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Abstract. Clinically significant prostate cancer has a better chance to
be sampled during ultrasound-guided biopsy procedures, if suspected le-
sions found in pre-operative magnetic resonance (MR) images are used
as targets. However, the diagnostic accuracy of the biopsy procedure is
limited by the operator-dependent skills and experience in sampling the
targets, a sequential decision making process that involves navigating an
ultrasound probe and placing a series of sampling needles for potentially
multiple targets. This work aims to learn a reinforcement learning (RL)
policy that optimises the actions of continuous positioning of 2D ultra-
sound views and biopsy needles with respect to a guiding template, such
that the MR targets can be sampled efficiently and sufficiently. We first
formulate the task as a Markov decision process (MDP) and construct
an environment that allows the targeting actions to be performed virtu-
ally for individual patients, based on their anatomy and lesions derived
from MR images. A patient-specific policy can thus be optimised, before
each biopsy procedure, by rewarding positive sampling in the MDP en-
vironment. Experiment results from fifty four prostate cancer patients
show that the proposed RL-learned policies obtained a mean hit rate
of 93% and an average cancer core length of 11 mm, which compared
favourably to two alternative baseline strategies designed by humans,
without hand-engineered rewards that directly maximise these clinically
relevant metrics. Perhaps more interestingly, it is found that the RL
agents learned strategies that were adaptive to the lesion size, where
spread of the needles was prioritised for smaller lesions. Such a strat-
egy has not been previously reported or commonly adopted in clinical
practice, but led to an overall superior targeting performance, achieving
higher hit rates (93% vs 76%) and measured cancer core lengths (11.0mm
vs 9.8mm) when compared with intuitively designed strategies.

Keywords: Reinforcement Learning · Prostate Cancer · Targeted Biopsy
· Planning

1 Introduction

Recent development in multiparametric MR imaging (mpMRI) techniques pro-
vides a means of noninasive localisation of suspected prostate cancer [1], which
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enables clinicians to target these lesions during the follow-up ultrasound-guided
biopsy for further histopathology confirmation. This MR-targeted approach has
been shown to reduce both the false positive and false negative detection, com-
pared to previously adopted random biopsy [1, 2], and subsequently motivated
research in developing multimodal MR-to-ultrasound image registration [3].

Needle sampling of the MR-identified targets, with or without registration er-
rors, can still be a challenging and arguably overlooked task. Operator expertise
was found to be an important predictor in detecting clinically significant prostate
cancer [4]. Planning strategies is important for navigating the ultrasound probe,
to better observe the targets with respect to imaging, and for manual needle po-
sitioning. In transperineal biopsy, the introduction of brachytherapy templates
(See Fig.1 for an example) helps the needle deployment - a procedure that is
of interest in this study, but choice between 13 × 13 grid positions remains a
subjective decision. For example, a common clinical practice aims at the target
centre, but it has been shown to yield an insufficient sampling of the heteroge-
neous cancer [5] and possibly an inferior diagnostic accuracy in terms of disease-
representative grading [6], compared with more spread needle placement. The
design of an optimum strategy is further complicated by the need of multiple nee-
dles for individual targets, for maximising the hit rate, and the multifoci nature
of prostate cancer, which requires repeated sampling of one or more targets.

To the best of our knowledge, there has not been any computer-assisted
sampling strategy that takes into account the previous needle deployment(s) or
quantitatively optimises patient-and-target-specific needle distribution. In sum-
mary, improving the targeting strategy may help reduce the significant false
negative rate found in MR-targeted biopsy (reported being as high as 13% [7]),
and hence improves the chance of early cancer detection for patients.

