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SUMMARY
Stage I non-small cell lung cancer (NSCLC) presents diverse outcomes. To identify molecular features lead-
ing to tumor recurrence in early-stage NSCLC, we perform multiregional whole-exome sequencing (WES),
RNA sequencing, and plasma-targeted circulating tumor DNA (ctDNA) detection analysis between recurrent
and recurrent-free stage I NSCLC patients (CHN-P cohort) who had undergone R0 resection with a median
5-year follow-up time. Integrated analysis indicates that the multidimensional clinical and genomic model
can stratify the prognosis of stage I NSCLC in both CHN-P and EUR-T cohorts and correlates with positive
pre-surgical deep next generation sequencing (NGS) ctDNA detection. Increased genomic instability related
to DNA interstrand crosslinks and double-strand break repair processes is significantly associated with early
tumor relapse. This study reveals important molecular insights into stage I NSCLC and may inform clinical
postoperative treatment and follow-up strategies.
INTRODUCTION

Non-small cell lung cancer (NSCLC) is the leading cause of can-

cer death globally (Siegel et al., 2020). Surgery is the curative

treatment for early-stage NSCLC, and the postoperative treat-

ment strategy depends mainly on staging of disease according

to tumor-node-metastasis (TNM) classification (Goldstraw

et al., 2016). Multiple clinical guidelines recommend postopera-

tive adjuvant chemotherapy for patients with resected stage II or

III NSCLC, which is associated with a 5% improvement in overall

survival (OS), whereas treatment after surgery is neither benefi-

cial nor recommended for patients with stage I NSCLC as a

group (Group et al., 2010).

However, approximately 20%–40% of patients with stage I

lung cancer experience tumor recurrence (Re) after curative sur-

gery, some of which even recur very shortly after surgery, and

which patients will relapse and which will not is currently not pre-

dictable based on clinical characteristics alone (Vansteenkiste

et al., 2014). Many attempts have been made to develop prog-

nostic biomarkers for recurrence (Devarakonda et al., 2018; Li
This is an open access article under the CC BY-N
et al., 2017). Early studies focused on the prognostic value of

clinical and pathological characteristics such as surgical proced-

ure and histological subtype; however, these studies failed to

explain why the prognosis of patients with similar clinical-patho-

logical features are diversely different (Tsao et al., 2015). Subse-

quent studies focused on genome-based prognostic signatures,

which was limited by the inconsistency and lack of validation. To

date, none of these gene signatures have demonstrated clinical

utility (Vargas and Harris, 2016). Only recently have next genera-

tion sequencing (NGS)-based genomic studies become feasible

and focused on the molecular landscape of lung cancer. These

studies have revealed that multiple genomic factors, including

driver mutations, mutational signatures, pathway analysis,

copy-number alterations, genomic heterogeneity, gene expres-

sion, and immune infiltration, contribute to the eventual prog-

nosis of a patient (Table S1A). Most of these studies were con-

ducted in Western countries with predominantly smokers and

Caucasian subjects (Jamal-Hanjani et al., 2017; Rosenthal

et al., 2019). In addition, none of these studies specifically

focused on patients with stage I NSCLC. Postoperative
Cell Reports 40, 111047, July 12, 2022 ª 2022 The Authors. 1
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management of stage I disease continues to be challenging

because there is no specific genomic guide for identification of

patients with high risk of recurrence.

In this study, we performed a comprehensive analysis of re-

sected stage I NSCLC bymultiregional whole-exome sequencing

(WES) with an average depth >5003, RNA sequencing, and

plasma-targeted circulating tumor DNA (ctDNA) detection, and

correlated the genomic findings with survival after median

follow-up of more than 5 years. This analysis was also compared

with published genomic datasets from an East Asian (EAS) cohort

(EAS LUADs [lung adenocarcinomas]) (Chen et al., 2020), a Euro-

pean cohort (TRAcking Cancer Evolution through therapy

[TRACERx]) (Jamal-Hanjani et al., 2017), and an American cohort

(The Cancer Genome Atlas [TCGA]).

RESULTS

Patient cohort and sequencing quality statistics
We retrospectively enrolled 81 patients diagnosed with stage I

NSCLC with no prior therapy as the Chinese CHN-P cohort. Pa-

tientsweredivided into twogroupsaccording to tumor relapsesta-

tus: Re (n = 33) and recurrence-free (Rf, n = 48) groups, based on a

median of 62 months of clinical follow-up until September 2020.

The median recurrent time was 15 months (range: 2–62 months).

The clinical demographics are summarized in Tables S1B and

S1C. Except for dominant LUAD patients (p = 0.01), tumor sizes

(p = 6.03 10�4) and patient ages (p = 0.01) of the Re group were

higher than those of the Rf group, other clinical features did not

differ between the two groups (Figure 1A; Table S1B).

Multiregional WES produced an average sequencing depth of

5613 (range: 113–1,2033) using a total of 240 tumor tissue spec-

imens and 81 matched adjacent normal tissues (Table S2A). RNA

sequencing was also performed for 28 samples from 21 patients

and generated an average of 33.1 million clean reads (14.2–

45.7 million) per sample (Table S2B).

Significant somatic mutations in Re and Rf stage I
NSCLCs
WES data revealed 31,531 somatic non-synonymous (non-silent)

single-nucleotide variants (SNVs) or insertion/deletions (Indels),

with a median of 115 (range: 30–1,044) mutations per patient for

the Re group and 65 (range: 27–2,042) for the Rf group (p =

0.006; Figure S1A; Table S3A). The corresponding median tumor

mutation burden (TMB) per patient was 2.89/Mb and 1.74/Mb,

respectively (p=0.008;Figure1B),whichwassignificantlydifferent
Figure 1. Somatic mutation features

(A) Clinical feature comparisons between tumor recurrence (Re) and recurrence-

(B) Comparison of TMB between patients of Re and Rf groups (p = 8.0 3 10�3).

(C) Comparison of clonal, shared-, and private-subclonal SNV/Indel proportions

(D) Somatic mutation profiles. Gene names are shown on the right side of the gra

Potential driver genes are indicated in red color. Asterisks indicate the significantl

shown on the upper panel. Clinical information is listed at the bottom area.

(E) Mutation gene numbers harboring mutational signatures S1, S2, and S4 sta

mutations in each patient are shown on the top, middle, and bottom graphs, res

(F) Comparison of the weight of each mutational signature between Re and Rf g

(G) Dynamic changes of mutational signature weights in patients with different pr

specific time point on the x axis, respectively.

ITH, intratumor heterogeneity; NS, no significant difference. The p value less tha
between Re and Rf groups. In addition, TMB was found to be

significantly higher in patients who had smoked (n = 32/81,

39.5%) than in patients who were non-smokers in both groups

(p = 4.4 3 10�4; Figure S1B; Table S3B). The multiregional WES

also revealed that about 61.15%ofmutationswerepure subclonal

ones (Tables S3C and S3D), and a high proportion of subclonal

SNVs/Indels was observed in Re patients (p = 0.08; left graph of

FigureS1C)butdidnot significantly affectpatientdisease-freesur-

vival (DFS) time (p = 0.052; right graph of Figure S1C). Compared

with those patients with stage I NSCLCs in a European cohort of

the TRACERx study (EUR-T) (n = 61) (Jamal-Hanjani et al., 2017),

theCHN-P cohort had higher intratumor heterogeneity (ITH), char-

acterized by lower clonal but higher shared and private subclonal

mutation fractions in both smokers and non-smokers (p < 0.014;

Figures 1C, S1D, and S1E) and a trend toward lower mutation

diversity (p = 0.085; Figure S1F) based on SNVs/Indels. The ITH

diagram of each patient is shown in Figures S1G and S1H.

MutsigCV and dNdScv (q < 0.1) were used to identify somatic

driver mutation genes. TP53 (61% versus 44%) and EGFR (52%

versus 42%) were the top two driver genes in both Re and Rf

groups. KRAS (3% versus 17%) and KEAP1 (9% versus 10%)

were additional driver mutation genes in the Rf group (Figure 1D).

All four driver gene mutations had no significant impact on DFS

time. EGFR mutations occurred frequently in women and pa-

tients who were non-smokers (Figures S1I and S1J), while

KRAS and KEAP1 mutations were enriched in men and patients

who were smokers. TP53mutations occurred more frequently in

smokers and tumors larger than the median size (Figure S1K).

Forty-one recurrently somatically mutated genes with fre-

quencies >10% were detected (Table S3A), most of which had

a higher frequency in the Re group than in the Rf group; however,

they did not significantly impact Re or patient prognosis. Sixteen

significantly differentially recurrent somatic mutations were iden-

tified in the CHN-P cohort based on Fisher’s exact test (p < 0.05;

Figure 1D; Table S3E), which were involved in functions related

to signaling transduction, transcriptional regulation, tumor sup-

pression, and cell adhesion or communication. All 16 mutations

occurred at higher frequency in the Re group (18% to 12%) than

that in the Rf group (4% to 0%). Patients harboring these somatic

mutations had significantly shorter DFS times than individuals

with wild-type genotypes, elucidating that those diverse somatic

mutations promote or accompany lung carcinogenesis and

progression.

