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INTRODUCTION

Concentric tube robots (CTRs) are a class of continuum
robot that depend on the interactions between neighbour-
ing, concentrically aligned tubes to produce the curvilinear
shapes of the robot backbone [1]. The main application
of these unique robots is that of minimally invasive
surgery (MIS), where most of the developments for CTRs
have been focused. Due to the confined workspaces and
resulting extended learning times for surgeons in MIS,
dexterous, compliant continuum robots such as CTRs have
been under development in preference to the mechanically
rigid and limited degrees-of-freedom (DOF) robots used
in interventional medicine today. The precurved tubes in
CTRs, which are sometimes referred to as active cannulas
or catheters, are manufactured from super-elastic mate-
rials like Nickel-Titanium alloys with each tube nested
concentrically. From the base, the individual tubes can be
actuated through extension and rotation, which results in
the bending and twisting of the backbone as well as access
to the surgical site through the channel and robot tip.
Clinically, CTRs are motivated for use in brain, cardiac,
gastric surgery as well other procedures [2].

Due to tube interactions, modelling and control is
challenging. Position control for CTRs has relied on model
development, and although a balance between computa-
tion and accuracy has been reached in the literature [1],
there remain issues such as performance in the presence
of tube parameter discrepancies and the impact of unmod-

Fig. 1: State with start position and achieved goal,
𝐺𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 (black), desired goal, 𝐺𝑑𝑒𝑠𝑖𝑟𝑒𝑑 (yellow), goal
tolerance, 𝛿(𝑡). Outer tube (green), middle tube (red) and
inner tube (blue).

Fig. 2: Joint variables 𝛽 and 𝛼 of a 3 tube CTR. 𝑠 is the
arc-length or axis along the backbone.

elled physical phenomena such as friction and permanent
plastic deformation. This motivates the development of
an end-to-end model-free control framework for CTRs.
One such model-free framework for control that is gaining
popularity is reinforcement learning (RL), a paradigm of
machine learning that necessitates an agent to output ac-
tion that interacts with an environment. The environment
then processes this action, and returns a new state and,
depending on the task, a reward signal. The task we give
the agent then is to control the end-effector Cartesian robot
tip position by means of actions that represent changes
in joint values. In Fig. 1 the components of the state
are shown in relation to a illustrated CTR and further
described in the next section.

In this work, we investigate how the rotational actuation
affects final errors during evaluation of the learned policy.
We find by avoiding constraining the rotational DOF of
each tube, the agent can freely rotate to achieve goals as
opposed to when constrained that result in more steps and
larger error metrics.

MATERIALS AND METHODS

First, the Markov Decision Process (MDP), a definition
required for RL algorithms is defined as follows.

• State (𝑠𝑡 ) : States are defined as the concatenation of
the trigonometric joint representation, Cartesian goal
error and current goal tolerance. As shown in Fig. 2,
rotation and extension of tube 𝑖 (ordered innermost
to outermost) are 𝛼𝑖 and 𝛽𝑖 . The trigonometric rep-
resentation [3] of tube 𝑖 is defined as:

𝛾𝑖 = {𝛾1,𝑖 , 𝛾2,𝑖 , 𝛾3,𝑖} = {cos(𝛼𝑖), sin(𝛼𝑖), 𝛽𝑖} (1)

In constrained rotation, 𝛼𝑖 for each tube is constrained
to be between −180◦ and +180◦ during each episode
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Fig. 3: Achieved goal errors for constrained (a) and free
rotation (b) agents. Errors are shown in a polar plot with
𝛼1 rotation values and associated final errors.

Fig. 4: Reaching a desired goal of (20, 20, 100) mm with
a tip error of 0.98 mm. Starting position (red), desired
goal (green).

for generation of new goals. However, these con-
straints are non-essential in the trigonometric repre-
sentation during episode steps. The extension joint 𝛽𝑖
can be retrieved directly and has constraints

0 ≥ 𝛽3 ≥ 𝛽2 ≥ 𝛽1 (2)

0 ≤ 𝐿3 + 𝛽3 ≤ 𝐿2 + 𝛽2 ≤ 𝐿1 + 𝛽1 (3)

from the actuation side. Lastly, the current goal
tolerance, 𝛿(𝑡), is included in the state where 𝑡 is
the current timestep. A decay curriculum function
was used for 250, 000 steps out of the total 500, 000
training steps. The full state, 𝑠𝑡 , can then be defined
as:

𝑠𝑡 = {𝛾1, 𝛾2, 𝛾3, 𝐺𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 − 𝐺𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , 𝛿(𝑡)} (4)

• Action (𝑎𝑡 ) : Actions are defined as a change in
rotation and extension joint positions.

𝑎𝑡 = {Δ𝛽1,Δ𝛽2,Δ𝛽3,Δ𝛼1,Δ𝛼2,Δ𝛼3} (5)

• Goals (𝐺) : Goals are defined as Cartesian points
within the workspace of the robot. The achieved

goal, 𝐺𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 , is determined with the forward kine-
matics of the geometrically exact model [4] and is
recomputed at each timestep as the joint configuration
changes from the agents actions. The desired goal
𝐺𝑑𝑒𝑠𝑖𝑟𝑒𝑑 updates at the start of every episode where
a desired goal is found by sampling valid joint
configurations and applying forward kinematics.

• Rewards (𝑟𝑡 ) : The reward is a scalar value returned
by the environment as feedback for the chosen action
by the agent at the current timestep. The reward
function used in this work is defined as:

𝑟𝑡 =

{
0 if 𝑒𝑡 ≤ 𝛿(𝑡)
−1 otherwise

(6)

where 𝑒𝑡 is the Euclidean distance | |𝐺𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 −
𝐺𝑑𝑒𝑠𝑖𝑟𝑒𝑑 | | and 𝛿(𝑡) is the goal-based curricu-
lum function that determines the goal tolerance at
timestep 𝑡. The workspace and various state and
reward elements are illustrated in Fig. 1.

We train a policy for constraint and constraint-free
rotation in simulation using the base hyperparameters and
tube parameters as our previous work [5]. To evaluate each
policy, 1000 evaluation episodes where the desired goal
where randomized. Representing error metrics as mean
error ± standard deviation, The constraint-free agent had
error of 0.69 mm ± 0.24 mm with a success rate of 97.1%
while constrained agent had error of 0.94 mm ± 1.44 mm
and with a success rate of 87.7%. In our previous work
[5], where the rotation was constrained, evaluation showed
error metrics of 1.29 mm ± 0.18 mm and a success rate of
90.3%. Providing a goal of (20, 20, 100) mm, the solved
joint values were [−2.36,−2.03,−0.92] mm for 𝛽 and
[−205.6◦,−108.2◦,−271.4◦] for 𝛼 with a final tip error
of 0.98 mm as seen in Fig. 4.

CONCLUSIONS AND DISCUSSION
Constraining the rotational DOF of the tubes results

in the trained policy with worse error metrics. More-
over, with the trigonometric representation, the rotational
constraints are redundant. We aim to further analysis
differences in joint sampling and testing on a hardware
system.
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