.3.4 Search Strategies. Another improvement we introduce over

our previous work [32] is a choice between search strategies, includ-

ing multi-objective search. We aim to reduce both 1) the number

of failing test cases, i.e., fail_rate and 2) information flow leakage,

measured with 𝑄𝐼𝐹 . The optimal solution will reduce both of these

quantities to 0.

3.3.5 Single Objective Optimization. The single-objective search
option uses the same fitness function as previously [32].

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = (𝑓𝑎𝑖𝑙_𝑟𝑎𝑡𝑒 + 𝑄𝐼𝐹𝑖

𝑄𝐼𝐹0
)/2 (1)
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As can be seen from Equation 1, this fitness function balances

the two objectives: fail_rate and normalized 𝑄𝐼𝐹 where 𝑄𝐼𝐹0 is

the initial leakage (𝑄𝐼𝐹0 > 0), and 𝑄𝐼𝐹𝑖 is the leakage of current

program variant (𝑄𝐼𝐹𝑖 ≥ 0).

3.3.6 Multi-objective Optimization. In multi-objective optimiza-

tion, there are several objectives where maximizing (or minimizing)

one objective may have conflicting results with other objectives.

LeakReducer has two objectives: reducing the information leakage

and preserving intended functionality, which can be in conflict.

An example is the Triangle program, presented in our previous

work [32], where reduction of information leakage is impossible

without loss of triangle classification correctness.

LeakReducer’s multi-objective [15] setting thus reports a list of

non-dominated Pareto front solutions, where every solution in the

list is better than the other solutions in at least one objective. This

provides the decision maker with more options to choose from.

3.4 Integration
In order to implement LeakReducer, we extended an existing ge-

netic improvement framework, PyGGI [5] and integrated it with

the JMetalPy framework for multi-objective optimization [10]. This

integrationwas a non-trivial task, as it required integration of frame-

works with different architectures. PyGGI provides us with the GI

framework, while JMetalPy provides different single and multi-

objective operators, algorithms and Pareto front quality metrics.

For functional test case generation, we investigated several state-

of-the-art fuzzing strategies (Section 3.1). We use AFL++ 3.12 [19]

which consistently ranks amongst the best fuzzers in terms of

program exploration ability [33]. The HashFuzz transformation was

also applied to the tested programs, and these were fuzzed using the

same setup as the untransformed programs. We also tested manual

seeds for both fuzzing variants, to increase path coverage (we refer

to this as Test Augmentation - abbreviated to TA). Thus we had

four set-ups: AFL, HashFuzz, AFL+TA, and HashFuzz+TA.

Lastly, we built an automated identifier extractor for patch gener-

ation (Section 3.3.3). We use Universal Ctags [44] (or ctags for short)
to extract an initial set of variables with their types from the target

files. To enrich ingredients, we exploit PyGGI’s internal program

representation (tagged XML) to extract expressions. We then use a

custom function that infers their type. For example, assumewe have

the following statement: int len = 2 * y, dist; ctags detects
len and dist and deduces that these are both integers. From this,

we can infer that the expression 2 * y can be used as an integer.

4 EVALUATION
Our aim is to provide an effective automated tool that can estimate

and reduce information leaks in real-world software. We therefore

ask three research questions to evaluate LeakReducer. Our first

question focuses on detection of information leakage:

RQ1: How effective is LeakReducer at detecting information
flow leakage in a given program?

We compare LeakReducer’s leak detection algorithm against a

state-of-the-art fuzzing tool, using different test seeding strategies.

Our next RQ focuses on comparison with a single-objective

search strategy, originally proposed in our previous work [32]:

RQ2: How effective is LeakReducer at reducing information
flow leakage using a single-objective algorithm?

Even if LeakReducer is successful at reducing leakage using

single-objective search, we still need to answer our key hypothesis:

that we need to balance leakage and functionality. Thus we ask:

RQ3: How effective is LeakReducer at reducing information
flow leakage using a multi-objective algorithm?

We use multiple multi-objective algorithms and examine the re-

sults from a qualitative perspective, to see if several viable solutions

are found on the Pareto front.

4.1 Benchmarks
We use six programs for our study, with associated security policies.

We present these in Table 1. The first three programs are the same

that were used in previous work [32]. Two of these have been used

in prior research on information leakage [23] and reported in the

Common Vulnerabilities and Exposures (CVE) database [40].

