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Abstract

This paper formulates a distributed static output feedback robust model predictive control for process networks to solve
problems relating to unmeasured states and interconnected couplings. The initial conditions on the couplings are predicted by
previous information and the boundedness of the predicted error is proved. In light of the static output feedback design conditions,
the distributed static output feedback robust model predictive control is designed by transforming an infinite time optimization
problem into a tractably solved one. The solvability of the optimization problem and the stability are proved to underpin the
proposed approach. Simulations and an experimental case study are provided to validate the effectiveness of the proposed approach.
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I. INTRODUCTION

Modern industrial chemical plants consist of many process units arranged in a complex structure which produces a process
network [1], such as a multistage extraction process [2], a gas boiler heating system [3] and an ethanol production process [4].
Such a process network contains many subsystems interacting with each other through mass and energy interconnections [5]
and these interconnections result in strong coupling among subsystems. Plant operations are usually limited by the actuators
and process equipment and such hard constraints should be considered within any control design [6], [7]. In addition, modeling
error and external disturbances are inevitable in physical processes, which makes it essential to consider the system uncertainty
within the design approach[8]. Achieving optimality is a major challenge in the control of process networks [9].

In practice, there are broadly three control frameworks for process networks. Centralized control is widely used to reg-
ulate process variables at desired values traditionally [10], but process networks are usually large-scale systems where the
implementation of centralized methods might be hindered by the necessity for large computational load [11]. Decentralized
control is often used to reduce the computational load in process networks. However, this may result in limited capacity for
optimizing the control performance [12], [13]. More recently, distributed control schemes have been adopted to approximate
the centralized objective by designing a local controller associated with each subsystem and exchanging information among
all subsystems [14], [15], [16]. For process networks, distributed robust model predictive control (RMPC) is a good candidate
due to its inherent ability to handle constraints and uncertainties [17].

A significant purpose of distributed control for process networks is to reduce the computational load in the presence of
couplings when compared with a centralized control approach. Distributed control seeks to achieve global stabilisation and/or
performance. Distributed RMPC is a very suitable candidate control strategy for this problem because it can accommodate
the actions of other actuators in computing the control action of local actuators in real time [18]. This paradigm has been
extensively used for process networks [19], [18], [20], [21], [22]. For example, distributed RMPC has been used in [23] to
control process networks with a parallel structure.

However, most of the existing literature on distributed RMPC is based on the assumption that all the states are available
for controller implementation. Note that the system states cannot be fully measured in many practical cases [24], [25]. In this
case, an approach to distributed output feedback RMPC (OFRMPC) is desirable. The majority of such distributed OFRMPC
approaches adopt dynamic output feedback and frequently an observer approach is used [26], [27], including a tube-based
minimax observer [28], a Luenberger observer [29] and a moving horizon observer [30]. Due to the implementation of the state
observer the system order is typically increased [31], [32], [33], which in turn may increase the controller complexity, produce
more difficult stability analysis and even reduce control accuracy [34], [35], [33]. When compared with such a distributed
dynamic OFRMPC, distributed static OFRMPC does not increase the order of the system and is more straightforward both in
terms of design and implementation.

Although a large amount of research has been carried out on the development of static output feedback controllers [36], [37],
there is relatively little literature considering distributed static output feedback control. This existing work is mainly focused
on multi-agent systems [38], [39], [40], [41], [42]. Note that the mass and energy interconnections have not been considered
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in these frameworks for distributed control of multi-agent systems and these methods cannot be applied to process networks
directly. It is thus appropriate to consider the design of distributed static OFRMPC for process networks, which can deal with
the interconnection terms, the presence of uncertainty and also achieve optimal performance in the presence of constraints. To
the best of the authors’ knowledge, there are no distributed static OFRMPC approaches yet proposed in the literature.

It is challenging to design a distributed static OFRMPC for process networks. The coupling between subsystems has to
be considered to guarantee global performance and an assumption of static output feedback control increases the challenge
still further. The initial conditions are required at each prediction step to guarantee the performance of a distributed static
OFRMPC. When the states are not available for measurement, the initial values must be predicted. The error between the
predicted value and the real value of the initial conditions may render a recursive solution infeasible. Careful consideration of
these prediction errors is required in the analysis. In addition, the constraints, the uncertainties and the nonconvexity of the
static output feedback problem should be considered to derive an explicit distributed static OFRMPC.

Motivated by the above description, a distributed static OFRMPC algorithm is initially proposed for a discrete time linear
system subject to uncertainties. The main contributions of this paper are as follows: (1) The state and input couplings between
subsystems are explicitly considered to ensure global performance. An iterative algorithm is designed to take care of the coupling
terms where the state requirement is transformed into a requirement on the initial conditions. (2) The initial conditions on the
couplings as well as the OFRMPC are both predicted from previous information and the boundedness of the predicted error is
proved. (3) In light of the static output feedback design conditions in [43] and [44], a non-convex distributed static OFRMPC
is designed by transforming an infinite time optimization problem into a tractably solvable one. Effectively the solution to the
original problem is transformed to the solution of a set of LMIs. In addition, the overall control objective is to further guarantee
the global performance by designing the distributed static output model predictive control. After solving these issues, a step by
step control algorithm is presented to facilitate the practical design and the closed-loop system stability is analyzed. Compared
with distributed state feedback RMPC, the problem of unavailable state information is solved in this paper by deploying a static
output feedback scheme. Compared with centralized static OFRPMC, the computational time can be reduced by the proposed
approach with almost no reduction in the global performance. Compared with distributed dynamic OFRMPC, the order of
the system is not increased by using the proposed approach so that the calculation load can be reduced whilst maintaining
high levels of performance. Moreover, the proposed method can cope with the couplings and constraints inherent in process
networks more effectively than existing distributed static output feedback control methods that were designed for multi-agent
systems.