A further comparison of somatic mutations in genes related to

genomic integrity between the CHN-P cohort and the other EAS
free (Rf) groups. ***p < 0.001, **p < 0.01, *p < 0.05.

in the patients between the CHN-P and the EUR-T cohorts.

ph, and the corresponding mutational frequencies are shown on the left side.

y differential mutation genes in the Re and Rf groups. Tumor mutation burden is

tistically on total mutations, and their weights in clonal- and subclonal-level

pectively.

roups.

ognosis during follow-up. E-Re or L-Re, tumor recurred earlier or later than the

n 0.05 was defined as significant.

Cell Reports 40, 111047, July 12, 2022 3



Figure 2. Somatic mutational comparison between the CHN-P cohort and other cohorts

Each gene box includes 6% values representing the mutational frequencies of genes in the CHN-P cohort on the whole (CHN-P), Re and Rf groups, EAS cohort,

EUR-T cohort, and TCGA cohort, as shown in the graph. The color scale bar shows the mutation frequency from 0% to 100%. Genes are grouped by signaling

pathways related to genome maintenance mechanisms. Interaction between genes is indicated by arrows.

TSG, tumor suppressor gene.
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patients (n = 131) (Chen et al., 2020) and the Western stage I

NSCLC cohorts (including the EUR-T [n = 61] and TCGA

[n = 277] cohorts; Figure 2) identified that NF1 (4%), KRAS

(11%), ERBB4 (1%), and mTOR (2%) of the receptor-tyrosine

kinase (RTK)/RAS/phosphatidylinositol 3-kinase (PI3K) pathway,

CRB1 (2%) andHMCN1 (7%) of the Hippo pathway, and CHEK2

(0%) of the p53 pathway had lower mutation frequencies, while

EGFR (46%) of the RTK/RAS/PI3K pathway had much higher
4 Cell Reports 40, 111047, July 12, 2022
mutation frequencies in our and EAS cohorts than in Western

populations.

BRCA2 (12%), BRCA1 (6%), and FANCM (9%) of the homolo-

gous recombination repair (HRR)/Fanconi anemia (FA) pathway

were detected with higher mutation frequencies in the Re group

compared with those in the Rf group (0%–2%), EAS cohort (0%–

2%), and Western cohorts (3%–4% or 4%–8%). The same ob-

servations were also made in several genes of the base excision
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repair (BER)/nucleotide excision repair (NER)/mismatch repair

(MMR) and checkpoint factors (CPF) pathways, indicating

possible different mutation fragile sites or genetic mechanisms

causing lung carcinogenesis and relapse between Chinese and

Western populations.

Somatic mutational signatures of stage I NSCLCs
Mutational signatures were de novo characterized according to

the mutation spectrum, and three highly confident signatures

with high similarity to the Catalogue of Somatic Mutations in

Cancer (COSMIC) signatures were derived: age-related S1

(92%), activation-induced cytidine deamniase/apolipoprotein B

mRNA editing enzyme catalytic polypeptide-related S2 (82%),

and smoking-related S4 (93%) (Figures S2A and S2B). These

three mutational signatures were also predominant in stage I

NSCLCs of the EAS, EUR-T, and TCGA cohorts.

The number of patients with S1, S2, and S4 showed no signif-

icant difference between the Re and Rf groups (Figure S2C).

However, the weight of age-related S1 predominated in clonal

mutations (Figures 1E and S2D) and significantly accumulated

in the Rf tumors compared with the Re tumors (p = 0.002; Fig-

ure 1F). The prevalence of S1 generally remained at low levels

(median = 0.23) in patients with early recurrence (Line E-Re) in

the dynamic analysis of mutational signature changes according

to the relapse time of patients (Figure 1F). APOBEC-related S2

prevalence was higher in subclonal mutations (median = 0.17)

than in clonal mutations (median = 0.08) (Figures 1E and S2D),

suggesting that the timing of APOBEC mutagenesis was rela-

tively late and induced a subclonal driver event. In contrast,

smoking-related S4 dominated in clonal mutations (median

weight = 0.3) (Figures 1E and S2D) and in some early Re (E-Re)

patients (tumors recurred within 9 months of Line E-Re) (up to

0.51) (Figure 1G), implying its contribution to lung carcinogenesis

and potential impact on particularly poor prognosis tumors.

Further correlation analysis with clinical features also demon-

strated that smoking-related S4 had a significant positive rela-

tionship with smoking and TMB features and was associated

with the male gender (Figure S2E).

Somatic mutation-enriched pathways drive Re
Tumorigenesis, genomic evolution, and corresponding clinical

phenotypes are driven by a group of frequently altered carcino-

genesis pathways, including 10 canonical oncogenic signaling

(COS) pathways (involving 335 genes), which cover 89% of

9,125 different solid tumor types as reported by TCGA

PanCancer Atlas Project (Sanchez-Vega et al., 2018), and DNA

damage repair (DDR) pathways (involving 233 genes), which
Figure 3. Oncogenic signaling and DNA damage repair (DDR) pathway

(A) Statistical numbers of canonical oncogenic signaling (COS) pathway alteration

name is on the left and the corresponding alteration frequency is on the right of

(B) Comparison of OS and DDR pathways between Re and Rf groups of the CHN

(C) Impact of NDA on patient disease-free survival (DFS) time. p = 0.0226 when

(D) Comparison of mutation frequency of each pathway among CHN-P, EAS, EUR

cohort. Mutation frequency of HRR (p = 0.017) and TLS (p = 0.009) pathways sig

(E) Dynamic analysis on mutation frequencies of HRR and TLS pathways in the E

(F) Frequently mutating genes detected during dynamic analysis of canonical OS

Both refer to the genes detected in both E-Re and L-Re types of tumor. The p va
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have a considerable influence on genomic instability and drug

resistance (Scarbrough et al., 2016; Wang et al., 2018). In the

CHN-P cohort, alterations in COS pathways (95.1%) and DDR

pathways (72.8%) were pervasive (Figure 3A; Table S4). For

the 10 COS pathways, the most frequently altered pathway

was the RTK/RAS/MAPK pathway (79.0%), followed by the

p53 pathway (51.9%). For the eight DDR pathways, the most

frequently altered DDR pathway was the CPF (58.0%) pathway,

particularly focusing on TP53 mutation (n = 41/47, 87.2%).

Both numbers of COS pathway alterations (NOA) and DDR

pathway alterations (NDA) positively correlated with TMB (p =

8.3 3 10�9 and 1.5 3 10�10; Figures S3A and S3B); however,

only NDA occurred significantly more in the Re patients

(n = 28/33, 85.8%) in comparison with those in the Rf patients

(n = 31/48, 64.6%) (p = 0.025; Figure 3B). When DDR pathway

alterations occurred in four or more pathways (NDA R 4) in

each patient, they significantly affected DFS time (p = 0.023; Fig-

ure 3C), whereas NOA did not (p = 0.156; Figure S3C).

The comparison of COS and DDR pathway alterations in stage

I patients between the CHN-P cohort and the other three cohorts

demonstrated that similar pathway alteration patterns existed in

the EAS and CHN-P cohorts, which were different from that of

the EUR-T cohort (left two graphs of Figure 3D), while the

pathway pattern of TCGA cohort was intermediate between

the CHN-P cohort and the EUR-T cohort, possibly because of

the inclusion of the 62 non-Caucasian patients. Pathway alter-

ation numbers in the CHN-P cohort were more abundant than

those in the EAS cohort, which was most likely caused by multi-

regional sampling in our study. Due to the lack of DFS informa-

tion in the EAS and TCGA cohorts, we analyzed only the impact

of pathway alterations on Re events in our and EUR-T cohorts.

Alterations in translesion synthesis (TLS) and HRR pathways

were significantly more frequent in the Re patients of the

CHN-P cohort (p = 0.009 and 0.017, respectively) (right two

graphs of Figure 3D) than in the Rf patients; however, no

pathway alteration significantly differed between the two groups

in the EUR-T cohort (Figure S3D). TLS is a fundamental mecha-

nism to guarantee DNA replication across bulky barriers on DNA

templates to prevent DNA double-strand breaks (DSBs) by

specialized TLS DNA polymerases, including Rev1, Rev3L, and

HLTF genes identified in the Re patients (n = 5), and all were sub-

clonal (Table S4A). Loss-of-function mutations of these genes

have been reported to increase frequencies of chromosome

breaks and translocations, leading to genomic instability (Zafar

and Eoff, 2017). The HRR pathway is also critical in repairing

DNA DSBs and maintaining genome stability (Knijnenburg

et al., 2018). The two most frequently mutated genes in the
alteration analysis

s (NOA) and DDR pathway alterations (NDA) of the CHN-P cohort. The pathway

the graph.

-P cohort.

NDA accumulates up to or more than four pathways.

-T, and TCGA cohorts, as well as between the Re and Rf groups in the CHN-P

nificantly differed between the Re and Rf groups.

-Re, L-Re, and Rf patients over a follow-up survey as shown on the x axis.

and DDR pathway alterations. Gene names are listed on the right of the graph.

lue less than 0.05 was defined as significant.
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HRR pathway wereBRCA2 (12%) and BRCA1 (6%) in the Re pa-

tients (Figure 2; Table S4A), followed by 11 other mutated genes

(including five helicase and three nuclease genes) at low muta-

tion frequencies (<6%) (Table S4A).

