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Abstract 

Blood pressure (BP) variability is an independent risk factor for cardiovascular events. Recent 

evidence supports a role for the gut microbiota in BP regulation. However, whether the gut 

microbiome is associated with BP variability is yet to be determined. Here, we aimed to 

investigate the interplay between the gut microbiome and their metabolites in relation to BP 

variability. Ambulatory BP monitoring was performed in 69 participants from Australia 

(55.1% women; mean±SD 59.8±7.26-years old, BMI 25.2±2.83 kg/m2). This data was used to 

determine night-time dipping, morning BP surge (MBPS) and BP variability as standard 

deviation (SD). The gut microbiome was determined by 16S rRNA sequencing, and metabolite 

levels by gas chromatography. We identified specific taxa associated with systolic BP 

variability, night-time dipping and MBPS. Notably, Alistipesfinegoldii and Lactobacillus spp. 

were only present in participants within the normal ranges of BP variability, MBPS and 

dipping, while Prevotella spp. and Clostridium spp. were found to be present in extreme 

dippers and the highest quartiles of BP SD and MBPS. There was a negative association 

between MBPS and microbial α-diversity (r=-0.244, P=0.046). MBPS was also negatively 

associated with plasma levels of microbial metabolites called short-chain fatty acids (SCFAs) 

(r=-0.305, P=0.020), particularly acetate (r=-0.311, P=0.017). In conclusion, gut microbiome 

diversity, levels of microbial metabolites, and the bacteria Alistipesfinegoldii and Lactobacillus 

were associated with lower BP variability, and Clostridium and Prevotella with higher BP 

variability. Thus, our findings suggest the gut microbiome and metabolites may be involved in 

the regulation of BP variability.    
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Introduction 

Over a 24-hour period, blood pressure (BP) follows a natural pattern of diurnal variation, 

independent of internal and external stimuli.1 Typically, BP oscillates regularly through the 

day and night cycle. BP undergoes a prominent decline at night during the sleep cycle, referred 

to as ‘night-time dipping’, followed by an abrupt, steep acceleration in the morning following 

rising, known as ‘morning surge’.2,3 Night-time dipping in systolic BP, defined as the 

difference between the mean systolic pressure of day and night BP, is recognised as a measure 

of cardiovascular risk,4 with an accepted normal range between 10-20%.3,5 Thus, individuals 

who do not display this pattern of dipping (non-dippers), or instead surpass the acceptable 

dipping range (extreme dippers) have a greater risk of mortality and morbidity.6,7 Similarly, an 

exaggerated morning surge in systolic BP has also been identified as a risk factor in the 

development of cardiovascular disease (CVD), particularly in hypertensive patients.8,9   

The gut microbiota is the community of microorganisms that resides in the intestine.10,11 

Over the past decade, the gut microbiota has emerged as a key player in BP regulation.11 

Emerging data demonstrate that the human gut microbiome, similar to 24-hour BP, exhibits 

diurnal variations12,13 and is tightly synchronized to the host circadian rhythm.14 However, 

circadian disruption, whether central (i.e. light-dark shift, artificial light at night) or peripheral 

(i.e. timing of food consumption) in nature, can lead to imbalances in intestinal microbiota, gut 

dysbiosis and changes in biological components of the microbiota themselves.14 In turn, this 

may influence both metabolic and inflammatory pathways that alter the natural pattern of BP 

variability.13 Such alterations, primarily gut dysbiosis, have previously been associated with 

elevated BP in several human studies.10,11,15 Experiments using faecal microbiota 

transplantation to germ-free animals have demonstrated the gut microbiota is not merely 

associated with but can in fact increase BP.16,17 This may be attributed to mechanisms involving 
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gut microbial-derived metabolites, such as short-chain fatty acids (SCFAs), which are produced 

during fermentation of dietary fibre by intestinal bacteria.11 The production of these bacterial 

metabolites is also rhythmic,18 which is critical as recent studies suggest that the host’s diurnal 

rhythms may be driven by gut microbiota and their metabolites.18,19 However, whether the gut 

microbiota and their metabolites are associated with changes in the natural circadian pattern of 

BP regulation, particularly in humans, remains to be elucidated. Here, we aimed to study this 

phenomenon in normotensive and untreated hypertensive participants with well-characterised 

BP and the gut microbiome, their metabolites and receptors. We performed a proof-of-concept 

study where we report that some gut microbial features and SCFAs are associated with BP 

variability, warranting further investigations. 