Reinforcement learning (RL) has been proposed for medical image analysis
tasks [8], such as landmark detection [9], plane finding [10], and for surgical
planning such as hysterectomy [11] and orthopaedic operations [12]. It has also
been used for needle path planning in minimally-invasive robotic surgery [13],
[14]. It is its ability to learn intelligent policies for sequential decision making that
provides a potential solution to problems without requiring direct supervision for
each action taken, a common constraint in developing machine learning-assisted
methods for complex and skill-demanding surgical and intervention applications.
This makes RL suitable for finding an optimal targeting strategy, which requires
complex decisions for which there is no established best method.

In this study, we investigate the feasibility of using RL to plan patient-specific
needle sampling strategies, optimised in pre-operative MR-derived RL environ-
ments. We present experimental results based on clinical data from prostate
cancer patients and compare the proposed method, using a set of clinically im-
portant metrics, to baseline strategies that are designed by human intuition and
an interactive targeting performed by two observers. We conclude by reporting
a set of interesting observations that demonstrate the benefit of using the pro-
posed RL-learned patient-specific strategies. These indeed adapted effectively to
individual procedures and varying targets, for improved final performance of the
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sequential target sampling. Consistent hit rates were achieved with less variance
for both smaller and larger lesions as a result of the learned adaptive strategies.

2 Method

The agent-environment interactions are modelled as a Markov decision process
(MDP), and summarised as a 4-tuple ⟨S,A, r, p⟩, where S and A are the state
and action spaces consisting of all possible observed states as input and actions
as output for the agent, respectively. r : S × A → R is the reward function
which maps state-action pairs to a real value. The state transition distribution
is defined by p : S × S × A → [0, 1] which denotes probability of transitioning
to the next state, given the current state-action pair. In this section, we develop
an environment for template-guided biopsy sampling of the cancer targets, the
MDP components and the policy learning strategy.

2.1 Patient-specific prostate MR-derived biopsy environment

(a) Environment (b) Template grid (c) States and targets

Fig. 1: Simulated biopsy procedure environment. (a) Placement of ultrasound
probe and template grid within the MRI volume. (b) Visualisation of ultrasound
probe rotation which is always aligned with the chosen template grid position.
(c) Examples of (top) states and (bottom) overlaid MR-identified targets

The environment is illustrated in Figure 1a for the targeted biopsy pro-
cedures, where virtual biopsy needles are inserted through the perineum via a
brachytherapy template grid consisting of 13x13 holes that are 5mm apart. Other
needle-based treatments such as cryotherapy, brachytherapy and radiofrequency
ablation [15] may also be applicable but are not discussed further in this paper.
The position of the transrectal ultrasound probe is approximated within the rec-
tum directly underneath the prostate gland, with a fixed distance to the template
grid such that the top of the probe is aligned with the lower side of the template,
as shown in the Figure 1a. Both anatomical and pathological structures can be
sampled, at any sagittal ultrasound imaging plane given an arbitrary angle, as
illustrated in Figure 1b.

We summarised a number of considerations in designing and constructing the
adopted biopsy environment as follows. 1) The prostate gland from each MR
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volume, the MR-identified targets (as in Figure 1c), and key landmarks such
as position of the rectum are all manually segmented from individual patients
to construct the biopsy environment. Automated methods for segmenting these
regions of interest have been proposed, e.g. [16], [17]. 2) Binary segmentation
are provided as observations for the RL agents, as opposed to ultrasound im-
age intensities, which are neither available during planning nor straightforward
to synthesize from MR images. We argue that the use of binary representation
would be more robust to train the RL agents and the resulting methods are more
likely to generalise to different procedures and planning MR images, especially
given the existing MR and ultrasound segmentation and registration algorithms
described above. 3) Uncertainty in MR-to-ultrasound registration can and should
be added to the segmented regions, together with other potential errors in lo-
calising these regions during observation such as observer variability in manual
segmentation used in this work. We would like to point out that, however, these
localisation errors are unlikely to be independent to each other and the depen-
dency of RL model generalisability on how precisely these need to be modelled
remain open research questions. Sec. 3 discusses further details adopted in our
experiments. 4) In the presented experiments, we focus on targeting the index le-
sions, those are of largest volumes in each case, to provide first results that show
the efficacy of modelling the dynamic biopsy sampling process. However, the
described MDP should be directly applicable for and likely to be more effective
in cases with multiple lesions.