Analysis of changes in the mutation frequency of each

pathway among patients with different recurrence timing during

follow-up revealed consistently higher mutation frequencies of

TLS, HRR (Figure 3E), and FA, NER of DDR pathways, as well

as Myc, PI3K, Hippo, p53, NRF2, and TGF-b of COS pathways

in the E-Re patients than in either the late-Re (L-Re) or Rf patients

(Figure S3E). The corresponding carcinogenesis-related gene

mutations identified in the E-Re tumors are listed in Figure 3F

(those within 15 months of E-Re and both groups; Table S4A),

indicating their possible involvement in E-Re events. Among

them, Myc, PI3K, Hippo, p53, NRF2, and TGF-b pathways regu-

late cell proliferation, growth, and apoptosis. TLS, HRR, FA, and

NER pathways commonly act alone or synergize to repair DNA

DSBs and complex lesion events, especially caused by DNA

interstrand crosslinks (ICLs) during DNA replication at synthesis

(S) phase of the cell cycle (Kass et al., 2016; Niraj et al., 2019).

TLS pathway alterations had a significant impact on DFS time

among all the patients (p = 1.4 3 10�7) (Figure S3F) and among

the recurrent patients (p = 0.03) (Figure S3G), implying the poten-

tial roles for the TLS pathway and the corresponding gene muta-

tions in E-Re.

Copy-number variations (CNVs) and focal driver genes
related to cell proliferation in recurrent stage I NSCLCs
Clonal CNVs were defined as those detected in all the tumor re-

gions of each patient, whereas subclonal CNVs were defined as

those not detected in all tumor regions. Although the proportion

of stage I patients harboring clonal CNVs in the EUR-T cohort

(n = 54/61, 88.5%) and in the CHN-P cohort (n = 64/81, 79.0%)

was similar (Figure 4A), a distinct genomic feature (Figure 4B),

characterized by a significantly lower total fraction of genome

altered (FGA) (p = 2.73 10�5; Figure 4C) and clonal CNV fraction

(p = 6.3 3 10�14) but remarkably higher private-subclonal CNV

fraction (p = 1.2 3 10�7), was detected in the CHN-P cohort

compared with the EUR-T cohort (Figures S4A and S4B).

Notably, the smokers (n = 32/81, 39.5%) in the CHN-P cohort ex-

hibited consistent FGA (Figure 4C) and subclonal CNV propor-

tions (Figure S4C) in comparison with those of the EUR-T cohort.

On focal-CNV gene levels of the CHN-P cohort (Figure S4D), only

18% were clonal, 20% were shared-subclonal, and up to 62%

were private-subclonal, revealing that the timing of CNV events
Figure 4. Somatic copy-number variations and focal gene analysis

(A) Comparison of CNV-level intratumor heterogeneity between the CHN-P and

(B) Comparison of clonal, shared-, and private-subclonal CNV proportions in the

(C) Significantly lower proportion of total fraction of genome altered (FGA) with C

CHN-P cohort than that in the EUR-T cohort.

(D) Impact of intratumor heterogeneity of CNV levels higher and lower than the m

(E) CNV-level intratumor heterogeneity in stage I NSCLCs compared with that in

(F) Significantly focal CNV amplifications across chromosomes 1–22 between Re a

Re group. Highly frequent CNV-related driver genes were significantly marked wi

and L-Re patients.

(G) Dynamic analysis revealed that focalBCL3 andCBLC amplifications (19q13.31

(H) Significant impact of CNV-amplification driver genes BCL3 and CBLC on pat

(I) Significant influence of loss of heterozygosity (LOH) on patient DFS time. The
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was later in the CHN-P cohort compared with those in the

EUR-T cohort.

Comparing the Re and Rf groups of the CHN-P cohort, FGA of

CNV, clonal/subclonal CNV length, or percentage of clonal/sub-

clonal-CNV length (Figures S4E–S4G) did not reach a significant

level. Moreover, despite presenting a modest trend, the CNV ITH

did not affect the DFS time for stage I NSCLCs in either the

CHN-P (p = 0.099; Figure 4D) or EUR-T (p = 0.51; Figure S4H)

cohort, suggesting that the impact of chromosomal instability

on the clinical outcomes of patients in very early-stage NSCLC

was in a kainogenesis stage. By comparing the subclonal CNV

percentage between stage I and II–III patients of the EUR-T

cohort, it was confirmed that stage II–III patients had significantly

higher CNV heterogeneity (p = 0.003; Figure 4E).

At the chromosomal arm levels, a significant number of ampli-

fications rather than deletions were detected in stage I NSCLCs

in the CHN-P cohort (Figure 4F). Particularly for the Re patients,

arm-level gains focused on 1q, 2p/q, 3q, 5q, 6p, 8q, 11q, 12p,

17p, and 19p/q, corresponding to 777 amplified genes anno-

tated (p < 0.05; Figure 4F; Table S5). Among them, amplified

1q, 2p, 3q, 8q, and 12p have been previously reported in Chinese

NSCLCs (Hu et al., 2019; Wu et al., 2015; Zhang et al., 2019).

Twenty-nine CNV-related driver genes were identified by

comparing with the COSMIC database. These events were

enriched in the arm regions of 1q, 2p, 3q, 5q, 6p, 8q, 12p, and

19p/q, such as highly recurrent (n R 10 in the CHN-P cohort)

and large-frequency difference between Re and Rf patients,

a DNA replication-involved RecQ helicase gene RECQL4

(8q24.3), and a transcriptional factorBCL9 (1q21.2), whose func-

tions are all related to cell proliferation and their amplification all

had a significant influence on DFS (p < 0.01; Figure S4I).

Further analysis of CNV profiling according to the Re time re-

vealed 265 CNV-amplified genes, including two frequently

amplified driver genes closely correlated with E-Re events

(p < 0.05) (bottom graph of Figure 4F; Table S5C). The two genes

were transcription co-activator BCL3 and cell signaling trans-

duction gene CBLC, both as a proto-oncogene candidate on

19q13.32 and promoting tumor cell proliferation or migration

(Turnham et al., 2020) (Figure 4G), which was significantly asso-

ciated with DFS (p = 0.024; Figure 4H), suggesting that chromo-

somal amplifications on certain focal genomic loci may play an

essential role in Re.

Genome doubling (GD) events and genome instability (GI)

have been reported to be positively associated with lung

carcinoma development from stages I to IV (López et al.,
EUR cohorts.

patients of the CHN-P cohort and those in the EUR-T cohort.

NVs in all patients (p = 2.7 3 10�5) and smoker patients (p = 2.1 3 10�3) of the

edian value on patient DFS time in the CHN-P cohort (p = 0.099).

stage II–III NSCLCs of the EUR-T cohort.

nd Rf groups and highly frequent CNV-driver genes significantly enriched in the

th red color between Re and Rf groups, as well as between patients with E-Re

–32)more frequently occurred in the E-Re patients than in L-Re andRf patients.

ient DFS time.

p value less than 0.05 was defined as significant.
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2020). Chromosomal instability events reportedly occurred as

early as atypical adenomatous hyperplasia and adenocarcinoma

in situ (Chen et al., 2019a; Hu et al., 2019). However, EAS LUADs

have been reported to have a lower percentage of GD, ploidy, or

percentage of genome altered (PGA) compared with those of the

EUR cohort (Chen et al., 2020). In the CHN-P cohort, about

71.6% of patients (n = 58/81) were found to have GD events in

at least one tumor region, and 27.6% (n = 16/58) were clonal

events (Figure S4J). The numbers of patients with GD between

the Re and Rf groups (p = 0.32) and the impact of GD on DFS

(p = 0.2; Figure S4K) did not reach significant levels. Loss of

heterozygosity (LOH) was found in all Re patients and 79% of

Rf patients (n = 38/48), with a significant difference between

the two groups (p = 0.005; Figure S4L), which influenced DFS

time (p = 0.015; Figure 4I). However, fractions of the genome

with LOH events between Re and Rf groups (p = 0.25; Fig-

ure S4M) and the influence on patient DFS time were not signif-

icant (p = 0.09; Figure S4N). Overall, for stage I NSCLCs, the

impact of large-scale chromosome instability on patient prog-

nosis did not reach significant levels; however, certain focal

CNV regions/genomic loci and the corresponding driver genes,

particularly for those related to cell proliferation regulation,

were very important in E-Re versus L-Re.

Integrative analysis of multiple features related to Re
To evaluate the importance of each feature contributing to Re

events, we included genomic features with a combination of clin-

ical features that presented critical effects on Re (p < 0.2) and

had little correlation with each other in previous analysis. These

multiple features could be assigned into three groups: clinical

features (including age, pathological type, tumor size, smoking,

gender), molecular features (including TLS and HRR pathways,

SNV clonality), and chromosomal instability (including focal

CNV-related driver genes [n R 10] of BCL9 and RECQL4, FGA,

and LOH).