The Classify program is similar to the Triangle program, in that

it outputs a class depending on the input parameters. In contrast to

the Triangle program, however, the output space is further divided

– rather than 3 possible outputs (scalene, isosceles and equilateral)

in Triangle, there are 11 in Classify. We introduced this program to

specifically show tradeoffs between leakage and functionality loss.

The last two programs are real programs meant to show the scal-

ability and practicability of LeakReducer. Both are taken from the

OpenSSL library [41, 42]. The first is: dtls1_process_heartbeat
function from openssl-1.0.1f containing the Heartbleed bug,

which leaks information from internal memory.

For our second program, we chose another OpenSSL library,

but one that has no known leaks. We examined functions within

the OpenSSL crypto directory, to find one which might have in-

teractions between Low and High security information and with

a similar signature to Hearbleed. In the same version of OpenSSL

we found the BIGNUM *BN_bin2bn() function in the 𝑏𝑛_𝑙𝑖𝑏.𝑐 file

of the BigNum library. This function is one of the data entry func-

tions for the library. Given the similarity between Heartbleed and

BigNum, security policy creation was straightforward (see Table 1).

Although, we used openssl-1.1.1j [43] in our tests, the same

function is still in use in up-to-date OpenSSL versions.

4.2 Experimental Protocol
Next, we describe the methodology we use to answer our RQs.

4.2.1 Automated Test Generation. To answer RQ1 about LeakRe-

ducer’s effectiveness in finding information leaks, we automatically

generate two types of tests: functional (Section 3.1) and hyper-

tests (Section 3.2). Although we use functional tests primarily to

establish intended program behaviour, such tests might also reveal

information leakage. In particular, we use AFL fuzzer’s address san-

itizer [27] option, which allows detection of subtle memory access

issues (such as out-of-bounds or use-after-free).

We use four different Fuzzer-Test Setups (FTS): 1) AFL 2) AFL-TA

3) HashFuzz and 4) HashFuzz-TA, as discussed in Section 3.4. For

the Test Augmentation (TA) phases we use up to 2 manual seeds,

to reach the hard to find paths that fuzzing may miss. We first run

each fuzzer-test setup 5 times with the AFL_EXIT_WHEN_ DONE

option. With this option set, AFL automatically terminates when
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Table 1: Study subjects. For each we provide: a reference; the lines of code in the file containing the function of interest (which
LeakReducer targets); a CVE number if information leakage was reported for this function; and the security policy used, with
parameters from the function’s signature and function return values.

Security Policy
Subject Ref LoC CVE-# High input Low input Low Output

Triangle [32] 14 – secret side2 & side3 function return value
Atalk [23] 33 CVE-2009-3002 internal memory sock & peer function return value & uaddr

Underflow [23] 18 CVE-2007-2875 h ppos function return value
Classify authors 18 – High Low function return value
Heartbleed [41] 1,082 CVE-2014-0160 internal memory payload_sent & payload_length payload_received

Bignum [42] 778 – internal memory s, len & ret s & function return value

all discovered paths have been fuzzed many times without any new

path being found [2]. From these first 5-runs, we identified themax
fuzz-time. Then, to maximize path coverage, we run each FTS 5

times again for max fuzz-time seconds.
To generate hypertests we use the algorithm described in Sec-

tion 3.2. For each of the test sets we report the number of unique

test cases, generation time budgets, crashes found (whether they

reveal leaks or not), as well as QIF values for hypertests, in Table 2.

4.2.2 Parameter Tuning. Since genetic programming has been the

dominant search strategy in GI [36], we use it in LeakReducer’s

single-objective setting. However, it’s not obvious which parameter

settings would be optimal for our application domain. Therefore, we

conduct parameter tuning on the four smaller subjects, (Triangle,

Classify, Atalk and Underflow) before running the information

leakage reduction stage of LeakReducer. We vary: population size

— between 20 and 100, in increments of 20, as these are the min

and max found in the GI literature — and mutation and crossover

rates — each tried with four values: 0.25, 0.5, 0.75 and 1. We use a

budget of 2,000 program evaluations for each setting. Overall, we

test 80 configurations of single-objective LeakReducer for each of

the 4 settings and 4 test subjects, repeated 5 times each, for a total

of 6,400 individual runs.

