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INTRODUCTION

Concentric tube robots (CTRs) are a class of continuum
robot that depend on the interactions between neigh-
bouring, concentrically aligned tubes to produce the
curvilinear shapes of the robot backbone [1]. The main
application of these unique robots is that of minimally
invasive surgery (MIS), where most of the developments
for CTRs have been focused. Due to the confined
workspaces and resulting extended learning times for
surgeons in MIS, dexterous, compliant continuum robots
such as CTRs have been under development in prefer-
ence to the mechanically rigid and limited degrees-of-
freedom (DOF) robots used in interventional medicine
today. The precurved tubes in CTRs, sometimes referred
to as active cannulas or catheters, are manufactured
from super-elastic materials like Nickel-Titanium alloys
with each tube nested concentrically. From the base, the
individual tubes can be actuated through extension and
rotation, which results in the bending and twisting of the
backbone as well as access to the surgical site through
the channel and robot tip. Clinically, CTRs are motivated
for use in brain, cardiac, gastric surgery as well other
procedures [2].
Due to tube interactions, modelling and control is non-
trivial. Position control for CTRs has relied on model
development, and although a balance between compu-
tation and accuracy has been reached in the literature
[1], there remain issues such as performance in the
presence of tube parameter discrepancies and the impact
of unmodelled physical phenomena such as friction and
permanent plastic deformation. This motivates the devel-
opment of an end-to-end model-free control framework
for CTRs. We extend our previous model-free deep
reinforcement learning (deepRL) method [3] with an
initial proof of concept for generalization. The task
we give the agent then is to control the end-effector
Cartesian robot tip position by means of actions that
represent changes in joint values to reach a desired
position in the robot workspace whilst considering a
specific CTR system.
A hurdle with using deep learning approaches for control
of CTRs is the limitation of CTR system generalization.
Deep learning methods rely on the data given and cannot

Fig. 1 CTR systems generalized over ordered from
longest to shortest.

inherently differentiate between CTR systems. Thus,
deep learning methods have been investigated for single
CTR systems only. For deep learning methods to be
viable, they must be able to generalize over multiple
CTR systems.

MATERIALS AND METHODS

The CTR system generic deepRL method described
below will seek to generalize over four CTR systems
which each have different tube parameters as shown in
Fig. 1. These parameters include, stiffness, inner and
outer diameters, curved and straight lengths etc. The
objective is to obtain good performance across CTR
systems with a single control policy. For generalization,
a system specifier, 𝜓 = {0, 1, 2, 3}, was appended to
the state, 𝑠𝑡 , for the agent to differentiate the CTR
systems. During training, a discrete uniform distribution
is sampled to determine the system parameters to be
used in the simulation for that episode. The simulation,
using the exact kinematics from Rucker et al. [4],
generates desired goals, 𝐺𝑑 , within the workspace of
the selected CTR system during the start of an episode
and determines the current robot tip position or achieved
goal, 𝐺𝑎. During the episode, the agent tries to reach



TABLE I

System Errors (mm)
± std

Errors (% length)
± std Success rate

1 0.77 ± 0.65 0.16 ± 0.065 94.0%
2 0.75 ± 0.48 0.17 ± 0.18 94.1%
3 0.63 ± 0.26 0.20 ± 0.08 99.3%
4 0.64 ± 0.22 0.3 ± 0.13 99.3%

this desired goal. Both these goals are included in the
state which is defined as

𝑠𝑡 = {𝛾1, 𝛾2, 𝛾3, 𝐺𝑎 − 𝐺𝑑 , 𝛿(𝑡), 𝜓} (1)

where 𝛾𝑖 is the cylindrical representation [5] for tube 𝑖.
Tubes are ordered innermost to outermost. The cylindri-
cal representation is defined as:

𝛾𝑖 = {𝛾1,𝑖 , 𝛾2,𝑖 , 𝛾3,𝑖} = {cos(𝛼𝑖), sin(𝛼𝑖), 𝛽𝑖} (2)

with rotation and extension of tube 𝑖 represented as 𝛼𝑖

and 𝛽𝑖 respectively. The agent can take an action 𝑎 or a
change in joint position at each timestep 𝑡 such that

𝑎𝑡 = {Δ𝛽1,Δ𝛽2,Δ𝛽3,Δ𝛼1,Δ𝛼2,Δ𝛼3}. (3)

The agent receives a reward 𝑟𝑡 if the current achieved
tip position 𝐺𝑎 is within a goal tolerance 𝛿(𝑡) to the
desired tip position 𝐺𝑑 . The reward, 𝑟𝑡 is defined as:

𝑟𝑡 =

{
0 if 𝑒𝑡 ≤ 𝛿(𝑡)
−1 otherwise

. (4)

where 𝑒𝑡 is the Euclidean distance or 𝑙2 norm | |𝐺𝑎 −
𝐺𝑑 | |2 between the achieved and desired goal.
Using deep deterministic policy gradient (DDPG) [6]
with hindsight experience replay (HER) [7], the train-
ing parameters are as follows. The number of training
timesteps was 3 million, buffer size was 500, 000 with
the policy network having 3 hidden networks with 256
units per layer, the initial goal tolerance and final goal
tolerance were 20 mm and 1 mm applied over 1.5
million steps using a decay function [3]. Zero-mean
Gaussian noise of 1.8 mm was applied to Δ𝛽𝑖 and 0.025
radians to Δ𝛼𝑖 .

RESULTS
A generic policy for all four systems was trained then
using the trained policy, 1000 evaluation episodes were
performed for each CTR system, resulting in 4000 eval-
uation episodes in total. For training results, a success
rate of 100% was achieved with a mean error of 0.7 mm
in the final 100 episodes. For each respective system,
the mean and standard deviation errors were 0.77 mm
and 0.65 mm, 0.75 mm and 0.48 mm, 0.63 mm and
0.26 mm and 0.64 mm and 0.22 mm. The success rate
for each system was 94.0%, 94.1% 99.3% and 99.3%.
These results are summarized in Table I. As longer CTR
systems will have larger errors, usually error metrics are
represented as a percentage of robot length. Even still,
we find larger errors found in robot systems with larger
workspaces.
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Fig. 2 System 0 (a) and system 1 (b) inverse kinematic
solutions for the same desired goal.

Visualized in Fig. 2 is an example of the same de-
sired end-effector position with two different initial joint
configurations, resulting in two different final inverse
kinematics solutions for system 0 Fig. 2a and system 1
Fig. 2b using the same policy. The desired goal position
was (0, 100, 250) mm. The final joint configuration
in Figure 2a was 𝛽 = [−7.63,−4.78, 0.0] mm, 𝛼 =

[65.83, 200.19, 120.77]◦ with a tip error of 0.58 mm
and for Fig. 2b 𝛽 = [−4.72,−3.54,−0.09] mm and
𝛼 = [62.61, 193.39, 172.42]◦ with a tip error of 0.65
mm.

DISCUSSION
The method is able to generalize over four distinct CTR
systems however evaluation metrics across systems differ
as seen in Table I. In other words, error metrics is biased
to smaller robot workspaces even when represented as
a percentage of robot length. System 0, the system with
the longest overall length performs worst in evaluation
whereas system 3 performs best. In the future, we plan
on including CTR system parameters to fully generalize.
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