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A B S T R A C T   

The urban heat island effect (UHI) has been widely observed globally, causing climate, health, and 
energy impacts in cities. The UHI intensities have been found to largely depend on background climate 
and the properties of the urban fabric. Yet, a complete mechanistic understanding of how UHIs develop at 
a global scale is still missing. Using an urban ecohydrological and land-surface model (urban Tethys- 
Chloris) in combination with multi-source remote sensing data, we performed simulations for 49 
large urban clusters across the Northern Hemisphere in 2009–2019 and analysed how surface and 
canopy air UHIs (SUHI and CUHI, respectively) develop during day and night. Biophysical drivers 
triggering the development of SUHIs and CUHIs have similar dependencies on background climate, but 
with different magnitudes. In humid regions daytime UHIs can be largely explained by the urban-rural 
difference in evapotranspiration, whereas heat convection and conduction are important in arid areas. 
Plant irrigation can largely promote daytime urban evapotranspiration only in arid and semi-arid cli-
mates. During night, heat conduction from the urban fabric to the environment creates large UHIs mostly 
in warm arid regions. Overall, this study presents a mechanistic quantification of how UHIs develop 
worldwide and proposes viable solutions for sustainable climate-sensitive mitigation strategies.  

Abbreviations: ϕs, soil water potential; AC, air conditioning; CUHI, canopy layer air urban heat island; CUHId, average daytime canopy urban heat 
island intensity; CUHIn, average night-time canopy urban heat island intensity; ET, evapotranspiration including evaporation and transpiration; LAI, 
leaf area index; LUCY, the Large Scale Urban Consumption of Energy Model; R2, the coefficient of determination; REF, simulation performed for the 
rural state; RMSE, the root mean squared error; SuDS, Sustainable Urban Drainage Systems; SUHI, surface urban heat island; SUHIh, surface urban 
heat island derived from the horizontal urban surface temperature viewed from above (ground, roofs and tree); SUHIp, surface urban heat island 
derived from the ground-level pedestrian urban surface temperature (ground, building walls and tree); UHI, urban heat island; UHId, average 
daytime urban heat island; UHIn, average nighttime urban heat island; URB, simulation performed for the urban state; URBbu, a part of Simulation 
URB, which specifically represents the built-up area; URBpk, a part of Simulation URB, which specifically represents the urban park (or, forested) 
area; UT&C, Urban Tethys-Chloris – an urban ecohydrological model; Vcmax, the maximum photosynthetic carboxylation rate of vegetation; WI, 
wetness index; ΔET, the urban-rural difference in evapotranspiration; ΔLAI, the urban-rural difference in vegetation leaf area index; ΔTc, urban- 
rural difference in canyon air temperature (i.e., canopy layer air urban heat island intensity); ΔTs, urban-rural difference in surface temperature (i.e., 
surface urban heat island intensity). 
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1. Introduction 

The urban heat island (UHI) effect, produced by increasing urbanization, has become a major concern for the deterioration of life 
quality of urban dwellers over the last two decades (Arnfield, 2003). The UHI effect can be defined as the canopy layer air temperature 
or surface temperature difference between the urban environment and its surrounding rural area (Oke, 1982, 1995; Oke et al., 2017). 
UHIs develop due to differences in the energy balance between the city and its surroundings (e.g., Oke et al., 2017; Manoli et al., 2020), 
further triggering changes in atmospheric circulation (Omidvar et al., 2020; Fan et al., 2017; Zhang et al., 2014). Such differences are 
caused by the urban fabric and anthropogenic activities that simultaneously alter the surface and air radiative properties, the balance 
between sensible and latent heat fluxes, and add excess heat to the surface and air budget (Oke, 1982, 1995). 

The intensity of surface UHIs (SUHIs) on a global scale has been found to depend on the city's background climate, with sum-
mertime SUHIs increasing with annual precipitation and in some cases temperature (Zhao et al., 2014; Li et al., 2019; Zhou et al., 
2016b). To explain the mechanisms behind SUHI intensities, many previous studies used satellite observations of surface temperatures 
(Peng et al., 2012; Zhou et al., 2013; Liao et al., 2018; Paschalis et al., 2021; Zhou et al., 2018). Urban-rural contrasts in evapo-
transpiration (ET) and/or heat convection efficiency have been found to be the main determinants of daytime SUHI intensities during 
summer, and their relative importance depends on the background climatic conditions (Li et al., 2019; Zhao et al., 2014; Manoli et al., 
2019; Paschalis et al., 2021). However, satellite sensors can mostly quantify nadir viewing temperatures and thus cannot fully 
represent the complete urban surface temperature within its complex three dimensional geometry (Yang et al., 2020a, 2020b; Yang 
et al., 2021). Hence, quantification of the land surface fluxes leading to the SUHI development in urban environments is not 
straightforward. There is currently very limited availability of energy flux measurements that are collected within cities or at the top of 
buildings. Some exceptions exist for major cities, e.g., Melbourne, Phoenix AZ, Helsinki, Basel, and Shanghai to name a few, where 
eddy-covariance measurement towers have been installed within the urban area (Zhang and Zhang, 2015; Wood et al., 2013; Kotthaus 
and Grimmond, 2012; Templeton et al., 2018; Chow et al., 2014; Schmutz et al., 2016), but overall the attribution of the mechanisms 
leading to the observed SUHI patterns has been a major challenge. 