 

Methods 

Participants and recruitment 

The cohort was recently described elsewhere.20 Briefly, a total of 76 participants were recruited 

from metropolitan (n=41 Baker Institute and Alfred Hospital, Melbourne) and regional (n=35, 

Shepparton, Victoria) areas between October-2016 and April-2018 for this observational study. 

Inclusion criteria were defined as: aged 40-70 years, either sex, body mass index (BMI) 18.5-

30 kg/m2, and not using BP-lowering medication. Exclusion criteria included gastrointestinal 

disease (including history of intestinal surgery, inflammatory bowel disease, celiac disease, 

lactose intolerance, chronic pancreatitis or other malabsorption disorder), diabetes (type 1 and 

2), chronic kidney disease, and probiotic or antibiotic use in the past 3 months. Two participants 

were excluded due to high BMI and four were excluded due to incomplete 24-hour BP 

measurements. Following exclusions, a total of 70 participants remained: 40 in the 

metropolitan clinics and 30 in the regional clinic. This study complied with the Declaration of 
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Helsinki, and was approved by the human research ethics committee of the Alfred Hospital 

(approval 415/16). All participants provided informed consent. The study was registered in the 

Australian New Zealand Clinical Trials Registry under ACTRN12620000958987. 

BP measurement and its variability calculation 

Participants were fitted with a calibrated ambulatory BP monitoring device (AND or 

SpaceLabs) for 24-hours. Data from two participants for BP variability, one participant for 

night-time dipping and three participants for morning BP surge (MBPS) data were excluded 

due to lack of specific BP timepoints required to calculate these metrics. BP variability is 

represented as the standard deviation (SD) of total day systolic (divided into quartiles: Q1: 

<9.76; Q2: 9.76–11.32; Q3: 11.32-14.14; Q4: >14.14), night systolic (Q1: <9.75; Q2: 9.75–

11.38; Q3: 11.38-13.65; Q4: >13.65), and overall fitted data (Q1: <11.94; Q2: 11.94–13.86; 

Q3: 13.86-16.30; Q4: >16.30).  

Night-time dipping and morning surge data were manually calculated as previously 

described.21 Briefly, sleep BP was defined as the BP average from the time when the participant 

went to bed until rising (11:00pm – 6:00am) and awake BP as the BP average of the remainder 

of the day (7:00am – 10:00pm). Participants were then classified according to the percentage 

of night-time dipping [100x (1-sleep BP/awake BP)] as follows: extreme dippers (night-time 

dip ≥20%), dippers (night-time dip ≥10% but <20%), or non-dippers (night-time dip ≥0% but 

<10%).  

Morning BP was defined as the BP average during the first two hours after rising 

(7:00am – 9:00am; 5 readings); preawake BP was defined as the average BP during the two 

hours prior to rising (4:00am – 6:00am; 5 readings); the lowest BP was defined as the average 

BP of the lowest night-time reading, and the reading immediately before and after (3 readings). 

Sleep-through MBPS was calculated as: morning BP – lowest BP, and prewaking MBPS as: 
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morning BP – preawake BP. The cohort was then divided into quartiles for each MBPS 

parameter: sleep-through MBPS (quartiles: Q1: <9.40; Q2: 9.40–17.17; Q3: 17.17-23.45; Q4: 

>23.45) and prewaking MBPS (Q1: <3.93; Q2: 3.93–12.73; Q3: 12.73-18.33; Q4: >18.33).  

Food Frequency Questionnaire 

Dietary intake over a 12-month period was assessed using the Dietary Questionnaire for 

Epidemiological Studies version 3.2, a self-administered questionnaire developed by the 

Cancer Council Victoria that allows for a reflection of dietary intake of the Australian 

population. 22 Subtypes of dietary fibre (insoluble and soluble fibre, resistant starch) were 

estimated using previously described tools.23 The quality of participants’ diet was also 

measured as Australian Dietary Guideline Index (DGI-2013)24,25 as described previously.20,26  

Faecal DNA extraction, library preparation and sequencing 

This study followed guidelines for gut microbiota studies in hypertension27 and the 

Strengthening the Organization and Reporting of Microbiome Studies (STORMS) reporting28 

(checklist available at 20). Sample collection, DNA extraction, library preparation and 

sequencing were described in detail previously.20 Briefly, DNA from the stool samples was 

extracted using the DNeasy PowerSoil DNA isolation kit (Qiagen). The V4-V5 region of the 

bacterial 16S rRNA was amplified by PCR using the Earth Microbiome Project29 protocol. The 

libraries were sequenced in an Illumina MiSeq sequencer (300 bp paired-end reads). To 

increase the reproducibility of the findings, all samples were independently sequenced twice. 

