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Survival Analysis of High-dimensional Data with
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Abstract—This paper proposes a survival model based on
graph convolutional networks with geometric graphs directly con-
structed from high-dimensional features. First, we clarify that the
graphs used in graph convolutional networks play an important
role in processing the relational information of samples, and
the graphs that align well with the underlying data structure
could be beneficial for survival analysis. Second, we show that
sparse geometric graphs derived from high-dimensional data
are more favourable compared with dense graphs, when used
in graph convolutional networks for survival analysis. Third,
from this insight, we propose a model for survival analysis
based on graph convolutional networks. By using multiple sparse
geometric graphs and a proposed sequential forward floating
selection algorithm, the new model is able to simultaneously
perform survival analysis and unveil the local neighbourhoods of
samples. The experimental results on real-world datasets show
that the proposed survival analysis approach based on graph
convolutional networks outperforms a variety of existing methods
and indicate that geometric graphs can aid survival analysis of
high-dimensional data.

Index Terms—Survival analysis, graph convolutional networks,
geometric graphs, sequential selection

I. INTRODUCTION

APPLICATIONS of survival analysis can be found in
various areas, such as clinical research [1], [2], credit

scoring [3] and sociology [4]. The primary objective of sur-
vival analysis is to predict the time until the occurrence of the
particular event of interest [5], which is also called time-to-
event prediction. A major challenge when dealing with time-
to-event data is the existence of censored instances, where
the event times are unknown and the information of such
instances is available only up to specific time points. Thus,
it is impractical to directly apply those regression models
designed for data without censoring to the task of time-to-
event prediction.

To perform survival analysis on data containing censored in-
stances, the Cox proportional hazards model and its penalized
extensions are commonly used [6]–[8]. These models assume
the proportional hazards and adopt the partial likelihood,
possibly with regularisation, to estimate the model coefficients
for calculating the relative risks and survival functions of
patients. Apart from the Cox model and its variants, numerous
machine learning approaches have been proposed for analysing
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time-to-event data. Random survival forests (RSF), extending
random forests to censored data, are introduced with the log-
rank test as the splitting rule for growing survival trees [9].
Support vector methods have been successfully adapted for
survival analysis by reformulating the survival problem as a
regression or ranking problem [10]–[12]. With the aid of multi-
task learning, survival models can be improved by efficiently
using shared-knowledge of related survival problems [13],
[14].

Recently, methods based on neural networks have been
applied to time-to-event data due to their ability to learn
complex data structures. A common approach is to integrate
the Cox regression into the framework of neural networks,
by employing the negative Cox log partial likelihood as the
loss function. The partial likelihood is a ranking loss that
accounts for the ordering of patients’ relative risks, and thus
using it as a loss function often results in better concordance
of survival predictions. Examples of such approaches include
DeepSurv and Cox-nnet, which use the multilayer perceptron
(MLP) [2], [15]. Alternatively, a number of approaches are
proposed to circumvent the constraint of the proportional
hazards. The partial likelihood is extended by letting the
relative risk function depend on time [16]. In [17]–[19], the
authors cast the time-to-event formulation to a discretised-
time classification problem and directly model the survival
or hazard function at discrete intervals with neural networks.
Most aforementioned works based on neural networks aim at
improving the ordering of the patients’ survival predictions,
while the non-proportional extension of the Cox model [16]
shows better calibration of survival time estimates. In spite of
these successes of neural networks in survival analysis, most
studies mentioned above conduct experiments on datasets with
the number of features much less than that of samples (p ⌧ n).
It is therefore in doubt that their performances on datasets of
high dimensionality (p � n) are still promising.

Graph convolutional networks (GCNs), where the convo-
lution is extended from grid-like data to graph-like ones,
have witnessed successes in many classification tasks [20]–
[22]. Under the framework of GCNs, one can exploit both
sample features and their relational information, which are
represented in the form of graphs. Compared with the methods
that do not consider a graph and solely utilise sample features,
GCNs require the alignment between the graph and the class
labels of data as the essence for achieving better classification
performance [23]. Concretely, the graph convolution opera-
tion in GCNs aggregates and exchanges information between
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neighbouring nodes (samples) in the graph and it is equivalent
to a special form of Laplacian smoothing; that is, GCNs make
the features of neighbours more similar [24]. Thus, if a graph
aligns well with class labels in the sense that neighbouring
nodes tend to belong in the same class, a GCN with the graph
would improve the class separation by making the features
of the samples within a class more homogeneous and those
between different classes more heterogeneous. On the contrary,
with a graph that is inconsistent with class labels, the features
between different classes would be homogenised by the GCN,
in which case the GCN is expected to perform worse than the
methods considering only sample features. Although people
often use available relational information represented in the
form of graphs when implementing GCNs, it has been shown
that using sparse geometric graphs of samples derived from
features themselves in GCNs can improve classification by
enhancing the alignment between data and class labels [25].

Inspired by the successful attempts of using GCNs and
geometric graphs in the context of classification, we propose
a survival model based on GCNs with feature-derived graphs.
The above insights into GCNs suggest that the prerequisite of
using GCNs to improve survival analysis is that their input
graphs align well with sample survival times. That is, linked
samples in the graphs should tend to have similar survival
times. Otherwise, the graph convolution in the GCNs is
inclined to homogenise the samples with markedly dissimilar
survival times, and thus adversely affects survival analysis.
In this work, we therefore investigate the alignment between
geometric graphs derived from features and sample survival
times. We also study how to construct graphs that can be
used in GCNs to improve survival analysis. In addition, we
employ survival data containing large number of features for
comparison in this work (p � n) to study whether GCNs
are able to reduce the overfitting, compared with the other
approaches based on neural networks. The technical novelty
and contributions of our work can be summarised as follows.

