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Abstract
Several recent studies have investigated the risk posed to structures by earthquake 
sequences, proposing state-dependent fragility/vulnerability models for assets in dam-
aged conditions. However, a critical component for such efforts, i.e., ground-motion record 
selection, has received relatively minor consideration. Specifically, utilization of “consist-
ent” mainshock (MS)–aftershock (AS) ground motions is desirable in practical applica-
tions. Such consistency in selecting MS–AS sequences requires proper consideration of 
the correlations between and within the intensity measures of MS and AS ground motions. 
Most of the studies in this domain utilize spectral accelerations as the considered ground-
motion intensity measures and rely on empirical linear correlation models between the 
intensity measures of MS and AS ground motions for developing, for instance, record 
selection approaches. This study proposes a generalized ground-motion model (GGMM) to 
estimate consistent 30 × 1 vectors of intensity measures for mainshocks (denoted as IMMS) 
and aftershocks (denoted as IMAS) using a framework of successive long-short-term-mem-
ory (LSTM) recurrent neural network (RNN). The vectors of IMMS and IMAS consist of 
geometric means of significant duration ( D5−95,geom ), Arias intensity ( Ia,geom ), cumulative 
absolute velocity ( CAVgeom ), peak ground velocity ( PGVgeom ), peak ground acceleration 
( PGAgeom ) and RotD50 spectral acceleration ( Sa(T) ) at 25 periods for both MS and AS 
ground motions. The proposed RNN-based GGMM is trained on a carefully selected set 
of ~ 700 crustal and subduction recorded MS–AS sequences. The inputs to the framework 
include a 5 × 1 vector of source and site parameters for MS and AS recordings. The resid-
uals of the trained LSTM-based RNN are further used to develop empirical covariance 
structures for IMMS and IMAS. The proposed framework is finally illustrated to select MS–
AS ground motions based on IMMS and IMAS using a multi-criteria objective function. 
The selected MS–AS ground motion sequences are then used to perform non-linear time-
history analyses of a case-study two-spanned symmetric bridge structure. The obtained 
engineering demand parameters are evaluated and critically discussed.
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1 Introduction

Current structural design and analysis procedures in earthquake engineering continue to be 
primarily based on the hazard demands posed by mainshock (MS) ground motions. How-
ever, recent earthquake events and research studies worldwide (e.g., Stewart et  al. 2018; 
Kam et  al. 2010; Goda 2015; Shokrabadi and Burton 2018; Papadopoulos et  al. 2019, 
2020; Shcherbakov 2021) have emphasized that sequences of damage-aggravating after-
shock (AS) ground motions often follow moderate-to-large MS earthquakes. Thus, struc-
tures that sustain damage from a MS and are not immediately repaired are often prone 
to damage accumulation from subsequent AS events/ground motions. Although this is a 
widely recognized issue, this form of hazard interaction is commonly overlooked in cur-
rent seismic hazard analysis, structural design, and risk assessment procedures. More in 
general, structures located in seismically active regions may frequently experience more 
than one earthquake event during their lifetime. Hence, estimates of structural performance 
and fragility models (i.e., probability of exceeding various damage states as a function 
of hazard intensity measures) often need to be updated soon after a structure is exposed 
to intense ground shaking due to a given event. This approach can better support inspec-
tion, revaluation, and repair decisions to ensure the structure’s serviceability during future 
events, particularly during the post-event response/emergency phases (e.g., Jalayer et  al. 
2011; Franchin and Pinto 2009).

In recent years, several research studies have focused on quantifying the impact of 
sequences of ground motions (particularly MS–AS sequences) on seismic hazard analysis, 
structural performance, and risk assessment (Yeo and Cornell 2009; Cornell 2004; Luco 
and Bazzurro 2004; Shokrabadi and Burton 2018; Jalayer and Ebrahimian 2017). Many 
studies promote the concept of damage-dependent  (or state-dependent) fragility models, 
i.e., fragility relationships for structures with pre-existing damage conditions (Aljawhari 
et al. 2020; Gentile and Galasso 2021; Raghunandan et al. 2015). Their numerical deriva-
tion often entails non-linear dynamic analyses in which the structure is subjected to back-
to-back MS–AS ground motions, selected through various approaches (e.g., Goda 2015; 
Papadopoulos et al. 2020). FEMA 352 (FEMA 2000), Cornell (2004), and Luco and Baz-
zurro (2004) were among the very first studies that investigated the effects of AS ground 
motions on buildings; they focused on inspecting post-earthquake damage by generating 
a demand hazard curve for damaged buildings subject to AS ground motions. These stud-
ies involved a basic assumption, i.e., independence between MS and AS ground-motion 
intensities.