The integrative analysis of 16 features showed their correlation

network structure in the CHN-P cohort (Figure 5A). Correlations

among age, tumor size, SNV clonality, FGA, LOH, and ploidy

were significant with each other. Figure 5B shows the weight

of each feature in the multivariate model. Molecular features

were found to be the strongest predictors, accounting for about

50.1% of weight, followed by clinical features (31.6%) and chro-

mosomal instability (18.2%), similar to corresponding weights

(31.7% clinical feature, 41.0% molecular, and 27.3% chromo-

somal instability) when using the top three features: tumor size,

TLS pathway, and BCL9 amplification sorted by p < 0.0001

(p = 0.26; Figure S5A). According to the median values of pre-

dicted hazard ratio from the multivariate Cox model, the patients

could be partitioned into two survival groups: high risk and low

risk, with quite differing prognoses based on the multiple

genomic featuremodel (Figure 5C). This model was validated us-

ing the EUR-T cohort (the only multiregion cohort that had DFS

data), as well as the LUAD patient subgroups of the CHN-P

and EUR-T cohorts, and all presented good prognostic discrim-

ination in stage I patients (Figures 5D and S5B). The area under

curve (AUC) values of ROC curves validated that the model with

a combination of genomic and clinical features together pre-

sented the best stratification performance (Figure S5C). Thus,
the above integrative analysis across clinical and genomic fea-

tures presented good prognostic discriminations for patients

with Re of stage I NSCLC, underscoring the potential application

of these genomic features to predict high-risk Re patients who

may need to receive adjuvant therapy even if they are just stage

I patients.

Plasma ctDNA profiling implied early metastasis and
recurrence
ctDNA has proven to be a reliable biomarker in monitoring min-

imal residual disease (MRD) (Abbosh et al., 2017; Chaudhuri

et al., 2017); however, few previous studies have specifically

focused on stage I NSCLC, and correlations of ctDNA fromblood

taken before surgery and prognosis are getting more attention.

We performed deep 457-gene-targeted NGS on plasma cell-

free DNAs (cfDNAs) collected before radical tumor resection as

described in the STARMethods. Among the 55 plasma-qualified

patients, 19 and 7 patients with ctDNAs were detected in blood

plasma using both tumor-naive and tumor-informed methods,

respectively (Figure S5D; Table S6). Moreover, mutation fre-

quencies (variant allele frequency [VAF]) of tumor-naive ctDNA

(Figure 5E) and tumor-informed ctDNA (Figure S5E) were higher

in Re patients than those in Rf patients. Half of the mutations

were clonal (Figure S5F), and most of these ctDNAs are associ-

ated with high cancer cell fraction (CCF > 0.5), nomatter whether

they are detected in one, two, or three tumor regions in both pa-

tient groups (Figure S5G). Positive ctDNA detection showed a

significant association with shorter DFS time (p = 0.02 for tumor

naive, Figure 5F; p = 0.0003 for tumor informed, Figure S5H) and

positively correlated with recurrence risk predicted by the

above-stated multiple-feature model (p < 0.05; Figures 5G and

5H). Taken together, this result validated the prediction effect

of themodel from another dimension and provided an alternative

method to predict high-risk patients from blood, especially in

case it is unable to do tumor tissue WES.

GI correlated with higher Re risk
The integrated prediction model suggested GI played essential

roles in the Re of the CHN-P cohort (Figure 5B). We noted the pa-

tients who recurred within 15 months (median recurrent time)

(n = 12/17, 70.6%) and harbored mutated genes related to

DNA ICL-DSB and complex lesion repairs, i.e., core genes of

TLS, HRR, and FA pathways (Table S4B), were significantly

more than the ones who recurred after 15 months (n = 2/16,

12.5%; p = 0.038) and Rf ones (n = 7/48, p = 8.89 3 10�5; Fig-

ure 6A). Notably, the patients harboring DSB-related gene

mutations were more likely to be male, smokers, and TP53-mu-

tation patients and less likely to be EGFR-mutation patients

(Table S4C). We further calculated GI scores of each patient

(including the core gene mutations related to DNA ICL-DSB of

the three pathways, TMB, FGA, LOH, SNV, and CNV clonalities)

and found the GI scores had a significantly negative correlation

with shorter DFS time (R = �0.49, p = 3.8 3 10�6; Figure 6B)

and a positive correlation with recurrence risk predicted by the

multiple-feature model (R = 0.63, p < 2.2 3 10�16; Figure 6C).

Consistent correlation results were also observed in the Re

group (p < 0.02), but not in the Rf group (p > 0.05) (Figures S6A

and S6B). The difference of GI scores between E-Re and L-Re,
Cell Reports 40, 111047, July 12, 2022 9
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Figure 5. Integrative analysis ofmultiple features in amultidimensional system to predict Re events and correlation of circulating tumor DNA

(ctDNA) in plasma and Re
(A) Correlation analysis showed prognosis importance for 16 features in the CHN-P cohort. Node sizes and borders denote the hazard ratios and statistical sig-

nificance in the univariable Cox model, respectively. Lines in the circle denote the connection of significantly correlated features (false discovery rate [FDR]

q < 0.01), and line thickness represents FDR q values.

(B) Left graph: feature importance in the multivariate Cox model (expressed with percentages of the Wald statistic) for the patients in the CHN-P cohort. Right

graph: important summary for each feature group.

(C andD) Kaplan-Meier survival curves stratify patients with high and low risks of Re according to themedian values of predicted hazard ratio from themultivariate

Cox model of (B). (C) CHN-P cohort. (D) EUR-T validation cohort.

(E) Comparison of plasma ctDNA abundance (expressed as VAF) between Re and Rf groups, detected using a tumor-naive method.

(F) Comparison of DFS between patients with and without ctDNAs detected in plasma samples using a tumor-naive method.

(G and H) Correlation analysis of ctDNA-positive events in plasma and Re risk predicted in the multivariate model. ctDNA was calculated using tumor-naive

(G) and tumor-informed (H) methods, respectively. The p value less than 0.05 was defined as significant.
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E-Re and Rf, and L-Re and Rf groups all reached significant

levels (p < 0.024; Figure S6C) and also had a trend between

the patients with positive and negative ctDNAs (Figure S6D). In

the EUR-T cohort, which includes all stages, the molecular and

genomic features of high-recurrence-risk stage I patients were

close to those of stage II/III patients, higher than those of the

low-risk stage I patients of the recurrence groups (Figure S6E),

indicating these molecular alterations leading to poor prognosis

may occur earlier than the progress of clinical tumor stage.

On gene expression levels, we found upregulation genes in Re

patients (Re-up) were significantly enriched in cell-cycle path-

ways, p53 signaling, DNA replication, viral carcinogenesis/

human T-lymphotropic virus type 1 infection, HR, and other can-

cer-related signaling transduction and regulation pathways,

while downregulation genes in Re patients (Re-down) weremap-

ped only to the neuroactive ligand-receptor interaction pathway

(p < 0.05; Figure S6F; Table S7), implying that the cell-cycle

pathway, which was closely related to DNA replication stress,

was significantly upregulated in Re patients. In addition, tran-

scriptions of FANCF (a core gene of FA core complex) and

Rev1 of the TLS pathway in Re patients were significantly lower

than those in Rf patients (p < 0.0008; Figures 6E and 6F). Nine

patients with high hazard risk predicted by the abovemultivariate

model harbored upregulation of cell cycle and downregulation of

FA/TLS core-gene transcriptions (n = 9/12), but none in the pa-

tients with low recurrence risk (n = 0/10) (p = 0.0005; Figure 6G).

Therefore, we supposed that coincidences of upregulation of

cell-cycle pathways and dysfunctions of DNA ICL-DSB repair

function played important roles in GI and could indicate a poor

prognosis.

DISCUSSION

The multiregional samples in the CHN-P cohort enabled us to be

the first to compare genomic heterogeneity between EAS and

Western lung cancer patients. Our work demonstrated a signifi-

cant difference in ITHs between the CHN-P cohort and EUR-T

cohort and identified distinct genomic features of high alteration

frequencies of the DDR system observed in the recurrent tumors

of the CHN-P cohort, particularly significantly involving the

genes of the HRR and TLS pathways. Furthermore, the low total

FGA and clonal CNVs but high subclonal CNVs (Figures 4A–4C)

and SNVs/Indels (Figure S1D) detected in the CHN-P cohort re-

vealed relatively lower overall GI in Asian patients than that in

Western patients. Such a high percentage of subclonal alter-

ations also reflected that late events during tumor evolution in

Chinese lung cancer patients were different from those of the
Figure 6. Genome instability and RNA expression correlated with Re r

(A) Comparison of numbers of patients harboring ICL-DSB recognition, resec

(Re % 15 months) and late recurrence (Re > 15 months) (p = 0.038), as well as R

(B and C) Correlation analysis of genome instability scores and DFS time and Re

(D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of t

scale bar of log10ǀp valueǀ indicates significance enriched in the KEGG database

(E and F) Correlation of gene expression levels of FANCF (an FA core complex g

(G) A diagram showing the correlation of predicted Re risk and genomic and clin

the graph.

DFS, disease-free survival; FGA, fragment of genome altered with CNVs; HRR, h

strand break; LOH, loss of heterozygosity; Recur, tumor recurrence; TLS, transle
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EUR-T cohort, which reflects genomic ancestry differences be-

tween Asian and Western patients or relatively simpler causes

(smoking) of pathogenesis in Western patients than in Asian pa-

tients. The high subclonal SNVs also indicated the importance of

multiregional sampling in Asian patients, which is lacking in pre-

vious Asian cohort genomic cancer studies.