2.2 The MDP components

State - At a given time point t during the procedure, the agent receives infor-
mation about its current state st ∈ S : the chosen grid point and the re-sampled
2D image plane obtained by rotating the probe to the current template grid
position, as in Figure 1c. This current position is determined by the previous
action. This is to test the scenario with least assumptions, where the overall 3D
anatomical and pathological information may be corrupted or unreliable due to
intra-procedural uncertainties from patient movement and outdated registration.

Actions - The agent takes actions at ∈ A which modify its position on the
template grid. These actions are relative to the current position of the agent
(i, j) and are defined as at = (δi, δj) such that the new position is given by
(i+ δi, j + δj), where δi, δj ∈ [−15, 15]. By formulating this relative grid-moving
action, we consider the biopsy needle is positioned on the image plane, with an
insertion depth that overlaps the needle centre and the centre of the observed
2D target, subject to small predefined positioning errors in each direction. These
are commonly adopted practice though not strictly enforced, and we found that
increasing the flexibility by independently positioning the ultrasound probe and
needle may unnecessarily make the training difficult to converge.

Reward - The reward at the time t is computed based on the reward function
Rt = r(st, at), during training. The agent is rewarded positively if the fired needle
obtains samples of the lesion. A penalty is given when chosen grid positions are
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outside of the prostate, to avoid hitting surrounding critical structures. From
initial experiments, it was found that a greater reward of +5 lead to a faster
convergence during training, encouraging the agent to hit the lesions, whilst a
penalty of -1 was enough to deter the agent from firing outside the prostate gland.
Reward shaping is also introduced to guide the agent towards the lesion, thereby
speeding up the learning process. Similar to [9] and [10], a sign function Sgn of
the difference between distt−1 and distt is computed, where distt represents
Euclidean distance between target centre and needle trajectory at time t.

r =


+5 if biopsy needle intersected with target

-1 if biopsy needle placed outside prostate

Sgn(distt−1 − distt) otherwise

(1)

2.3 Policy learning

The navigation and sampling strategy is parameterised by a policy neural net-
work πθ, with parameters θ, quantifying the probability of performing action at
given state st. Agent’s actions then can be sampled from the policy, at ∼ πθ(·|st).
During the policy training, the accumulated reward Qπθ (st, at) =

∑T
k=0 γ

kRt+k

is maximised, where γ is a discount factor set to 0.9, to obtain the optimal pol-
icy πθ∗ , θ∗ = arg maxθEπθ

[Qπθ (st, at)]. With continuous actions, policy gradient
(PG) and actor-critic (AC) algorithms can thus be adopted for the optimisation.

3 Experiments

Data set - The T2-weighted MR images and their segmentation were acquired
from 54 prostate cancer patients. These were obtained as part of clinical trials,
PROMIS [1] and SmartTarget [7], where patients underwent ultrasound-guided
minimally invasive needle biopsies and focal therapy procedures.

