UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Over-expression of a cyanobacterial gene for 1-deoxy-D-xylulose-5-phosphate synthase in the chloroplast of Chlamydomonas reinhardtii perturbs chlorophyll: carotenoid ratios

Hoqani, UA; León, R; Purton, S; (2022) Over-expression of a cyanobacterial gene for 1-deoxy-D-xylulose-5-phosphate synthase in the chloroplast of Chlamydomonas reinhardtii perturbs chlorophyll: carotenoid ratios. Journal of King Saud University - Science , 34 (6) , Article 102141. 10.1016/j.jksus.2022.102141. (In press). Green open access

[thumbnail of Purton_1-s2.0-S1018364722003226-main.pdf]
Preview
Text
Purton_1-s2.0-S1018364722003226-main.pdf - Published Version

Download (1MB) | Preview

Abstract

Terpenoids are a diverse class of naturally occurring compounds consisting of more than 50,000 structurally different molecules and are found in all living organisms. Many terpenoid compounds, in particular those isolated from plants, have applications in various commercial sectors including medicine, agriculture and cosmetics. However, these high value terpenoids are produced in relatively small quantities in their natural hosts and their chemical synthesis for large scale production is costly and complicated. Therefore, there is much focus on producing these compounds in novel biological hosts using metabolic engineering technologies. As a photosynthetic system, the unicellular green alga C. reinhardtii is of particular interest as the most well-studied model alga with well-established molecular tools for genetic manipulation. However, the direct manipulation of terpenoid biosynthetic pathways in C. reinhardtii necessitates a thorough understanding of the basic terpenoid metabolism. To gain a better understanding of the methylerythritol phosphate (MEP) pathway that leads to terpenoid biosynthesis in the chloroplast of C. reinhardtii, hence this study has investigated the effect of over-expressing 1-deoxy-D-xylulose-5-phosphate synthase (DXS) on plastidic downstream terpenoids. We produced marker-free chloroplast transformants of C. reinhardtii lines that express an additional cyanobacterial gene for DXS. The analysis of terpenoid content for the transgenic line demonstrates that overexpressing DXS resulted in a two-fold decrease in the chlorophyll levels while carotenoid levels showed variable changes: zeaxanthin and antherxanthin levels increased several-fold, lutein levels dropped to approximately half, but β-carotene and violaxanthin did not show a significant change.

Type: Article
Title: Over-expression of a cyanobacterial gene for 1-deoxy-D-xylulose-5-phosphate synthase in the chloroplast of Chlamydomonas reinhardtii perturbs chlorophyll: carotenoid ratios
Open access status: An open access version is available from UCL Discovery
DOI: 10.1016/j.jksus.2022.102141
Publisher version: https://doi.org/10.1016/j.jksus.2022.102141
Language: English
Additional information: © 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords: Terpenoid, Chlamydomonas reinhardtii, Algal chloroplast, Engineering, DXS, MEP
UCL classification: UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Structural and Molecular Biology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
URI: https://discovery.ucl.ac.uk/id/eprint/10152485
Downloads since deposit
60Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item