To perform structural analyses using a proper hazard representation of MS–AS ground-
motion features, sequences of ground motions that best represent the characteristics of 
MS–AS ground motions at the site of interest must be utilized. In particular, MS and AS 
ground-motion selection should ensure that the correlations between and within the inten-
sity measures (IMs) of MS and AS ground motions are accurately characterized and con-
sidered (e.g., Papadopoulos et  al. 2019). Studies such as Kohrangi et  al. (2017), among 
others, have demonstrated the impact of alternative site-specific record-selection strategies 
on MS fragility functions. Due to the similarity in causal parameters such as source rup-
ture properties, wave propagation paths, and site characteristics between the MS and sub-
sequent AS ground motions, it can be substantiated that such site-specificity should also 
be accounted for in the selection of AS records. Apart from this, the selected AS records 
must also be consistent with the selected MS records in terms of IMs and their character-
istics. In the current state of practice, such site-specificity is accounted for by considering 
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casual parameters such as magnitude, rupture-to-site distance, and soil shear-wave velocity 
at the site, and the record consistency is quantified mainly in terms of spectral accelerations 
( Sa(T) ). While conventional Probabilistic Seismic Hazard Analysis (PSHA) relies on the 
disaggregation of the MS hazard to obtain the casual event parameters, recent methods of 
Aftershock Probabilistic Seismic Hazard Analysis (APSHA) and Omori’s law (Yeo and 
Cornell 2009; Žalohar 2018) allow the computation of MS-consistent seismic event param-
eters for AS events. Several alternate methods available in the literature can be used to 
compute the seismicity/source parameters of AS events from the parameters of MS events. 
One of the most popular models to describe the seismicity of a region is the space–time 
Epidemic-Type Aftershock Sequence (ETAS) model (e.g., Ogata 1998; Iacoletti et  al. 
2022). However, due to the computational complexity of the ETAS model, particularly in 
terms of the location of AS events, more straightforward approaches such as the Branching 
Aftershock Sequence (BASS) model (e.g., Turcotte et al. 2007) are available to compute 
consistent source-to-site distances between MS and AS events probabilistically.

Using these advances, several researchers (Hu et al. 2018; Burton et al. 2017; Jalayer 
and Ebrahimian 2017; Aljawhari et al. 2020; Gentile and Galasso 2021; Goda 2015; Fayaz 
et al. 2019; Park et al. 2018) have proposed various solutions to perform structural analysis 
using appropriate sets of MS and AS ground-motion sequences. One of the most nota-
ble studies in this field was undertaken recently by Papadopoulos et  al. (2020). In this 
research, based on the assumption of lognormality and linear correlations, a MS–AS con-
ditional spectrum (MSAS-CS) was proposed, which models the joint distribution of AS 
spectral ordinates conditioned on the MS spectrum and the rupture characteristics. The 
developed MSAS-CS was then used to select AS records for performing Nonlinear Time-
History Analysis (NLTHA) of two two-dimensional non-ductile reinforced concrete frame 
(RC) buildings. The selected MS–AS records were finally used to develop state-dependent 
fragility relationships of the building models, demonstrating the importance of consider-
ing spectrally consistent MS and AS records. However, an over-reliance on the sufficiency 
and efficiency of the Sa(T) spectrum and linear correlations among the Sa(T) ordinates can 
be detrimental to the accuracy of any derived conclusions. This was indicated by Fayaz 
et al. (2021b), who proposed an artificial neural network (ANN)-based generalized ground-
motion model (GGMM) for MS records, which uses the seismic source and site parameters 
to output a vector of 29 × 1 ground-motion IMs. The GGMM framework was compared 
with the conditional spectrum approach (Lin et  al. 2013), which demonstrated the supe-
riority of ANNs in modeling cross-IM-dependencies compared to the linear correlations 
generally used in earthquake engineering.

This study is a step towards using current state-of-the-art deep learning-based frame-
works in structural and seismic analysis. It incorporates a data-driven framework of suc-
cessive recurrent neural networks (RNNs) to develop a GGMM for two 30 × 1 vectors of 
MS and AS IMs (denoted as IMMS and IMAS, respectively). In particular, to incorporate 
the higher-order dependencies among the components of IMMS and IMAS, long-short-term 
memory (LSTM) cells are adopted in the proposed RNN-based framework. The inputs to 
the proposed MS–AS GGMM include a 5 × 1 vector of seismic source and site parameters 
for the MS (denoted as �

��
 ) and AS (denoted as �

��
 ). The outputs of the framework (i.e., 

the IMMS and IMAS vectors) include geometric means of significant duration ( D5−95,geom ), 
Arias intensity ( Ia,geom ), cumulative absolute velocity ( CAVgeom ), peak ground velocity 
( PGVgeom ), peak ground acceleration ( PGAgeom ) and RotD50 spectral acceleration ( Sa(T) ) 
at 25 periods for both MS and AS ground motions. The use of LSTM-based RNNs helps 
maintain the internal cross-dependencies between and within the IMMS and IMAS vectors 
while leading to good mean predictions. This ensures that the MS and AS are consistent 
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in terms of their IMs. Furthermore, the residuals of the trained RNN are used to develop 
two 30 × 30 covariance matrices of IMMS and IMAS. The predictions of the developed 
GGMM are analyzed through rigorous statistical analyses. The application of the model is 
finally demonstrated by performing MS–AS ground-motion selection for NLTHA of a two-
spanned two-column symmetric bridge structure.