These technical duplicated samples were combined for the analyses described below.  

Bioinformatic analyses of gut microbiome 

Anonymized microbiome data and materials have been made publicly available at the NCBI 

Sequence Read Archive (SRA) database under access PRJNA722359.20 Sequence reads from 
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samples were first analysed using the QIIME2 framework.30 One participant was excluded 

from all analyses due to low total number of sequencing reads (<10,000), thus resulting in 69 

participants that were included the analyses. Samples were rarefied at 29,000 reads per sample. 

β diversity metrics (showing differences in the composition of the microbiome) were generated 

from the rarefied samples, including unweighted and weighted Unifrac metrics as well as 

associated Principal Coordinate Analysis (PCoA) distance tables. Taxonomic assignment used 

a naïve Bayes classifier to label ASVs (via q2-feature-classifier31), trained against the SILVA 

database (version 138) 99% OTU reference sequences specific for bacterial V4-V5 rRNA 

regions. Further analyses were performed on MicrobiomeAnalyst from the rarefied samples, 

including α diversity (showing differences in the number of taxa and/or how evenly distributed 

they were) and abundance profiling. Features with a minimum of four counts occurring at a 

prevalence of 10% of samples were included, and those with microbial features with low 

variance (<10%) were removed. This removed 266 low abundance features based on 

prevalence and 21 low variance features, resulting in 184 features that were included in the 

analysis. Data was scaled using the Total Sum Scaling (TSS) normalisation method.32 

Differential taxa analysis was performed using edgeR (adjusted for false discovery rate, FDR, 

cut-off <0.05 on feature-level) on MicrobiomeAnalyst.33,34  

Short-chain fatty acids measurement 

Briefly, plasma SCFAs from blood collected in the morning were measured in 200 µL and 

faecal SCFAs were measured from 1 g of faecal sample, all in triplicates, as previously 

published,20 in an Agilent GC6890 coupled to a flame-ionisation detector.35,36 A coefficient of 

variation of <10% within triplicate samples was used as a quality control measure. 

Blood expression of SCFA receptors and transporters   
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Using knockout mice, we have previously shown that all three main SCFA-sensing receptors 

GPR41 (FFAR3), GPR43 (FFAR2) and GPR109A (HCAR2) have a role in cardiovascular 

dysfunction.10 As these receptors are highly expressed in immune cells,37 we quantified the 

expression of the mRNA of the three receptors in circulating immune cells in 50 participants. 

Whole blood was treated with Red Blood Cell Lysis Buffer (ThermoFisher Scientific), and 

RNA was extracted using the RNeasy Mini kit (Qiagen). RNA was quantified in a Nanodrop 

Spectrophotometer and first-strand complementary synthesis reaction (cDNA) was made using 

the SuperScript™ IV VILO™ Master Mix with ezDNase™ Enzyme (ThermoFisher 

Scientific). TaqMan assays were used in a QuantStudio 6 Flex Real-Time PCR (qPCR) system 

(all ThermoFisher Scientific), with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 

β-actin (ACTB) as housekeeping genes. All expression experiments were run in duplicates and 

significance was assessed by 2-ΔΔCT method.   

Statistical analyses 

Microbiome data was analysed as explained above. Data were analysed blind. GraphPad Prism 

(version 8) package was used for graphing, and SPSS for Windows (release 25) for statistical 

analyses. Non-parametric tests were used in the case of non-normally distributed data. A one-

way ANOVA was performed on quartile and night-time dipping data, while a two-tail 

independent sample t-test was used to compare Q1-Q3 to Q4 for each parameter. Normally 

distributed α diversity score correlations were performed using Pearson’s correlation 

coefficient, whereas non-normally distributed correlation data were performed using 

Spearman’s correlation coefficient. Further analyses were conducted using step-wise multiple 

linear regression models for Shannon diversity, acetate, butyrate, propionate, FFAR3, FFAR2 

and HCAR2 levels. These models had clinical (age, sex, body mass index) variables as 

independent parameters (criteria of F-entry probability: 0.15, removal: 0.20) in SPSS. Multiple 

testing correction was performed using the FDR approach through the inbuilt statistical 
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function ‘p.adjust()’ of R v4.0.3 (R Core Team, 2020) on correlation analyses. Data are 

presented as mean ± SD unless otherwise specified, and those with a P<0.05 were considered 

significant. 