Recall that we use functional test fail rate and QIF from hyper-

testing to calculate the fitness value of each program variant. Thus,

in order to fairly compare runs which use different functional test

sets, we combine all 4 test sets for evaluation of the best individual

found in each run. This is not an issue for hypertests, which are

generated once for all subjects.

4.2.3 Leak Reduction. To answer RQ2 and RQ3 about LeakRe-

ducer’s effectiveness at leak reduction, we run LeakReducer’s GI

stage using two search strategies: single- and multi-objective. We

set the GI budget to 10,000 evaluations. We repeat each repair run 20

times. As before, the fail rate in the reported final fitness calculation

is based on runs of the combined set of all functional tests.

Single-Objective Optimization We use the best parameter

settings from the tuning stage for each of the functional test sets

for each of our subject programs. We record the fitness values,

runtimes, as well as functional test fail rates and QIF values. We

also re-run evolved individuals from the HyperGI work.

Multi-ObjectiveOptimizationWe selected fourmulti-objective

optimization algorithms: NSGAII, NSGAIII, MoCell and SPEA2. We

selected the first three, as they showed good performance in recent

work tackling a multi-objective problems [39]. NSGAIII [17] was

originally proposed for many-objective optimization (3 or more

objectives) to help scalability. However, it has been used for prob-

lems with only 2 objectives [39], hence we chose to include it in our

experiments as well. NSGAIII requires reference points to be set.

We used the UniformReferenceDirectionFactory from the JMetalPy

framework [10] and set the number of the reference points equal to

the number of the individuals in the population minus 1 which is

similar to [39]. For the other parameters, we used the same settings

as we used in NSGAII.We also added SPEA2, since it proved success-

ful in improvement of non-functional properties of software using

genetic improvement [47]. Based on Li et al. [26]’s guidance, we re-

port the following quality indicators of the Pareto fronts generated

by the selected algorithms: Hyper-volume, Inverted Generational

Distance, Epsilon and Generational Distance.

4.3 Test Environment
Due to compatibility issues, we ran the Heartbleed fuzzer exper-

iments on a single core of an Intel (R) Core(TM) i5-2500 CPU @

3.3GHz processor, with 8GB RAM and 500GB HDD with Ubuntu

20.04 and gcc & g++ 7.3.0. All other experiments were run on a

High Performance Computing (HPC) cluster using single cores of

an Intel(R) Xeon(R) Gold 6244 CPU @ 3.60GHz and 8GB of RAM,

in RedHat Enterprise Linux 7 with gcc & g++ 10.2.0.

4.4 Threats to Validity
With respect to generality, we experimented on a limited number

of programs, some with similar characteristics. However, (1) we

wanted to compare against the state-of-the-art and (2) security poli-

cies, which are necessary for detecting information flow leakage

cannot be developed without extensive knowledge of a system.

Hence, we focused on programs that have policies based on the

High/Low lattice. With respect to internal validity, we acknowledge

there could be faults in our programs, but we have manually vali-

dated our patches, and are providing them on our online website

along with our other artifacts. We also contacted developers of the

program for which LeakReducer found a possibly new information

leakage fault. Lastly, with respect to construct validity, we could

have chosen different metrics, but we have used the most common

metrics for evaluating multi-objective optimization and use the

same measure of leakage as prior work.
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5 RESULTS
In this section, we answer each of our research questions. Artifacts

for the experiments are found in our github repository [1].

5.1 Parameter Tuning Results
We used Wilcoxon rank sum test over fitness values from the pa-

rameter tuning tests. 15 of 80 configurations showed evidence of

a difference in means (𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0.05) and 5 configurations had

weak evidence (0.05 < 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0.1). Out of the 15 configura-
tions which were significant, we chose the configuration with the

smallest mean fitness and the largest population: population size =

100, mutation rate = 1, and crossover rate = 0.5. We thus use these

parameters in the following experiments.
2

5.2 RQ1: Leak Detection
To answer this question, we examine the data in Table 2. All of

the fuzzing variants found crashes for Heartbleed and Bignum. We

examined the crashes, and indeed they were caused by memory

issues that lead to leakage. As the Bignum crash was not from a

confirmed bug, we reached out to the developers who confirmed

our suspicion that this particular function is typically not accessible

from outside of a program, and in the case that it is, it would be

the responsibility of application developers to ensure proper use

of the function. However, the code has similarities to that found

in many other confirmed cases of information leakage in the wild.