The paper starts by describing the ground-motion database and the proposed neural 
network-based models. The results of the statistical tests for the proposed models are dis-
cussed subsequently. Then, the covariance structures developed from the residuals of the 
RNN models are defined in the following section. Finally, the proposed GGMM is illus-
trated for scenario-based MS–AS ground motion selection and NLTHA of an ordinary 
bridge structure.

2  Ground‑motion database

This study uses the MS–AS ground-motion sequences selected by Goda and Taylor (2012) 
and Goda et  al. (2015) from the Next Generation Attenuation Relationships for Western 
US (NGA-West2) (Ancheta et al. 2004) and KKiKSK (2012) databases. The moment mag-
nitude and rupture distance metadata of the selected 703 MS ground motions and corre-
sponding AS ground motions from 40 events are provided in Fig. 1a and b, respectively. 
The dataset consists of 294 ground motions from crustal earthquake sources and 409 from 
subduction earthquake sources. Goda and Taylor (2012) and Goda et al. (2015) provide a 
detailed explanation of the rationale behind selecting these ground-motion sequences. In 
general, ground-motion sequences with mainshock magnitude ( MMS ) ≥ 5 and PGAgeom > 
0.075 g are selected, and among the recorded aftershocks, the ones with the highest magni-
tude are used.

In this study, no consideration  is provided for the spatial correlation of ground motions 
(Jayaram and Baker 2010) or multiple recordings at the same site (e.g., Kotha et al. 2017). 
RotD50Sa(T) (Boore 2010) spectra of the selected MS and AS ground motions are shown 

Fig. 1  Metadata of earthquake events for a mainshocks; and b aftershocks
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in Fig. 2a and b. In general, it can be observed from the two figures that the spectral shape 
of the MS and AS ground motions tend to be different. Specifically, the decay in the 
RotD50Sa(T) values in the MS records are lower as compared to the RotD50Sa(T) values in 
the AS records. Hence, it is essential that the ground-motion models are differentiated for 
MS and AS records, also accounting for the correlations between and within the MS and 
AS records.

3  Successive recurrent neural networks (RNNs)

RNNs (Williams et al. 1986) extend conventional feedforward ANNs that attempt to model 
time or sequence-dependent behavior. The underlying principle of modeling temporal 
sequences in RNNs is the use of recurrency in the networks. This is done by feeding back 
the output of a neural network layer at time step t to the input of the same network layer 
at time step t + 1. Since the ground-motion IM vectors represent the same ground motion 
characteristics, the values are dependent on each other. This can be viewed as a sequence 
of IMs where one value depends on the other values in the sequence. Therefore, RNN is 
suitable for training a data-driven model to predict cross-dependent vectors of IMs (IM).

However, conventional RNN structures still suffer from drawbacks, such as short-
term memory and vanishing gradients (Hochreiter and Schmidhuber 1996). LSTM units 
(Hochreiter and Schmidhuber 1996) are deployed in the RNN structure considered in this 
study to remedy this issue. LSTMs modulate the information flow using internal mecha-
nisms of cell and forget gates. General details of LSTM-RNN structures can be obtained 
from Fayaz et al. (2021b). LSTM RNNs feed forward while keeping an internal memory 
to process the inputs sequences adaptively and maintain internal dependencies between 
all data points within the output vector. Furthermore, the recurrent nature of an LSTM 
RNN enables performing the same function for each input, copying and sending the data 
back to the network while simultaneously producing the output. Hence in this study, the 
LSTM-based RNNs are used to develop MS–AS GGMM for log-scaled intensity meas-
ures, including D5−95,geom , Ia,geom , CAVgeom , PGVgeom , PGAgeom (also referred as Sa(T  = 0 s)) 
and Sa(T  ) at 25 periods (ranging from 0.05 to 5 secs) for MS and AS ground motions.