First, we show that, for survival analysis, sparse geomet-
ric graphs built from high-dimensional features are more
favourable for GCNs compared with dense graphs (Sec. III-A).
Second, considering that using a single sparse graph may
reveal only a small part of the neighbourhood of each sample,
particularly for those from high-density areas, we propose to
use multiple sparse graphs to uncover the local neighbour-
hoods (Sec. III-B). Third, we propose a survival model that not
only outputs the survival predictions but also captures the local
neighbourhoods, by using multiple sparse graphs with GCNs
(Sec. III-C). To this end, we first construct various sparse
graphs derived from random subsets of features, and each
constructed graph is then fed into a GCN with the widely used
partial likelihood as the loss function to get the survival fore-
cast. With the principle that the aggregated survival predictions
from a set of GCNs would be superior if the union of edge sets
of the corresponding graphs approximates better the ground-
truth survival time, we select graphs and aggregate their
output predictions simultaneously by a proposed sequential
forward floating selection algorithm. The experimental results
on real-world datasets in Sec. IV demonstrate that the proposed
survival model based on GCNs and multiple sparse graphs

outperforms state-of-the-art methods. The promising results of
the proposed model suggest that geometric graphs could be
beneficial for the survival analysis of high-dimensional data.

II. PRELIMINARY KNOWLEDGE

In this section, we briefly review some key concepts in
survival analysis, the Cox model, GCNs, geometric graphs,
and two evaluation metrics for survival models.

A. Survival analysis

Let T ? denote the time when a particular event of interest
occurs. The primary objective of survival analysis is to model
the distribution of T ?. Specifically, it can be formulated as the
lifetime distribution function

F (t) = P (T ?
 t) =

Z
t

o

f(s)ds,

where f(t) is the event density function. Equivalently, one can
model the survival function defined as the complement of the
lifetime distribution function S(t) = 1� F (t) = P (T ?

> t).
In some survival models like the Cox model, instead of the

survival function, the hazard function is learned. The hazard
rate function, denoted by h(·), is defined as the event rate at
time t conditional on survival until time t or later (that is,
T

?
� t):

h(t) = lim
dt!0

P (t  T
?
< t+ dt | T

?
� t)

dt
=

f(t)

S(t)
.

The survival function can alternatively be represented in terms
of the cumulative hazard function, denoted by H(·):

S(t) = exp[�H(t)],

where H(t) =
R
t

0 h(s)ds.
As we mentioned before, it is possible that the events

of interest are not observed for some instances, a situation
called censoring. This may occur when we lose track of an
individual or the maximum follow-up time is shorter than
the survival time. Censoring falls into three groups: right-
censoring, left-censoring, and interval censoring. In this paper,
we consider the most common right-censoring where the
observed survival time is less than or equal to the true survival
time. In such scenarios, we observe a possibly right-censored
time T = min {T ?

, C}, where C is the censoring time.
The feature vector and the observed time for the i-th individ-

ual are denoted by xi and Ti, respectively. The full likelihood
accounting for both censored and uncensored instances is

L =
Y

i

f(Ti | xi)
DiS(Ti | xi)

1�Di , (1)

where Di = {Ti=T
?
i }

is the indicator of event occurrence.

B. Cox model

The Cox model is widely used in survival analysis [6].
As a semi-parametric approach, it requires no knowledge of
underlying survival distributions and assumes that covariates
have the exponential influence on the hazard. For the i-th
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individual, the corresponding hazard function specified by the
Cox model is given by

h(t | xi) = h0(t) exp[g(xi)], (2)

where g(xi) = �Txi is the linear relative risk score function,
and � is the coefficient vector. The baseline hazard function
h0 can be an arbitrary non-negative function of time. In this
model, it is infeasible to estimate � and the hazard function
by using the full likelihood as h0 is not specified. To deal
with this estimation problem, the partial likelihood that does
not involve the baseline hazard function is proposed to fit the
model [6]. Suppose there are N distinct time points at which
the event of interest occurs, denoted by T1 < T2 < · · · <

TN , and the covariate vector x with the same subscript is the
corresponding individual. Let Ri be the set of all individuals
at risk at time Ti (corresponding to min {T ?

, C} � Ti). The
Cox partial likelihood is given by

Lcox =
Y

i

0

B@
exp[g(xi)]P

j2Ri

exp[g(xj)]

1

CA

Di

. (3)

In practice, the negative partial log-likelihood is used to fit
the model:

Lloss = �

X

i

Di

8
<

:g(xi)� log[
X

j2Ri

exp g(xj)]

9
=

; . (4)

The cumulative hazard function H(·) can be estimated by the
Breslow estimator using �̂ that minimises Lloss.

The classical Cox model is unable to handle high-
dimensional features due to the overfitting problem, which
encourages the regularised Cox models that take advantage of
the norm regularisation to shrink coefficients. Two represen-
tative methods are Lasso-Cox with the `1 norm regularisation
and Ridge-Cox with the `2 norm regularisation [7], [8].

C. Graph convolutional networks

GCNs generalise the convolution operator to the graph
domain and achieve promising performance in many areas.
To investigate their potential in survival analysis, we adapt the
commonly used GCNs proposed in [20] for analysing high-
dimensional time-to-event data.