The paper is organized as follows. In Section II, the problem is formulated and the essential assumptions and definitions are
given. A distributed static OFRMPC algorithm is proposed and its stability is addressed in Section III. The results of simulations
and an experimental trial are demonstrated in Section IV to validate the proposed approach. Finally, some conclusions are
drawn in Section V.

II. PROBLEM FORMULATION

Consider a linear discrete time system composed of N subsystems coupled via states and inputs. Subsystem i can receive
information from all the other (N − 1) subsystems and the dynamic model with uncertainties for the ith subsystem is given
by the following equation:

xi(k + 1) = Aiixi(k) +Biiui(k) +Diwi(k) +
N∑

j=1,j ̸=i

[Aijxj(k) +Bijuj(k)] (1)

yi(k) = Cixi(k) + vi(k)

where xi(k) ∈ Xi ⊆ Rni is the state vector, ui(k) ∈ Ui ⊆ Rmi is the control input and yi(k) ∈ Yi ⊆ Rpi is the output vector.
wi(k) ∈ Wi ⊆ Rwi is the unknown disturbance and vi(k) ∈ Vi ⊆ Rpi is the unknown noise. Xi, Ui and Yi are polyhedral
and polytopic constraint sets, respectively, Wi and Vi are C-sets. Aii ∈ Rni×ni , Bii ∈ Rni×mi , Aij ∈ Rni×nj , Bij ∈ Rni×mj ,
Ci ∈ Rpi×ni , Di ∈ Rni×wi , i = 1, · · · , N , j = 1, · · · , N .

For the ith subsystem (1), the interconnection term
N∑

j=1,j ̸=i

[Aijxj(k) +Bijuj(k)] caused by the coupling between mass and

energy appears. Note that xj(k) and uj(k) are in the coupling term, and will not be available for calculation of the current
control for system (1) because the state xj(k) cannot be measured and the control ui(k) also requires uj(k). Design complexity
thus arises due to the couplings as well as the unknown states. The unknown disturbance and the unknown noise are bounded
as:

wi(k)
Twi(k) ≤ xi(k)

Txi(k) (2)

vi(k)
T vi(k) ≤ xi(k)

TCT
i Cixi(k) (3)

Note that wi(k) and vi(k) are inevitable in process networks and can be handled by distributed RMPC effectively. However
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the upper bounds of wi(k) and vi(k) are state-dependent and it is more complex to deal with them within a static output
feedback scheme. For system (1), the following assumptions are made:

Assumption 1: The pair (Aii, Bii) is assumed to be controllable.
Assumption 2: Ci has full row rank and Bii has full column rank. There exists an invertible matrix Gi ∈ Rni×pi and a unit

matrix I such that:
CiGi =

[
I 0

]
(4)

Assumption 3: rank(CiBii) = mi and there are no invariant zeros of the triple (Aii;Bii;Ci) outside the unit disk.
Remark 1: Assumption 1 is the basic assumption for controllability of system (1) and Assumption 2 incorporates the

solvability conditions for solution of a static output feedback control problem. Assumption 3 puts forward necessary and
sufficient conditions on system (1) which are independent of the state-space representation. For the first condition in 3,
rank(CiBii) = mi means the nominal subsystem is relative degree one. For the second condition in 3, there are no invariant
zeros of the triple (Aii;Bii;Ci) outside the unit disk, which ensures the nominal subsystem is minimum phase. Under these
assumptions, the static output feedback gain Ki exists and a distributed static OFRMPC can be designed. The conditions for
existence of a static output feedback gain for centralized continuous systems have been presented in [43]; rank(CB) = m
and no invariant zeros of the triple (A;B;C) lie in C+. These conditions have been extended for a discrete-time linear system
in [44].

A distributed static OFRMPC law can be designed:

ui(k) = Kiyi(k) (5)

where Ki ∈ Rmi×pi is the static output feedback gain matrix.
The following performance index is selected for distributed static OFRMPC design:

min
ui(k)

max
wi(k),vi(k)

Ji(k) (6)

s.t.
ui(k) ∈ Ui

yi(k) ∈ Yi
(7)

where

Ji(k) =
∞∑
l=0

[xi(k + l |k )TH1
i xi(k + l |k ) + ui(k + l |k )TH2

i ui(k + l |k )] (8)

+
N∑

j=1,j ̸=i

∞∑
l=0

[xj(k + l |k )TH1
j xj(k + l |k ) + uj(k + l |k )TH2

j uj(k + l |k )]

and H1
i ∈ Rni×ni , H2

i ∈ Rmi×mi , H1
j ∈ Rnj×nj and H2

j ∈ Rmj×mj are weighted symmetric positive definite matrices. Here
xi(k + l |k ) represents the prediction of the state vector of the system at time k + l given the information available at time k

based on the prediction model: xi(k+l+1 |k ) = Aiixi(k+l |k )+Biiui(k+l |k )+
N∑

j=1,j ̸=i

[Aijxj(k + l |k ) +Bijuj(k + l |k )].

In (7), the input constraints and the output constraints are considered together; these need to be handled carefully in the
control design if the performance is not to be adversely affected. Equation (6) is a “min-max” optimization which is not
trivial to solve because the performance index (8) is an infinite horizon optimization and also because xi(k) and xj(k) are
not measurable. At the time period k, xi(k + 0 |k ) and xj(k + 0 |k ) are needed to predict the future Ji(k) in the control
calculation. These initial conditions have to be predicted which leads to design difficulty and analysis challenges.

At the time period k, the closed loop equation is given by:

xi(k + 1) = Aiixi(k) +BiiKiCixi(k) +BiiKivi(k) +Diwi(k) +
N∑

j=1,j ̸=i

[Aijxj(k) +BijKjCjxj(k) +BijKjvj(k)] (9)

The control objective is to design a distributed static OFRMPC (5) for system (1) by solving the optimization problem (6)
under disturbance (2), noise (3) and constraints (7).