Fig. 2  RotD50Sa spectra of a mainshocks; and b aftershocks
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Specifically, two RNN structures are trained, one for mainshocks (MS-based RNN) and 
the other for aftershocks (AS-based RNN), linked together, as shown in Fig. 3. The neural 
networks are trained with cross-validation using a randomly selected 80% of the total data-
set. The MS-based RNN is trained using five seismic source and site parameters, including 
earthquake type ( EQ ), moment magnitude ( MMS ), closest rupture distance ( Rrup,MS ), hypo-
central depth ( Zhyp,MS ) and average soil shear-wave velocity for the top 30 m ( Vs30 ) (collec-
tively denoted as �

��
 ). The parameter EQ is input as a one-hot vector with [1,0] for crustal 

and [0,1] for subduction sources.
The RNN is trained to output the corresponding IMMS vector. The prediction power of 

the trained RNN is analyzed by comparing the observed and median predicted values of 
the IMMS vector. The results of this comparison are presented in Fig. 4. It can be observed 
from Fig.  4 that the observed versus predicted data points lie very close to the identity 
line with no evident bias for any IMs. Figure 4 also provides the coefficient of determina-
tion R2 of each IM prediction, which is observed to be greater than 0.7 in most cases. It 
should be noted that the framework is trained to possess good prediction power for each IM 
and maintain the internal cross-dependencies within IMMS. While the internal IM depend-
encies in IMMS are not necessarily linear, for the sake of interpretability and brevity, the 
empirical correlation matrices of the observed IMMS vector and predicted IMMS vector are 
compared. The two correlation matrices are presented in Fig. 5 for 10 out of 30 IMs in the 
IMMS vector. The observations suggest that, in general, the two correlation matrices are 
similar, and the RNN framework performs well in maintaining the internal correlations in 
the IMMS vector. The correlation values differ mainly within the −0.1 to 0.1 range, which 
is not expected to alter the results significantly. However, it should be noted that an RNN 
framework does not explicitly intend to preserve linear correlations within a sequence 
but instead tries to make sure that the internal dependencies are maintained, which can 
be highly non-linear. Hence a mismatch in linear correlations does not necessarily denote 
lower performance of the trained RNN.

Fig. 3  Proposed MS–AS RNN architecture. The inputs to the model include earthquake type ( EQ) , mag-
nitude ( M ), rupture distance ( Rrup ), hypocentral depth ( Zhyp ) and site shear-wave velocity ( Vs30) for both 
MS and AS. The model first uses the MS inputs to obtain IMMS (highlighted in the blue shade) and concat-
enates the output vector to the inputs of AS to obtain IMAS (highlighted in the green shade)
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To ensure that the predictions of the AS-based RNN are consistent with the predictions 
of the MS-based RNN, the outputted IMMS of the MS-based RNN is concatenated with 
AS inputs of seismic source and site parameters to train the AS-based RNN. The AS-based 
RNN is also trained using the same five seismic source and site parameters: earthquake 
type ( EQ ), magnitude ( MAS ), closest rupture distance ( Rrup,AS ), hypocentral depth ( Zhyp,AS ) 
and average soil shear-wave velocity for the top 30 m ( Vs30 ) (collectively denoted as �

��
 ). 

While the earthquake type (EQ) (which specifies the source as either crustal or subduc-
tion) cannot change between a MS and its AS events, this parameter is included as an input 
to the aftershock RNN to allow the neural networks to differentiate between the ASs of 
crustal and subduction sources. Similarly, in the case of Vs30 , if records for MS and AS 

Fig. 4  Measured (i.e., observed) vs. predicted IMs for mainshock records for a Sa(T) for all 26 periods; b 
Sa(T) for selected four periods; c Ia,geom ; d CAVgeom ; e PGVgeom ; and f D5−95,geom

Fig. 5  Mainshock cross-correlations for a observed IMs; and b predicted IMs
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are required at the same site, the value of Vs30 for both MS and AS are kept the same. The 
observed versus predicted values of the IMAS vector are presented in Fig. 6. This compari-
son shows a slight drop in R2 compared to the MS-based RNN; however, the data points 
lie very close to the identity line with no significant bias for most IMs. Notably, for lower 
levels of Ia (< 0.05  m/s), the proposed  RNN-based framework tends to overestimate the 
observed values slightly; predictions for such lower levels of Ia can be further improved 
with more usable datasets. Figure 7 compares the observed and true correlation matrices 
for 10 out of the 30 IMs in the IMAS vector. Generally, the two correlation matrices are 
in good agreement and the RNN framework performs well in maintaining the internal 

Fig. 6   Measured (i.e., observed) vs. predicted for aftershock records for a Sa(T) for all 26 periods; b Sa(T) 
for selected four periods; c Ia,geom ; d CAVgeom ; e PGVgeom ; and f D5−95,geom

Fig. 7  Aftershock cross-correlations for a observed IMs; b predicted IMs
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correlations in the outputs of the IMAS vector. The correlation values differ mainly within 
the -0.1 to 0.1 range, which is not expected to impact the overall performance of the pro-
posed framework significantly.