A graph can be represented as G = (V, E), where V is the
node set, and E is the edge set. In this work, we consider
unweighted graphs, and each node in the graph represents a
sample with high-dimensional features. Suppose there are n

samples and each sample is characterised by a p-dimensional
feature vector xi 2 Rp. Let A = [aij ] 2 Rn⇥n be the
adjacency matrix of G, and D = diag(d1, d2, . . . , dn) is the di-
agonal degree matrix where di =

P
j
aij is the degree of node

i. The convolution matrix Â in GCNs is given by D̃
� 1

2 ÃD̃
� 1

2 ,
where Ã = A+In, and D̃ = diag(d̃1, d̃2, . . . , d̃n) is the degree
matrix calculated from Ã with d̃i =

P
j
ãij . We adapt the two-

layer GCN proposed in [20] by replacing the last layer with
a full-connected layer that outputs the risk scores of samples;
that is, the relative risk function g(·) in the Cox model is now
parameterised by the GCN instead of a linear function �Txi.

Given the data matrix X = [x1,x2, . . . ,xn]T 2 Rn⇥p, and
the corresponding Â, the GCN uses the following propagation
rule to output the relative risk scores:

z = ReLU(ÂXW1) W2, (5)

where W1 2 Rp⇥lh is the weight matrix for the graph
convolutional layer, W2 2 Rlh⇥1 is the weight matrix for
the output layer, ReLU(·) = max(0, ·) is the ReLU activation
function, and z 2 Rn contains the relative risk scores of n

samples. With the set of observed times {T1, T2, . . . , Tn} and
the set of event indicators {D1, D2, . . . , Dn}, we train the
weights by substituting the risk scores in (4) with z from (5)
and optimising Lloss with gradient descent.

Unlike those in the original GCNs, the input graph in our
model only consists of the training samples during the training
phase. After training, for an unseen new sample, we first
derive a new graph which consists of both the training samples
and the new sample, and then plug the corresponding new
adjacency and degree matrices into (5) to get the risk score of
the unseen sample.

D. Geometric graphs

Inspired by the fact that Continuous k-Nearest neighbour
(CkNN) graphs achieve good performance in node classifica-
tion with GCNs [25], [26], we feed CkNN graphs into GCNs
for performing survival analysis in this paper. For a graph with
the number of neighbours for each sample fixed, a pair of
samples that lie in a poorly sampled area could be connected
in the graph even though they are dissimilar and far away from
each other. The edge between these two dissimilar samples is
detrimental to the performance of GCNs with the graph as
the graph convolution homogenises the features of samples.
In contrast, CkNN graphs are able to alleviate this issue by
adapting edge densities for different samples. The adjacency
matrix A

CkNN = [aCkNN
ij

] 2 Rn⇥n of a CkNN graph is defined
as

a
CkNN
ij

=

⇢
1 if dist(i, j) < �

p
dist(i, ik) dist(j, jk),

0 otherwise,
(6)

where � is a parameter that regulates the graph density, and
dist(i, ik) is the Euclidean distance from a sample to its k-
th nearest neighbour. The establishment of a link between
two samples in a CkNN graph depends on the densities
of their regions. To investigate how to appropriately apply
CkNN graphs to time-to-event data, we fix � = 1 and vary
k for simplicity. CkNN graphs become sparser/denser with
smaller/larger k values. Note that when k = 0, ACkNN equals
a zero matrix and Ã

CkNN is an identity matrix; that is, there
is no edge between any samples.

E. Evaluation metrics

In this work, we adopt two metrics for evaluating survival
models: the time-dependent concordance index and the in-
tegrated Brier score, which evaluate the discriminative per-
formance and calibration performance of survival models,
respectively.
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Fig. 1. Illustrative examples of four graphs (G1-G4) having different values of R1 and R2. The nodes and their spatial locations are the same in different
graphs. Edges that are consistent with those in Gtime are shown in black; otherwise, they are shown in green.

1) Time-dependent concordance index: Harrell’s concor-
dance index is a widely used metric for evaluating the dis-
crimination ability of survival models [27]. It extends the
area under the receiver operating characteristic curve (AUC),
which is used for assessing binary classification models [28],
to the case of time-to-event prediction. Furthermore, it has
been demonstrated that Harrell’s concordance index is closely
related to the time-specific AUC [29]. Harrell’s concordance
index of a model that outputs the survival function Ŝ(·) is
defined as

CIH = P

⇣
Ŝ(t | xi) > Ŝ(t | xj)) | Tj < Ti, Dj = 1

⌘
, (7)

The CIH evaluates the consistency between the ordering of
predicted survival times and that of true survival times. When
applied to proportional hazards models, we only need to
calculate g(·)’s which are independent of t to obtain CIH
since the ranking between the predicted survival times remains
the same over time. However, it is inappropriate to apply
CIH to the survival models where the ordering of survival
predictions is time-dependent as CIH does not account for this.
Therefore, we adopt the time-dependent concordance index
proposed in [30] to account for the ordering of the survival
estimates that possibly changes over time. The time-dependent
concordance index is given by

CI = P

⇣
Ŝ(Tj | xi) > Ŝ(Tj | xj)) | Tj < Ti, Dj = 1

⌘
. (8)

The CI falls in the range [0, 1], and a CI value closer to 1
is better. Note that CI reduces to CIH for the proportional
hazards models.

2) Integrated Brier score: The Brier score is a measure that
assesses the inaccuracy of probabilistic forecast [31]. For the
binary classification of n instances with labels yi 2 {0, 1}, the
Brier score of a model that outputs the probability P̂ (yi = 1 |

xi) is formulated as

1

n

nX

i=1

[P̂ (yi = 1 | xi)� yi]
2
.

