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Abstract—Computer models are widely used in de-
cision support for energy systems operation, planning
and policy. A system of models is often employed,
where model inputs themselves arise from other com-
puter models, with each model being developed by
different teams of experts. Gaussian Process emulators
can be used to approximate the behaviour of complex,
computationally intensive models and used to generate
predictions together with a measure of uncertainty
about the predicted model output. This paper presents
a computationally efficient framework for propagating
uncertainty within a network of models with high-
dimensional outputs used for energy planning. We
present a case study from a UK county council
considering low carbon technologies to transform its
infrastructure to reach a net-zero carbon target. The
system model considered for this case study is simple,
however the framework can be applied to larger
networks of more complex models.

Index Terms—energy systems, decision support, sur-
rogate, Gaussian processes, uncertainty propagation

I. INTRODUCTION

Computer models are widely used in decision
support for energy systems operation, planning and
policy. A network of models is often employed,
where model inputs themselves arise from other
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and by the Alan Turing Institute grant ‘Managing Uncertainty in
Government Modelling’. VV, NS and HPW were contracted by
the Turing Institute when this work was carried out, and JQS,
PGC and CJD are Turing Fellows at the Institute.

computer models, with each model being devel-
oped by different experts from across various disci-
plines. To perform inferences on a single computer
model such as calibration, prediction, uncertainty
and sensitivity analysis, we require multiple simula-
tion runs. However, as the computer model can be
very expensive to operate, we need to acknowledge
the uncertainty about its outputs at unseen input
parameter values, namely code uncertainty [1]. This
is relevant for the analysis of networks of models,
since the outputs together with uncertainties from
the first layer computer models determine the un-
certain inputs in the second layer computer models
and so on. For principled decision support under
UK government guidelines [2], the uncertainties
associated with individual models’ outputs need to
be explicitly quantified and propagated across the
network. Other related frameworks for the coupling
of probabilistic systems include [3].

Gaussian Process (GP) emulators are commonly
used to approximate the behaviour of complex, com-
putationally intensive computer models; an emulator
provides predictions and quantifies uncertainty in
the state of knowledge regarding the behaviour of
the model including that arising from only a limited
number of runs being possible. GP emulators have
been widely used as surrogates to complex com-
puter models in climate and environmental studies
[4]–[6] and electricity prices [7].

This paper presents a framework for propagat-
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ing uncertainty within a network of models with
high-dimensional outputs (time-series) using recent
methodological advances in the theory of networks
of GP emulators [8]–[10]. First, we employ principal
component analysis (PCA) to reduce the dimen-
sion of the output space by projecting the high-
dimensional output onto a low-dimensional basis,
we then specify a univariate GP emulator for the
individual coefficients of a low-dimensional basis.
The efficient propagation of uncertainty between
models is achieved by passing the first and second
moments between the probability models for the
basis vectors’ coefficients obtained and projecting
back to reconstruct the mean and variance for the
original model output.

This methodology is applied to a case study
for a UK county council considering low carbon
technology options to transform the infrastructure
at a facility in order to reach a carbon zero target
in 2050 [11]. Under the Public Decarbonisation
Scheme [12], the council plans to replace the gas
boiler with an electric-powered ground source heat
pump (GSHP) to supply heating. The simple net-
work model is used to demonstrate how projections
of operational costs of the gas boiler can be gener-
ated, however the framework is scalable and can be
applied to larger networks of more complex models.

In Section II we describe the GP methodology,
and in Section III we describe the individual com-
puter models used in energy systems planning. We
present results for the case study in Section IV and
in Section V we provide a discussion.

II. METHODOLOGY

In Sections II-A & II-B we define the univariate
GP model and multivariate GP models and use these
to assemble the linked GP emulator in Section II-C.

A. Gaussian Process model
Let x = (x1, . . . , xp) ∈ Rp be a p-dimensional

vector of inputs and f(x) be the scalar-valued output
that represents the process of interest. The GPs are
fully specified by mean function µ(·) and covariance
function σ2r(·, ·; δ), where δ and σ2 correspond
to the vector of correlation length parameters and
variance parameter respectively.

Suppose we observe n realisations F T =
(f(x1), . . . , f(xn)) at design points XT =
(x1, . . . ,xn). The emulator is fitted based on an
ensemble of runs of the model f , denoted by
D = {XT , F T }, using a Bayesian approach with a
non-informative prior for parameters σ2 and δ [13].

B. Multivariate Gaussian Process model

For computer models with multivariate out-
puts given by an l-dimensional vector f(x) =
(f1(x), . . . , fl(x)), for example, time series output,
the data can be projected onto a low-dimensional
basis using principal components [14], and then
independent GP models are specified for coefficients
of this basis.