For the other four programs no crashes were produced by fuzzing,

even though the time budget for each program was significantly

higher than the time for generating hypertests. Furthermore, run-

ning LeakReducer’s hypertests revealed leakage in all 6 subjects,

producing non-zero QIF values in all runs.

Answer to RQ1 (Leak Detection): LeakReducer is able to

detect and estimate leakage in all 6 subjects, where state-of-the-

art fuzzers only find leakage-related crashes in 2 of the subjects.

5.3 RQ2: Single-objective Leak Reduction
To answer RQ2 we turn to Table 3. It shows the normalized post

patch (i.e., improved) QIF (QIF𝑖 ), Fail Rate (FR) and Fitness (F) for

HyperGI and single-objective LeakReducer with 4 different inputs

from fuzzing. To compare LeakReducer’s results with results ob-

tained by Mesecan et al. [32], we ran each evolved program using

our test cases (all 4 functional test sets + hypertests). The best fitness

values are highlighted in bold. With respect to previous work [32]:

1) we obtained the same median fitness values with the AFL-TA

setting for Underflow; 2) we obtained worse median fitness values

for Atalk; 3) and, we obtained better median fitness values for the

Triangle program for all fuzzer test setups.

Interestingly, LeakReducer did not find the optimal solution for

Atalk. Further investigation revealed this is because in [32] we

allowed the user to input extra identifiers for mutation creation

in order to alleviate a weakness of our previous implementation,

which could only extract and detect types for a limited set of iden-

tifiers. The results in our previous work depended on developer

expertise. In LeakReducer, we improved the identifier detection

2
The actual mutation rate is closer to 0.5 based on JMetalPy’s implementation.

module by expanding automated extraction and inference of identi-

fier types. This is now fully automated, though it came at a cost of

a larger search space, and restriction of identifiers to the target file

only. The identifier provided by a developer in [32] was not used

in the target file, i.e., LeakReducer had no access to it and a solu-

tion that fully reduces leakage was not found. We argue, however,

the automation of the process outweighs potentially missing such

fixes. LeakReducer still found some program variants that reduced

leakage. These partial fixes could still be helpful for the developers

for understanding and fixing such leaks. Moreover, in the future,

the ingredient space can be enlarged, e.g., by using new mutation

operators, such as a memory initialization mutation operator.

To choose the best test-generation setup, we used the Wilcoxon

rank sum test on the fitness values. AFL-TA provided slightly better

median fitness for 5 out of 6 test subjects. But, it had a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
0.102, hence there is no statistical difference between AFL-TA and

the other fuzzer test setups. Similarly, the Wilcoxon rank sum test

between Automated Test Generation (ATG) and Test Augmentation

(TA) showed no significant difference (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.101).

Answer to RQ2 (Single-objective Leak Reduction): Single-
objective LeakReducer achieves results competitive with pre-

vious work [32], but without the need for human interaction

during the repair process. Search for repairs guided by tests from

AFL with seeded inputs (AFL-TA) did produce marginally better

results than other settings, but the result was not statistically

significant.

5.4 RQ3: Multi-objective Leak Reduction
To compare different multi-objective variants, we used 4 quality

indicators, as previously discussed. Since we did not see a clear

winner for the fuzzer test setups and to ensure high coverage, we

simply used all functional tests generated from the previous steps,

and used those during search to evaluate correctness of the evolved

program variants. To compare Pareto fronts from different runs,

we first prepared the global Pareto front, i.e., Pareto front that com-

bines all generated fronts. Next, we calculated the hypervolume

and distance from the global Pareto front to individual fronts. Table

4 reports median distances and hypervolume for each subject and

algorithm. Counting the number of times each algorithm produces

the best result (largest Hypervolume or Minimum Median Distance

to the global Pareto front for the other metrics), we get: (1) SPEA2:

19; (2) NSGA-III: 15; (3) NSGA-II: 11; and (4) MOCell: 8. These results

indicate that the SPEA2 option performs competitively well in this

problem domain, with NSGA-III not far behind. Consequently, we

now look more closely at the Pareto fronts generated by LeakRe-

ducer using SPEA2.

Figure 2 shows results of individual runs for SPEA2 for 3 test

subjects and Figure 3 shows the Pareto fronts from all runs for

all subjects for SPEA2 together with the best solution from single-

objective LeakReducer marked.