Furthermore, to verify if the two successive RNNs maintain the correlations between 
IMMS and IMAS, the empirical correlation structures between IMMS and IMAS are developed 
from the true recordings and compared against the correlation structure computed from the 
RNN-framework predictions. The comparison is performed using the �2 hypothesis test pro-
posed by Satorra and Bentler (2010) at a 5% significance level. The test failed to reject the 
null hypothesis that the two correlation structures are statistically similar. Hence, it can be 
concluded that the proposed RNN framework maintains the correlation structure between 
IMMS and IMAS in its predictions. Figure 8 presents the observed and predicted correlation 
structures between selected IMs of IMMS and IMAS. It should be noted that the correlation 
matrices shown in Fig. 8 are not necessarily symmetric as the IMs on the abscissa correspond 
to the AS, while the IMs listed on the ordinate correspond to the MS. It can be observed 
by comparing Fig. 8a and b that the two correlation matrices are generally similar. The cor-
relation values differ only within the -0.1 to 0.1 range, which is not expected to impact the 

Fig. 8  Mainshock–aftershock cross-correlations for a observed IMs; b predicted IMs; c observed and pre-
dicted Sa(T)
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results significantly. Figure 8c further shows the contours of the observed correlations versus 
the correlations maintained by the RNN for Sa(T) . It can be noted that the two correlation con-
tours are significantly overlapped, showcasing the proposed RNN’s power to capture internal 
dependencies. Figures 5, 7, and 8 are shown for the complete dataset as the results are similar 
between test and train sets.

4  Covariance structures of residuals

The two RNN structures can estimate the median vectors of IMMS and IMAS as described 
in Equations 1 and 2, respectively. The normally distributed residuals �MS and �AS (with zero 
mean vectors and ΣMS and ΣAS covariance matrices for MS and AS, respectively) are further 
used to construct an empirical joint MS–AS ground-motion covariance matrix for the 30 
intensity measures as described in Eq. 3, which consists of four quadrants of covariance matri-
ces Σ11 , Σ12 , Σ21 and Σ22 . In this, Σ11 and Σ22 represent the independent covariance matrices 
for the residuals of MS and AS ground motions (also expressed as ΣMS and ΣAS in Eqs. 1 and 
2) and are expressed in Eqs. 4 and 5. Empirical correlations between the residuals of Sa(T) at 
25 periods from the two covariance structures, Σ11 and Σ22 , are presented in Fig. 9a, b, respec-
tively. In these figures, it can be observed that, in general, correlations are sparser in the case 
of AS ground motions. Similarly, Σ12 and Σ21 represent the covariance between MS and AS 
residuals. In these equations, � and � respectively represent the correlations and standard devi-
ations corresponding to the IM residuals denoted by the subscripts of the � terms. Using these, 
the conditional covariance matrix for the AS residuals can be obtained using Eq. 7 (Papado-
poulos et al. 2020). While Eq. 7 allows the development of covariance matrices for AS residu-
als that are conditional on MS residuals, in most performance-based earthquake engineering 
applications (e.g., for ground-motion record selection and modification), IMs are conditioned 
on a single value of intensity measure (i.e., IM*; usually Sa(T ∗) ) (Baker and Cornell 2006). 
In such cases, Eq. 8 can be used to implement the required correlation (Baker and Cornell 
2006). In this study, as the median estimations of MS and AS IMs are internally correlated 
(both within and between MS and AS) due to the use of the proposed RNN framework, for the 
sake of brevity, Eq. 8 can be used to independently cross-correlate the IM uncertainty bands 
( ±� ) of MS and AS.

Fig. 9  Correlations of Sa(T) residuals for a mainshocks (Σ11) ; and b aftershocks (Σ22)
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5  An illustrative application of the proposed GGMM

This section illustrates an application of the proposed MS–AS GGMM model for con-
sistent MS–AS record selection and NLTHA of ordinary standard bridge structures. The 
model is implemented to select 30 ground-motion records for eight scenarios used for 
NLTHA of a symmetric two-spanned two-column ordinary box-girder bridge structure, 
denoted as Bridge B. The bridge consists of two equal spans, each 33.6 m in length and 
23 m in width, two columns of a radius of 0.84 m and a height of 6.7 m, consisting of ∼2% 
longitudinal reinforcement and a fundamental period ( T1 ) of 0.83 s. The 3D finite-element 
model of the bridge was developed in Openseespy (Zhu et al. 2018). The model comprises 
seat-type abutments, a column bent, and an elastic superstructure representing the deck. 
For further details on the bridge structure, see (Fayaz et al. 2020a, 2021a).

5.1  Record selection using the proposed MS–AS GGMM

For the sake of generalization and providing a simple example, eight arbitrary MS sce-
narios are used in this study, including a grid-based combination of magnitudes of 6, 6.75, 
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7.25, and 8, with rupture distances of 10 km and 20 km (i.e., 4 MMS values × 2 Rrup,MS 
values = 8 scenarios) to account for different earthquake types and ground-shaking inten-
sities. The events with MMS of 6 and 6.75 are simulated as crustal type with EQ = [1, 0] , 
while events with MMS of 7.25 and 8 are simulated as subduction events with EQ = [0, 1] . 
The magnitude and location of the MS event can be used to obtain the corresponding (and 
hazard consistent) AS scenarios. As discussed above, there are several alternative meth-
ods available in the literature that can be used to compute the parameters of AS using the 
parameters of MS.