The n computer model simulations are stored in
an l × n matrix F = (f(x1), . . . ,f(xn)). After
subtracting out the mean simulation, µ, and scaling
the simulation output to obtain the centred ensemble,
F µ, the singular value decomposition for the centred
ensemble can be written as

F Tµ = UΣV T . (1)

We then obtain the principal component basis, de-
noted by Γ = (γ1, . . . ,γn−1), which are the first
n−1 columns of V and where each individual basis
vector γi has length l.

Given this basis, f(·) can be written as a linear
combination of the basis vectors:

f(x)− µ =

n−1∑
i=1

γici(x) + ε, (2)

= Γc(x) + ε, (3)

where ci(x) is the coefficient for basis vector γi and
ε is a residual vector.

Exploiting the fact that the basis vectors of Γ are
orthogonal, we can fit univariate Gaussian process
emulators for the coefficients ci(·) for each basis
vector separately. We choose the first q vectors and
denote the truncated basis by Γq = (γ1, . . . ,γq).
Conditioned on the projected ensemble, we emulate
the coefficients for the q basis vectors and obtain the
posterior distribution for the reconstruction of f(·).

C. Linked Gaussian Process emulators

To perform the coupling of a network of feed-
forward computer models, we present the linked GP
emulator methodology used for uncertainty quan-
tification. Consider a simple system, where a d-
dimensional output produced by computer models
in the first layer feed into a computer model in the
second layer [8].

For i = 1, . . . , d define a GP emulator to approx-
imate the outputs produced by individual computer
models

Wi|xi ∼ GP(µi(·), σ2
i r(·, ·; δi)), (4)



and

Y |W1, . . . ,Wd, z ∼ GP(µy(·), σ2
yr(·, ·; δy)), (5)

where x1, . . . ,xd and z are vectors of input parame-
ters. The outputs of the computer models are treated
as random variables, and the relationships between
these are shown in Figure 1.

x1

x2

W1

W2 Y

xd Wd z

. . .

Fig. 1: A feed-forward graph depicting the rela-
tionship between random variables W1,W2, . . . ,Wd

and Y .

The distribution of Y |x1, . . . ,xd, z can be written
as,

p(y|x1, ..,xd, z) =

∫
p(y|w, z)p(w|x1, ..,xd)dw,

where w = (w1, . . . , wd)
T . However,

(y|x1, . . . ,xd, z) is neither analytically tractable
nor Gaussian in general.

The first two moments can be computed by Monte
Carlo samples under the assumption that the den-
sities inside the integral are Gaussian [9]. Further,
under some mild conditions, the first two moments
can be calculated analytically [8], [10]. In particular,
suppose we observe realisations of y andw, denoted
by Y T and W T , at design (training) sets XT and
ZT , let D = {XT , ZT ,W T , Y T }. For specific
classes of correlation functions, [8] presented the
closed-form expressions for the mean and variance
of y at new inputs x̃ and z̃, conditioned on D.

We fit univariate GP emulators for the coefficients
of the retained basis vectors obtained for multivari-
ate outputs of component models, and substitute
these parameter estimates in the closed form ex-
pression of [8, Theorem 3.1]. Conditioned on the
projected ensemble, we obtain a posterior mean and
variance for the output of the composite model for
a given input.

III. COMPONENT MODELS

In this section we provide details for each of the
component models of the decision support frame-
work illustrated in Figure 2 for the case study
from a UK county council considering low carbon
technologies to transform its infrastructure to reach
a net-zero carbon target.

T,E,H

Heat
demand
model

Energy
systems
model

Gas price

heat demand

cost

Fig. 2: A network of models for energy planning,
where T is the surface temperature, E is the effi-
ciency of the equipment and H is the global building
transmission coefficient.

1) Heat demand model: Heat demand is calcu-
lated based on the degree days statistic (i.e., the
sum over days in which temperature is below a
given temperature threshold [15]–[17]). We vary the
three inputs: surface temperature (T ), efficiency of
the equipment (E) and the global building trans-
mission coefficient (H) (which when multiplied by
the degree days gives the heating power required).
Surface temperature takes the form of a time series
of annual averages from 2021 to 2050, whereas the
other inputs are assumed to be fixed throughout
the whole period. Projections of the annual heating
demand are then generated up to 2050. For details
on this model we refer to [15].

We derive the domains for the input parameters
from the half-hourly energy data for 2017-2021
provided by the council together with the historical
surface temperature data for 2017-2020.