Interestingly, the single-objective variant produces results that

are on or close to multi-objective LeakReducer’s Pareto fronts. How-

ever, the latter option provides more variants to choose from, lever-

aging leakage vs fail rate. Moreover, whether improvement of in-

formation leakage conflicts with intended program semantics will
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Table 2: Leak detection and functional test case generation using four variants of fuzzing compared against LeakReducer’s
Hypertest set. For each of the fuzzing settings we show if the system crashed. For LeakReducer ’s Hypertest set we show the
original QIF0. We also give the test suite size (TS), max fuzzing time budget and hypertest generation runtime in hours.

AFL AFL-TA HashFuzz HashFuzz-TA Hypertests

Subject Crashes TS Hours Crashes TS Hours Crashes TS Hours Crashes TS Hours QIF0 TS Hours

Atalk No 12 1.0 No 18 0.9 No 122 16.2 No 116 12.9 1.1 50 1.0

Bignum Yes 3 7.8 Yes 24 6.4 Yes 12 21.2 Yes 70 34.7 2.4 40 0.1

Classify No 107 2.6 No 122 5.7 No 178 8.5 No 176 8.1 2.4 125 0.2

Heartbleed Yes 47 27.8 Yes 60 76.1 Yes 84 266.1 Yes 109 145.4 2.3 40 0.4

Triangle No 60 3.1 No 54 1.7 No 66 58.3 No 78 69.2 0.8 194 0.1

Underflow No 20 0.4 No 40 0.5 No 234 13.4 No 252 16.2 5.4 100 1.3

Table 3: Fitness values for best evolved variants in Mesecan et al.’s work [32] and single-objective LeakReducer, guided by 4
fuzzer test sets. Medians of 20 runs are shown. In addition, we report the two fitness components: fail rates (FR) and leakage
estimates (QIF𝑖 ). The best fitness values are highlighted in bold.

LeakReducer
Mesecan et al.[32] AFL AFL-TA HashFuzz HashFuzz-TA

Subject QIF𝑖 FR Fitness QIF𝑖 FR Fitness QIF𝑖 FR Fitness QIF𝑖 FR Fitness QIF𝑖 FR Fitness

Atalk 0.00 0.00 0.00 1.00 0.00 0.50 0.51 0.24 0.50 1.00 0.00 0.50 1.00 0.00 0.50
Triangle 0.00 0.69 0.34 0.23 0.23 0.24 0.15 0.38 0.23 0.10 0.30 0.22 0.11 0.29 0.23

Underflow 0.00 0.62 0.31 0.11 0.57 0.35 0.11 0.56 0.31 0.64 0.01 0.37 1.00 0.00 0.50

Bignum - - - 0.00 0.78 0.39 0.00 0.60 0.30 0.00 0.78 0.39 0.33 0.47 0.39

Classify - - - 0.00 0.64 0.32 0.02 0.61 0.31 0.00 0.64 0.32 0.00 0.63 0.31
Heartbleed - - - 0.50 0.00 0.25 0.50 0.00 0.25 0.50 0.00 0.43 0.50 0.00 0.25

Table 4: Pareto front quality indicators per subject & multi-objective algorithm. Median of 20 runs reported. A larger hypervol-
ume indicates a better result. For other indicators smaller numbers are closer to the global front, hence better.

Inv. Generational Distance Generational Distance Hyper Volume Epsilon

MOCell NSGAII NSGAIII SPEA2 MOCell NSGAII NSGAIII SPEA2 MOCell NSGAII NSGAIII SPEA2 MOCell NSGAII NSGAIII SPEA2

Atalk 0.15 0.43 0.15 0.14 0.04 0.03 0.12 0.11 0.67 0.23 0.71 0.72 0.24 0.73 0.22 0.20
Bignum 0.38 0.38 0.38 0.38 0.33 0.37 0.38 0.35 0.46 0.43 0.43 0.49 0.40 0.40 0.40 0.40
Classify 0.08 0.08 0.07 0.07 0.08 0.08 0.07 0.07 0.68 0.67 0.69 0.69 0.13 0.12 0.13 0.12
Heartbleed 0.02 0.02 0.02 0.02 0.50 0.50 0.50 0.49 0.97 0.97 0.97 0.97 0.03 0.03 0.03 0.03
Triangle 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.75 0.76 0.76 0.76 0.09 0.05 0.05 0.05
Underflow 0.20 0.30 0.20 0.58 0.24 0.00 0.00 0.00 0.66 0.54 0.67 0.00 0.28 0.43 0.28 1.00

Table 5: Means and standard deviations of the numbers of
solutions in Pareto fronts of multi-objective LeakReducer.
The best values are highlighted in bold.