Remark 2: In system (1), both the state and input couplings are considered. This formulation is general and can be written
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in the following centralized form:
x1(k + 1)

...
xi(k + 1)

...
xN (k + 1)

 =


A11 · · · A1i · · · A1N

...
. . .

...
. . .

...
Ai1 · · · Aii · · · AiN

...
. . .

...
. . .

...
AN1 · · · ANi · · · ANN




x1(k)

...
xi(k)

...
xN (k)

+


B11 · · · B1i · · · B1N

...
. . .

...
. . .

...
Bi1 · · · Bii · · · BiN

...
. . .

...
. . .

...
BN1 · · · BNi · · · BNN




u1(k)

...
ui(k)

...
uN (k)



+


D1 · · · 0 · · · 0

...
. . .

...
. . .

...
0 · · · Di · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · DN




w1(k)

...
wi(k)

...
wN (k)




y1(k)

...
yi(k)

...
yN (k)

 =


C1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · Ci · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · CN




x1(k)

...
xi(k)

...
xN (k)

+


v1(k)

...
vi(k)

...
vN (k)



Hence system (1) can approximate a centralized objective by designing a distributed static OFRMPC. When compared with
the centralized static OFRMPC, the proposed method only requires the calculation of a local control ui, which will reduce the
computational time.

Remark 3: In the existing distributed static output feedback control methods, the state and input couplings
N∑

j=1,j ̸=i

[Aijxj(k)

+Bijuj(k)] are usually not considered. In this paper, these couplings will be handled directly by the proposed method.
Although the design complexity is increased, the global performance is guaranteed by introducing these couplings. Moreover,
the performance index of the distributed static OFRMPC which is given in (8) considers the overall control objective for the
entire plant since it takes into account the goals of the other controllers. This will ensure global performance is achieved.

III. STATIC OUTPUT FEEDBACK ROBUST DISTRIBUTED MODEL PREDICTIVE CONTROL

A. Static output feedback robust distributed model predictive control algorithm

The performance index in (8) has an infinite time horizon. In order to design the distributed static OFRMPC law (5), the
optimization problem (6)-(7) should be transformed into a solvable problem. Rewrite (8) as:

Ji(k) =
∞∑
l=0

[x(k + l |k )TH1x(k + l |k ) + u(k + l |k )TH2u(k + l |k )] (10)

where
x(k + l |k ) =

[
x1(k + l |k )T · · · xi(k + l |k )T · · · xN (k + l |k )T

]T
u(k + l |k ) =

[
u1(k + l |k )T · · · ui(k + l |k )T · · · uN (k + l |k )T

]T
H1 = diag{H1

1 , · · · ,H1
i , · · · ,H1

N}

H2 = diag{H2
1 , · · · ,H2

i , · · · ,H2
N}

and x(k + l |k ) ∈ R(n1+n2+···+nN ), u(k + l |k ) ∈ R(m1+m2+···+mN ), H1 ∈ R(n1+n2+···+nN )×(n1+n2+···+nN ) and H2 ∈
R(m1+m2+···+mN )×(m1+m2+···+mN ).

It is assumed that there exists a quadratic function Vi(xi(k |k )):

Vi(xi(k |k )) = xi(k |k )TPixi(k |k ) (11)

where Pi ∈ R(ni×ni) is a symmetric positive definite matrix. When k → ∞, if xi(∞|k ) → 0, then Vi(xi(∞|k )) → 0.
Assume that at time step k and l ≥ 0, the quadratic function Vi(k) satisfies the following robust inequality constraints:

Vi(xi(k + l + 1 |k ))− Vi(xi(k + l |k )) ≤ −[x(k + l |k )TH1x(k + l |k ) + u(k + l |k )TH2u(k + l |k )] (12)
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Add the two sides of (12) from l = 0 to l = ∞:

− Vi(xi(k |k )) ≤ −Ji(k) (13)

Then, the following inequality can be given:

max
wi(k),vi(k)

Ji(k) ≤ Vi(xi(k |k )) (14)

It can be seen from (14) that Vi(xi(k |k )) is essentially an upper bound of Ji(k) and the infinite time domain optimization
problem (6) is transformed into a solvable finite time problem. It is necessary to find the optimal solution to the upper bound
function Vi(xi(k |k )) under the constraints (12):

min
ui(k)

Vi(xi(k |k )), s.t.(7), (12) (15)

Then the optimization problem (6) is solved by appealing to the following Theorem.
Theorem 1: For system (1) under Assumptions 1, 2 and 3, if there exist scalars γi, αui , αyi and positive definite matrices

Yi > 0, Mi > 0, Si > 0, Yi1, Mi11, then, the static output feedback robust distributed model predictive control ui(k) = Kiyi(k)
can be designed in terms of the following LMIs:

min γi
γi,Mi,Si,Yi,Yi1,Mi11

(16)

s.t.