Multiple studies have attempted to infer prognostic factors

from either clinicopathological or genomic features. However,

none of these studies specifically focused on stage I patients,

although these tumors have a particular clinical need for risk

stratification because there is no standard adjuvant therapy.

Our study found that there are indeed differences between stage

I andmore advanced patients. For example, in the EUR-T cohort,

stage I–III NSCLC showed elevated CNV heterogeneity paralle-

ling an increased risk of Re or death, but no significant impact

of CNV heterogeneity on prognosis was observed when patients

with only stage I NSCLC were examined (Figure S4H). A similar

result was also observed in our CHN-P cohort (Figure 4D). There-

fore, although ITH has a certain influence on prognosis, it is not

the predominant factor in such early-stage patients overall. The

prognosis is affected by a series of factors. The interdependence

and complex interactions of such variables may be the reason

why none of the previous reports have been widely adopted in

clinical practice because of poor reproducibility in independent

external cohorts. Through network structure analysis across all

clinical and molecular features that were found to have effects

on Re in this study, we presented their correlations with each

other and with Re events. Using a multivariate Cox model,

including clinical features as predictors, we found that genomic

features played a crucial role in predicting Re (Figure 5B), and

comprehensive genomic and clinical information could stratify

prognosis beyond the existing TNM stage for stage I patients,

highlighting the utility of genomic sequencing for prognostic pre-

diction. This Cox model stratification was also verified using the

EUR-T cohort (Figure 5D). Interestingly, although stage I NSCLC

is associated with low ctDNA release and rapid decay, and

therefore was more challenging to detect in these patients (Ab-

bosh et al., 2018; Chen et al., 2019b), we found that recurrence

risk stratified by ourmodel matchedwell with pre-surgical ctDNA

detection. High-risk patients had a significantly higher ctDNA

detection rate, which demonstrated the potential feasibility of

combining our molecular model and ctDNA detection for more

precise prognostication.

Our multiple-feature model and timing of relapse analysis re-

vealed that molecular features related to ICL and DSB repair dur-

ing DNA replication and GI mainly contributed to the high risk of

E-Re (Figures 3E and 6G). In addition, significant gains in cell
isk

tion, and translesion gene mutations between those with early recurrence

f patients (p = 8.89 3 10�5). Fisher’s exact test was used.

risk. (B) DFS time. (C) Recurrence risk.

he genes of two clusters based on the online tool Metascape (p < 0.05). Color

.

ene) (E) and Rev1 (of TLS pathway) (F) and DFS time.

ical features. The predicted hazard risk of each patient is shown at the top of

omologous recombination repair; ICL_DSB, interstrand crosslink and double-

sion repair. The p value less than 0.05 was defined as significant.



Figure 7. Molecular processes illustrating E-Re events

Left: E-Re mechanism related to ICL-DSB repair. Key genes’ coordination of the FA core complex for ICL recognition and release during DNA replication stress

caused by variously endogenous or exogenous stimuli, particularly at the S-phase of the cell cycle, and then recruitment of TLS polymerase (pols) to bypass the

ICL barriers to prevent DNA DSB. The DNA DSBwas then repaired by the HRR pathway, as well as other DSB repair genes involved in the NER, non-homologous

end joining (NHEJ), and MMR pathways that were in low-alteration frequencies in this study. The mutated genes of FA, TLS, and HRR pathways identified in the

patients with early recurrence are indicated within the dotted-line boxes. Right: Re mechanism related to cell-cycle dysfunction. Unrepaired DNA DSB results in

more SNV/Indels, CNVs, and chromatin remodeling accumulation, whichmay further cause pathogenic gene alterations and lead to uncontrollable cell cycle and

promotion of cell proliferation, further causing DNA replication stress and accelerating genomic instability in cells, thus forming a vicious circle. Significant upre-

gulation of the cell-cycle pathway was detected via RNA sequencing (RNA-seq) in recurrent tumors (shown in the green background).
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proliferation-promoting focal CNV-driver genes (Figures 4F and

4G) and upregulation of cell-cycle genes (Figure 6D) were

observed in the patients with Re, both E-Re and L-Re. Moreover,

these two types of molecular event occurred with ICL-DSB

recognition, resection, and translesion gene mutations in most

E-Re cases (Figure 6G), which would aggravate GI and increase

cancer risk and relapse susceptibility. Figure 7 illustrates the hy-

pothetical molecular processes leading to GI and association

with E-Re as detected in Chinese stage I NSCLCs of the

CHN-P cohort. These processes were composed of upregula-

tion of cell cycle (upper right part of Figure 7), gene alterations

related to DNA ICL-DSB repair (left part), and activation of cell

proliferation (lower right part). A recent study observed that

DNA repair/replication gene mutations were significantly en-

riched in circulating tumor cells or relapse/metastatic tumors in

comparison with the gene mutation frequencies in primary

SCLC tumors (Su et al., 2019), implying there might be certain
selection force in metastatic tumor cells with such mutation fea-

tures compromising relapse, which needs in-depth investigation

in the future studies. Tumor cells with features of DNA homolo-

gous recombination deficiency (HRD) and the core gene muta-

tions of HRR, FA, and TLS pathways have been reported to be

sensitive to platinum chemotherapy and poly-ADP-ribose poly-

merase inhibitors (Niraj et al., 2019; Soca-Chafre et al., 2019; Za-

far and Eoff, 2017), and possibly also sensitive to immuno-

therapy because of high TMB in such tumor cells. Therefore,

the core genes committed to ICL recognition and DSB repair,

as well as those that strongly promote cell proliferation and

cause DNA replication stress events identified in this study,

may be valuable biomarkers for poor prognosis prediction and

drug targets for Chinese patients with stage I NSCLC in clinical

practice.

To summarize, we comprehensively investigated the genomic

and molecular features of stage I lung NSCLCs and compared
Cell Reports 40, 111047, July 12, 2022 13
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them with those from diverse international cohorts. Recurrent

tumors have distinct somatic alteration events compared with

Rf tumors and demonstrate a variety of alterations correlated

with time to recurrence. These multiregional sequencing and

multidimensional analyses provide important insights into pre-

dicting relapse after surgery for stage I NSCLC, which may help

guide postoperative treatment strategies in this group of patients.

Limitations of the study
The main limitation is the small sample size of the cohort. The

strict inclusion criteria of this study (such as long follow-up

time) limited the sample size but reduced interference factors

and insured the reliability of this study. In addition, we did not

find any independent multiregional Chinese stage I NSCLC

cohort with comprehensive genomic features and decent clinical

information to validate our findings in this study. Another limita-

tion is the poor RNA quality due to long time storage of the tissue

samples, which resulted in only dozens of RNA samples meeting

the quality requirements. These qualified samples helped us

to reveal RNA expression differences between Re and non-

recurrence patients but hindered a profound study on the tumor

immune microenvironment.
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ASCAT (v2.5.2) Ross et al., 2020 RRID: SCR_016868

FASTQC (v0.11.9) N/A RRID: SCR_014583
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hisat2 (v2.1.0) Kim et al., 2019 RRID: SCR_015530

HTseq (v0.11.0) Anders et al., 2015 RRID: SCR_005514

edgeR (v.3.16.5) Robinson et al., 2010 RRID: SCR_012802

Metascape online tools Zhou et al., 2019 RRID: SCR_016620

Gencore Chen et al., 2018 https://github.com/OpenGene/gencore

SAMtools Li et al., 2009 RRID: SCR_002105

R/Bioconductor software packages N/A RRID: SCR_006442

Other

Qubit� 4.0 Fluorometer Life Technologies, USA Cat# Q33238

Fragment Analyzer Agilent Technologies, USA Cat# G2938C

Illumina NovaSeq 6000 Illumina, USA Cat# 20012850

HGVS variant description http://varnomen.hgvs.org/

the 1000 Genomes Project (1000G) http://browser.1000genomes.org

ExAC http://exac.broadinstitute.org

dbSNP https://www.ncbi.nlm.nih.gov/snp/

disease or phenotype databases OMIM http://www.omim.org

COSMIC https://cancer.sanger.ac.uk/cosmic/

ClinVar http://www.ncbi.nlm.nih.gov/clinvar

PolyPhen-2 http://genetics.bwh.harvard.edu/pph2/

SIFT http://www.blocks.fhcrc.org/sift/SIFT.html

KEGG https://www.kegg.jp/kegg/pathway.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jun

Wang, wangjun@pkuph.edu.cn.

Materials availability
This study did not generate new unique reagents and biological materials.

Data and code availability
d Data: Raw data of WES, RNA-seq and targeted sequencing of ctDNA derived from human samples of the CHN-P cohort have

been deposited at the China National Center for Bioinformation (https://ngdc.cncb.ac.cn/gsa/), and the accession number

(HRA001278) is listed in the key resources table. Local law prohibits depositing raw WES and RNA-seq datasets derived

from human samples outside of the country of origin. Prior to publication, the authors officially requested that the raw

sequencing datasets reported in this paper be made publicly accessible. To request access, contact the Office of Human Ge-

netic Resource Administration of The Ministry of Science and Technology for The Regulation of the People’s Republic of China

on the Administration of Human Genetic Resources.

d This paper does not report original code. The software used in this study is described in the above section and the key re-

sources table in details.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

This retrospective study was carried out on a Chinese PKUPH cohort (named as CHN-P) of 81 Chinese non-small cell lung cancer

(NSCLC) patients, including 73 lung adenocarcinoma (LUAD), 6 lung squamous cell carcinoma (LUSC), and 2 lung adenosquamous

carcinoma (LUAS), who were diagnosed with pathological Stage I NSCLC in our department of the Peking University People’s

Hospital from August 2011 to April 2017 (Table S1). The patients’ the age, sex, gender identities were also provided in Table S1.