 

Results 

Baseline characteristics 

Tables 1 and 2 summarise the baseline characteristics of the participants for the SD, night-time 

dipping and MBPS data respectively, across quartiles and night-time dipping status. Besides 

the difference between quartiles for each of the BP variability parameters studied, only sex was 

different across day and night SD quartiles, with less women in Q4 group. A total of over 4.3 

million sequencing reads were denoised, merged and underwent chimera filtering, resulting in 

an average read count of 63,000 per sample. Samples were rarefied to 29,000 reads to allow 

for consistent and plateauing diversity metrics (Online Supplementary Figure S1).  

Dietary Food Intake 

There was no difference in total fibre, insoluble and soluble fibre, as well as resistant starches 

between all three metrics of SD BP data, night-time dipping and both sleep-through and 

prewaking MBPS (data not shown, all P>0.05). However, we identified a negative correlation 

between sleep-through MBPS and the Australian Dietary Score (r=-0.29, P=0.017), which 

remained significant after adjustment for age, BMI and sex (β=-0.522, P=0.017). All other 

comparisons with BP variability metrics were not significant.  

BP variability and the gut microbiome  

We found no association between three metrics of α-diversity: observed OTUs, Chao1 

(measure of species richness) and Shannon index (measure of taxonomic richness and 

evenness) and BP variability, including SD of day, night and total data fitted (Figures 1A, B, 
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C, Figure S2). These findings were validated in correlations between α-diversity and all three 

datasets of BP variability as continuous variables (Online Supplementary Table S1). We 

obtained similar results when assessing β-diversity; both unweighted and weighted UniFrac 

distances showed no significant clustering patterns between Q1-Q3 versus Q4 of all three 

datasets of BP variability (Figure S3).  

We identified 46 unique microbial taxa that were more prevalent in the lowest quartiles 

of BP SD (Q1-Q3) versus the highest quartile (Q4) (Table S2, main findings summarised in 

Figure 2). We found that Alistipes finegoldii (Figure 2A and B respectively, P=0.032, 

P=0.018), Lactobacillus spp. (Figure 2C, P=0.025), uncultured Acetivibrio spp. (Figures 2D-

E, P=0.033, P=0.0021) and Azospirillum spp. (Figure 2F, P=0.0013) were more abundant in 

the lowest quartiles of SD data compared to Q4. Conversely, we found that participants in the 

highest total SD quartile had higher abundance levels of Clostridium spp. including 

Clostridiales vadin BB60group and uncultured Clostridiumsp_6 (Figures 2G and H 

respectively, P<0.001, P=0.0056).  

Night-time dipping and the gut microbiome  

There was no association between α-diversity and night-time dipping both as a categorical 

(Figure 1D and S4) and continuous variable (Table S1). We also did not identify any significant 

clustering patterns between extreme dippers, dippers and non-dippers both in unweighted and 

weighted PCoA plots (Figure S5). The acceptable range of night-time dipping that is 

considered as ‘normal’ is defined as a mean systolic difference of day and night BP between 

10-20%;3in this case participants were classified as ‘dippers’. Thus, we performed separate 

differential abundance analyses comparing dippers with extreme dippers (Figures 3A-C), as 

well as dippers with non-dippers (Figures 3D-F), to explore taxonomic differences between 

normal and irregular dipping patterns (Tables S3-S5). Compared to extreme dippers, it was 
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found that dippers had differentially abundant levels of Gabonia massiliensis (Figure 3A, 

P=0.041). However, extreme dippers exhibited higher levels of various Clostridium spp., 

specifically Clostridiales vadin BB60group (Figure 3B, P<0.001), as well as higher levels of 

Prevotella spp. including Prevotellacae NK3B31group (Figure 3C, P=0.018). When 

comparing dippers to non-dippers, we found that Lactobacillus spp. were more abundant in 

dippers (Figure 3D, P<0.001), however, Clostridium spp. including uncultured 

Clostridiumsp_4 and Ruminiclostridium_6 were higher in participants with a non-dipping 

profile (Figures 3E and F, respectively, P<0.001, P=0.046). When comparing all three night-

time dipping profiles, dippers had differentially abundant levels of Lactobacillus spp. 

compared to both extreme- and non-dippers (Figure 3G, P=0.030), whereas extreme dippers 

had significantly more abundant levels of Prevotellacae NK3B31group. compared to dippers 

and non-dippers (Figure 3H, P=0.017). Despite all three dipping profiles exhibiting levels of 

Clostridiales vadin BB60group, it was extreme dippers who had the greatest levels compared 

to dippers and non-dippers (Figure 3I, P<0.001).  