[
1 xi(k |k )T

xi(k |k ) Si

]
≥ 0 (17)



Ei
TSiE (AiS +BiY )

T
(BiY )

T
S(H11/2)

T √
2(H21/2Y )

T
S(DiEi)

T

AiS +BiY Si 0 0 0 0
BiY 0 Si 0 0 0

H11/2S 0 0 γi
−1I 0 0√

2H21/2Y 0 0 0 γi
−1I 0

DiEiS 0 0 0 0 Si


≥ 0 (18)

[
αuiI

√
2Yi√

2Y T
i Si

]
≥ 0 (19)[

αyiI
√
2(AiS +BiY )√

2(SAT
i + Y TBT

i ) S

]
≥ 0 (20)

where Ki = Yi1Mi11
−1, Mi =

[
Mi11 0
Mi21 Mi22

]
, Yi = [ Yi1 0 ], S = diag{S1, · · · , Si, · · · , SN}, Y = diag{Y1,

· · · , Yi, · · · , YN}, Ei = diag
{

Zi
− Ii Z+

i

}
∈ Rni×(n1+···+nN ), Ii ∈ Rni×ni , Zi

− ∈ Rni×(n1+···+ni−1) and Z+
i ∈

Rni×(ni+1+···+nN ) are zero matrices, M1 = diag{M11, · · · ,Mi1, · · · ,MN1},
K = diag{K1, · · · ,Ki, · · · ,KN},

Ai =
[
Ai1 · · · Aii · · · AiN

]
Bi =

[
Bi1 · · · Bii · · · BiN

]
Proof:
The optimization problem (15) is equivalent to the following equations:

xi(k |k )TPixi(k |k ) ≤ γi (21)

Define Si = γiP
−1
i , then:

xi(k |k )TSi
−1xi(k |k ) ≤ 1 (22)

According to the Schur Complement Lemma, (22) can be converted into:

min
γi,Si,Yi,Mi

γi

s.t.

[
1 xi(k |k )T

xi(k |k ) Si

]
≥ 0

(23)
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Rearrange the closed loop system (9):

xi(k + 1) = (Aii +BiiKiCi)xi(k) +BiiKivi(k) +Diwi(k) +
N∑

j=1,j ̸=i

[Aijxj(k) +BijKjCjxj(k) +BijKjvj(k)] (24)

= (Ai +BiKC)x(k) +BiKv(k) +Diwi(k)

where v(k) =
[
v1(k)

T · · · vi(k)
T · · · vN (k)T

]T
, C = diag{C1, · · · , Ci, · · · , CN}.

Let Li(k) = xi
T (k + 1)Pixi(k + 1)− xi

T (k)Pixi(k) + xT (k)H1x(k) + uT (k)H2u(k) and substitute (24) into (12):

Li(k) = [(Ai +BiKC)x(k) +BiKv(k) +Diwi(k)]
TPi[(Ai +BiKC)x(k) +BiKv(k) +Diwi(k)] (25)

− xi
T (k)Pixi(k) + xT (k)H1x(k) + uT (k)H2u(k)

≤ [(Ai +BiKC)x(k)]TPi[(Ai +BiKC)x(k)] + [BiKv(k)]TPi[BiKv(k)] + [Diwi(k)]
TPi[Diwi(k)]

− xi
T (k)Pixi(k) + xT (k)H1x(k) + uT (k)H2u(k)

Consider (2), (3):

Li(k) ≤ [(Ai +BiKC)x(k)]TPi[(Ai +BiKC)x(k)] + [BiKCx(k)]TPi[BiKCx(k)] + [Dixi(k)]
TPi[Dixi(k)] (26)

− xi
T (k)Pixi(k) + xT (k)H1x(k) + uT (k)H2u(k)

Substitute (5) into (26):

Li(k) ≤ [(Ai +BiKC)x(k)]TPi[(Ai +BiKC)x(k)] + [BiKCx(k)]TPi[BiKCx(k)] + [Dixi(k)]
TPi[Dixi(k)] (27)

+ xT (k)H1x(k) + 2[KCx(k)]TH2[KCx(k)]− xi
T (k)Pixi(k)

≤ xT (k)[(Ai +BiKC)TPi(Ai +BiKC) + (BiKC)TPi(BiKC)

+H1 + 2(KC)TH2(KC) + Ei
T (Di

TPiDi − Pi)Ei]x(k) ≤ 0

Noting Pi = γiSi
−1, then according to the Schur Complement Lemma, (27) can be converted into:

Ei
TSi

−1Ei (Ai +BiKC)
T

(BiKC)
T

(H11/2)
T √

2(H21/2KC)
T

(DiEi)
T

Ai +BiKC Si 0 0 0 0
BiKC 0 Si 0 0 0

H11/2 0 0 γi
−1I 0 0√

2H21/2KC 0 0 0 γi
−1I 0

DiEi 0 0 0 0 Si


≥ 0 (28)

Multiplying both sides of (28) by diagonal matrix diag{S, I, I, I, I, I} yields:

Ei
TSiEi S(Ai +BiKC)

T
S(BiKC)

T
S(H11/2)

T √
2S(H21/2KC)

T
S(DiEi)

T

AiS +BiKCS Si 0 0 0 0
BiKCS 0 Si 0 0 0

H11/2S 0 0 γi
−1I 0 0√

2H21/2KCS 0 0 0 γi
−1I 0

DiEiS 0 0 0 0 Si


≥ 0 (29)

Let Si = GiMi, KCS = diag{K1C1S1, · · · ,KiCiSi, · · · ,K1C1SN}, according to Assumption 2:

KiCiSi = KiCiGiMi = Ki

[
I 0

]
Mi (30)

= Ki

[
Mi11 0

]
=

[
Yi1 0

]
Hence, KCS = Y , (29) is equivalent to (18), Ki = Yi1Mi11

−1 and ui(k) = Yi1Mi11
−1yi(k).
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The constraints (7) need to be handled. For ui(k) ∈ Ui, assume that there exists a scalar αui making:

∥ui(k + l |k )∥ = αui (31)

Then,
max
l≥0

∥ui(k + l |k )∥ = max
l≥0

∥Kiyi(k + l |k )∥ = max
l≥0

∥Ki[Cixi(k + l |k ) + vi(k + l |k )]∥

≤ max
l≥0

[∥KiCixi(k + l |k )∥+ ∥Kivi(k + l |k )∥] ≤ 2 max
vi∈Vi

∥KiCixi(k + l |k )∥ (32)

Consider KiCi = YiS
−1
i

max
vi∈Vi

∥∥YiSi
−1xi(k + l |k )

∥∥ ≤ 1

2
αui (33)