RL algorithm implementation - An agent was trained for each patient individ-
ually using the Stable Baselines implementation of PPO [18]. Each agent was
trained for 120,000 episodes and a model was selected with the highest average
reward after 10 episodes. Each episode was limited to a maximum of 15 time
steps, but can terminate early if any 5 needles hit the lesion. At each episode
the agent is initialised at random starting positions on the template grid. Based
on estimated registration error reported previously [3], random localisation error
was added in the observed states, equivalent to a Gaussian noise with a standard
deviation of 1.73mm in each of the x, y and z coordinates, or a mean distance
error of 3mm. The PPO algorithm [19] was used in reported results, as it guaran-
tees a monotonic reward improvement and stability of training. However, we also
report a lack of substantial difference in performance to other tested algorithms,
including DDPG [20] and SAC [21]. The policy network was based on ResNet18
[22] architecture, with an additional fully-connected layer for a linear output. An
Adam optimiser was used, with a learning rate of 0.0001. It could be of future
interest to compare further network architectures and PG/AC algorithms on the
proposed RL problem, but is considered beyond the scope of current work.
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Biopsy performance metrics - To quantitatively assess target sampling perfor-
mance, three biopsy-specific metrics are used in this study: hit rate (HR), cancer
core length (CCL) and needle area (NA). The HR is the number of needle samples
that contains the target, i.e. positive samples, divided by the number of needles
fired. Five needles are chosen to represent the maximum number typically used in
targeted biopsy [23]. CCL is the total length (in mm) overlapping the target, i.e.
the sampled target tissue, in individual needles. CCL >= 6mm often indicates
clinical significance [24]. NA estimates the coverage of all fired needles in each
episode, defined as the area of an approximating ellipse, NA = π ∗ stdx × stdy,
where stdx and stdy are standard deviations in the needle navigating x-y plane,
defined by the template grid position.

Baseline strategies - Two strategies were compared with the proposed agent,
designed to provide an estimate of what clinicians are likely to achieve in prac-
tice. For a fair comparison, the same observed targets, the states, and starting
positions were used. Student’s t-tests were used when comparison is made at
a significance level of α = 0.05, unless otherwise indicated. The first strategy
(Sweeping strategy) adopted a simple sweeping of the biopsy needle together
with the ultrasound probe, from left to right in a 5mm interval. The target was
sampled at the centre of the observed target, i.e. fired, once an image plane is
encountered with a lesion. The second strategy (Scouting strategy) moves the
virtual probe to scout all candidate positions that samples the target, before
5 random ones were selected as fired positions among these candidates. Inter-
and intra-operator variance is one of the most important factors that impact
the performance of a sampling strategy. For the baseline strategies, additional
Gaussian noise was added to the chosen needle/probe positioning with a varying
bias and a varying standard deviation (SD). Increasing the SD leads to higher
uncertainty in placing the needles, while the bias indicates a targeting strategy
that does not aim for the target centre, e.g. for avoiding empty cores or urethra.
The experiments were repeated using different combinations of the two variables
(each ranging between 0 to 10mm), to test different strategies.

Interactive experiments by two observers - Two human operators, one computer
scientist and one biomedical imaging researcher, interacted with a custom-made
interface that displays the current template grid position and image plane ob-
served. They were asked to choose where to sample and how far to spread the
needles. This is a simple interactive experiment to provide preliminary results
that can be compared with the other described strategies.

4 Results

Learned strategy performance - From Table 1, the agent outperforms both base-
line strategies in HR and CCL (both p-values<0.005), but not in NA, with
noticeably smaller variability in HR. Different levels of bias did not lead to sig-
nificantly different targeting results, while higher SD increased the spread of
needles, but reduced CCL and HR. In general, the results between the sweeping



Strategising needle placement for MR-targeted prostate biopsy 7

and scouting strategies were not found statistically different in CCL and NA.
The scouting strategy resulted in an increased HR (p-value<0.05) compared to
sweeping, but does not outperform the agent which still obtains the highest HR.

Table 1: Summary of biopsy performance from the RL agent (top row) and the
sweeping and scouting strategies for different bias and SD combinations

Baseline 1 (Sweeping) Baseline 2 (Scouting)

Bias SD CCL(mm) HR(%) NA(mm2) CCL(mm) HR(%) NA(mm2)