The patient inclusion criteria were (1) History of chest computed tomography (CT) scans, abdominal and adrenal gland ultrasonog-

raphy or CT, brain magnetic resonance imaging and bone scans, or PET/CT before surgery; (2) Aged >18 years with no malignant
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tumor history within the past 5 years; (3) No neoadjuvant therapy was administered before surgery; and (4) Patients received R0

resection.

Lung tumor tissue and adjacent normal tissue specimens were collected by surgical removal for histopathologically pathological

diagnosis and further study. To assess intra-tumor heterogeneity, the tumor tissue samples were separated into two to three regions

(depending on the size of the tumor) immediately after pathological-diagnosis sampling and stored at -80�C. Paired peripheral blood

samples were collected immediately before the surgery, separated into white blood cells and plasma, and then stored at -80�C in the

laboratory for further experiments.

Clinical follow-up examinations were carried out for each patient after surgery, with a median time of 62.0 months (95% CI, 57.0–

67.0). Among them, 33 patients experienced tumor recurrence (26 LUAD, 5 LUSC, and 2 LUAS), while 48 (47 LUAD and 1 LUSC) did

not. The 7th American Joint Committee on Cancer edition of TNM staging was used in our study. We collected clinical variables for

patients, including age, sex, smoking history, tumor histology, tumor location, and tumor sizemeasured byCT and are summarized in

Table S1. Chest CT scan and abdominal ultrasound/CT were performed on follow-up visits every 6 months after surgery for 5 years.

Magnetic resonance imaging and bone scanswere performed every 1 year for 5 years or any timewith symptoms. The overall survival

(OS) time was estimated from the date of surgical resection until death of any cause or the date of the last follow-up. Disease-free

survival (DFS) time was defined as the time from the day of surgery until the first event (relapse or metastasis) or last follow-up. Com-

parison of clinical features between subgroups was based on Chi-square test, except for age and tumor size, which were based on

the Wilcoxon rank-sum test.

The above-mentioned criteria reduced interference factors comparing to other prognostic studies and insured the reliability of this

study. (1) All the enrolled patients underwent R0 resection and had no neoadjuvant therapy history. Many previous studies focusing

on the prognosis of cancer patients after surgery did not completely exclude non-radical resection patients (R1, R2) so that the tumor

relapse is related to surgery itself but not biological reasons. (2) All enrolled patients were not locally resected, therefore excluding the

possibility of tumor recurrence that may be due to a nonstandard surgical technique (not enough groups of lymph node resected, the

surgical margin is not distant enough from the tumor, etc.) or physical local tumor invasion (spread through air space, STAS). Distant

metastasis for such stage I patients is more likely to be attributed to tumor biological features. (3)We clearly defined tumor recurrence

but not the death of patients as tumor events for prognosis analysis, contrary to several studies that combined DFS and OS, which

may complicate results because when patients experience tumor relapse, they may receive many terms of drug treatment that could

have an important influence on the OS. (4) The follow-up time of this study was long enough (median: 5 years) to ensure the reliability

of the tumor-related events, and the DFS was accurately recorded.

Whole-exome sequencing (WES) was performed on a total of 240 tumor tissue specimens and 81matched adjacent normal tissues

from 81 NSCLC patients. Twenty-two patients (13 recurrent and 9 recurrence-free patients) with 28 tumor samples passed RNA

quantity and quality evaluation for RNA sequencing. Fifty-five plasma samples were successfully isolated from cell-free DNA (cfDNA)

to perform deep-targeted sequencing with an in-house 457-gene panel of Berry Oncology Corporation (China).

Written informed consent for sample acquisition for research purposes in this study was obtained from all patients, and this study

was approved by the Ethical Committee of Medical Research, Peking University People’s Hospital in accordance with the Declara-

tion of Helsinki Principles. This study did not generate new unique reagents.

METHOD DETAILS

Subtype classification
First, according to tumor recurrence or not, the patients were divided into two groups: tumor recurrence (Re) (n = 33) and recurrence-

free (Rf) (n = 48) patients. For the Re patients, the median recurrence time was 15 months (range, 2–62 months). Patients with early

tumor recurrence were defined according to their DFS time. Since the median DFS is 15 months in this cohort, we define recurrence

less than 15 months after surgery as early relapse. Second, for the dynamic analysis, the Re patients were further defined as early

(E-Re) and late (L-Re). E-Re referred to the tumor recurring earlier than the specific time point during the follow-up, while L-Re referred

to the tumor recurring later than the specific time point during the follow-up survey.

DNA isolation
For genomic DNA (gDNA) isolation, ZRGenomic DNA TissueMiniprep Kits (ZymoResearch) for the tissue specimens andDNABlood

Midi/Mini kit (Qiagen) for the white blood cell samples were used according to the manufacturer’s instructions. For the isolation of

plasma cell-free DNA (cfDNA), MagMAX Cell-Free DNA Isolation Kit (Thermo Fisher Scientific) was used according to the manufac-

turer’s protocol. The quality and quantification of purified DNA were assayed using gel electrophoresis and Qubit� 4.0 Fluorometer

(Life Technologies), respectively. The DNA fragment size composition was assayed using a Fragment Analyzer (Agilent).

Whole exome sequencing
Purified 30 to 100 ng gDNA was first fragmented into DNA pieces of approximately 300 bp using an enzymatic method (5X WGS

Fragmentation Mix, Qiagen). The DNA fragments then underwent an in-house process of end repair, A tailing, T-adaptors ligation

on both ends, and PCR amplification to result in a pre-library. The final sequencing libraries were prepared using the 96 rxn xGen

Exome Research Panel v1.0 (Integrated DNA Technologies) according to the manufacturer’s protocol. 2 X 150-bp paired-end
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sequencing was performed with Illumina NovaSeq 6000 (Illumina). An average sequencing depth of 561 X (range: 194–1203 X) for

tumor tissues and 513 X (range: 113-1062 X) for adjacent normal tissues (Table S2A) were obtained. The mean genomic coverage

of R20 X was 98.5%.

Mutation calling with WES data
The raw sequencing reads were first subjected to quality control by trimming adaptor sequences and removing the reads with poly-N

and low quality (less thanQ20) preprocessed by FASTP (v0.14.1) (Chen et al., 2018). The clean reads in FASTQ format were aligned to

the human UCSC reference genome (hg19/GRCh37) using Burrows-Wheeler Aligner (BWA, v0.7.15) with default parameters (Li and

Durbin, 2009). Sambamba (v0.6.8) was used to process PCR duplicates for mapped BAM files (Tarasov et al., 2015). GATK (Genome

Analysis Toolkit v4.0.11.0) (McKenna et al., 2010)for local realignment and base quality recalibration was employed to compute

sequencing coverage and depth. Single nucleotide variations (SNVs) and small insertions and deletions (Indels: <50 bp) were iden-

tified using GATK MuTect2 (v1.1.4) (Cibulskis et al., 2013). Subsequently, we removed mutations, which were referred to the

ENCODE Data Analysis Consortium blacklisted regions (Letouze et al., 2017). We filtered out the SNVs with <20 X depth or 4 X depth

of the alternate alleles in tumor or SNVs with <10 X depth in normal or variant reads >1% of normal reads. For multiple-region sam-

ples, variants detected in more than one sample, but not all samples, were recalled because the absent variants in a part of samples

might be due to low variant allele frequency (VAF), thus reducing false negative callings.

Variants were annotated using ANNOVAR software (Wang et al., 2010) based on multiple databases including HGVS variant

description and population frequency databases (1000G, http://browser.1000genomes.org), ExAC (http://exac.broadinstitute.

org), dbSNP (https://www.ncbi.nlm.nih.gov/snp/), disease or phenotype databases (OMIM (http://www.omim.org), COSMIC

(https://cancer.sanger.ac.uk/cosmic/), ClinVar (http://www.ncbi.nlm.nih.gov/clinvar), and variant functional in silico predictive tools

(PolyPhen-2, SIFT) (Adzhubei et al., 2010; Ng and Henikoff, 2003)to interpret the sequence variant at the nucleotide and amino acid

levels. After annotation, we excluded the SNVs that were annotated as genomicSuperDups and VAF <0.2 or PopFreqMax >0.05 and

kept the nonsynonymous SNVs with VAF >1% of cancer hotspots collected from the patient database or with VAF >3% of others for

further analysis. All somaticmutations identified in the CHN-P cohort are summarized in Table S3A. For eachmutation, the proportion

of mutated reads (VAF) and the proportion of tumor cells harboring themutation (cancer cell fraction, CCF) were calculated according

to the methods described by Letouzé et al. (Letouze et al., 2017). For each sample, tumor mutation burden (TMB) was defined as the

total number of nonsynonymous SNVs per megabase of coding area of a tumor genome based on WES (Table S3B), and SNVs/

Indels’ diversity was calculated and expressed by Shannon’s Diversity Index based on clonal and subclonal mutation proportions.