Let zi = Si
− 1

2xi which is a common definition [45]. It then follows that:

max
xi∈i

∥∥YiSi
−1xi(k + l |k )

∥∥ = max
ziT zi∈i

∥∥∥Si
− 1

2Yi
TYiSi

− 1
2xi(k + l |k )

∥∥∥ = λmax(Si
− 1

2Yi
TYiSi

− 1
2 ) ≤ 1

2
αui (34)

According to the Schur Complement Lemma, (34) can be converted into:[
αuiI Yi

√
2Si

− 1
2

Si
− 1

2

√
2Y T

i I

]
≥ 0 (35)

Multiplying both sides of (35) by diagonal matrix diag(I, Si
1
2 ) yields:[

αuiI
√
2Yi√

2Y T
i Si

]
≥ 0 (36)

which is equivalent to (19). For Yi(k) ∈ Yi, it can also be transformed into the following form:

∥yi(k + l |k )∥ = αyi (37)

Then, using a similar procedure as used for the input constraint, (38) can be obtained:[
αyiI

√
2(AiS +BiY )√

2(SAT
i + Y TBT

i ) S

]
≥ 0 (38)

Hence, (7) is guaranteed. Q.E.D.
By considering Theorem 1, problem (6)-(8) can be solved by the LMI optimization problem:

min γi
γi,Mi,Si,Yi,Gi1,αui

,αyi

s.t.(17), (18), (19), (20) (39)

Remark 4: From the proof of Theorem 1, it can be seen that all states are written in a quadratic form using the robust
inequality constraints (12). According to (2) and (3), the disturbance and noise are handled in (27). The couplings and
uncertainties are solved by LMI (18). Under Assumption 2, the non-convex static output feedback design is converted to a
convex optimization problem and sufficient conditions are presented. The explicit distributed static OFRMPC law is given by
Theorem 1, but also the constraints are handled by the LMIs (19) and (20).

Remark 5: In Theorem 1, inequality (17) must use the state information xi(k |k ) as the initial value for iterative calculation.
Note that the iterative calculation does not require high accuracy of the initial value, so the value of the current state xi(k |k )
can be replaced by a predicted state x̄i(k |k − 1), which means xi(k |k ) ≈ x̄i(k |k − 1). x̄i(k |k − 1) is predicted by previous
information. At time k, ui(k− l), l = 1, · · · , k, and xi(0) for all i = 1, · · · , N are available. It follows that x̄i(k |k − 1) can be

obtained from this information based on the nominal prediction model: x̄i(k |k − 1) = Ai[A
k−1x(0)+

k−2∑
l=0

AlBu(k − l − 2)]+

Biu(k − 1), where A and B have been defined in Remark 2 and Ai and Bi have been defined in Theorem 1. The predicted
error is defined as: ēi(k) = xi(k |k ) − x̄i(k |k − 1). The recursive feasibility cannot be guaranteed if the predicted error is
not bounded, since an unbounded error will result in the non-coincidence of the information between two adjacent steps. This
problem will be dealt with in the next subsection

Remark 6: If for the ith subsystem, inequality (18) is solved in a distributed fashion, it can be seen from (28) that the local
controller can take advantage of the actions of other actuators in computing its own control action in real time. Take an element in
inequality (28) as an example, e.g., Ai+BiKC where Ai, Bi and C are all known matrices. K = diag{K1, · · · ,Ki, · · · ,KN},
Kj(j = 1, 2, ..., N, j ̸= i) refers to the solution obtained from the previous iteration which is computed by the jth local
controller. The ith local controller only needs to calculate Ki during the current iteration which can reduce the computational
time and will be more effective than applying a centralized method.

The step by step algorithm is given as follows:
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Algorithm 1:
Step 1 (Initialization): At control interval k = 0, set Ki = 0.
Step 2 (Updating): At the beginning of the control interval (k), all the controllers exchange their output measurements and

initial estimates Ki, set the iteration t = 0 and Ki=Ki
(t=0), where t is the iteration number.

Step 3 (Iterations): At time step k, solve N LMI problems (35) in parallel to obtain the matrices γ
(t)
i , M (t)

i , S(t)
i , Y (t)

i ,
G

(t)
i1 , αui

(t), αyi
(t) and feedback gain K

(t)
i . Check the convergence for a specified error tolerance ei which is defined by the

user. If K(t)
i satisfies: ∥∥∥Ki

(t) −Ki
(t−1)

∥∥∥ ≤ ei

then, go to step 4. Otherwise continue to iterate, exchange the solution Ki and set t = t+ 1.
Step 4 (Implementation): Apply the control ui(k) = Ki(k)yi(k) to the corresponding subsystems. Go to the control interval

k = k + 1, return to step 2 and repeat the procedure.
Remark 7: Algorithm 1 can be thought of as a robust model predictive algorithm. The feasibility of this method can

be ensured by adopting an infinite prediction horizon. It is necessary that the system is asymptotically stable or the pair
(Aii, Bii) is controllable. In addition, for a given matrix Ci, the choice of Gi is not unique. In this paper, define Gi =[
CT

i (CiC
T
i )

−1
C†

i

]
where C†

i is the orthogonal basis of the zero space of the matrix Ci. Gi satisfies CiGi = [ I 0 ]

and guarantees the feasibility of Step 3 in Algorithm 1.