Agent 11.13±3.43 93.40 ± 11.44 22.14±18.18 11.13±3.43 93.40 ± 11.44 22.14±18.18

0 0 7.95±3.00 53.36±35.59 23.67±16.57 8.40±2.65 61.10±30.01 31.31±28.53

0 5 7.45±3.19 49.43±34.10 56.81±50.25 8.32±3.04 55.19±30.46 39.84±20.48

0 10 4.89±3.29 30.94±28.71 108.00±86.24 5.67±4.32 43.70±31.99 114.35±71.20

5 0 8.90±4.00 53.69±28.44 36.53±28.91 8.32±3.00 65.19±30.04 36.53±28.91

5 5 7.88±3.52 51.32±32.94 60.44±47.62 7.28±3.17 54.48±31.04 72.08±40.89

5 10 6.06±3.95 41.51±31.58 86.15±63.15 5.74±4.41 44.82±31.02 113.88±79.60

10 0 7.29±3.08 47.80±34.16 27.47±18.38 7.65±3.05 54.81±31.13 27.59±22.95

10 5 7.14±3.38 42.44±28.00 52.78±48.02 6.40±3.64 50.74±29.00 55.45±42.36

10 10 4.74±3.46 28.70±27.22 106.17±115.95 5.98±3.42 47.04±31.22 112.68±95.85

Table 2: Obtained biopsy strategy metrics for the agent and two human observers
Observers CCL (mm) HR(%) NA (mm2)

Agent 11.13 ± 3.43 93.40 ± 11.44 22.14 ± 18.18

Observer 1 9.71 ± 3.78 66.30 ± 20.55 42.85 ± 23.36

Observer 2 9.83 ± 3.89 76.30 ± 19.50 64.90 ± 38.84

Interactive experiments by two observers - The agent outperforms both observers
in CCL (p-values=0.020 & 0.040), but its NA values are more than double that
of the agents, suggesting a potential trade-off between sampling coverage and
precision. For HR, the agent outperforms both observers (p-value< 0.001), which
demonstrates that the agent could achieve an overall comparable performance
as human observers, with a significantly higher CCL.

Learned strategy for varying target sizes - From Figure 2a and Table 3, we ob-
serve an interesting behaviour from the learned agent: the smaller the lesions, the
larger the spread of the needles. At a volume threshold of 0.4 cc, the mean CCL
and NA are statistically different for smaller and larger lesions (p-values=0.002
& 0.040), whilst the difference in HR is not (p-value=0.166). This result may
seem counter-intuitive, as one would be cautious in spreading needles for a small
target. However, the agent learned to distribute needles more widely for smaller
lesions, attempting to maintain the hit rate, given the inevitable presence of tar-
get localisation uncertainty described in Sec. 2.1. Visual examples of the learned
strategies are shown in Figures 2b and 2c. This learned behaviour is interesting
because a) it has not been observed previously, either in literature or in clini-
cal practice. b) it improved the overall targeting performance compared to the
target-size-agnostic baseline strategies and c) this could be suggested to urolo-
gists and interventional radiologists with or without the proposed RL assistance.



8 I. Gayo et al.

(a) Biopsy metrics CCL, HR and NA vs lesion size

(b) Small lesion size 0.2cc (c) Large lesion size 0.4cc

Fig. 2: (a): CCL, HR and NA as a function of lesion size. (b) and (c): Examples
of different sized targets (red), corresponding to the learned policies, represented
by the needle sampling positions (red sticks, brighter indicates later time steps)
and observed ultrasound images in green. The bounding cube and the cylinder
represent the MR prostate volume and probe, respectively.

Table 3: CCL, HR and NA for different lesion sizes using threshold size < 0.4cc
Lesion size CCL (mm) HR (%) NA (mm2)