This study primarily utilizes the general procedure adopted by Papadopoulos et  al. 
(2019). For each of the eight scenarios, one AS scenario with a magnitude MAS is gener-
ated using Eq. 9 (Ogata 1998), and for simplicity, the rupture distance is kept the same for 
the MS and AS (i.e. Rrup,MS = Rrup,AS ). While in reality the Rrup,MS and Rrup,AS can be differ-
ent from each other, this assumption is in line with a previous research study by Goda et al. 
(2012) and is not expected to alter this study’s results/discussion significantly. In Eq. 9, um 
is a uniformly distributed random variable over the range [0,1]; b is the Gutenberg-Rich-
ter (GR) constant parameter; and Mmin is the minimum considered magnitude (set to 5 in 
this study). For illustrative purposes, a value of b = 0.99 is used from the ETAS calibration 
of the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3; Field et al. 
2014) for California. Table  1 presents the magnitudes and distances of the MS and AS 
events for the eight considered hazard levels. For the events simulated as a crustal events 
(i.e., EQ = [1,0]), Zhyp is randomly simulated to be between 0 and 20 km, while for events 
simulated as subduction events (i.e., EQ = [0,1]), Zhyp is randomly simulated to be between 
20 and 50 km. For all the eight scenarios, Vs30=360 m/s is used for illustrative purposes. 
The source parameters of the simulated scenarios are shown in Table 1. It should be noted 
that this example is used only as a demonstration to utilize the proposed MS–AS GGMM 
for record selection and NLTHA. The model can be easily used for any other sophisticated 
type of analysis.

The obtained source parameters EQ,MMS , MAS , Rrup,MS , Rrup,AS , Zhyp,MS , Zhyp,AS and Vs30 
are appropriately used as �

��
 and �

��
 for inputting into the GGMM. The outputted ��

��
 

and ��
��

 are used as the target spectra for record selection. Figure 10 showcases the con-
structed ��

��
 and ��

��
 for two simulated scenarios. The mean ��

��
 and ��

��
 vectors 

are used to select 30 MS and AS ground motions for each scenario, as described below.
To avoid any significant bias, MS and AS ground motions are selected using the respec-

tive MS and AS datasets (Burton et al. 2017; Kohrangi et al. 2017). Minimal scaling is used 
with scale factors between 0.5 and 2.0 (Fayaz et al. 2021a). It should be noted here that the 

(9)MAS = −
ln
(
1 − um

)
bln10

+Mmin

Table 1  MS and AS event parameters

Scenario # 1 2 3 4 5 6 7 8

EQ [1,0] [1,0] [1,0] [1,0] [0,1] [0,1] [0,1] [0,1]
MMS 6.00 6.00 6.75 6.75 7.25 7.25 8.00 8.00
Rrup,MS = Rrup,AS(km) 10 20 10 20 10 20 10 20
MAS 5.09 5.12 5.07 5.20 5.66 5.32 5.32 6.41
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scaling process alters all the elements of ��
��

 and ��
��

 vectors (i.e., PGVgeom , PGAgeom 
and Sa(T) are scaled linearly and Ia,geom is scaled by the square of the scaling factor) of the 
ground motions except for the duration D5−95,geom . Hence, to select the ground motions 
that match the IM vectors, firstly, the ground motions characterized by D5−95,geom values 
between 80 and 120% of the target D5−95,geom for the given scenario are used as the ground-
motion selection pool from the respective datasets. Subsequently, the pooled ground 
motions are scaled from 0.5 to 2.0 (i.e., 0.25 to 4 for Ia,geom ) at an interval of 0.1 (hence 
16 scaling factors), and the resultant 29 × 16 IM vectors (without D5−95,geom ) are obtained 
and compared against the target mean GGMM IM vector of the given scenario. Due to the 
different scales of the IM values, the comparisons are performed using a weighted aver-
age accuracy, where accuracies for Ia,geom , CAVgeom , and PGVgeom are computed using the 
normalized accuracy given in Eq. 10, and the accuracy of the Sa(T) spectrum is computed 
using the Index of Agreement (Willmott et al. 1985) in Eq. 11. Both Eqs. 10 and 11 are 
bounded between 0 and 1, where 0 is the worst match and 1 is the best match. Then the 
accuracy measures are combined using a total weighted average accuracy ( Accavg), which 
is computed as per Eq. 12. For illustrative purposes, the weights are chosen as w1 = 0.2; 
w2 = 0.2; w3 = 0.2 and w4 = 0.4; however, users can freely choose weights based on their 
own criteria and their specific applications. Also, in this study, only the Sa(T) values within 
the period range of 0.5 T1 (i.e., 0.41 s) and 2 T1(i.e. 1.66 s) (Fayaz et al. 2021a) are used in 
Eq. 11 for the bridge record selection. For each scenario, the ground motions and scaling 