B. Closed loop system stability analysis

The predicted error has been defined as:

ēi(k) = xi(k |k )− x̄i(k |k − 1) (40)

The boundedness of ēi(k) is proved by the following proposition:
Proposition 1: For each subsystem (1) with zi = S

− 1
2

i xi and KiCi = YiS
−1
i , if there exist positive definite matrices Yi > 0

and Si > 0 such that ∥Yi∥ and ∥Si∥ are bounded, then the predicted error is bounded.
Proof: Substitute the closed-loop system (9) into (40):

ēi(k) = xi(k |k )− xi(k |k − 1)
= xi(k |k )− (Ai +BiKC)x(k − 1 |k − 1) +BiKv(k − 1 |k − 1) +Diwi(k − 1 |k − 1)

(41)

Using the bounds on the disturbance and the noise from equations (2) and (3):

∥ēi(k)∥ = ∥xi(k |k )− (Ai +BiKC)x(k − 1 |k − 1) +BiKv(k − 1 |k − 1) +Diwi(k − 1 |k − 1)∥ (42)
≤ ∥xi(k |k )∥+ ∥(Ai +BiKC)x(k − 1 |k − 1)∥+ ∥BiKv(k − 1 |k − 1)∥+ ∥Diwi(k − 1 |k − 1)∥
≤ ∥xi(k |k )∥+ ∥(Ai +BiKC)x(k − 1 |k − 1)∥+ ∥BiKCx(k − 1 |k − 1)∥+ ∥Dixi(k − 1 |k − 1)∥

Using z = S− 1
2x, KC = Y S−1, it can be obtained that:

∥ēi(k)∥ ≤ ∥xi(k |k )∥+ ∥(Ai +BiKC)x(k − 1 |k − 1)∥+ ∥BiKCx(k − 1 |k − 1)∥+ ∥Dixi(k − 1 |k − 1)∥ (43)

=
∥∥∥Si

1
2 zi(k)

∥∥∥+
∥∥∥(Ai +BiKC)S

1
2 z(k − 1)

∥∥∥+
∥∥∥BiKCS

1
2 z(k − 1)

∥∥∥+
∥∥∥DiSi

1
2 zi(k − 1)

∥∥∥
≤

∥∥∥Si
1
2

∥∥∥ ∥zi(k)∥+ ∥∥∥AiS
1
2 +BiKCS

1
2

∥∥∥ ∥z(k − 1)∥+
∥∥∥BiKCS

1
2

∥∥∥ ∥z(k − 1)∥+
∥∥∥DiSi

1
2

∥∥∥ ∥zi(k − 1)∥

=
∥∥∥Si

1
2

∥∥∥ ∥zi(k)∥+ ∥∥∥AiS
1
2 +BiY S− 1

2

∥∥∥ ∥z(k − 1)∥+
∥∥∥BiY S− 1

2

∥∥∥ ∥z(k − 1)∥+
∥∥∥DiSi

1
2

∥∥∥ ∥zi(k − 1)∥

From (43), it can be seen that ∥zi(k)∥ ≤ 1 and ∥zi(k − 1)∥ ≤ 1. If ∥Yi∥ and ∥Si∥ are bounded, ∥Y ∥ and ∥S∥ are bounded,
then

∥∥∥S 1
2
i

∥∥∥,
∥∥∥AiS

1
2 +BiY S− 1

2

∥∥∥,
∥∥∥BiY S− 1

2

∥∥∥ and
∥∥∥DiS

1
2
i

∥∥∥ are bounded. Hence the predicted error ē(k) is bounded. Q.E.D.
The boundedness of the predicted error is proved by Proposition 1 and the recursive feasibility can be guaranteed. To analyze

the stability of the closed-loop system, the following lemma is given:
Lemma 1: Every feasible solution of optimization problem (39) in time k is still feasible in time N(N > k) [46].
Theorem 2: For system (1), under the distributed static OFRMPC gain Ki which is given by Theorem 1, if the optimization

problem (39) has a feasible solution, then the closed loop system in (9) will be asymptotically stable.
Proof:
According to Lemma 1, the optimization problem (39) is always feasible. The quadratic function has been defined in (11):

Vi(xi(k |k )) = xi(k |k )TPixi(k |k )
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It follows that:

∆Vi(xi(k |k )) = Vi(xi(k + 1 |k ))− Vi(xi(k |k )) < −[x(k |k )TH1x(k |k ) + u(k |k )TH2u(k |k )] < 0 (44)

where H1 and H2 have been defined after (10) and are symmetric positive definite matrices. Hence after Ki has been
implemented at time k, the closed-loop system is asymptotically stable. Q.E.D.

IV. CASE STUDY

In this section, the proposed method is verified both by simulation and experiment. The first simulation seeks to verify the
effectiveness of the proposed approach in stabilising a given system and the results are compared with those achieved by using
the distributed dynamic OFRMPC method and the centralized static OFRMPC method. Then, a simulation model consisting
of twenty subsystems is used to illustrate the ability of the proposed method in dealing with the couplings in complex process
networks. In this case the proposed method is compared with centralized static OFRMPC. Finally, a continuous stirred tank
reactor (CSTR) experiment is used to further validate the proposed approach.

A. Stabilization Problem

Consider system (1). Assume that there are two discrete time linear subsystems where the system matrices are given by:

A11 =

[
1 1
0 1

]
A12 =

[
0.26 0.28
0 0.25

]
A22 =

[
1 1
0 1

]
A21 =

[
0.26 0.28
0 0.25

]
B11 =

[
1
0.5

]
B12 =

[
0.03
0.15

]
D1 =

[
1 0
0 1

]
B22 =

[
1
0.5

]
B21 =

[
0.03
0.15

]
D2 =

[
1 0
0 1

]
C1 =

[
1 0

]
C2 =

[
1 0

]
H1

1 = 2I H1
2 = I H2

1 = 2I H2
2 = I

Rewrite the above distributed system in a centralized form:[
x1(k + 1)
x2(k + 1)

]
=

[
A11 A12

A21 A22

] [
x1(k)
x2(k)

]
+

[
B11 B12

B21 B22

] [
u1(k)
u2(k)

]
+

[
D1 0
0 D2

] [
w1(k)
w2(k)

]
[

y1(k)
y2(k)

]
=

[
C1 0
0 C2

] [
x1(k)
x2(k)