The Brier score has been generalised to time-to-event data
by calculating the Brier scores for different time points and
integrating them [32]. Specifically, for a fixed time t, we
get the binary outcomes from time-to-event data in terms of
whether the survivals of patients are longer than t or not and
measure the calibration at t with predicted survival estimates.
The Brier score at t is defined as

BS(t) =
1

n

nX

i=1

"
Ŝ
2(t | xi) (Ti  t,Di = 1)

Ĝ(Ti)

+

⇣
1� Ŝ(t | xi)

⌘2
(Ti > t)

Ĝ(t)

3

75 ,

(9)

where Ĝ(·) is the Kaplan-Meier estimate of the survival
function of the censoring distribution P (C > t), and serves
as a weighting function for instances. BS(t) evaluates the
calibration ability of a model for a fixed time point. To measure
the inaccuracy of survival predictions for a time interval, we
consider the integrated BS (IBS):

IBS =
1

t2 � t1

Z
t2

t1

BS(s)ds. (10)

In practice, we employ numerical integration to approximate
IBS. Lower values of IBS suggest better calibration of survival
estimates.

III. METHODOLOGY

In this section, we first present the motivation of using
sparse graphs constructed from high-dimensional features for
GCNs. We then propose to use multiple sparse graphs to
uncover the local neighbourhoods of samples, which, com-
pared with a single sparse graph, could be more consistent
with the survival times of samples. Finally, we introduce
a sequential forward floating selection algorithm that yields
survival predictions by aggregating information from different
graphs with the aid of GCNs.
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(a) (b)

(c) (d)

Fig. 2. Plots of R1 and R2 calculated from CkNN graphs. R1 (and (c) R2) versus k on four high-dimensional survival datasets, whose information is
provided in Table I. The corresponding CkNN graphs are built by using all available features and different values of k. (b) R1 (and (d) R2) with varying
number of sampled features and different k on the BRCA dataset. The corresponding CkNN graphs are constructed from subsets of features. The sampling
and graph-construction procedure for a fixed size (number of features) is repeated 10 times and we present their average R1 (and R2) values. The threshold
cs is set to the difference between the maximal and the minimal survival times divided by 5 when computing R1 and R2.

A. Motivation of using sparse graphs

In this subsection, we investigate how the parameter k of
a CkNN graph affects the alignment between the graph and
sample survival times, and our finding motivates using sparse
CkNN graphs. First, we evaluate the alignment in terms of
two criteria that quantify the similarity between the survival
times of samples and a CkNN graph. We then find that sparser
CkNN graphs with smaller k may be favoured by GCNs for
survival analysis.

As discussed before, GCNs with a graph may help survival
analysis if the graph structure is consistent with the survival
times of samples. That is, two samples connected by an edge
in the graph tend to have similar survival times. We therefore
evaluate the quality of a geometric graph by comparing the
consistency between its edge set and the survival times. For
some pairs of samples, we are unable to determine whether
there should be edges connecting them based on the difference
of their survival times due to censoring. We thus exclude these
pairs when comparing the edge set of a graph and the survival
times. The set of comparable pairs is defined as

Scom = {(i, j) | (Ti � Tj) > cs, Dj = 1

or |Ti � Tj |  cs, Di = 1, Dj = 1}
(11)

where cs is a pre-selected threshold for determining whether
the survival times of two samples are similar or not. Note that
when evaluating the consistency, we only consider the pairs
in Scom. The set of the pairs of samples with similar survival

times Etime is given by

Etime = {(i, j) | |Ti � Tj |  cs, Di = 1, Dj = 1} . (12)

We denote the edge set of a CkNN graph by ECkNN . The set of
edges within the comparable pairs is E

0

CkNN
= ECkNN\Scom.

With the principle that the edge set of the graph used in a GCN
should be as similar to Etime as possible, we use the following
two criteria to compare E

0

CkNN
to Etime:

• the ratio of appropriate edges in the CkNN graph:

R1 =

���Etime \ E
0

CkNN

���
��E 0

CkNN

�� ;

• the fraction of edges in Etime that have been successfully
discovered by the CkNN graph:

R2 =

���Etime \ E
0

CkNN

���
|Etime|

.

Note that R1 and R2 are similar to the widely-used precision
and recall which are metrics for evaluating classification mod-
els [33], respectively, in the sense that the positive instances
are now defined as pairs in Etime. The higher R1 and R2, the
better the CkNN graph aligns with the survival times. Specif-
ically, a high value of R1 indicates that the corresponding
graph tends to connect samples with similar survival times,
while higher R2 means that more pairs of samples with similar
survival times are retrieved by the graph. The example graphs
in Fig. 1 illustrate the characteristics of graphs with different
R1 and R2 values. As suggested by the high value of R1
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Fig. 3. Illustration of using multiple sparse graphs (G1,G2,G3,G4) to uncover a graph (Gtime). The nodes and their spatial locations in each graph are the

same. The union of the corresponding edge sets with the same subscripts
4S

i=1
Ei = Etime.

of G1, most edges identified by G1 link samples with similar
survival times. But a relatively lower value of R2 indicates
that a number of of edges present in Gtime are missing in G1,
which means that G1 uncovers only a subset of the edges in
Gtime. Although G2 obtains a higher value of R2 and discovers
most edges in Gtime, nearly half of the edges detected by the
graph do not exist in Gtime, which is indicated by a mediocre
R1. Regarding G3, it is clearly observed that the graph is at
odds with Gtime, shown by the lowest values of both R1 and
R2, compared with the other three graphs. Among these four
graphs, G4 fits best with GCNs: the graph structure is highly
consistent with Gtime and it achieves high values for both R1

and R2.
Fig. 2(a) and Fig. 2(c) present the plots of R1 and R2 against

varying k on different high-dimensional survival datasets. It
is observed that there exists a negative correlation between
R1 and k, while the opposite trend is observed for R2. The
patterns presented in these two figures indicate that sparser
graphs are able to achieve higher R1 while denser graphs
can obtain higher R2. It seems difficult for a single graph to
achieve both high R1 and high R2. Sparse and dense graphs
could be exemplified by G1 and G2 in Fig. 1, respectively.