Small lesions 10.26 ± 4.19 93.16 ± 16.03 25.26 ± 19.45

Large lesions 14.52 ± 1.18 100.00 ± 0.00 13.02 ± 6.25

5 Discussion and Conclusion

The results show that the developed RL agents are competitive in sampling
MR-derived targets, compared with intuitively devised strategies. Higher HR
and average CCL were obtained by the agents, which was achieved by reduc-
ing the spread of the needles compared to baseline strategies. Furthermore, the
learned strategies adapted to patient-specific procedures and varying pathology.
The agents learned to achieve similar HR for different sized lesions, by spreading
the fired needles more for smaller lesions. Such behaviour has not been observed
before, and could be suggested to clinicians for improved targeting performance.
Assumptions, such as number of allowed needles, template positioning and un-
certainties in localisation/placement, have been made to facilitate the proposed
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pre-procedural planning. Some of them may be relaxed for an intra-procedural
guidance tool - as a potential extension of this work, the others may require fur-
ther validation. More importantly, the improved targeting performance provides
means in mitigating the cancer under-sampling and help timely diagnosis of a
significant number of prostate cancer patients with current MR-targeted biopsy.
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Dehò, F., Scattoni, V., Maga, T., Losa, A., Gaboardi, F., Cardone, G., Esposito,
A., De Cobelli, F., Del Maschio, A., Montorsi, F., Briganti, A.: Not All Multi-
parametric Magnetic Resonance Imaging–targeted Biopsies Are Equal: The Im-
pact of the Type of Approach and Operator Expertise on the Detection of Clin-
ically Significant Prostate Cancer. European Urology Oncology. 1, 120–128 (2018).
https://doi.org/10.1016/j.euo.2018.02.002.

5. Calio, B.P., Deshmukh, S., Mitchell, D., Roth, C.G., Calvaresi, A.E., Hookim, K.,
McCue, P., Trabulsi, E.J., Lallas, C.D.: Spatial distribution of biopsy cores and the



10 I. Gayo et al.

detection of intra-lesion pathologic heterogeneity. Therapeutic Advances in Urology.
11, 1756287219842485 (2019). https://doi.org/10.1177/1756287219842485.

6. Orczyk, C., Hu, Y.P., Gibson, E., El-Shater Bosaily, A., Kirkham, A., Punwani,
S., Brown, L., Bonmati, E., Coraco-Moraes, Y., Ward, K. and Kaplan, R., 2017.
MP38-07 SHOULD WE AIM FOR THE CENTRE OF AN MRI PROSTATE
LESION? CORRELATION BETWEEN MPMRI AND 3-DIMENSIONAL 5MM
TRANSPERINEAL PROSTATE MAPPING BIOPSIES FROM THE PROMIS
TRIAL. The Journal of Urology, 197(4S), pp.e486-e486

7. Hamid, S., Donaldson, I.A., Hu, Y., Rodell, R., Villarini, B., Bonmati, E., Tran-
ter, P., Punwani, S., Sidhu, H.S., Willis, S., van der Meulen, J., Hawkes, D., Mc-
Cartan, N., Potyka, I., Williams, N.R., Brew-Graves, C., Freeman, A., Moore,
C.M., Barratt, D., Emberton, M.: The SmartTarget Biopsy Trial: A Prospec-
tive, Within-person Randomised, Blinded Trial Comparing the Accuracy of Visual-
registration and Magnetic Resonance Imaging/Ultrasound Image-fusion Targeted
Biopsies for Prostate Cancer Risk Stratification. European Urology. 75, 733–740
(2019). https://doi.org/10.1016/j.eururo.2018.08.007.

8. Zhou, S.K., Le, H.N., Luu, K., Nguyen, H.V., Ayache, N.: Deep reinforcement learn-
ing in medical imaging: A literature review. arxiv.org. (2021).

9. Alansary, A., Oktay, O., Li, Y., Folgoc, L.L., Hou, B., Vaillant, G., Kamnitsas,
K., Vlontzos, A., Glocker, B., Kainz, B., Rueckert, D.: Evaluating reinforcement
learning agents for anatomical landmark detection. Medical Image Analysis. 53,
156–164 (2019). https://doi.org/10.1016/j.media.2019.02.007.