Compared to SUHIs, canopy air UHI (CUHI) is more relevant to human outdoor thermal comfort (Ho et al., 2016). It is thus 
important to understand in detail also the dynamics leading to the CUHI development. Many in-situ observations have shown that 
SUHIs and CUHIs are two different quantities. Generally, SUHI and CUHI are known to have opposite diurnal patterns (Wang et al., 
2017; Chakraborty et al., 2017). The SUHI and CUHI developments share some similar biophysical drivers but have different mag-
nitudes (Venter et al., 2021). Observation-based quantification of CUHIs requires in-situ data of canopy air temperatures within and 
around a city, commonly available from official weather stations (Cui and De Foy, 2012; Sun et al., 2020) or crowdsourced citizen 
weather stations, albeit commonly with lower quality (Venter et al., 2021; Chapman et al., 2017; Varentsov et al., 2020). Such data is 
however very limited for global scale studies. 

To overcome such data limitations, urban models of different complexities have been developed and can be used to understand the 
SUHIs and CUHIs (Zhao et al., 2014; Li et al., 2019; Gu and Li, 2018; Broadbent et al., 2018) by explicitly resolving the land surface 
energy budget and the atmospheric dynamics of the boundary layer within a city. A major limitation of some models has been the lack 
of detailed representation of urban vegetation within the cities. The interactions between vegetation and the built environment have 
been identified as a crucial factor to properly quantify the urban land surface energy balance (Grimmond et al., 2010). As urban 
vegetation can affect temperature via shading, modifying roughness and evaporative cooling which can be further amplified by 
irrigation (Ziter et al., 2019; Rahman et al., 2019; Zhang et al., 2021; Grylls and van Reeuwijk, 2021; Chow et al., 2011; Meili et al., 
2021b), it is crucial that vegetation processes within cities are properly represented in models. 

New generation urban canopy models have now start including detailed representations of urban vegetation (Huang et al., 2021; 
Wang et al., 2021; Moradi et al., 2022; Krayenhoff et al., 2020; Meili et al., 2020). The explicitly modelled vegetation dynamics 
include, for example, the tree shading on urban built surfaces, plant responses to the urban microclimate and vegetation management 
such as irrigation. Arguably one of the most detailed descriptions of vegetation processes in an urban canyon model has been included 
in Urban Tethys-Chloris (UT&C) (Meili et al., 2021a; Meili et al., 2020; Meili et al., 2021b), a novel model that has been successfully 
applied at multiple sites in different climates (i.e., Singapore, Melbourne, Phoenix) to investigate the role of vegetation in urban 
microclimate. Models like UT&C require detailed information regarding the properties of the urban fabric including city geometry and 
plant traits. Model application with a global focus can now be performed due to new streams of remote sensing data that can contribute 
information to parametrize urban land surface models, from detailed geometries of all buildings within a city (Li et al., 2020) to leaf 
area dynamics (Fuster et al., 2020), plant traits (Walker et al., 2017; Bassiouni et al., 2020), and vegetation dynamics (Paschalis et al., 
2021). 

In this study, we use the state-of-art urban ecohydrological model UT&C to investigate the drivers of SUHI and CUHI development 
in 49 northern hemisphere large city clusters during the period 2009–2019. A new model parametrization protocol was developed that 
leverages information from multiple remote sensing data products. Using this framework, we investigate the dominant biophysical 
mechanisms controlling summer UHI. Specifically, we partition the role of urban vegetation, its irrigation management, the influence 
of anthropogenic activities, and the properties of the urban fabric that lead to the SUHI and CUHI development, during both day and 
night, and provide a mechanistic explanation for the dependence of each component on background climate. 

Z. Zhang et al.                                                                                                                                                                                                          



Urban Climate 44 (2022) 101215

3

2. Data and methods 

2.1. Study sites 

We selected 49 large urban clusters located in Europe (N = 20), the USA (N = 26) and China (N = 3) and different climates (Fig. 1, 
Table S1). The reasons for selecting these cities are: 1) the availability of data for model parameterization and validation; and, 2) the 
relatively small fraction (0.2 ± 0.2) of intense agriculture (mostly rainfed) around the urban clusters with overall small impacts on 
daytime land surface temperature (Table S1, Fig. S1), as rural agriculture and its irrigation has been found to be important in some 
areas (Kumar et al., 2017; Zhou et al., 2016b). The climates of the selected cities are in Group B (Arid), Group C (Temperate) and Group 
D (Continental) based on the Köppen–Geiger classification (Kottek et al., 2006). In Fig. 1, cities in temperate climates (Group C) are 
further sub-divided into two different types based on whether summer is relatively dry or not. The selected temperate cities are mainly 
located in wet summer climates, while some cities in the western US (N = 4) and southern Europe (N = 2) are located in dry/semi-dry 
regions. 