Comparison of SNV/Indel numbers, diversities, and TMB values between Re and Rf groups, as well as between smokers and non-

smokers, or between different cohorts was based on the Wilcoxon rank-sum test. Associations of specific mutated genes with clin-

ical features, including gender, smoking, pathological type, tumor size, age, and stage, were based on Fisher’s exact test.

Driver gene identification and comparison
To identify genes with significant frequency differences between groups, two-sided Fisher’s exact tests were performed for all genes

with a p-value cutoff of 0.05 to filter no significant values (Figure 1D and Table S3E). To identify driver mutations in the CHN-P cohort,

MutSigCV (v.1.4) (Lawrence et al., 2013)and dNdScv (v.0.1.0) (Martincorena et al., 2017) were used with default parameters to infer

significantly mutated driver genes (q < 0.1 in both callers) with the following results:

(1) MutSigCV (v1.4) was performed, and EGFR and TP53were the significantly mutated genes identified in both Re and Rf groups

in the CHN-P cohort (q < 0.1).

(2) The dNdScv (v.0.1.0) R package was used to detect genes under positive selection in the CHN-P cohort. EGFR and TP53 for

both groups, as well as KRAS and KEAP1 for the Rf group were identified (q < 0.1).

Mutational signature derivation
The gene mutational signatures of all specimens were de novo derived fromWES data according to a non-negative matrix factoriza-

tion (NMF) method using the SomaticSignatures R package (v2.20.0) (Gehring et al., 2015). Three stable and reproducible mutational

signatures were deciphered (Figure S2A) and termed as signatures S1, S2, and S4. Cosine similarity was analyzed to compare these

signatures to the catalog of COSMIC consensus signatures (Figure S2B). For each patient, signatures of clonal and subclonal

somatic mutations were identified based on the signatures. Somatic mutations of the EUR-T cohort were also processed through

the above analysis to de novo derive their mutational signatures.

To further determine the distribution of COSMIC signatures in each patient, deconstructSigs (v1.9.0) was used as previously

described (Rosenthal et al., 2016), and the frequencies of these signatures in the CHN-P cohort are summarized. Patient numbers

harboring S1, S2, and S4 were compared using Fisher’s exact test (Figure S2C). Weights of S1, S2, and S4 in clonal and subclonal

mutations between the two groups were compared using the Wilcoxon rank-sum test (Figure S2D). The associations between sig-

natures and categorical variables of clinical features, including gender, smoking, and pathological types, were performed using the

Wilcoxon rank-sum test, except for the stage variables that used the Cochran-Armitage Trend Test. Simple linear regression analysis

was implemented using the R command lm to identify potential associations between signatures and continuous variables, including

age, tumor size, TMB, and DFS time (Figure S2E).
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Phylogenetic tree construction
All nonsilent mutations after filtering were considered for determining phylogenetic trees. We inferred phylogenetic trees of tumor

blocks based on the mutation patterns in each of the patients using PHYLIP (v3.697; http://evolution.genetics.washington.edu/

phylip.html) to perform the compatibility method Clique, generating unrooted trees. Branch lengths were inferred from the number

of non-silent mutations acquired, and final trees were drawn manually and further optimized using Adobe Illustrator. The clonal,

shared, and private branches of each tree represent mutations in all the tumor regions, in some but not all the tumor regions, and

in only one tumor region, respectively.

ITH analysis on somatic mutations
To investigate possible mutagenic alteration processes during carcinogenesis, the mutation spectra of clonal mutations and branch

mutations (i.e., intratumor heterogeneity, ITH) were compared based on their numbers and proportions between the Re and Rf

groups using Student’s t-test.

Comparison of mutational genes between the cohorts
To compare themutational landscape of stage I NSCLC among different cohorts, we chose four cohorts, including the CHN-P cohort

and East Asian LUADs (EAS) cohort, representing Chinese and East Asian race cohorts, as well as the European of TRACERx Project

(EUR-T) cohort and TCGA (filtered our Asian patient samples) cohort, both representing Caucasian race cohorts (Tables S1C–S1E).

For the CHN-P cohort, we divided patients into Re and Rf subgroups to screen the genes with higher mutation frequency in the Re

group than that in the Rf group. After calculating the gene mutation rate of each cohort, genes enriched in at least one of the four

cohorts or only in the Re group were selected for comparison. In the graph, the enriched genes are grouped by signaling pathways,

and interactions between genes are indicated according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway maps.

Four hallmarks related to genome maintenance mechanisms and carcinogenesis are listed to indicate the potential influence of

mutations among signaling pathways, including regulation of cytoskeleton organization, sustaining cell proliferation, anti-apoptosis

processes, and genome repair function (Figure 2).

Pathway alteration analysis
We evaluated the mapping of somatic mutations to 10 canonical oncogenic signaling (COS) pathways according to the templates in

the signaling pathways manuscript from TCGA PanCancer Atlas project (Sanchez-Vega et al., 2018) and eight DNA damage repair

(DDR) pathways according to previous reports (Wang et al., 2018). Ten COS pathways included (1) cell cycle, (2) Hippo, (3) Myc,

(4) Notch, (5) oxidative stress response/Nrf2, (6) PI3K, (7) receptor-tyrosine kinase (RTK)/RAS/MAPK, (8) TGFb, (9) p53, and (10)

b-catenin/Wnt and involved a total of 335 genes (Table S4C). Eight DDR pathways included (1) MMR (mismatch repair), (2) BER

(base excision repair), (3) NER (nucleotide excision repair), (4) HRR (homologous recombination repair), (5) NHEJ (non-homologous

end-joining), (6) CPF (checkpoint factors), (7) FA (Fanconi anemia), and (8) TLS (translesion synthesis) and involved 233 genes

(Table S4D).

A tumor was considered ‘‘altered’’ in the specific pathway when R1 gene is altered in the corresponding pathway. For each pa-

tient, the status of specific pathways was determined to be either altered or wild type. The number of COS pathway alterations (NOA)

or the number of DDR pathway alterations (NDA) was calculated as the total number of altered pathways out of the 10 identified path-

ways or the eight DDR pathways for each patient, respectively. Comparison of NOA or NDA between the Re and Rf groups was per-

formed using theWilcoxon rank-sum test, and the association of NOA or NDA with TMBwas calculated using the Cochran-Armitage

test, both with the significance threshold p % 0.05. Comparison of mutation frequency of each pathway among the CHN-P cohort

(All), East Asian cohort (EAS), European cohort (EUR-T), and TCGA cohort, as well as between the Re and Rf groups in the CHN-P

cohort were performed using Fisher’s exact test.

Copy number variation analysis
Copy number variation (CNV) calculation of multi-region tumors was performed according to the method of the TRACERx

Project (Jamal-Hanjani et al., 2017). In brief, processed sample exome copy number data from paired tumor-normal was gener-

ated using VarScan2 (v2.3.9) copy number with default parameters except min-coverage = 8, min-segment-size = 50

(Koboldt et al., 2012). The VarScan2 copy number produced per-region LogR values, which were then adjusted by sequencing

depth of paired tumor and normal samples. The B-allele frequency (BAF) of each SNP was calculated as the proportion of

reads at a specific position that contained the reference base versus the variant for the SNP loci from the 1000 Genomes

Project (http://browser.1000genomes.org). The logR and BAF values, which were GC corrected using function

ascat.GCcorrect for each tumor region were processed with ASCAT (v2.5.2) (Ross et al., 2020) using default parameters except

‘‘gamma’’ set to 1, to provide segmented allele-specific copy number data plus cellularity and ploidy estimates for all samples.

Per region copy number data called ASCAT (v2.5.2) is available in the raw segments sheet of Table S5, and floating-point copy

number values were used for all copy number analyses. The maximal ploidy in multi-region tumors was assessed using ASCAT

(v2.5.2).
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ITH of copy number variation
To determine genome-wide copy number amplification/gain and deletion/loss, copy number data for each sample was divided by the

sample mean ploidy and log2 transformed. Gain and loss were defined as log2(2.5/2) and log2(1.5/2), respectively.

For themulti-region samplingmethod to determine global CNV intratumor heterogeneity (ITH), all parts of the genomewere consid-

ered independently and split into minimum consecutive segments of overlap within each tumor across all regions. Within each tumor,

total CNV was defined as the genomic regions subjected to CNV in any region. The total fraction of genome altered (FGA) was calcu-

lated as the percentage of a tumor genome showing a copy number different from the whole genome, while CNV length was defined

as the base number (Mb) of the genomic regions subjected to CNV in any region.

Any segment of CNV that overlapped across all regions was defined as clonal and all other segments of CNVs as subclonal. Sub-

clonal CNVs detected only in one region were defined as private CNVs, while those detected inmore than one region, but not in all the

regions, were defined as shared CNVs. The proportion of clonal CNV or subclonal CNV was then defined as the percentage of the

genome subjected to clonal or subclonal CNV divided by the percentage of total CNV, respectively. Numbers or proportions of total,

clonal, and subclonal CNVs, as well as FGA, were compared between the Re and Rf groups using the Wilcoxon rank-sum test.