10. Alansary, A., Folgoc, L.L., Vaillant, G., Oktay, O., Li, Y., Bai, W., Passerat-
Palmbach, J., Guerrero, R., Kamnitsas, K., Hou, B., McDonagh, S., Glocker, B.,
Kainz, B., Rueckert, D.: Automatic View Planning with Multi-scale Deep Reinforce-
ment Learning Agents. arXiv:1806.03228 [cs]. (2018).

11. Sato, M., Koga, K., Fujii, T., Osuga, Y.: Can Reinforcement Learning Be Applied
to Surgery? IntechOpen (2018).

12. Ackermann, J., Wieland, M., Hoch, A., Ganz, R., Snedeker, J.G., Oswald, M.R.,
Pollefeys, M., Zingg, P.O., Esfandiari, H., Fürnstahl, P.: A New Approach to Or-
thopedic Surgery Planning Using Deep Reinforcement Learning and Simulation.
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021.
12904, 540–549 (2021).

13. Lee, Y., Tan, X., Chng, C.B., Chui, C.K: Simulation of Robot-Assisted Flexible
Needle Insertion using Deep Q-Network (2019)

14. Tan, X., Lee, Y., Chng, C.-B., Lim, K.-B., Chui, C.-K.: Robot-assisted flexible
needle insertion using universal distributional deep reinforcement learning. Interna-
tional Journal of Computer Assisted Radiology and Surgery. 15, 341–349 (2019).
https://doi.org/10.1007/s11548-019-02098-7.

15. Mayo Clinic: Prostate brachytherapy, https://www.mayoclinic.org/tests-
procedures/prostate-brachytherapy/about/pac-20384949, last accessed 2020/05/28.

16. Aldoj, N., Biavati, F., Michallek, F., Stober, S., Dewey, M.: Automatic prostate
and prostate zones segmentation of magnetic resonance images using DenseNet-
like U-net. Scientific Reports. 10, 14315 (2020). https://doi.org/10.1038/s41598-
020-71080-0.

17. Dai, Z., Carver, E., Liu, C., Lee, J., Feldman, A., Zong, W., Pantelic, M., Elshaikh,
M., Wen, N.: Segmentation of the Prostatic Gland and the Intraprostatic Lesions
on Multiparametic Magnetic Resonance Imaging Using Mask Region-Based Con-
volutional Neural Networks. Advances in Radiation Oncology. 5, 473–481 (2020).
https://doi.org/10.1016/j.adro.2020.01.005.



Strategising needle placement for MR-targeted prostate biopsy 11

18. StableBaselines: PPO — Stable Baselines3 1.4.1a3 documentation, https://stable-
baselines3.readthedocs.io/en/master/modules/ppo.html

19. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy
Optimization Algorithms, https://arxiv.org/abs/1707.06347.

20. Lillicrap, T., Hunt, J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wier-
stra, D.: CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARN-
ING. (2019).

21. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft Actor-Critic: Off-Policy Max-
imum Entropy Deep Reinforcement Learning with a Stochastic Actor. (2018).

22. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition,
https://arxiv.org/abs/1512.03385.

23. Song, G., Ruan, M., Wang, H., Fan, Y., He, Q., Lin, Z., Li, X., Li, P., Wang,
X., He, Z., Zhou, L.: How Many Targeted Biopsy Cores are Needed for Clinically
Significant Prostate Cancer Detection during Transperineal Magnetic Resonance
Imaging Ultrasound Fusion Biopsy? The Journal of Urology. 204, 1202–1208 (2020).
https://doi.org/10.1097/JU.0000000000001302.

24. Ahmed, H.U., Hu, Y., Carter, T., Arumainayagam, N., Lecornet, E., Freeman,
A., Hawkes, D., Barratt, D.C., Emberton, M.: Characterizing Clinically Significant
Prostate Cancer Using Template Prostate Mapping Biopsy. Journal of Urology. 186,
458–464 (2011). https://doi.org/10.1016/j.juro.2011.03.147