2.2. Numerical experiments 

2.2.1. Model description 
We used the mechanistic urban ecohydrological model Urban Tethys-Chloris (Meili et al., 2020), to resolve the water and surface 

energy balance for all 49 city clusters (Fig. 1, Table S1). In UT&C, the urban geometry is that of an urban canyon, specified with two 
buildings of identical height and given orientation, canyon width, and roof width. The trees, if present, are assumed in two uniform 
strips along the street canyon. The ground surface can be divided into three fractions of impervious, bare and/or vegetated surfaces; 
the roof area can be divided into two surface types, impervious and/or vegetated. The model accounts for urban vegetation including 
trees, low stature ground vegetation, and green roofs by using a mechanistic modelling framework that includes plant physiological 
responses to environmental forcing, such as plant stomata regulation by light, temperature, vapor pressure deficit and soil moisture 
(Paschalis et al., 2018; Moustakis et al., 2022; Fatichi et al., 2012a, 2012b). UT&C simulates radiation redistribution within the urban 
canyon using a Monte Carlo ray tracing algorithm. Specifically, the reflection of shortwave and longwave radiation within the urban 
canyon is calculated from reciprocal view factors between the surfaces, and the surfaces and the sky, which are computed with a 
Monte-Carlo ray tracing approach (Howell, 1969, 1998; Wang, 2014; Frank et al., 2016). Tree transmissivity for direct shortwave 
radiation is calculated as a function of leaf area index (LAI) and an optical transmissivity coefficient using the Beer-Lambert law (De 
Pury and Farquhar, 1997). Prognostic surface temperatures within the computational domain include, impervious/vegetated roof 
surfaces, impervious/bare/vegetated ground surfaces, sunlit/sun-shaded wall surfaces and tree canopy, and they are computed by 
solving the energy balance, i.e., net radiation, latent and sensible heat fluxes, and conductive heat fluxes in the ground and wall layers. 

Turbulence within the canyon is resolved as a function of the canyon geometry and accounting for the effect of trees on the wind 
profile, which depends on canopy characteristics (i.e., tree height, radius, LAI). Aerodynamic resistance for stable, unstable, or neutral 

Fig. 1. The map of the 49 case studies. Map colours correspond to the Köppen climate zones with: dark brown, arid climates (BWh, BWk, BSh, BSk); 
light brown, temperate climates with dry summers (Csa, Csb, Csc); light green, continental climates (Dwa, Dwb, Dwc, Dwd, Dfa, Dfb, Dfc, Dfd); dark 
green, temperate climates with wet summers (Cwa, Cwb, Cwc, Cfa, Cfb, Cfc). Circle and star shapes represent, respectively, cities with positive and 
negative mid-day SUHI intensity during summer. The scatter colour indicates the magnitude of summer mid-day SUHI intensity from satellite 
observations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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atmosphere above the canyon is estimated with a simplified Monin–Obukhov similarity theory according to Mascart et al. (1995). 
Additional resistances to heat fluxes are considered both vertically i.e., from the ground to canyon air (Mahat et al., 2013) and hor-
izontally, i.e., from wall to canyon air (Rowley et al., 1930; Rowley and Eckley, 1932). Stomatal resistances for roof and ground 
vegetated surfaces and tree cover depend on plant photosynthetic activity and follow the Leuning scheme (Leuning, 1995; Paschalis 
et al., 2017; Fatichi et al., 2012a), assuming a two big-leaf (sunlit and shaded) approach for vegetated fractions. Urban transpiration 
from trees and ground vegetation is simulated with a biochemical model of photosynthesis, which takes into account the photosyn-
thetic active radiation, vapor pressure deficit, and available soil moisture that plant roots can access. 

The inputs required to force the model are hourly downwelling shortwave and longwave radiation, precipitation, air temperature, 
humidity, wind speed, and atmospheric pressure at the reference height above canyon, as well as the sum of anthropogenic heat 
emitted by all urban activities such as air conditioning, car exhaust and human metabolism. The conductive heat exchanged by 
regulating indoor temperatures (i.e., domestic cooling or heating) is implicitly simulated in the model. In our study, the interior 
building temperature was set to be a maximum of 26 ◦C if air conditioning (AC) is in use during summer and/or a minimum of 18 ◦C if 
heating is in use during winter; building interior temperature equals the air temperature at atmospheric reference height in other cases. 

2.2.2. Simulation set-up 
Lumped simulations were performed for all cities (Simulation URB), where a city was described as a built-up area consisting of an 

urban canyon (Simulation URBbu), representative of the city's geometry (i.e., buildings, roads and pavements) with street trees and 
local small gardens, and a large green area without buildings (Simulation URBpk), representative of the green open spaces (e.g., parks). 
For every city, a reference simulation (Simulation REF) was also performed corresponding to the city's surrounding rural area (Sup-
plementary Section S2.0). 