Fig. 10  MS–AS GGMM ��
��

 and ��
��

 : a using scenario #7 for Sa(T) ; b using scenario #7 for other IMs; 
c using scenario #3 for Sa(T) ; and d using scenario #3 for other IMs
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factor combination led to the highest 30 Accavg are selected for the bridge assessment. In 
addition, the selected ground motions only contain one scaled version. The process is per-
formed for all eight scenarios for both MS and AS. Figure  11 presents the mean ��

��
 

and ��
��

 of the selected 30 MS and AS recorded ground motions for scenario #3 with 
MMS = 7.75 and MAS = 5.07. While in this exercise, only one ��

��
 is obtained for each MS 

( ��
��

), for more sophisticated analysis, a multitude of ��
��

 can be easily obtained using 
the GGMM by keeping the �

��
 constant and appropriately changing �

��
 and then selecting 

ground-motion records.

(10)AccIM = 1 − abs

(
IMTar − IMGM

IMTar + IMGM

)

(11)
IASa

= 1 −

∑n

i=1

�
Sa,Tar

�
Ti
�
− Sa,GM

�
Ti
��2

∑n

i=1

�����Sa,Tar
�
Ti
�
−

∑n

i=1
Sa,Tar(Ti)
n

���� +
����Sa,GM

�
Ti
�
−

∑n

i=1
Sa,Tar(Ti)
n

����
�2

Fig. 11  Selected ground motions with the target mean GGMM for scenario #3: a MS ( Sa(T) spectrum); b 
MS ( Ia,geom , CAVgeom , PGVgeom , D5−95,geom),; c AS ( Sa(T) spectrum), and d AS ( Ia,geom , CAVgeom , PGVgeom , 
D5−95,geom)
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5.2  NLTHA results and discussion

The selected MS and AS ground motions are concatenated to develop the sequence of 
ground motions. To allow the bridge structures to return to steady-state response after the 
MS, the ground motion time-history is padded with zeros equivalent to 25 times the bridge 
first mode period, i.e., 250 × 0.8 secs = 200 secs (Fayaz et al. 2019). The zero-padded MS 
ground motion is then concatenated with AS ground motion and used to conduct NLTHA 
of the bridge B structure for each scenario. Since the behavior and performance of bridge 
structures is not similar in all axes, NLTHA is conducted by rotating the two orthogonal 
components of the ground motions from 0 to 180 degrees at intervals of 15 degrees (13 
intercept angles). For each intercept angle of the bi-directional ground motion loading, its 
corresponding maximum column drift ratio (CDR) value (Fayaz et al. 2020a) through the 
time history is obtained. Three types of maximum CDRs are recorded from the time his-
tory of the MS + AS sequence. As shown in Fig. 12a, the three CDRs include (i) maximum 
CDR recorded during the MS (denoted as CDRMS ); (ii) maximum CDR recorded during the 
AS (denoted as CDRAS ); and iii) maximum CDR recorded during the MS + AS sequence 
(denoted as CDRseq ). The maximums of the 13 maximum CDRMS , CDRAS , and CDRseq 
from 13 rotation angles are termed as Rot100CDRMS , Rot100CDRAS , and Rot100CDRseq , 
respectively. Figure 12b presents the Rot100CDRseq for the eight used scenarios. The cases 
with Rot100CDRseq > 0.1 are classified as collapses in the analysis. The bridge structure 
tends to yield around ~ 1% CDR. As shown in Fig. 12b, the bridge structure remains in the 
elastic zone for most ground motion sequences for the eight scenarios. However, there are 
multiple cases where the bridge goes to non-linearity and large drifts.

Since peak engineering demand parameters do not necessarily increase monotoni-
cally with the ground-motion duration/sequence (e.g., Fayaz et al. 2020b; Gentile and 
Galasso 2021), it is possible that CDRMS maybe equal to CDRseq and an AS does not 
lead to an increase in the peak demands (unless the finite-element model appropri-
ately captures damage accumulation and structural degradation). Figure 13 shows the 
comparison of Rot100CDRMS and Rot100CDRAS for the eight considered scenarios. The 