Although dense graphs can uncover more neighbours for
a node than sparse graphs, a dense graph with a big k may
assign many inappropriate neighbours to nodes. As illustrated
by G2 in Fig. 1, for most nodes, a large fraction of their
neighbours have dissimilar survival times. Thus, performing
the graph convolution on most nodes could exacerbate their
survival predictions. Further, take a limiting case for instance,
a GCN with the complete graph (A = 11T

� I) makes the
feature of one sample replaced with the average of all the
available samples. It is expected that a survival model based
on the GCN with such a graph performs no better than a
random predictor since the features of all samples are the same
after smoothing. Compared with dense graphs, a GCN with
the graph obtained by small k is able to improve survival
predictions of most nodes with neighbours. Take the sparse
graph (G1) presented in Fig. 1 for an example, among the

nodes having neighbours, four out of five are connected to
nodes with similar survival times. Therefore, a GCN with G1

possibly improves the predictions of these nodes. Based on the
above comparison, we reason that sparse graphs are favoured
in practice when used in GCNs for survival analysis. Note
that the limit of sparse graphs is the empty graph and the
corresponding GCN is equivalent to the MLP.

B. Multiple sparse graphs

As discussed before, graphs with both high R1 and high
R2 fit with GCNs well. Although sparse geometric graphs are
able to achieve high R1, their R2 values are often small, since
a single sparse graph is unlikely to uncover the complete local
neighbourhoods of all nodes. We therefore propose to unveil
more neighbours for each node and improve R2 by combining
multiple sparse graphs within GCNs. Inspired by the fact that
the finite edge set Etime can be decomposed into subsets, we
propose to first construct a set of multiple sparse graphs SG =
{Gi, . . . ,GnG}, where Gi = (V, Ei) for i = 1, 2, . . . , nG. A
subset of graphs Sselect ⇢ SG are then chosen such that the
aggregation of the corresponding edge sets

S
Gi2Sselect

Ei is more

consistent with Etime. Fig. 3 illustrates an ideal case where
multiple sparse graphs can be combined to discover all the
edges in Etime. All sparse graphs (G1,G2,G3,G4) in Fig. 3 have
perfect R1 values but low R2 values. These graphs are diverse
in the sense that their edge sets do not overlap too much.
Although none of them fully uncovers Etime, their combined
graph is the same as Gtime and achieves R1 = R2 = 1. This
illustrative example indicates that combining diverse sparse
graphs may increase R2 over original sparse graphs without
dramatically decreasing R1.

The first problem of adopting the proposed approach is how
to construct multiple sparse graphs from available features.
As two samples could be regarded as being similar in one
graph and being dissimilar in another graph when the graphs
are constructed using different subsets of features, we propose
to use random subsets of features to construct diverse sparse
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Algorithm 1 Survival analysis using GCNs and CkNN graphs
Input: the data matrix X 2 Rn⇥p, the set of ob-

served time {T1, T2, . . . , Tn}, the set of event indicators
{D1, D2, . . . , Dn}

Output: the set of selected graphs Sk, the aggregation model
Ridge-Cox(Sk,�) with the estimated coefficient vector
wk.

1: Initialisation: sample subsets of features from X and
construct multiple CkNN graphs SG = {Gi}, where
i = 1, . . . , nG .

2: Step 1: input each subset of features and the correspond-
ing Gi into a GCN and obtain the trained model Mi, where
i = 1, . . . , nG .

3: Step 2: calculate the risk scores {ĝij}val of the val-
idation data and {ĝis}train of the training data, where
i = 1, . . . , nG , j = 1, . . . , nval, and s = 1, . . . , ntrain.

4: Step 3: feed {ĝij}val, {ĝis}train, and SG into Algorithm 2
to obtain the output.

graphs. Fig. 2(b) and Fig. 2(d) show that the values of R1

and R2 of the graphs obtained with different random subsets
of features do not change much from the graph built with all
features. Thus, it is possible to combine these sparse graphs to
improve R2 without decreasing R1, leading to a more suitable
graph for survival analysis.

The second question naturally arising from the above analy-
sis is how to select graphs and combine them for survival anal-
ysis. To address this problem, we propose an implicit approach
for the selection of graphs with the aid of survival information.
Our intuition is that, if the combination of the graphs in Sselect

aligns well with Etime, the model that aggregates the outputs
from the GCNs with the graphs in Sselect should perform
well in terms of an evaluation metric for the time-to-event
prediction. From this intuition, we select the graphs in such
a way that aggregating the corresponding outputs results in a
good performance, after training GCNs with different graphs
and obtaining their risk scores (Algorithm 2).

C. Algorithms

In the following section, we present our model which
AGgregates the outputs from GCNs for Survival analysis
(AGGSurv) and describe the detailed algorithm of graph
selection and aggregation.

1) AGGSurv: We first use random subsets of features to
build different CkNN graphs. Inspired by the fact that better
alignment between the features and the graph in a GCN
benefits the classification performance [23], we then use the
subset of features from which the CkNN graph is constructed
as the input to the GCN model rather than all the features.
After training, for each constructed CkNN graph Gi with its
edge set Ei, we obtain its corresponding survival model Mi.
Finally, we select a subset of the constructed graphs and learn
the aggregation model simultaneously with the training data
and the validation data. The whole algorithm is summarised
in Algorithm 1.