Specifically, Simulation URBbu used a representative canyon geometry for each city; whereas Simulation URBpk was assumed as a 
wide (100 m of width) and shallow (5 m of height) ‘canyon’ covered by grasses and trees only. To account for multiple canyon ori-
entations within a city, three different orientations (0, 45 and 90◦(s) from North) were simulated for the urban canyons, and the results 
were averaged across these simulations by weighting the simulation of 45◦ with a weight of 2 to also take into account the direction of 
135◦ which was found to have minor effect. The other two setups were only considered in the North-South orientation, due to their 
wide and shallow geometry and orientation effects are negligible. Overall, the simulated temperature and fluxes of a whole city cluster 
(XURB) can be expressed as: 

XURB = (1 − μ)

∑

i=0,45,45,90
XURB

i
bu

4
+ μXURBpk (1)  

where, μ is the urban park fraction within the urban cluster; i represents the canyon orientations within the city, XURB represents any 
temperature or flux we will report for the entire canyon and XURBbu, XURBpk represent the corresponding variables for the built-up and 
urban park simulation respectively. 

A climate dependent irrigation and anthropogenic heat were applied within cities for both the built-up area (Simulation URBbu) and 
the urban park (Simulation URBpk). Specifically, urban vegetation is actively managed within all cities under dry climates (WI < 0.6, 
where WI is the wetness index defined as the ratio of annual precipitation over annual potential evapotranspiration), but not in the 
reference simulation (REF). Additionally, irrigation was applied only during the vegetation growing seasons (from May to October) at a 
3 mm/h rate and only if the soil water potential is less than − 0.1 MPa for trees and − 0.3 MPa for grasses. The irrigation rate was 
chosen to be representative of common sprinkler irrigation systems (Volo et al., 2014) and water potential thresholds are high enough 
to avoid any vegetation water stress. Neither irrigation nor anthropogenic heat emissions were considered in the surrounding regions 
(Simulation REF), otherwise these shared the same setups as the Simulation URBpk. General information on the simulation setups is 
summarized in Table 1. 

2.2.3. Data 
Meteorological forcing for a 11-year period of 2009–2019 for all variables needed to run the model were obtained from the ERA5- 

Land reanalysis product (Muñoz Sabater, 2019). The atmospheric CO2 concentration was set as a constant at 400 ppm to avoid any 
feedback related to increasing CO2. 

Table 1 
Summary of the three simulations setups used for each city in the analysis.   

Urban Simulations (URB) Reference Simulation (REF) 

Built-up (URBbu) Urban Parks (URBpk) 

Domain City cluster 0.1 degrees of buffer zone (~10 km) around the city cluster 
Irrigation 3 mm/h if required; only applied in dry regions (WI < 0.6) No 
Anthropogenic Heat Yes No 

Canyon dimensions Representative urban geometry 100 m of canyon width 
5 m of building height 

100 m of canyon width 
5 m of building height 

Canyon orientation 0, 45, 90◦ from North North-South North-South 
Ground fraction Representative urban built-up ground cover 100% vegetated 100% vegetated 
Roof fraction 100% impervious – –  
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Fig. 2. Flow chart for preparing representative key parameters for each city.  
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City clusters were obtained from the study of Wang et al. (2019), and the rural area was defined as the buffer zone of 0.1◦ (i.e., 
approximately 10 km) surrounding the urban boundary (Supplementary Section S2.0). The average building height for each city was 
obtained by Li et al. (2020) for Europe, USA and China, and was used to describe the height of buildings in UT&C model. The remaining 
features of the canyon geometry (roof/building width, distance between adjacent buildings) were estimated based on the Open-
StreetMap dataset (www.openstreetmap.org) that contains different types of land use as polygons within city clusters such as com-
mercial and residential buildings, parks, forests, allotments, and grasslands. The flow chart shown in Fig. 2 illustrates the methodology 
used for estimating the representative canyon dimensions for each city. More detailed descriptions are provided in the Supplementary 
(Section S3.0). 

To further enhance land use information, we used the 100 m resolution land cover map from the Copernicus Land Service 
(Buchhorn et al., 2019), derived from PROBA-V satellite observations for 2015 to estimate the percentages of bare ground, trees, and 
grasses over the whole city region. In this study, we assumed those covers as the only pervious fractions within cities (Fig. 2), and 
excluded all other types of land cover such as permanent water and crops. To derive the fraction of impervious covers, we used the high 
(30 m) spatial resolution dataset from Brown de Colstoun et al. (2017). Based on those surface fractions and the area ratio of parks to 
gardens obtained from OpenStreetMap, we further divided urban grass and tree fractions within the whole urban region into those 
associated with local gardens for the Simulation URBbu and the others associated with large green spaces for the Simulation URBpk 
(Fig. 2, Supplementary SectionS3.0). 

Soil at the ground was assumed to be 2000 mm deep for all cities given the lack of city specific data (Shuster et al., 2021). Tree root 
depth and grass root depth were set to be 1000 mm and 250 mm respectively with a root density declining exponentially. Repre-
sentative root depths were obtained for the most common urban tree and grass species from the TRY database (Kattge et al., 2011). We 
also assumed a vertically homogeneous soil profile, and used SoilGrids v2.0 dataset (de Sousa et al., 2020; Hengl et al., 2017) to 
estimate soil textural properties typical of each region (fractions of clay, sand, soil organic carbon content) and the Saxton and Rawls 
pedotransfer functions (Saxton and Rawls, 2006) to convert soil texture into soil hydraulic parameters. Free drainage at the bottom of 
the soil was simulated in the UT&C model and no groundwater was considered. No leakage from water pipes was considered. 