(12)Accavg =
w1AccIa,geom + w2AccCAVgeom

+ w3AccPGVgeom
+ w4IASa

w1 + w2 + w3 + w4

Fig. 12  a CDRs recorded during a sample MS + AS sequence; b Rot100CDRseq for the eight scenarios
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figure shows the response values through scatter plots; furthermore, the kernel den-
sity estimates (KDEs) of the two types of responses are statistically tested for simi-
larity through the Kolmogorov–Smirnov (KS) hypothesis test (Massey 1951). The 
p-values < 0.05 indicate that the test rejects the null hypothesis (i.e., the two samples 
are from the same distribution and are statistically similar). As can be observed from 
Fig. 13, the p-values for all eight scenarios are less than 0.05, thereby suggesting that 
the Rot100CDRMS and Rot100CDRAS are not similar. Moreover, by observing the scat-
ter plot and histograms, it can be concluded that the Rot100CDRAS values, on average, 
are higher than Rot100CDRMS values. This means that, in most cases, the bridge model 
is appropriately able to capture the accumulation of damage in the structure, which 
leads to an increase in the drift response. It is worth stressing that this demonstration 
is not an intended novelty of the study but showcases how to efficiently utilize the 
proposed MS–AS GGMM to select and scale ground motions based on a vector of IMs 
and conduct proper seismic demand analysis. It is clear that consistent record selection 
of MS + AS sequences is essential to perform appropriate seismic demand analysis. It 
can lead to statistically higher demand levels that should be adequately accounted for 
at the design and risk assessment stages.

Methods incorporating various types of dependencies between source and site, 
ground-motion IMs, and other characteristics of MS–AS ground motions, like the one 
proposed in this study, are much needed for accurate analysis and design of structures 
and risk assessment. Due to the preeminence of neural network-based frameworks and 
their capability to interpolate and extrapolate complex data (Fayaz and Galasso 2022), 
such methods can be used to provide efficient tools for engineers, risk modelers, and 
other end users. Due to the scarcity of usable earthquake recordings (especially AS 
records), the framework is currently trained with only ~ 700 relevant ground motions. 
However, the data-driven nature of the framework means it can be easily re-trained 
using more extensive databases for developing more generalized results. With more 

Fig. 13  Comparison of Rot100CDRMS and Rot100CDRAS for the eight scenarios
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comprehensive data, the proposed framework can also be trained on a regional basis, 
which may assist end-users in performing more accurate aftershock probabilistic seis-
mic hazard and risk analyses and also provide better models for simulating synthetic 
ground-motion sequences.

6  Conclusions

This study presents a data-driven Generalized Ground Motion Model (GGMM) to 
predict two consistent vectors of ground motion intensity measures for mainshock 
and aftershock (denoted as IMMS and IMAS) with 30 components. For this IM vector 
estimation, the GGMM incorporates two LSTM-based RNN structures (one for main-
shock and the other for aftershock) that use two 5 × 1 vectors of inputs of earthquake 
source and site parameters, including earthquake type, moment magnitude, closest 
rupture distance, hypocentral depth, and average soil shear-wave velocity which col-
lectively describe the physics of the rupture and characteristics of the site. The sug-
gested IMMS and IMAS include geomeans of Ia, CAV, PGV, PGA, and D5-95, which com-
prise five out of 30 components of the suggested IMMS and IMAS obtained from pairs 
of two horizontal components of ground motion records. The other 25 components of 
IMMS and IMAS include 5% damped RotD50Sa at 25 periods (ranging from 0.05 to 5 
secs). The suggested GGMM for estimation of IMMS and IMAS is a step in the direction 
that incorporates both time and frequency domain IMs of mainshock and aftershock 
ground motion along with their cross and internal dependencies in a single stand-alone 
model. The residuals obtained from the LSTM-based RNN models for the 30 IMs are 
further utilized to develop three covariance matrices, i.e., covariances for within- IMMS, 
within- IMAS, and between IMMS and IMAS. Based on the results, it is observed that 
the proposed GGMM demonstrates acceptable performance in predicting the vectors 
of intensity measures for mainshock and aftershock sequences while maintaining their 
internal correlations.

Finally, the use of the proposed GGMM is illustrated for MS–AS record selection 
for time-history analyses of an ordinary bridge structure. The bridge structure is rep-
resented using an advanced non-linear finite-element model. The proposed GGMM 
is used to select 30 MS–AS ground motions with minimal scaling (i.e., scale factors 
between 0.5 and 2) for eight scenarios. A multi-criteria objective function is used to 
select the MS–AS ground motions that match the target IM vectors for MS and AS. The 
presented example is intended to serve as a reference for utilizing the proposed GGMM 
for structural design and analysis, risk assessment, and decision-making.

In conclusion, the GGMM proposed in this study offers a robust data-driven tool for 
obtaining consistent MS and AS ground motion intensity measures and can be used for 
several purposes. These include pre-event structural and geotechnical design and analy-
sis (e.g., for ground motion selection using multi-objective IM criteria), post-event risk- 
and reliability-based decision-making, validation of artificial/simulated ground motion 
sequences (by checking if the simulated ground motions comply with a set of possible 
IM vector corresponding to causal parameters), mainshock-consistent aftershock proba-
bilistic seismic hazard analysis, etc. Furthermore, the proposed framework can be easily 
re-trained with other ground motions records (if available) or extended to a larger vector 
of IMs that can include any other IMs of interest.
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