]
+

[
v1(k)
v2(k)

]
For the proposed method, the initial value of the control matrices is given by: M1 = M2 =

[
0.5426 0

−0.01054 0.4942

]
, Y1 =

Y2 =
[
0.9412 0

]
. For the distributed dynamic OFRMPC, the observer is of Luenberger type and the observer poles

are chosen as λ1 =
[
0.7921 0.5952

]
and λ2 =

[
0.6853 0.5024

]
. The corresponding observer gains are given by:

Ldynamic1 =
[
2.6 −5.7

]T , Ldynamic2 =
[
3.5 −6.7

]T . For the centralized static OFRMPC, M = diag{M1,M2}
and Y = diag{Y1, Y2}. To ensure that the initial state is in the initial feasible region, as in [47], the initial states of the
two subsystems are selected as x1(0) =

[
3 −1

]T
and x2(0) =

[
2 −1

]T
. The control horizon is 1, the prediction

horizon is 10 and the simulation length is 50. Consider the presence of uncertainties as described in (2) and (3) where
w1(k) = w2(k) = sqrt(0.1)× randn(2, 1) are random disturbances satisfying the Gaussian distribution and v1(k) = v2(k) =
sqrt(0.1)× randn(2, 1) are random noises satisfying the Gaussian distribution.

In the following simulations, the solid line presents the results when the system is controlled by the distributed dynamic
OFRMPC, the dashed line presents the results when the system is controlled by the proposed method and the dash-dotted
line gives the results when the system is controlled by a centralized static OFRMPC. The state variables are shown in Fig. 1
and Fig. 2. It is seen that both states of the two subsystems are stabilized by all three methods. The static OFRMPC methods
stabilizes the states more rapidly. Since the static method uses only the output information directly and does not need to
observe the states, it improves the control accuracy. The output signals of the two subsystems are shown in Fig. 3 and Fig.
4 The performance is shown in Fig. 5 and Fig. 6. It can be seen that the proposed method has very similar performance
when compared with the centralized approach. However the computational time of the proposed method is only 0.54s while
the centralized static OFRMPC uses 1.67s. It is shown that the couplings are handled effectively by the proposed method, so
that the global performance can approximate that of the centralized one with a reduction in computational time. From Fig. 7
and Fig. 8, it can be seen that the control inputs corresponding to the dynamic control are larger than for the static control.
This validates the effectiveness of the proposed approach. The constraints and uncertainties are handled and the distributed
RMPC can work well using the proposed static output feedback scheme. The proposed approach has better performance than
the dynamic approach when the states are not available and reduces the computational time when compared to the centralized
method. The control performance is very similar in both cases.
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Fig. 1: States of the three methods for subsystem 1.

0 10 20 30 40 50

k

-1

-0.5

0

0.5

1

1.5

2

S
ta

te
s

x1 of distributed dynamic OFRMPC

x2 of distributed dynamic OFRMPC

x1 of proposed method

x2 of proposed method

x1 of centralized static OFRMPC

x2 of centralized static OFRMPC

Fig. 2: States of the three methods for subsystem 2.
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Fig. 3: Outputs of the three methods for subsystem 1.
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Fig. 4: Outputs of the three methods for subsystem 2.
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Fig. 5: Performance of the three methods for subsystem
1.
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Fig. 7: Inputs of the three methods for subsystem 1.
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Fig. 8: Inputs of the three methods for subsystem 2.

When compared with the static OFRMPC case, the response of the dynamic control is slower because the observer has to
converge. Note that if the observer gains were made larger, the transient observer effects could be expected to reduce, but the
larger observer gains may cause degradation of the control performance since it will increase the magnitude of the states.

B. Stabilization Problem for twenty subsystems

Consider system (1) and assume that there are twenty discrete time linear subsystems. The system matrices are given by:

Aii =

[
1 1
0 1

]
Aij =

[
0.26 0.28
0 0.25

]
Bii =

[
1
0.5

]
Bij =

[
0.03
0.15

]
Di =

[
1 0
0 1

]
Ci =

[
1 0

]
H1

i = 2I H2
i = I

where i = 1, · · · , 20, j = 1, · · · , 20 and i ̸= j. For the proposed method, the initial value of the control matrices can be given

by: Mi =

[
0.5426 0

−0.01054 0.4942

]
, i = 1, · · · , 20, Yi =

[
0.9412 0

]
, i = 1, · · · , 20. For the centralized static OFRMPC,

M = diag{M1, · · · ,M20} and Y = diag{Y1, · · · , Y20}. The initial states of subsystems are selected as xi(0) =
[
4 −1

]T ,
i = 1, · · · , 20. The control horizon is 1, the prediction horizon is 10 and the simulation length is 50. Consider the presence
of uncertainties as described in (2) and (3) where wi(k) = sqrt(0.1) × randn(2, 1), i = 1, · · · , 20, is a random disturbance
satisfying the Gaussian distribution and vi(k) = sqrt(0.1) × randn(2, 1), i = 1, · · · , 20, is a random noise satisfying the
Gaussian distribution.

In the following simulations, the dashed line presents the results when the system is controlled by the proposed method
and the dash-dotted line gives the results when the system is controlled by the centralized static OFRMPC. The results of
the 1st, 6th, 12th and 18th subsystems are selected randomly from the 20 subsystems and displayed from Fig.9 to Fig.12.
To show the ability of the approach to deal with couplings, the sum of the performance for all the subsystems (i.e., J =
20∑
i=1

50∑
k=0

[xi(k)
T
Hi

1xi(k)+ui(k)
T
Hi

2ui(k)]) is compared. The performance of the proposed method is 547.3624 while that of

the centralized static OFRMPC is 543.9621. From Fig.9 to Fig.12, it can be seen that the proposed method can achieve a very
similar performance to that achieved by centralized static OFRMPC. However the computational time of the proposed method
is only 12.34s while that of the centralized static OFRMPC is 28.61s. This illustrates the proposed approach has the ability to
deal effectively with the couplings with a shorter computational time.