MOCell NSGAII NSGAIII SPEA2

Mean Stdev Mean Stdev Mean Stdev Mean Stdev

Atalk 5.4 1.4 5.9 1.4 5.5 1.5 6.7 2.2

Bignum 3.0 0.0 3.0 0.3 3.0 0.2 3.0 0.0

Classify 35.8 4.3 33.8 3.7 31.9 4.1 31.7 5.1

Heartbleed 2.1 0.2 2.1 0.2 2.0 0.0 2.0 0.0

Triangle 6.9 1.8 7.3 1.5 7.5 1.5 7.4 1.6

Underflow 3.5 1.1 3.5 1.2 3.5 1.2 4.1 1.3

Average 9.42 - 9.24 - 8.88 - 9.13 -

depend on the program at hand. As mentioned before, it is impos-

sible to reduce leaks in the Triangle program without sacrificing

functional correctness, while the optimal Heartbleed information

leakage fix does not change the intended behavior of the program.

Therefore, in the cases where reduction of information leakage is a

priority we recommend the use of the multi-objective approach.

We are also interested in the diversity of solutions found. Table 5

presents the average number of solutions found and the standard

deviations out of 20 runs for each algorithm and subject pair. The

largest number of solutions for each subject is highlighted in bold.

Firstly, the average number of solutions in Pareto fronts is quite

close; ranging from 8.9 for NSGAIII to 9.4 for MOCell. Secondly,

MOCell and SPEA2 generated the largest number of solutions for 3

subjects, while NSGAII and NSGAIII generated the largest number

of solutions for 2 subjects. We will discuss the quality of solutions in
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Figure 2: Sample Pareto fronts from LeakReducer with the
SPEA2 setting. Each dot represents a solution on the front.
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Figure 3: Pareto fronts from all 20 LeakReducer runs with the
SPEA2 setting (blue), and Pareto front of all those 20 fronts
(red). The green square shows the best solutions found by
single-objective LeakReducer.

the next section. Taking all results into account, however, we would

recommend the use of SPEA2 with LeakReducer, as it is likely to

produce a diverse set of solutions, close to the optimal Pareto front.

Answer to RQ3 (Multi-Objective LeakReducer): Both sin-

gle and multi-objective settings produced effective fixes, with

single-objective LeakReducer producing solutions close to the

multi-objective LeakReducer’s Pareto fronts, while the latter

provided a diverse set of solutions balancing leakage and fail

rate. Moreover, we recommend the use of SPEA2 with LeakRe-

ducer, as we showed with multiple indicators that it generally

outperforms other multi-objective algorithms.

5.5 Discussion
We now discuss some of the patches obtained by LeakReducer and

our observations in more detail.

5.5.1 Atalk Leakage. Atalk is the real-world program that showed

the most evenly spread Pareto front in Figure 2. The original leaky

function is:

s t ruc t a t a l k _ s o c k {

unsigned char dst_node , s rc_node , d s t _po r t , s r c _ p o r t ;

in t s k _ s t a t e ;

char r e s [ 1 6 ] ;

} ;

1 in t a t a l k_ge tname ( a t a l k _ s o c k ∗ sock , a t a l k _ s o c k ∗ uaddr , in t peer ) {

2 s t ruc t a t a l k _ s o c k s a t ;

3 in t e r r = −ENOBUF ;

4 i f ( s o c k _ f l a g ( sock ) )

5 goto out ;

6

7 i f ( pee r ) {

8 e r r = −ENOTCON;

9 i f ( sock −> s k _ s t a t e != TCP_ESTABLISHED )

10 goto out ;

11 s a t . s r c_node = sock −>ds t_node ;

12 s a t . s r c _ p o r t = sock −> d s t _ p o r t ;

13 s a t . d s t_node = sock −> src_node ;

14 s a t . d s t _ p o r t = sock −> s r c _ p o r t ;

15 } e l se {

16 s a t . s r c_node = sock −> src_node ;