2) Energy systems model: This model is based
on the widely used OSeMOSYS open source frame-
work [18], that computes the energy supply mix (in
terms of generation capacity and energy delivery)
given the heat demand, fuel prices, and the technolo-
gies connected to the system. The model considers
representative days for each of the four seasons,
and daily/seasonal storage technologies which shift
demand from day to night and between seasons,
respectively. Based on the half-hourly demand data
provided by the local council, the share of annual
heat demand attributed to each season and day/night



is displayed in Table I and specified in the energy
systems model.

TABLE I: Share of annual heat demand (%)

Winter Spring Summer Autumn

Day 26.5 17.7 12.2 24.5
Night 4.66 5.11 4.12 5.14

For this case study, we are interested in output
produced by the model of the total operational cost,
a time-series from 2021 to 2050. The model inputs
considered are heating demand and gas price, that
take the form of an annual average time-series from
2021 to 2050 [11].

IV. RESULTS

A. Emulation

To construct the decision support system, we
first build the GP emulators to approximate outputs
produced by the individual component models in
Sections IV-A1 and IV-A2. In Section IV-B, we
outline the process of linking the GP emulators with
mutlivariate output.

1) GP emulator for the heat demand model out-
put: The surface temperature input is represented
by one parameter, a shift away from the central
projection on a continuum, where a shift of ±1 cor-
responds to the high/low scenario, with intermediate
values interpolated between these [7].

TABLE II: Domain of input parameters for GP
emulators for the heat demand model output.

Input parameter (unit) Domain

Shift parameter in surface temperature [−1, 1]
Efficiency of the equipment (E) [0.5, 1]
Global building transmission coefficient (H) [5, 20]

Table II provides the domains of the input pa-
rameters considered for emulation. We use the max-
imin distance Latin Hypercube (LHC) to generate a
space-filling design to explore the output behaviour
across the input space and fit the emulator [19].
The output of interest is a vector of annual heating
demands from 2021 to 2050, which is projected
onto a low-dimensional basis by PCA. The first two
principal components were found to explain 98% of
the total variance and are retained for our analysis.

We consider coefficients of this basis, denoted
by c

(1)
i (x1), i = 1, 2, as functions of the in-

put parameters and construct a GP emulator for

each coefficient as in II-A. The regression function
h(x1) = (1, x11, x12, x13) includes a constant, and
linear terms in each component of x1 [1]. The corre-
lation function in the GP is a squared exponential,
and for the fit the RobustGaSP package [20] is
used.

To validate the performance of the GP emulators,
a test set of size 30 is used. Figure 3 (top row)
presents the cross-validation diagnostics for each
basis coefficient. We plot the emulated values and
the model outputs on the x-axis and y-axis respec-
tively. The black points and error bars represent the
emulator prediction and a two standard deviation
prediction interval. The true model values are green
if they lie within two standard deviation prediction
intervals, or red otherwise. We observe that the
emulator predictions lie close to the true values,
and the size of the error bars is small for both
basis coefficients, indicating that the emulator is
performing well.
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Fig. 3: Cross-validation plots for emulators for the
coefficients of the two basis vectors for the heat
demand model (top) and energy systems model
(bottom).

2) GP emulator for energy systems model output:
Similarly, we construct an emulator to approximate
the output of the energy systems model. The heating
demand input is replaced by the two basis coeffi-
cients obtained in IV-A1, whereas the gas price input
is replaced by a shift parameter, with high, low and
baseline scenarios again represented by values ±1
and 0 of a shift parameter. The output of interest
is the annual operating cost from 2021-50, which is
projected on to principal components, here we use



the first two principal components that explain 93%
of the total variance.

The same approach to fitting GP emulators for
the retained basis coefficients, c(2)i (·), i = 1, 2, as
a function of two basis coefficients and a shift
parameter for gas price is followed in Figure 3
(bottom row). We observe that three of the tested
model outputs were outside the prediction intervals
for our coefficients of principal components, which
is still consistent with our uncertainty specification.

B. Linking the GP models

The two emulators for heat demand and the
energy systems model are coupled using the direct
calculation method described in Section II-C. For
the graphical model in Figure 2, in Figure 4 we
llustrate the relationship between the first two coef-
ficients of PCA basis vectors obtained from the heat
demand model ensemble, c(1)1 and c(1)2 , and the first
two coefficients of PCA basis vectors obtained from
the energy systems model ensemble, c(2)1 and c

(2)
2 ,

given the vectors of global inputs x1 and x2.

x1

c
(1)
1

c
(1)
2

c
(2)
1

c
(2)
2

x2

Fig. 4: The coefficients for the linked emulators.

Figure 5 presents the cross-validation diagnostics
for the linked emulators. We continue operating
with GP emulators for PCA coefficients described
in IV-A1 and IV-A2.

−1.0

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0
Prediction

Tr
ue

 
out
in

−1.0

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0
Prediction

Tr
ue

 
out
in

Fig. 5: Cross-validation plots for the linked emula-
tors.