Seasonally varying leaf area index (LAI) from the PROBA-V at a 300 m (version 1.0) (Fuster et al., 2020) was used for all city 
clusters to estimate tree and grass LAI throughout the season (Supplementary Section S4.0). The maximum photosynthetic carbox-
ylation rate (Vcmax) was parametrized in our study based on the work of Walker et al. (2017), assuming it is constant across the whole 
city domain. This assumes that within the city vegetation has similar traits as natural vegetation in the rural surroundings of the city. 
The last vegetation parameter adjusted in this study is the soil water potential, ϕs, when plant water uptake downregulates from its 
maximum rate due to water stress. This was estimated based on the analysis of Bassiouni et al. (2020), again assuming that urban 
vegetation has similar traits to the rural surroundings. 

Seasonal anthropogenic heat flux for individual cities was computed from the large scale urban consumption of energy (LUCY) 
model at 2.5 × 2.5 arc-minute resolution (Allen et al., 2011; Lindberg et al., 2013; Grimmond et al., 2018). We simulated the hourly 
urban anthropogenic heat flux for the year 2017, the year with the most high-quality data to run the LUCY model (i.e., population 
density, energy consumptions, transport numbers), and assumed an identical seasonal pattern in the remaining years. The building 
emissions, as a part of anthropogenic heat in the LUCY model, are calculated based on temperature-dependent energy demand, 
excluding the heat exchanges between indoor and outdoor environments. This heat flux is indeed implicitly simulated as the 
conductive heat flux into and out of wall and ground layers in the UT&C model. 

Apart from the lumped simulations representing the average conditions of each city, we also examined spatial heterogeneity within 
a city and specifically for London's 32 boroughs and City of London (Greater London Authority, 2015) using the same methodology 
described in Fig. 2. This is to (a) estimate within-city variability and (b) to confirm that an average lumped city-scale simulation 
provides reasonable results when compared with the average UHI intensity from distributed simulations across the city. All other 
UT&C model parameters used in this study were assumed to be constants in all cities and summarized in the Supplementary Material 
(Section S5.0). 

2.3. Simulation analyses 

2.3.1. Model validation 
To validate the simulated results, we calculated the 2-D horizontal surface UHI intensities (SUHIh) viewed from above, using the 

simulated surface temperatures for the impervious roof fraction, all ground fractions and tree weighted by their plan view area (i.e., 
Tplan in Stewart et al. (2021)) (Supplementary Section S6.0). Vertical wall temperatures were not considered in the validation as the 
SUHI as seen by satellites is strongly affected by rooftop temperature. Model simulations were validated both for the mid-day (i.e., 
12:00 noon local time) SUHIh intensity and its diurnal variability as observed by satellite remote sensing. The diurnal pattern of land 
surface temperature was obtained from the geostationary satellite data available by the Copernicus Global Land Service at a 5 km 
resolution (Freitas et al., 2013), which was further corrected based on the higher resolution 1 km MODIS AQUA(TERRA) observations 
(Wan et al., 2015a; Wan et al., 2015a) at 01:30 am/pm (10:30 am/pm) local time for their ascending(descending) orbits (Supple-
mentary Section S7.0). Specifically, MODIS observations were extrapolated beyond their local observation time using the diurnal 
pattern from the geostationary data. The diurnal pattern of simulated SUHIh was validated in terms of Root Mean Square Error (RMSE) 
and the coefficient of determination (R2) between the observed and simulated average hourly patterns of SUHI. Midday SUHIh was 
validated in terms of RMSE and R2 for all MODIS observations extrapolated to 12:00 noon local time. Only the cloud free days of the 
simulation were used for the model validation. 

To validate our London borough simulations, we used the average SUHIh estimates from Chakraborty and Lee (2019) derived using 
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Fig. 3. (a) Comparison between observed mid-day SUHI and simulated mid-day SUHIh magnitude for all cities. Each point represents one city. Circle colours indicate the city wetness index. The dashed 
line indicates the 1:1 line (i.e., y = x). The solid line indicates the linear regression between observed and simulated SUHIh intensity. (b) the coefficient of determination between the observed and 
modelled diurnal pattern of SUHIh for all cities as a function of WI. The R2 value is used as a measure for the fit between the simulated and observed diurnal pattern in each city and as can be seen in b) it 
is independent of wetness index. The solid line indicates the average R2 value among all 49 cities. Each point represents one city. 
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MODIS and available via Google Earth Engine (https://yceo.users.earthengine.app/view/uhimap). 

2.3.2. Urban heat island attribution 
Canopy urban heat island intensity, which is more relevant to public outdoor thermal comfort than SUHI, is decomposed according 

to its energy budget (Supplementary Section S8.0). The magnitude of CUHI (i.e., ΔTc) can be expressed in synthesis as Eq. (2). 