C. CSTR System Experiment

The effectiveness of the proposed approach is further validated by an experimental trial. The Process Modelling and Control
Group at the China University of Petroleum (East China) has developed an experimental rig which is shown in Figure 13. The
operational interface of the rig is shown in Figure 14. The four reactors, labelled R101, R102, R103, R104, can be connected
in numerous ways for control validation and testing (series, parallel, series and parallel). The chemical reaction is carried out
after feeding. The equipment can be configured to implement continuous operation as well as enable measurement and control
of the flow, liquid level and temperature. V111 is the header tank which contains acetic ether and V112 is the header tank
containing sodium hydroxide. These raw materials are processed in the CSTR simultaneously [23]. The reaction function is
A+B = C +D and the output of this experiment is the temperature of the reactor. Only two reactors (R101 and R102) are
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Fig. 9: The results of the 1st subsystem
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Fig. 10: The results of the 6th subsystem
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Fig. 11: The results of the 12th subsystem
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Fig. 12: The results of the 18th subsystem
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Fig. 13: Experimental equipment

used in these experiments. The nonlinear dynamic equations of the plant model have been given in [23]. Choosing a sampling
interval of Ts = 0.0025h, the nominal discrete time linear state space model of the plant has the form:

x1(k + 1) = A11x1(k) +B11u1(k) +A12x2(k) +B12u2(k), y1(k) = C1x1(k)
x2(k + 1) = A22x2(k) +B22u2(k) +A21x1(k) +B21u1(k), y2(k) = C2x2(k)

(45)

where x1 and u1 are the state and input vectors for R101, respectively, while x2 and u2 are the state and manipulated input
vectors for R102. The system matrices are given by

A11 =

[
0.9600 0.0039
−0.2488 0.8902

]
, A12 =

[
0.0722 0.0002
−0.0134 0.0773

]
,

A22 =

[
0.8312 0.0024
−0.0235 0.5627

]
, A21 =

[
0.0657 0.0002
−0.0201 0.0645

]
,

B11 =

[
0.0072
−0.0009

]
, B12 =

[
0.0722
−0.0134

]
, D1 =

[
1 0
0 1

]
,

B22 =

[
0.0097
−0.0005

]
, B21 =

[
0.0247
−0.0200

]
, D2 =

[
1 0
0 1

]
,

C1 =
[
1 0

]
, C2 =

[
1 0

]
, H1

1 = I,H1
2 = I,H2

1 = I,H2
2 = I.

The initial value of the control matrices can be obtained as: M1 =

[
0.0345 0
−0.0018 0.1035

]
,M2 =

[
0.0292 0
−0.0017 0.1297

]
,

Y1 =
[
0.2469 0

]
, Y2 =

[
0.2716 0

]
. For the dynamic OFRMPC, the observer gains are given as follows : Ldynamic1 =

[4.7 1.6]T , Ldynamic2 = [4.6 1.7]T . The control horizon is 1, the predicted horizon is 20 and the sampling time is 0.4s.
The w1(k) ⊆ R2 and w2(k) ⊆ R2 are random disturbances satisfying the Gaussian distribution, v1(k) ⊆ R2 and v2(k) ⊆ R2

are random noises satisfying a Gaussian distribution. For the two reactors R101 and R102, the desired set-points across the
three experiments are all 30 degrees Celsius. The initial temperatures of R101 and R102 are 22.6 degrees Celsius and 24.6
degrees Celsius, respectively, for the distributed dynamic OFRMPC experiment. The initial temperatures of R101 and R102
are 24.5 degrees Celsius and 23.6 degrees Celsius, respectively, for the proposed method. The initial temperatures of R101
and R102 are 25.5 degrees Celsius and 25.1 degrees Celsius, respectively, for the centralized static OFRMPC experiment. The
initial temperatures are different in the three experiments, because they were performed on different days and the temperature
is affected by many environmental factors, such as the weather and the water temperature. The control objective is to increase
the temperature of the tank from the initial temperature to 30 degrees Celsius by manipulating the flow of water in the jacket.
The temperature tracking results are shown in Fig. 15, Fig. 16 and Fig. 17. Comparing Fig. 15 with Fig. 16, it can be seen
that the proposed method has better control performance than that exhibited by the dynamic control. From Fig. 16 and Fig.
17, it can be seen that the proposed method has very similar control performance to that obtained by the centralized static
OFRMPC.



15

Fig. 14: Parallel R101 and R102.
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Fig. 15: Tracking performance when CSTRs are controlled by distributed dynamic OFRMPC.

V. CONCLUSION

This paper has proposed an algorithm to implement a distributed static OFRMPC strategy for the case when the system
states are not measurable. Necessary and sufficient conditions are imposed to ensure the existence of a static output feedback
control law. The initial conditions of the current states for all subsystems are predicted by the previous information to ensure
the distributed RMPC can operate within a static output feedback framework. The state and input couplings are considered and
an overall performance index is designed to guarantee global performance on the premise of reducing the computational load.
The control law is designed with an explicit expression under the constraints and uncertainties. An iterative LMI approach is
used to solve the distributed static OFRMPC optimization problem. The simulation results show that the proposed approach
can effectively deal with a discrete time linear system with state and input couplings in process networks. It can achieve very
similar performance to a centralized static OFRMPC while using less computational time and exhibiting better performance
than a distributed dynamic OFRMPC. The results of an experimental trial further illustrate that the proposed approach is
suitable for process networks when the states are unmeasured.
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Fig. 16: Tracking performance when CSTRs are controlled by proposed method.
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Fig. 17: Tracking performance when CSTRs are controlled by centralized static OFRMPC.
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