Figure 6 shows the projections of annual oper-
ational costs. The projected mean (solid line) and

two standard deviation prediction interval (shaded
region) produced by linked emulators (red); and
emulation for the energy systems model only taking
full runs of the demand model as inputs (blue). The
dashed line is the simulation run produced by the
energy systems model.

The linked emulator allows the consideration of
uncertainty from both the heat demand model and
energy systems model; it can be seen in the em-
ulation of only the energy system model output,
the uncertainty of the projection is underestimated
compared to the more comprehensive treatment. A
limited treatment of uncertainty such as the blue
series can have significant consequences in practical
decision situations, through consequent projections
being overconfident.
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Fig. 6: A simulation run from the energy systems
model (dashed line), projected mean ±2σ prediction
interval produced by the linked emulators (red) and
emulator for the energy systems model only (blue).

V. DISCUSSION

Simulator models are commonly used to provide
decision support for those managing complex phys-
ical systems. We have demonstrated how to anal-
yse two linked simulator models with multivariate
outputs using Gaussian process emulators, a well-
established approach for quantifying uncertainty in
computer models [21]. The presented approach is
more efficient compared to performing Monte Carlo
simulation with full probability distributions for the
basis vectors’ coefficients. To our knowledge, this is
the first application of such an approach for decision
support within the energy systems domain.

The developed method has been applied to a
planning question proposed for a facility managed
by a UK county council, namely a replacement of
a gas boiler with a ground source heat pump. We
presented projections for the total operating costs



up to 2050, considering the uncertainties associated
with the environment under which such new systems
will need to operate. Under the carbon zero policy
target the cost projections for alternative heating
facilities can be used to support the decision making
process in local councils when various low carbon
technologies are considered for long term planning.

The system model considered for this case study
is simple, however the framework can be applied
to larger networks of more complex models within
energy systems planning. Decision support frame-
works such as this, which provide direct expres-
sions for the efficient propagation of uncertainty
between component models are critical for scala-
bility. Further work within this application domain
includes extending the network model to include
other variables, and studying the effect of storage
on future projections as well as smoothing supply-
demand fluctuations on operating timescales.
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[16] M. Larsen, S. Petrović, A. Radoszynski, R. McKenna, and
O. Balyk, “Climate change impacts on trends and extremes
in future heating and cooling demands over europe,” Energy
and Buildings, vol. 226, p. 110397, 2020.

[17] J. Spinoni, J. Vogt, P. Barbosa, A. Dosio, N. McCormick,
A. Bigano, and H. Füssel, “Changes of heating and cooling
degree-days in Europe from 1981 to 2100,” International
Journal of Climatology, vol. 38, pp. e191–e208, 2018.

[18] M. Howells, H. Rogner, N. Strachan, C. Heaps, H. Hunt-
ington, S. Kypreos, A. Hughes, S. Silveira, J. DeCarolis,
and M. Bazillian, “OSeMOSYS: the open source energy
modeling system: an introduction to its ethos, structure and
development,” Energy Policy, vol. 39, no. 10, pp. 5850–
5870, 2011.

[19] M. Morris and T. Mitchell, “Exploratory designs for com-
putational experiments,” Journal of statistical planning and
inference, vol. 43, no. 3, pp. 381–402, 1995.

[20] M. Gu, J. Palomo, and J. Berger, RobustGaSP: Robust
Gaussian stochastic process emulation, 2020, R package
version 0.6.1. [Online]. Available: https://CRAN.R-project.
org/package=RobustGaSP

[21] D. Williamson, M. Goldstein, and A. Blaker, “Fast linked
analyses for scenario-based hierarchies,” Journal of the
Royal Statistical Society: Series C (Applied Statistics),
vol. 61, no. 5, pp. 665–691, 2012.

https://www.gov.uk/government/collections/energy-and-emissions-projections
https://www.gov.uk/government/collections/energy-and-emissions-projections
https://www.gov.uk/government/publications/public-sector-decarbonisation-scheme-psds
https://www.gov.uk/government/publications/public-sector-decarbonisation-scheme-psds
https://CRAN.R-project.org/package=RobustGaSP
https://CRAN.R-project.org/package=RobustGaSP

	I Introduction
	II Methodology
	II-A Gaussian Process model
	II-B Multivariate Gaussian Process model
	II-C Linked Gaussian Process emulators

	III  Component models
	III-1 Heat demand model
	III-2 Energy systems model


	IV Results
	IV-A Emulation
	IV-A1 GP emulator for the heat demand model output
	IV-A2 GP emulator for energy systems model output

	IV-B Linking the GP models

	V Discussion
	References