17 s a t . s r c _ p o r t = sock −> s r c _ p o r t ;

18 s a t . d s t_node = sock −>ds t_node ;

19 s a t . d s t _ p o r t = sock −> d s t _ p o r t ;

20 }

21

22 s a t . s k _ s t a t e = sock −> s k _ s t a t e ;

23 memcpy ( uaddr , &sa t , s i z eo f ( s a t ) ) ;
24 e r r = s i z eo f ( a t a l k _ s o c k ) ;

25

26 out :

27 return e r r ;

28 }

This particular program leaks values from internal memory due

to the struct sat defined on line 2 being uninitialized. There are 6

struct members, but only 5 are assigned to in the code in lines 3-22.

The entire memory contents of the struct are then copied to the

function parameter uaddr, including the value of the uninitialized

6th struct member ‘res’. As sat is a local variable, this uninitialized
memory contains stack data, which could, depending on previous

function call stacks, contain sensitive data.

5.5.2 Atalk Patches. For the sake of brevity, we show 2 of the best

patches generated by SPEA2:

Patch 2; Leakage: 0.000, Functional: 0.341

10 a11

> s a t . s r c _ p o r t = sock −> s r c _ p o r t ;

18 a20 , 2 2

> i f ( sock −> s r c _ p o r t < sock −> src_node ) {

> sock −> src_node = sock −> s r c _ p o r t ;

> }

20 a25 , 2 7

> i f ( sock −> d s t _ p o r t != sock −> src_node ) {

> return 1 ;

> }

23 a31 , 3 3

> for ( in t l c v 1 4 7 6 = 0 ; l c v 1 4 7 6 < peer ; l c v 1 4 7 6 ++) {

> e r r = −ENOTCON;

> }

Patch 5; Leakage: 0.778, Functional: 0.116

6 a7

> e r r = −ENOTCON;

10 a12 , 1 4

> for ( in t l c v 9 4 3 = 0 ; l c v 9 4 3 < TCP_ESTABLISHED ; l c v 9 4 3 ++) {

> s a t . s r c _ p o r t = sock −> s r c _ p o r t ;

> }

21 a26 , 2 8

> i f ( s i z eo f ( s a t ) > sock −> s r c _ p o r t ) {

> return 0 ;

> }
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There is variation in these patches, and they are both returning

a fixed value before the leak occurs (in line 23) depending on a

comparison between structs sat and sock. The variations in leak-

age and functional test performance can be attributed to different

comparisons between the two structs. These comparisons cause an

early return before the leakage occurs in differing proportions of

the test inputs, hence differing functional results and leakage rates.

An ideal patch would initialize the sat.res struct member to a

fixed value. As this variable is in fact an array, this would require

a for loop, or a call to memset. As an alternative, using the short

form compound literal initializer struct atalk_sock sat = {0};
will initialize all struct members (including all array members) to

all zeroes. Neither of these are used in the existing code, so the GI

would require additional mutation operators to produce these.

The 3 other real-world programs (Heartbleed, Bignum and Un-

derflow) all contain developer bugs, which leads to a less diverse

range of solutions. They can in theory all be ‘fixed’ in a way that

retains all original functionality, whilst completely eliminating the

leakage. Both Classify and Triangle have leakage that is caused by

intentionally poor information flow control design, as such these

produce a broad, dense Pareto front showcasing a variety of poten-

tial solutions.

5.5.3 Heartbleed Leakage and Patches. The best single-objective
patch found for Heartbleed was as follows (purple code was re-

moved in the patch, and green code was added by the patch):

1 in t d t l s 1 _ p r o c e s s _ h e a r t b e a t ( SSL ∗ s ) {

2 . . .

3 unsigned int payload , padding = 1 6 ;

4 n2s ( p , pay load ) ; / ∗ Read pay l oad l e n g t h ∗ /
5 . . .