MBPS and the gut microbiome  

α-diversity profiling analyses indicated that, similarly to both BP SD and night-time dipping 

data, no significant associations were reported between metrics of α-diversity and MBPS 

quartiles (Figure 1E, F and S6). Nevertheless, as a continuous variable, prewaking MBPS was 

negatively correlated with Shannon Index (Table S1, r=-0.24, P=0.046), which remained 

significant after performing step-wise regression analyses adjusted by age, sex and BMI (β=-

6.769, P=0.017), however, it did not remain significant following FDR adjustment for all 

analyses shown in Table S1 (P=0.14) We identified no significant clustering patterns in both 

β-diversity metrics of unweighted and weighted UniFrac distances for sleep-through and 

prewaking MBPS between Q1-3 and Q4 (Figure S7). However, some specific taxa were more 

prevalent in the three lowest quartiles or the highest quartile of both sleep-through and 
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prewaking MBPS (Figure 4 and Table S6). Participants who were classified as having sleep-

through MBPS in the three lowest quartiles had higher levels of uncultured Acetivibrio spp. 

(Figure 4A, P=0.0089), as well as a specific taxa Alistipes finegoldii (Figure 4B, P=0.029), 

whereas participants in the highest quartile of sleep-through MBPS had higher levels of 

Clostridium spp., specifically Clostridiales vadin BB60group (Figure 4C, P<0.001). Moreover, 

participants in the three lowest quartiles of prewaking MBPS had higher levels of Lactobacillus 

spp. (Figure 4D, P<0.001). Participants in the highest quartile of prewaking MBPS however, 

exhibited higher levels of Clostridium spp. and Prevotella_9 (Figure 4E and F respectively, 

P<0.001, P=0.0066).  

Short-chain fatty acids and receptors  

We then quantified the levels of both faecal and circulatory SCFAs in relation to BP SD, night-

time dipping and MBPS (Table S7). We identified a negative correlation between plasma total 

SCFAs and prewaking MBPS (r=-0.31, P=0.020; regression analyses β=-0.066, P=0.02), 

driven by plasma acetate levels (r=-0.31, P=0.017; regression analyses β=-0.072, P=0.017), 

however, following FDR adjustment, neither remained significant. We then analysed the 

expression of the SCFA receptors GPR41 (FFAR3), GPR43 (FFAR2) and GPR109A (HCAR2) 

in circulating immune cells in relation to BP SD, night-time dipping and MBPS. We identified 

a negative correlation between all three metrics of SD data and FFAR2 mRNA (Table S8, 

Figure S8A-C), indicating that participants with higher BP SD had overall lower expression 

levels of FFAR2, however, only SD night data remained significant following FDR adjustment 

(P=0.048). Similarly, we found that participants with a greater percentage in night-time dipping 

had higher levels of FFAR2 (P=0.0087, Table S8, Figure S8D), which remained significant 

following FDR adjustment (P=0.026).  
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Discussion 

Through a combination of gut microbiome sequencing, metabolite and receptor quantification, 

and 24-hour ambulatory blood pressure monitoring, we were able to uncover novel 

relationships with human BP variability represented here as SD, night-time dipping and 

morning surge. In particular, we discovered certain microbial taxa were associated with BP 

variability, such as Lactobacillus, Alistipesfinegoldii, Clostridium and Prevotella spp., as well 

as associations with microbial diversity and metabolites, particularly the SCFA receptor 

GPR43 (summarised in Figure S9).  