Algorithm 2 SFFS algorithm for selecting graphs and learning
the aggregation model
Input: the set of CkNN graphs SG = {Gi}, the corre-

sponding output risk scores {ĝij}val and {ĝis}train, where
i = 1, . . . , nG , j = 1, . . . , nval, and s = 1, . . . , ntrain.

Output: the set of selected graphs Sk, and the aggregation
model Ridge-Cox(Sk,�) with the estimated coefficient
vector wk.

1: Initialisation: S0 = ;, k = 0, w+ = [1], and cbest = 0.
We first select the graph G

+ that obtains the highest CI
on the validation data and set c to the corresponding CI.

2: while c > cbest and k  nG do
3: Sk+1 = Sk

S
{G

+
}

4: cbest = c

5: k = k + 1
6: wk = w+

7: #conditional exclusion step:
8: if |Sk| > 2 then
9: G

� = argmax
Gj2Sk

⇢
max
�

CI [Ridge-Cox(Sk\ {Gj} ,�)]

�

10: w� = the estimated coefficient vector �̂ of
Ridge-Cox(Sk\ {G

�
} ,�).

11: ce = CI obtained by Ridge-Cox(Sk\ {G
�
} ,�)

12: if ce > c then
13: Sk�1 = Sk\ {G

�
}

14: cbest = ce

15: wk�1 = w�

16: k = k � 1
17: end if
18: end if
19: G

+ = argmax
Gi2SG\Sk

⇢
max
�

CI [Ridge-Cox(Sk

S
{Gi} ,�)]

�

20: w+ = the estimated coefficient vector �̂ of
Ridge-Cox(Sk

S
{G

+
} ,�).

21: c = CI obtained by Ridge-Cox(Sk

S
{G

+
} ,�)

22: end while

2) SFFS: After training the multiple GCNs with different
CkNN graphs, we propose a sequential forward floating se-
lection (SFFS) algorithm to select a subset of the constructed
graphs and employ a survival model that learns how to best
aggregate the predictions from the GCNs trained with the
selected graphs (Algorithm 2). For the aggregation model, we
adopt the Ridge-Cox model because the sizes of the datasets
are small and using other survival models which require large
training data may exacerbate the overfitting problem. Further-
more, the coefficients of the Ridge-Cox model can reflect the
impact of each selected graph on the final predictions. Note
that the input features to the Ridge-Cox model are the output
predicted risk scores from the trained GCNs.

Let Sk be a set of k selected graphs (|Sk| = k). Steps
3-6 and 19-21 in Algorithm 2 show the process of includ-
ing a new graph in Sk, and steps 9-16 in Algorithm 2
present the process of excluding a graph from Sk. The
SFFS algorithm includes a graph Gi in Sk or excludes
a graph Gj from Sk in terms of the concordance index
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(CI) obtained by the model Ridge-Cox(Sk

S
{Gi} ,�)) or

Ridge-Cox(Sk\ {Gj} ,�)). Specifically, we first train a Ridge-
Cox model to learn how to best aggregate the predictions from
the GCNs with the graphs in Sk

S
{Gi} or Sk\ {Gj} on the

training data. The regularisation parameter � of the Ridge-Cox
model is selected such that the Ridge-Cox model achieves the
best discriminative performance (CI) on the validation data,
which is max

�

CI [Ridge-Cox(Sk\ {Gj} ,�)] for the exclusion
step and max

�

CI [Ridge-Cox(Sk

S
{Gi} ,�)] for the inclusion

step. This process is iterated for all the graphs that can be
possibly added to or removed from the set Sk, and the one
with the highest CI on the validation data is added or removed.
The algorithm stops when the CI cannot be increased anymore.
Note that the output selected graphs in Sk can be combined
into a weighted graph, where the edge set is the union of
those of selected graphs and the weight for each edge can be
obtained by the weighted sum of the different graphs with the
final weight vector wk of the Ridge-Cox model.

IV. EXPERIMENTS

In this section, the proposed AGGSurv model is extensively
evaluated with comparisons to several other methods. Nine
high dimensional datasets are used in our experiments. The
results show that AGGSurv outperforms the other approaches.

A. Datasets

The comparison of survival analysis performance is con-
ducted on a variety of high-dimensional survival datasets,
including eight datasets from The Cancer Genome Atlas
(TCGA) (https://www.cancer.gov/tcga) and one dataset from
the TADPOLE challenge (https://tadpole.grand-challenge.org).
The datasets from TCGA are downloaded by using the
R/Bioconductor package: RTCGAToolbox [34]. The TCGA
datasets include the following eight cancer types: breast in-
vasive carcinoma (BRCA), kidney renal clear cell carcinoma
(KIRC), lung adenocarcinoma (LUAD), urothelial bladder
carcinoma (BLCA), head and neck squamous cell carcinoma
(HNSC), brain lower grade glioma (LGG), liver hepatocellular
carcinoma (LIHC), and ovarian serous cystadenocarcinoma
(OV). The event of interest is defined as death for cancer pa-
tients in these datasets. The high-dimensional features that we
extract from TCGA for performing time-to-event prediction
are the normalised RNA sequencing data. The dataset from the
TADPOLE challenge is obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) [35] and it contains patients
with mild cognitive impairment (MCI) at baseline having a
substantially increased risk of developing Alzheimer’s disease
(AD). The event of interest is defined as MCI to AD conver-
sion for patients with MCI. We preprocess the dataset from
TADPOLE by following the procedure presented in [36]. The
features used for predicting the conversion include the MRI
features, Apolipoprotein E4, and gender.

The characteristics of these datasets are summarised in
Table I. In the pre-processing of the TCGA datasets, we
remove the features with 0 variance and add a pseudocount
1 to all features, followed by a log transformation. We then

TABLE I
SUMMARY OF THE DATASETS USED IN THE EXPERIMENTS.