ΔTc = rah

⎡

⎢
⎢
⎢
⎣

1
ρCp

⎛

⎜
⎝ΔSn + ΔLn⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟

Net Radiation

− ΔLE⏟̅⏞⏞̅⏟
Evapotranspiration

− ΔG⏟⏞⏞⏟
Conduction

+ ΔQah⏟̅⏞⏞̅⏟
Anthropogenic Heat

⎞

⎟
⎠ − (Tc − Ta)Δ

1
rah⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟

Above Canyon Convection

⎤

⎥
⎥
⎥
⎦

(2)  

where, Tc is canyon air temperature; Ta is atmospheric air temperature; Δ is a perturbation from the rural base state; ρ is the air density; 
Cpis the specific heat of air; Sn is the net shortwave radiation within the canyon; Ln is the net longwave radiation within the canyon; LE 
is the latent heat flux within the canyon; rah is the canyon aerodynamic resistance between canyon air and atmospheric air layer; G is 
the combination of ground and wall conductive heat flux, which thus include the heat storage effect underneath the surfaces; and Qah is 
the anthropogenic heat flux. The values of Sn, Ln, LE, rah, Tc and G are simulated by the UT&C model. 

A similar partitioning analysis is performed for the ground-level pedestrian SUHI intensities (SUHIp) using the simulated surface 
temperatures for all wall, ground and tree fractions (i.e., Tped in Stewart et al. (2021)). A more detailed description for calculating the 
complete surface temperature and fluxes and partitioning SUHIp can be found in the Supplementary Material (Section S6.0 and S8.0). 

2.3.3. Effects of urban irrigation 
Additional simulations, where urban irrigation was either supplied in intermediate and humid climates or removed from dry 

climates, were also performed to quantify the effect of vegetation irrigation under different climatic conditions. We define the 
irrigation-induced temperature changes as the difference between average daytime CUHI intensity during summer in the urban 
irrigated and non-irrigated cases. 

3. Results 

3.1. Model validation 

Fig. 3a shows the agreement (R2 = 0.65, slope = 0.94) between the simulated mid-day SUHIh intensity and the observations during 
summer (i.e., June, July, August). Our simulations slightly underestimate SUHIh (regression slope of 0.94), which might be attributed 
to the choice of the same surface albedo value for roofs and streets for all case studies. Generally, cities in dry regions have smaller 
SUHIh and even experience urban cooling (i.e., oasis effect) at midday (Stewart et al., 2021), while cities under intermediate and 

Fig. 4. (a-c) The diurnal pattern of simulated SUHIp and CUHI in different aridity levels. Errorbar represents ± 1 standard deviation. Scatter plot 
between the average complete SUHIp and CUHI and WI during (d) daytime and (e) nighttime in arid (Wetness Index, WI ≤ 0.6), intermediate (0.6 <
WI < 1.3) and humid (WI > 1.3) climates. Each dot represents one city. The dots are fitted by the polynomial lines of order 1 or 2 (solid lines). 
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Fig. 5. The computed attributions of summer average (a) daytime and (b) nighttime CUHI intensity varying with background climates. The attribution factors are urban-rural difference in evapo-
transpiration, net radiation, above canyon convection efficiency, conductive heat flux and anthropogenic heat flux as shown in Eq. 2. Polynomial lines of order 1 or 2 (solid lines) are fitted to the single 
city results (dots). 
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humid climates show greater SUHIh intensities (Paschalis et al., 2021). There is also a good agreement between model and data (mean 
R2 = 0.80, Fig. S4) regarding the diurnal pattern of SUHIh during summer, which is independent of background climate (Fig. 3b). In 
intermediate and wet cities, we recovered the commonly expected and observed behaviour of high daytime and low night-time SUHIh 
(Fig. S4). The dry cities showed the opposite pattern, which was also consistent with the satellite observations (mean R2 = 0.75, Fig. 3b, 
Fig. S4). 

3.2. UHI attribution as a function of background climate 

Climatic patterns of observed and simulated summer mid-day SUHIh intensity across all 49 cities in the US, Europe, and China 
confirm the dependence on background climates (Fig. 1, Fig. S4) as already shown in previous studies (Manoli et al., 2019; Zhao et al., 
2014; Liu et al., 2020; Gu and Li, 2018). In our simulations, SUHIp intensity is also dependent on background climate. Though, the 
absolute values of summer SUHIp and SUHIh are different for all climates, with large negative differences during daytime and small 
positive differences during nighttime (Fig. S5), which is consistent with previous findings (Stewart et al., 2021). Wetter cities in the 
USA generate significant mid-day SUHIp with the highest of 3.8 ◦C in Tulsa; while in dry climates, cities can induce urban oasis effects 
by up to − 5.0 ◦C in Phoenix. A similar pattern was also found in European cities, where all dry cities (except Athens, Greece, which has 
the least urban greening) have negative mid-day SUHIp intensities with the lowest of − 2.3 ◦C in Madrid (Fig. 4a). The opposite pattern 
occurs during night, when dry cities experience much higher mid-night (at 01:00 am Local Time) SUHIp than wetter cities which 
generate milder mid-night SUHIp magnitudes with an overall average of 1.3 ◦C. Among all dry cities, the highest mid-night SUHIp was 
found in Las Vegas (7.1 ◦C) in the US. 