A growing body of evidence suggests that dysbiosis of the gut microbiota has a 

fundamental role in the development of CVD.38 Importantly, recent studies support a causal 

relationship between the gut microbiota and both experimental and human hypertension.10,11 

Thus, coupled with tight circadian synchronization,14 a link between the gut microbiota and 

diurnal variations in 24-hour BP would be expected. Yet, there is limited evidence implicating 

the gut microbiota in the host’s circadian rhythms.18  The circadian clock and the gut microbiota 

influence each other in a reciprocal manner, whereby gut dysbiosis can lead to circadian 

synchrony, and vice-versa.39 Studies have shown that the gut microbiome influences the 

rhythmic expression of the host’s internal clock via signalling molecules such as SCFAs, as 

well as through oscillations in microbial content in response to various stimuli such as feeding 

patterns.40,41 Importantly, environmental and genetic manipulation of circadian rhythms in 

healthy mice led to gut dysbiosis, specifically a marked increase in bacteria associated with 

pro-inflammatory responses.42 In this study, we found no association between microbial α-

diversity and BP variability (SD) and night-time dipping. However, we identified a negative 

association between Shannon Index and MBPS. Differently from Chao1 and observed OTUs, 

which are both metrics of richness, Shannon Index considers both microbial richness and 

evenness. Thus, this may suggest that lower diversity and reduced distribution of microbes are 
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present in faecal samples from those with exaggerated MBPS. This is in agreement with a 

recent cross-sectional study which analysed the human gut microbiome and a multitude of host 

factors including BP, which was also negatively correlated with Shannon diversity.43 Diet 

quality has also been associated with α-diversity metrices.44 Similarly, we observed a negative 

association between MBPS and diet quality; however, this was independent of Shannon index 

or sodium intake (data not shown). 

Moreover, we uncovered differentially prevalent bacteria taxa between participants 

with different metrics of BP variability. Most notably were the levels of Alistipes finegoldii, a 

newly discovered member of the Bacteroidota phylum,45 which were higher in the three lowest 

quartiles of BP variability and MBPS. However, there is contradicting evidence for an 

association between Alistipes spp. in CVD.46 Shotgun metagenomic analysis of faecal samples 

from normotensive and hypertensive patients indicated that two specific Alistipes spp. – 

Alistipes finegoldii and Alistipes indistinctus – were positively correlated with systolic BP,47 

with Alistipes finegoldii specifically associated with intestinal inflammation.46,47 Similarly, 

greater levels of Lactobacillus spp., a low abundance species commonly used in probiotics, 

were observed in normal night-time dippers and participants in the three lowest quartiles of 

MBPS. In mouse and human studies, Lactobacillus spp. levels were reduced by sodium intake 

and increased BP via pro-inflammatory pathways including interleukin-17.48 Moreover, mice 

subjected to circadian disruption, and thus irregular BP variations, displayed a significant 

reduction in Lactobacillus spp. levels.13,49   

Contrastingly, we detected greater levels of several Clostridium spp. in participants 

with the highest quartiles for BP SD, MBPS and extreme dippers, all of which embody a 

dysregulated circadian rhythm of BP variability. Indeed, an array of Clostridium spp. are 

positively associated with systolic BP.50 In mice, when the gut microbial rhythmicity becomes 

compromised, the host exhibited fluctuations in the ‘normal’ cycle of circadian rhythm as well 
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as increased abundance of Clostridium spp.13 Another more abundant taxa in those with higher 

BP variability was Prevotella spp., abundantly present in both prehypertensive and 

hypertensive patients17 and identified as early markers in the development of hypertension and 

CVD.10 Moreover, the diurnal activity of the Prevotella spp. shows a moderate percentage 

abundance (between 30-40%) during night-time and a persistent plummet in relative abundance 

during rising (~20%).51 This suggests that an extreme night-time dip or morning surge 

phenotype may, in part, be due to greater levels of Prevotella spp. More broadly, such distinct 

differences in taxonomic profiles of participants with regular versus irregular BP variability 

may suggest a causal effect of the gut microbiota on host BP diurnal variation. Replication in 

independent cohorts and mechanistic experiments using animal models are needed to validate 

these findings, but were outside the scope of this study. 

Bacteria in the gastrointestinal tract are metabolically active, and metabolites, 

specifically SCFAs such as acetate, butyrate and propionate, have been shown to affect host 

circadian rhythms.14,52 Here we identified an inverse association with overall plasma SCFAs, 

specifically acetate, and MBPS. This may suggest a potential link between acetate metabolism 

or utilisation and BP, whereby under metabolic stress, a specific liver enzyme becomes 

activated and generates free acetate into the circulation, which is followed by rapid uptake by 

peripheral tissue,53 and may in part explain lower plasma acetate in participants with higher 

MBPS. Importantly, we have previously shown that acetate indeed lowers BP in animal models 

of hypertension.54,55 Moreover, SCFA-producing bacterial species were only found in mice not 

subjected to circadian disruption,56 further supporting an association of gut microbial 

metabolites and circadian dysregulation.  