Dataset # patients # features Prop. Censored
BRCA 1079 20224 0.860
KIRC 531 20221 0.670
LUAD 503 20172 0.638
BLCA 405 20215 0.560
HNSC 519 20234 0.576
LGG 511 20199 0.755
LIHC 365 20140 0.644
OV 303 20161 0.393
AD 439 252 0.426

TABLE II
HYPERPARAMETERS SEARCH SPACES.

Hyperparameter Values
# Nodes in the hidden layer 16, 32, 64
Batch size 128, 256
k (GSurv) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
# durations (DeepHit) 10, 20
↵ (DeepHit) 0, 1
� (DeepHit) 0.1, 0.5, 1, 2.5, 5, 10, 100
Split rule (RSF) log rank, log rank score
Node size (RSF) 5, 10, 15, 20

standardise the log-transformed data to make them centered
around 0 with a unit variance for each feature.

B. Methods

We compare AGGSurv to the classical Lasso-Cox [7],
Ridge-Cox [7], [8], and RSF [9], as well as the methods
based on neural networks: DeepSurv [2], DeepHit [17], and
CoxTime [16]. To investigate whether the combination of
multiple sparse graphs is superior to using a single graph, we
also take into account the survival model based on the GCN
with a single graph (GSurv) where k in the CkNN graph is
determined by a grid search over the validation dataset.

C. Implementation details

For evaluation, we apply 10-fold cross validation for each
dataset: we randomly separate the data into a training set
(90%) and a test set (10%), and 10% of the training set is
used as the validation set. For all sets, we keep the same ratio
of censoring as in the original datasets.

All (graph) neural networks used in DeepSurv, CoxTime,
DeepHit, GSurv, and AGGSurv consist of an input layer, a
hidden layer and an output layer. The networks are trained by
back-propagation with the Adam optimizer of a learning rate
of 5e-4. The dropout probability of 0.1 and the weight decay
of 1 are applied. Early stopping is performed based on the
validation loss to avoid overfitting.

The optimisation of the other hyperparameters is performed
individually for each fold by a grid search, and the configura-
tion is selected such that the corresponding model achieves the
best discriminative performance (CI) on the validation set. The
search spaces for the hyperparameters are provided in Table II.
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TABLE III
COMPARISON OF DIFFERENT APPROACHES IN TERMS OF CI (AVERAGED
OVER THE 10 FOLDS). THE RIGHTMOST COLUMN SHOWS THE AVERAGE

RANKING IN TERMS OF CI FOR EACH METHOD OVER THE EIGHT
DATASETS. NOTE THAT THE LOWER THE RANKING, THE BETTER THE

PERFORMANCE. TOP THREE APPROACHES FOR EACH DATASET ARE IN
BOLD.

Methods BRCA KIRC LUAD BLCA HNSC LGG LIHC OV AD Avg. ranking
CoxTime 0.637 0.711 0.592 0.636 0.598 0.781 0.652 0.570 0.618 6.000
DeepHit 0.643 0.664 0.581 0.633 0.562 0.759 0.667 0.582 0.625 6.444
DeepSurv 0.715 0.723 0.599 0.644 0.610 0.852 0.674 0.594 0.687 2.889
GSurv 0.696 0.723 0.600 0.643 0.614 0.847 0.671 0.577 0.696 3.111
AGGSurv 0.719 0.721 0.592 0.664 0.621 0.852 0.693 0.605 0.697 1.778
RSF 0.581 0.681 0.585 0.622 0.610 0.828 0.656 0.566 0.702 5.778
Ridge-Cox 0.700 0.709 0.585 0.612 0.632 0.843 0.691 0.582 0.690 4.111
Lasso-Cox 0.660 0.691 0.573 0.619 0.600 0.841 0.596 0.569 0.722 5.889

TABLE IV
COMPARISON OF DIFFERENT APPROACHES IN TERMS OF IBS (MEAN

VALUE OVER THE 10 FOLDS). THE TOP THREE OF EACH DATASET ARE IN
BOLD.

Methods BRCA KIRC LUAD BLCA HNSC LGG LIHC OV AD Avg. ranking
CoxTime 0.152 0.168 0.243 0.220 0.246 0.157 0.208 0.186 0.205 3.667
DeepHit 0.168 0.198 0.237 0.238 0.239 0.177 0.201 0.220 0.208 5.222
DeepSurv 0.154 0.169 0.246 0.239 0.241 0.169 0.232 0.189 0.184 4.556
GSurv 0.177 0.169 0.263 0.240 0.243 0.186 0.235 0.207 0.185 6.333
AGGSurv 0.161 0.163 0.228 0.214 0.222 0.163 0.205 0.176 0.196 2.222
RSF 0.167 0.178 0.215 0.218 0.223 0.169 0.207 0.173 0.178 2.778
Ridge-Cox 0.168 0.176 0.248 0.219 0.238 0.163 0.213 0.187 0.184 4.111
Lasso-Cox 0.205 0.200 0.306 0.239 0.247 0.229 0.249 0.223 0.175 7.111

The search spaces listed in the top two rows in Table II are
applied to all methods based on the (graph) neural networks.
Lasso-Cox and Ridge-Cox are implemented with the R pack-
age glmnet [8] and the regularisation parameters are selected
from the sequence provided by the package. The Ridge-Cox
model used in the aggregation process is implemented with the
python scikit-survival library [37] and the search space for the
regularisation parameter � is [1e + 3, 1e + 4, 1e + 5, 1e + 6].
The number of trees in RSF is 500, which is found to be
empirically sufficient.