Different from the diurnal pattern of SUHIs (both SUHIh and SUHIp), the simulated summer CUHIs have a larger magnitude during 
night than during daytime for more humid climates (Fig. 4b-c, Fig. S4). In dry climates, a significant mid-day urban oasis effect was 
found also for canopy air temperatures (− 2.6 ± 4.2 ◦C) whereas in wet climates daytime CUHIs were insignificant (− 0.03 ± 0.9 ◦C). 
During mid-night in arid climates, a very strong CUHI intensity was simulated (4.1 ± 3.4 ◦C) which is also positive but with lower 
magnitude in wetter climates (1.2 ± 0.9 ◦C). Even though the diurnal patterns of CUHI and SUHIp are clearly different in wetter 
climates, their average values follow a similar pattern with WI (Fig. 4d-e). The simulated SUHIp and CUHI intensity both show a 
positive and negative correlation with annual mean precipitation and air temperature during daytime, respectively, and negative and 
positive correlation during nighttime, respectively (Fig. S6). As it takes into account both precipitation and temperature, WI is a better 
predictor for average SUHIs and CUHIs than single climate variables, and both UHIs depend on WI non-linearly. 

To further understand the mechanisms leading to such a pattern in summer UHI, and CUHI in particular, we quantify the 
importance of five drivers (evaporative cooling, net radiation, above canyon heat convection, anthropogenic heat, and conductive 
heat) for CUHI and four drivers (evaporative cooling, net radiation, within canyon heat convection, and conductive heat) for SUHIp 
based on the simulated results from the UT&C model. As both equations (Eq. 2 and Supplementary Section S8.0) used for the attri-
bution are an approximation of the energy balance solution, we evaluated their accuracy for all cities. The approximation was good 
with an overall error of accuracy relative to the UT&C simulations of around 0.05 ± 0.2 K (Fig. S7). At the summertime scale (i.e., 
average value for June July and August), the simulated interannual SUHIp and CUHI for both daytime and nighttime are highly 
correlated (R2 = 0.89 and R2 = 0.99 respectively, Fig. S8). The average slope of the interannual linear regression during summer night 
(slope = 0.96) is higher than during daytime (slope = 0.74). This is because the various drivers of CUHIs and SUHIs for both day and 
nighttime (i.e., urban-rural difference in evapotranspiration, net radiation, heat conduction) have a similar relative importance, 
though with different magnitudes (Fig. 5, Fig. S9). For this reason, we will describe here only results for CUHI as similar considerations 
can be made for SUHIp. 

For daytime CUHIs, urban-rural difference in evaporative cooling was the largest factor in humid cities, whereas in dry cities heat 
conduction to building interiors and the ground as well as heat convection to the free atmosphere explained most of the CUHI in-
tensities. Specifically, humid cities have much lower ET than their surroundings, which is largely a consequence of the much lower leaf 
area (35.0 ± 8.7% less) (Fig. S10) and greater impervious fraction within urban lands. This urban-rural temperature difference due to 
ET alone can explain around 1.4 ± 0.8 K of the total daytime CUHI intensity for intermediate climates and 0.9 ± 0.6 K for humid 
climates during summer. In more humid cities, the warming effect of urban-rural difference in evapotranspiration is partially coun-
terbalanced by heat convection and conduction factors. In contrast, in hot and dry cities experiencing small and even negative CUHIs, 
the impact of urban-rural differences in evapotranspiration (ΔET) was much smaller (0.2 ± 0.4 K) because of urban irrigation. In those 
arid regions, heat stored in the urban fabric and lost as conductive fluxes to cooler building interiors (− 1.1 ± 0.5 K) and a more 
efficient heat convection to the free atmosphere (− 0.5 ± 0.3 K) led to an oasis effect, with the evaporative factor playing a smaller role. 
Compared to all other attributions mentioned above, anthropogenic heat has overall a relatively small contribution to CUHI intensity 
and decreases with WI, with the highest warming effect of 0.3 ± 0.2 K in dry cities during summer daytime. 

The leading factor for the development of nighttime CUHIs is heat conduction due to a high release of stored heat within the urban 
materials to the surfaces and further toward the canyon air, inducing a significant warming effect of 7.5 ± 1.0 K in arid climates and of 
1.9 ± 1.0 K in more humid climates. Differences in longwave radiation due to differences in surface temperatures contribute to a 
cooling effect, although of lower magnitude, mainly in arid climates (− 1.6 ± 0.4 K). A small cooling effect due to ΔET was found 
during nighttime in dry climates (− 0.8 ± 0.2 K), which is due to the irrigation applied during nighttime enhancing ground evaporation 
and to a smaller degree plant transpiration under high vapor pressure deficit. 
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3.3. Impact of irrigation on UHI development 

To fully understand the impact of urban irrigation, we compared the CUHI intensities with and without irrigation for all cities and 
their corresponding CUHI attributions. Fig. 6 shows that the urban irrigation-induced changes in CUHI during summer vary strongly 
with background climate. Irrigation altered the surface energy by enhancing plant transpiration due to reduced plant water stress and 
by altering the thermal properties of soils (Fig. S11). Overall, the irrigation cooling effect was strongest in arid sites (− 0.9 ± 0.8 K). In 
more humid climates, applying irrigation or not has almost no effect on the CUHI intensity (intermediate: -0.1 ± 0.1 K, humid: -0.04 ±
0.08 K) (Fig. 6b-c). Even though irrigation application can also impact surface albedo and surface emissivity due to increased soil 
moisture, the UT&C model does not consider those changes and we refrain from any further interpretation regarding this factor. 