The exact mechanism through which SCFAs are able to elicit alterations in the circadian 

clock is not yet fully understood.57 SCFAs mostly activate signalling via binding to three G-

protein coupled receptors, with GPR43 being the most predominant of these receptors. These 
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receptors are highly expressed in immune cells,37 including T, B and innate lymphoid cells,58 

and activate anti-inflammatory downstream pathways.59 Here we identified a negative 

association between BP SD and night-time dipping and GPR43 in circulating immune cells. 

This is consistent with our previous findings regarding 24-h systolic BP20 and aortic stiffness,60 

suggesting a blunted response to BP-lowering metabolites.  

We acknowledge that there are some limitations to our study, including the sample size, 

as well as lack of assessment of the presence of sleep disorders, such as obstructive sleep 

apnoea, which may affect the BP variability profile. Larger studies will be more suitable to 

differentiate the complex interplay between the BP variability, gut microbiome and their 

metabolites. Due to the sample size, men and women, and normotensives and hypertensives 

were analysed together; however, we adjusted some of the analyses for sex, age and BMI. 

However, our study took advantage of the only multi-site cohort published to date with well-

characterised ambulatory BP monitoring that includes data for BP variability (represented as 

SD), night-time dipping and MBPS in both men and women, all untreated for BP-lowering 

medication. Another limitation is that this is a cross-sectional study, which infers association 

rather than causation. This is also the only cohort that contains detailed information regarding 

diet, plasma and faecal SCFAs, and their receptors, which allowed us to explore the interplay 

between the gut microbiome, diet, their metabolites and receptors in relation to three separate 

parameters of BP variability. Future studies should include multiple sampling from the same 

individuals to minimise intra-individual variation of the gut microbiome.  

Perspectives 

While there was no change in gut microbial diversity in patterns of BP variation over a 24-hour 

period, we identified significant shifts in bacterial abundances associated with BP variability, 

MBPS or night-time dipping dippers. To confirm causation, reverse microbiome approaches 
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using germ-free animals11 with inoculation of specific taxa identified here, such as Clostridium 

spp. and Prevotella spp., would advance our understanding of how specific microbes contribute 

to BP variability. An important mechanism may be driven by SCFAs and their main sensing 

receptor, GPR43, which were associated with BP variability. Lack of GPR43 may blunt 

response to BP-lowering metabolites, and may represent a new target for BP therapy in the 

future.  
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Novelty and Significance  

1. What is new? 

• This is the first study to assess the gut microbiome, gut microbial metabolites called short-

chain fatty acids and their receptors (GPR41/43/109A) in relation to three separate 

parameters of blood pressure variability (standard deviation, night-time dipping and 

morning surge). 

• We identified specific microbial signatures associated with blood pressure variability in 

humans.  

• The taxa we identified may impact blood pressure variability via mechanisms that involve 

microbial metabolites, such as the short-chain fatty acid acetate, and their receptor GPR43. 

 

2. What is relevant? 

• There is limited research into the interplay between the gut microbiome, and more 

specifically, the metabolites they produce and their metabolite-sensing counterparts in the 

context of human blood pressure variability. 

• Gut bacteria and their metabolites may affect blood pressure variability via systemic 

mechanisms outside the intestine. 

• Targeting these bacteria and associated metabolites may lead to new therapies to reduce 

blood pressure variability; however, this needs to be tested in clinical trials.
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Tables  

Table 1. Demographics and clinical characteristics of participants for standard deviation (SD) and morning blood pressure surge (MBPS). 

Variable Quartile 1 Quartile 2 Quartile 3 Quartile 4 P-value 

SD of day data fitted <9.76 9.76–11.32 11.32-14.14 >14.14 <0.001 

Age (y) 56.4±6.54 58.0±8.36 62.1±7.14 61.4±6.14 0.479 

Sex (% Female) 62.5% 70.6% 38.9% 47.1% 0.02 

BMI  24.9±2.75 25.8±2.49 25.0±3.02 24.9±3.24 0.623 

SD of night data fitted <9.75 9.75–11.38 11.38-13.65 >13.65 <0.001 

Age (y) 60.1±7.56 56.5±8.67 60.4±7.02 61.2±5.49 0.254 

Sex (% Female) 68.8% 82.4% 50% 17.6% <0.001 

BMI  24.2±2.93 24.9±2.28 25.8±3.16 25.6±2.92 0.382 

SD of total data fitted <11.94 11.94-13.86 13.86-16.30 >16.30 <0.001 

Age (y) 57.6±6.70 61.5±8.25 59.1±7.59 59.9±6.71 0.073 

Sex (% Female) 81.3% 47.1% 61.1% 29.4% 0.236 

BMI  25.5±2.95 25.5±2.86 24.4±2.71 25.2±3.00 0.800 
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Sleep-through MBPS (range) 2.30±5.67 