It is possible that samples (nodes) are too far away from
each other, in which case considering the relation between
nodes using GCNs is unnecessary, particularly for datasets
of a small size. We thus take into account the case of an
empty graph when implementing GSurv and AGGSurv, which
is equivalent to DeepSurv. Note that the inclusion of an
empty graph would not change the graph structure obtained
by combining the selected graphs in the sense that the edge
set of empty graph (Ã = I) is an empty set and

S
i

Ei

S
? =

S
i

Ei. For each configuration of the network architecture of

AGGSurv, we first construct multiple graphs from random
subsets of features and train the GCNs to get the corresponding
results. Then, we input these results into Algorithm 2 to get
the aggregated predictions. Two different sizes of the subset
of features for constructing multiple CkNN graphs are used,
which are {1500, 3000} for the TCGA datasets and {100, 200}
for the AD dataset. The sampling for each size is repeated 4
times for each configuration; that is, 8 graphs is constructed
for each configuration. The parameter k for CkNN is set to 1
so as to build sparse CkNN graphs for AGGSurv.

D. Results and analysis

In the following, we evaluate the discriminative perfor-
mances of the survival models in terms of CI and the cali-
bration performance according to IBS.

Fig. 4. Visualised comparison of different approaches in terms of CI. Left:
visualised rankings of each method on different datasets in terms of CI. The
value at the (i, j) position is the ranking of the method in the i-th row on
the dataset in the j-th column. Right: visualised p-values of the one-sided
Wilcoxon signed-rank test between pairs of approaches obtained by comparing
their CI. The alternative hypothesis is that the performance of the method in
the i-th row is better than that in the j-th row according to CI or IBS over all
the datasets used. Here we set the significance level to 0.05, i.e., one approach
is significantly better than the other if the corresponding p-value is smaller
than the significance level. Note that brighter colour and lower ranking value
indicate better performance.

Fig. 5. Visualised comparison of different approaches in terms of IBS. Left:
visualised rankings of each method on different datasets in terms of IBS.
Right: visualised p-values of the one-sided Wilcoxon signed-rank test between
pairs of approaches obtained by comparing their IBS.

Table III shows the mean values of CI obtained by different
methods over 10-folds on each dataset and Table IV presents
the average IBS. To facilitate the comparison of different ap-
proaches, we provide the visualisations of both model rankings
and p-values of the one-sided Wilcoxon signed-rank test that
tests whether one approach is significantly better than another
one in Fig 4 and Fig 5.

We first compare different approaches from the perspective
of the discrimination (CI). Ridge-Cox is significantly better
than CoxTime, DeepHit, RSF, and Lasso-Cox. On the contrary,
DeepSurv and GSurv, which are based on the proportional
hazards assumption, perform equally well as Ridge-Cox ac-
cording to the corresponding statistical testing. It is clear to
see that AGGSurv presents the lowest average ranking and
its discriminative performance is significantly superior to the
other methods.

Second, we compare the methods based on their calibration
performances (IBS). AGGSurv performs significantly better
than most approaches except for CoxTime and RSF. Further-
more, AGGSurv is superior to CoxTime and RSF according
to their average rankings. Although most approaches based on
the neural networks and the Cox partial likelihood do rather
poorly, AGGSurv generally performs well over the datasets.

Third, by comparing AGGSurv and GSurv, we note that
combining multiple sparse graphs does provide an advantage
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over a single graph. Furthermore, AGGSurv is shown able to
remedy the overfitting problem of high-dimensional datasets.

To sum up, AGGSurv achieves the best discriminative
performance and performs well according to the calibration of
its survival predictions. Hence, we can conclude that AGGSurv
provides a robust approach to survival analysis of high-
dimensional datasets by aggregating multiple sparse graphs.

E. Computational complexity

AGGSurv involves two steps: training nG GCNs with dif-
ferent graphs, and selecting and combining the GCNs with
the SFFS algorithm. During the first step, the computational
complexity for computing the risk scores with GCNs in (5)
is O (|E| p+ n(p+ 1)lh), as the graphs used in AGGSurv are
sparse and ÂX can be implemented by sparse-dense matrix
multiplications. The computational complexity for evaluating
the negative partial log-likelihood function in (4) is O(n2).
Linear complexity can be achieved by approximating the full
risk sets with the sampled risk sets of a fixed size, which is
proposed in [16]. During the second step, the SFFS algorithm
takes O(n2

G) calls of implementing Ridge-Cox to find the
subset of the constructed graphs (GCNs). Note that the number
of graphs is small, and running the second step is much faster
than training the GCNs in practice.

V. CONCLUSION AND FUTURE WORK

In this work, we first clarify that the prerequisite for a
GCN model to improve survival analysis is to input a graph
that aligns well with the sample survival times. With this
insight, we propose to combine multiple sparse graphs to
uncover a graph where the edges connect samples with similar
survival times. We then propose a survival model that not
only outputs the survival predictions but also captures the
local neighbourhoods, by using multiple sparse graphs for
GCNs. The key idea of the proposed approach is to aggregate
the information of local neighbourhoods from different sparse
graphs and assess the aggregated predictions by the survival
information. The experimental results show that the proposed
model achieves the best concordance and performs well in
terms of its calibration performance.

Two criteria R1 and R2 have been used to quantify the
alignment between a graph and the survival times of samples.
As future works, it would be interesting to investigate how
to derive a single criterion, through properly combining R1

and R2, to directly find an optimal graph. In the proposed
model, we have used the GCN to process the data on the
graph. Recently, many new graph neural networks have been
proposed, such as Graph Isomorphism Network and Graph
Attention Network [21], [38]. In the future, these new architec-
tures can be explored to enhance the calibration performance
of the proposed model.
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