6 unsigned char ∗ b u f f e r = OPENSSL_malloc ( 1 + 2 + pay load + padding ) ;

7 unsigned char ∗ bp = b u f f e r ;

8

9 ∗ bp++ = TLS1_HB_RESPONSE ; / ∗ Copy r e s p o n s e t y p e i n t o b u f f e r ∗ /
10 s2n ( payload , bp ) ; / ∗ Copy pay l oad l e n g t h i n t o b u f f e r ∗ /
11 memcpy ( bp , p l , pay load ) ; / ∗ Copy pay l oad i n t o b u f f e r ∗ /
12 bp += pay load ; / ∗ Update b u f f e r p o i n t e r ∗ /
13 + if (SSL_F_DTLS1_PREPROCESS_FRAGMENT < 1 + 2 + payload + padding) {

14 + return 0;

15 + }

16 - RAND_pseudo_bytes(bp, padding);

17

18 / ∗ Send c a l l b a c k ∗ /
19 r = d t l s 1 _w r i t e _ b y t e s ( s , TLS1_RT_HEARTBEAT , bu f f e r , 3 + pay load + padding ) ;

20 . . .

The added if-statement (lines 13-15) fixes many leaks because of

the way that Heartbleed is exploitable. Essentially the payload
length in the malformed packet is set to some value larger than the

length of the actual message sent to be echoed back. padding is

always 16. Multi-objective search results include patches that are

semantically equivalent to the single-objective patch shown above.

The payload length is read in by a function-like macro s2n on line

10, which reads an unsigned 2-byte (16-bit) integer (between 0-

65535) from the transmitted heartbeat buffer. The leak occurs when

payload bytes are copied into the callback message on line 11 and

sent back to the other client; thus in order to maximize leakage, an

attacker should set this value to 65535 (the maximum) which will

result in 65535 - 19 - ACTUAL_PAYLOAD_LENGTH bytes of internal

program memory being returned to them in the corresponding

heartbeat response. The -19 comes from the 16 bytes of padding
and an extra 3 bytes for indicating message type and payload length.

The constant SSL_F_DTLS1_PREPROCESS_FRAGMENT is defined as

288 in a header file. This patch is therefore discarding any hearbeat

request where payload is larger than 269 (288− 19), which reduces

the leakage from a potential 65516 bytes down to 269 bytes. An

attacker looking to maximize leakage would be setting payload
to very large values, and this patch would silently discard these.

The fuzzer however is not using any malicious heuristics when

generating malformed packets, but instead generates the buffer

(containing the payload length) pseudo-randomly, and with the

leaking search space shrinking down to 0.41% (269/65535) of what
it originally was, the leak is seemingly repaired. It is worth noting

that the patch will also discard any properly formed heartbeat

packets with an actual payload of length 270 or greater.

The developer patch is close to this. The only difference is that

the comparison value SSL_F_DTLS1_PREPROCES-
S_FRAGMENT is replaced with the actual length of the received buffer.
This eliminates the leakage for requests with indicated payloads <=

269 bytes, whilst accepting properly formed packets with an actual

payload length > 269 bytes. An improved test set would expose the

remaining (much smaller) leak, and is a target for future research.

The evaluation criteria does well to guide the repair process, as

is evidenced by the proposed patch being very close to the actual

developer patch. An acclimatized OpenSSL developer would see

that comparing the variable payload length with a constant value

would create issues for properly formed long heartbeat requests,

but learn that the leakage is strongly correlated to large payload

values. It is not a leap to suggest that a developer could come to the

correct conclusion that the solution is to discard requests where

the actual buffer length does not match the indicated buffer length.

5.5.4 Bignum Patches. Bignum leaks information via a buffer-

overflow, and does not have a single ‘fix’, however, we do see patches

that manage to greatly reduce the quantity of leakage while not

resulting in a large functionality testcase fail rate increase. The best

patches generated through multi-objective LeakReducer for Under-

flow reduce leakage to a greater extent than the best single objective

patch, whilst simultaneously retaining greater functionality.

6 CONCLUSIONS AND FUTUREWORK
We have presented LeakReducer, a multi-objective framework to de-

tect, localize and repair information leakage in real-world programs.

We have evaluated LeakReducer on a set of six programs and were

able to find leaks in all of them. We demonstrated our ability to

repair the leaks against repairs from the state-of-the-art tool, intro-

duced in our previous work. For those programs whose leakage and

functionality are competing, the multi-objective setting provided

a diverse Pareto front which can be used to balance leakage and

functionality. We make artifacts available on our github reposi-

tory [1] to facilitate further research in this exciting area. We plan

to add additional repair ingredients, refined identifier resolution,

specialized mutation operators to zero out memory and perform

array bound checks, in addition to applying LeakReducer to a larger

set of programs and varying security policies.
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