(<9.40) 

12.8±2.39 

(9.40–17.17) 

17.17-23.45 

(19.9±1.78) 

>23.45 

(36.8±9.63) 

<0.001 

Age (y) 61.4±7.52 57.0±8.02 60.6±7.11 58.6±6.34 0.307 

Sex (% Female) 50% 62.5% 61.1% 41.2% 0.577 

BMI  26.0±3.13 25.2±2.72 24.6±2.46 25.0±3.22 0.556 

Pre-waking MBPS (range) -3.10±7.53 

(<3.93) 

8.14±2.48 

(3.93–12.73) 

15.7±1.58 

(12.73-18.33) 

27.7±7.48 

(>18.33) 

<0.001 

Age (y) 61.6±6.32 58.9±9.65 56.4±6.54 60.5±6.26 0.165 

Sex (% Female) 36.8% 71.4% 58.8% 52.9% 0.258 

BMI  25.6±3.25 25.2±2.96 24.8±2.24 25.0±3.09 0.853 

Data are shown as mean±standard deviation or numbers and percentages. Legend: standard deviation, SD; body mass index, BMI; systolic blood 

pressure, SBP. P-value from one-way ANOVA, in bold P<0.05.  
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Table 2. Demographics and clinical characteristics of participants for night-time dipping 

data. 

Variable Extreme Dippers Dippers Non-Dippers 
P-value 

Sample size (n, %)  7 (10.1%) 43 (62.3%) 19 (27.5%) 

Age (y) 57.1±5.08 58.7±7.69 62.5±6.38 0.166 

Sex (% Female) 57.1% 53.5% 57.9% 0.686 

BMI  23.9±2.91 25.3±2.59 25.3±3.33 0.231 

Night-time dipping (%) 23.0±3.83 15.1±2.73 4.88±3.45 <0.001 

Data are shown as mean±standard deviation or numbers and percentages. Legend: body mass 

index, BMI; systolic blood pressure, SBP. P-value from one-way ANOVA, in bold P<0.05.  
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Figure Legends 

Figure 1. α-diversity profiles and box plots of blood pressure (BP) variability. α-diversity 

profiling showing Shannon index, which combines both richness and evenness, for A) BP 

standard deviation (SD) day, B) night and C) total, D) night-time dipping, E) sleep-through and 

F) prewaking morning blood pressure surge (MBPS). All P>0.05.  

Figure 2. Differential abundance analysis of specific bacterial taxa for blood pressure 

standard deviation (SD). Differentially abundant bacterial taxa in Q1-Q3 compared to Q4 for 

A) SD of day data fitted, B, C, D) SD of night data fitted and E, F) SD of total data fitted. 

Differentially abundant bacterial taxa in Q4 compared to G, H) Q1-Q3 for SD of total data 

fitted. The data presented is presented as log-transformed counts. See Table S2 for more details. 

False discovery rate adjusted P-value cut-off=0.05. Box plot data presented as median and IQR.   

Figure 3. Differential abundance analysis of specific bacterial taxa for night-time dipping. 

Differentially abundant bacterial taxa in A, B, C) dippers compared to extreme dippers, D, E, 

F) dippers compared to non-dippers and G, H, I) all classifications of dipping. The data is 

presented as log-transformed counts. See Tables S3-S5 for more details. False discovery rate 

adjusted P-value cut-off=0.05. Box plot data presented as median and IQR.   

Figure 4. Differential abundance analysis of specific bacterial taxa for sleep-through and 

prewaking morning blood pressure surge (MBPS). Differentially abundant bacterial taxa in 

Q1-Q3 compared to Q4. The data presented is presented as log-transformed counts. See Table 

S6 for more details. False discovery rate adjusted P-value cut-off=0.05. Box plot data presented 

as median and IQR.   
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