Focal CNV-related gene identification
Gene-level amplification was called the mean gene copy number > ploidy + 1 copy. Gene-level deletion was called the mean gene

copy number <0.5 copy. Clonal CNV-related genes were defined as those occurring in all the tumor regions and others were defined

as branch/shared and private CNV-related genes. To reveal the CNV differences between the Re and Rf groups, the frequency of

focal CNV-related genes was counted and compared between the two groups using Fisher’s exact test. The impact of significantly

differential (Fisher’s p-value<0.05) CNV-driver genes on tumor recurrence events were assayed using the Kaplan–Meier survival anal-

ysis method based on the LogRank test, and further analysis was focused on the genes with LogRank p-value <0.05. The driver CNV

genes were identified according to the COSMIC cancer_gene_census database (website is stated in the key resources table), and

those existing in >10 patients were subjected to further analysis.

Genome doubling and loss of heterozygosity
The genome doubling (GD) status for each sample was inferred using the genome-doubling algorithm described in https://github.

com/hartwigmedical/hmftools/blob/master/purity-ploidy-estimator/README.md based on the copy number profile inferred by

ASCAT. A patient was then considered as a GD sample with GD events in at least one tumor region, and the GD event was compared

between the Re and Rf groups based on Fisher’s exact test. Using ASCAT, segments were defined as loss of heterozygosity (LOH) if

the minor allele copy number was <0.25 (López et al., 2020). We combined all the LOH regions of multi-region tumor samples from

each patient to represent their LOH region, and then calculated the proportion of the genome containing LOH events over the whole

genome. The sample numbers and factions of the genome containing LOH events in Re and Rf groups were compared using Fisher’s

exact test and Wilcoxon rank-sum test, respectively.

Dynamic analysis on genomic alterations
To reveal the correlation of signatures, pathway alterations, and focal CNVs related to tumor recurrence, we performed dynamic sta-

tistical calculations on signature weights, pathway mutation frequencies, and focal CNV frequencies in the CHN-P cohort during

the follow-up survey. First, the patients were divided into three subgroups: E-Re, L-Re, and Rf, as described in the above section

of Subtype Classification and shown in Figures 1G, 3E, 3F, 4G, and S3E. Subsequently, the median contributions of each signature,

mutation frequency of each pathway, or a focal CNV gene frequency at a specific time was calculated. We critically focused on the

factors that showed significant differences between the Re and Rf groups.

Multilayer features for integrative analysis
For the tumor recurrence events, a list of 16 features was generated, including features of key elements in describing clinical or

genomic features and those found to have stratifying effects on tumor recurrence and patient outcome (Figures 5A and 5B). Basic

clinical features including age, sex, smoking, pathological type, and tumor size were included. CNV clonality (i.e., subclonal CNV per-

centage), FGA, GD, LOH, and ploidy were included to represent different aspects of chromatin instability. The molecular features of

these patients showed significant differences between the Re and Rf groups, including TMB, SNV clonality (i.e., subclonal SNV per-

centage) and pathways of TLS andHRR. twoCNV driver genes with significant effects on tumor recurrencewere included. DNA inter-

cross link (ICL)-double strand break (DSB)-related somatic gene mutations, TMB, subclonal SNV and CNV percentages, FGA and

LOH percentage, which represented different aspects of genome instability, were included to calculate genome instability score.

For continuous variables, exact values after normalized to between 0 to 1 were calculated; while for categorical variables, 1 and

0 were assigned for the presence or absence, respectively. For each patient, the accumulation of the above values was calculated

to be the genome instability score.

Feature importance in DFS analysis
Methods to evaluate feature importance for predicting patient DFS time were applied (Chen et al., 2020). In a univariate Cox model,

the hazard ratio and p value of the feature were calculated for predicting patient DFS time. To evaluate the importance of multivariate
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models, Cox proportional hazard models were used. The Cox models were fitted using the coxph function in the survival R package

with default parameters. The importance of each feature for the Cox model was determined by the proportion of the Wald statistic of

each feature among the sum of all Wald statistics of the model. To better understand differences among patients with good and bad

outcomes, patients were divided evenly into two survival groups based on the median of predicted hazard from the multivariate Cox

model with features.

ROC curves were generated to evaluate the performance of the prediction algorithm using the pROC(Robin et al., 2011) library in

the R package. Sensitivity and specificity were estimated at the score cut-off that maximizes the sum of sensitivity and specificity

using the ROCR library in the R package.

Plasma cfDNA sequencing
For the targeted sequencing of cfDNA, the pre-libraries were prepared by end repair, A tailing, T-adaptors ligation on both DNA frag-

ment ends, and PCR amplification according to the cSMART technique (Jia et al., 2020; Lv et al., 2015)were performed, and an in-

house designed panel for 457-gene targets was applied to capture cfDNA fragments to generate sequencing libraries. Sequencing

libraries were applied on NovaSeq 6000 platform (Illumina) in the 150PE mode. The average sequencing depth was not less than

15,000 folds for each sample.

Bioinformatics analysis of ctDNA mutation
FASTP was used to trim adapters and to remove low-quality sequences to obtain clean reads. The clean reads were aligned to the

human Ensemble GRCh37/hg19 reference genome performed by BWA. PCR duplications were processed by gencore (Chen et al.,

2019c), and consensus reads were generated. SAMtools was applied for the detection of SNVs/Indels. The nonsynonymous SNVs/

Indels with VAF > 0.5% and reads numbers >5, or with VAF > 0.1% and reads numbers >3 in cancer hotspots were regarded as true

mutations (i.e. tumor-naı̈ve ctDNA). If the number of true mutations R2 in tumor sample, the sample was considered to be ctDNA-

positive. To study the tumor tissue mutations in blood plasma, we extracted the read coverage of identical mutations from the bam

files of plasma samples. If the number of altered reads > 2, the cfDNA was considered a true mutation from tumor samples. If the

number of true mutations R2 in tumor sample (i.e. tumor-informed ctDNA), the sample was considered to be ctDNA-positive.

The mutation sites, detected in tumor tissues but without read support in the blood plasma samples, were regarded not to enter

the blood system. CCF values of ctDNA-identical mutations in the tumor samples were also checked to verify ctDNAmutations (Fig-

ure 6E and Table S6). The correlation between ctDNA detection and tumor recurrence risk predicted by the multiple-feature model

was analyzed using Fisher’s one-tailed exact test.

RNA isolation and sequencing
Total RNA was isolated using RN28-EASYspin Plus RNA Mini Kit (Aidlab Biotechnologies Co., Ltd, China) from tumor and adjacent

normal tissue samples. Sequencing libraries were constructed using the Ribo-ZeroMagnetic (Human) kit (Epicentre Biotechnologies,

USA) to remove ribosomal RNA (rRNA) following themanufacturer’s instructions. Purified libraries were quantified using a Qubit� 4.0

Fluorometer (Life Technologies, USA) and validated using an Agilent 2100 bioanalyzer (Agilent Technologies, USA) to confirm the

RNA integrity and insertion size, as well as calculate the mole concentration before constructing sequencing libraries. The libraries

(2 X 150 bp paired-end reads) were finally sequenced on the Illumina NovaSeq 6000 (Illumina) to generate an average of 33.1 M clean

reads (14.2–45.7 M) per sample for the CHN-P cohort (Table S2B).

RNA expression and functional analysis
Raw sequencing reads were quality controlled with FASTQC (v0.11.9; http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/) before mapping to the human reference genome (hg19/GRCh37) using hisat2 (v2.1.0) (Kim et al., 2019). The read counts

were calculated by HTseq (v0.11.0) (Anders et al., 2015), and gene expression was normalized as fragments per kilobase of exon

model per million reads mapped (FPKM) (Table S7). The differentially expressed genes (DEGs) between tumor recurrence and

recurrence-free samples were identified by edgeR with fold change R2 and p value < 0.05 (Robinson et al., 2010)

and visualized using R package pheatmap. The pathway of enriched DEGs was conducted using metascape online tools

(https://metascape.org/gp/index.html#/main/step1) (Zhou et al., 2019) based on the KEGG databases. For a specific pathway,

the mean of all the gene expression values in the pathway was used to determine the gene expression level of the pathway.

The median value of a specific gene or pathway among the cohort was used to divide the cohort into two groups: high and low

levels (as expressed in Figure 6G).

Public datasets
We searched all published articles on WES analyses of NSCLCs and downloaded three publicly published mutation files with

large amounts of Stage I NSCLCs and enough sequencing depth from articles of East Asian-ancestry LUADs as an East Asian

cohort (EAS, n = 131) (Chen et al., 2020), from TRACERx Project as a European cohort (EUR-T, n = 61) (Jamal-Hanjani et al.,

2017), and from TCGA repository (n = 277; https://portal.gdc.cancer.gov) as a TCGA cohort (Tables S1C–S1E), and then

processed through the bioinformatics analysis pipeline of this study. Corresponding data accession numbers are listed in the

key resources table.
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Statistical analysis methods or quantification methods for each analysis are described in the main text and referenced in the related

method sections above in detail. The Kaplan–Meier method was applied for survival curve analysis, based on the LogRank test. Sta-

tistical analysis and data visualization were conducted using R software. For all the tests, ***p < 0.001, **p < 0.01, and *p < 0.05. All

final graphs were further manually optimized using Adobe Illustrator.
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