3.4. Within city UHI variability 

Our simulations are based on a lumped modelling approach to evaluate the development of UHIs during summer. However, it is 
important to also quantify the expected variability of UHI intensity within the city. We further applied the same methodology at the 
borough scale in London. Our simulated daytime SUHIh spatial variability was consistent with satellite observations (Fig. S12). The 
within city variability of CUHI in London is about 29.0% and 13.0% of the total variance simulated across all cities at mid-day and mid- 
night during summer, respectively. The variability within London is generally higher for SUHIh than it is for CUHI and occurs mostly 
during the day (Fig. 7). Despite the within city variability, the diurnal and seasonal patterns were the same for all London Boroughs. 
Compared to the ‘average’ London results, SUHIh and CUHI intensities can vary by up to 1.32 K at the borough scale particularly at 
mid-day. This variability would likely be larger if simulations were carried out at an even finer (e.g., street level) scale but demonstrate 
that our lumped approach provides reasonable city average values. In fact, the city average UHI intensities, were similar in magnitude 
with the UHI intensity computed with an “average city” lumped parametrization. In comparison to other cities in our study, London is 
expected to have a high within city UHI variability as it spans a large range of both urban geometries (Fig. S13), from high rise building 
(i.e., City of London) to low density housing in the suburbs, and within-canyon ground vegetated fraction (i.e., excluding parks and 
street trees) spanning from 0.0057 (i.e., City of London) to 0.85 (i.e., Harrow). 

4. Discussion 

In this study we leveraged the capabilities of a state-of-the-art urban ecohydrological model, parametrized with a wide range of 
remotely sensed data and driven by meteorological forcing from reanalysis. The model was capable of reproducing the global spatial 
and temporal (i.e., diurnal) values of observed surface urban heat islands, providing mechanistic explanation for their development 
across climates. 

Overall, the summer CUHI intensity and its key controlling factors heavily depend on background climate, particularly regional 
aridity, during both daytime and nighttime. We found overall larger daytime CUHIs in humid climates due to the warming effect of 

Fig. 6. (a-c) Comparisons of average daytime CUHI (Total) and its attribution factors (Evapotranspiration, Net Radiation, Above Canyon Convection 
Efficiency, Conductive Heat Flux and Anthropogenic Heat Flux) between irrigated and non-irrigated urban land surfaces during summer in three 
different climate aridity level. The errorbars represent ± 1 standard deviation. 
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ΔET which was gradually reduced in arid climates. This finding is in agreement with previous studies showing that spatial variations of 
summer daytime SUHI intensity were largely controlled by variations in the capacity of urban and rural areas to evaporate water, 
especially from dense forested areas (Manoli et al., 2019; Li et al., 2019; Zhou et al., 2014; Paschalis et al., 2021). The impact of urban 
greening on reducing daytime air and surface temperature may differ to some extent (Novick and Katul, 2020). These differences in our 
study depend on the aerodynamic resistances within and above canyon, which govern the ability to dissipate heat, and were not very 
pronounced, as CUHI and SUHIp have similar drivers (Fig. 5, Fig. S9). Especially in arid climates, the warming effect induced on urban 
canopy air during daytime by the lack of evapotranspiration was mostly counteracted by more efficient heat dissipation to the at-
mosphere and heat conduction to the ground and buildings in these urban areas. 

The conduction heat flux into building and ground was identified as an important factor during both daytime and nighttime, which 
is often not fully represented in previous SUHI or CUHI studies. Either the flux was completely neglected from the biophysical drivers 
of SUHIs (Manoli et al., 2019), or only the ground heat flux was considered (Wang et al., 2020) which may underestimate its 
importance as considerable heat is transferred from and to the buildings. This clearly shows that urban canyon land surface schemes 
cannot neglect temperature controls of building interiors and consequently demonstrates the potential of building heating and AC in 
modulating outside temperature. Our study shows that conductive fluxes including all canyon surfaces provided a significant cooling 
effect during daytime in arid climates, in agreement with previous studies (Zhao et al., 2018; Li et al., 2019) that explicitly included 
heat fluxes for temperature-regulated building interiors. This result is however contradicting some studies that found either a small or 
negligible cooling (Fitria et al., 2019; Cao et al., 2016) or a warming effect (Zhao et al., 2014). The disagreement mainly arises from the 
building parameters and city morphology which have been found to significantly affect heat storage change during daytime (Chew 
et al., 2021; Chen et al., 2012) and may also be related to the representation of the relevant processes in the model used. Consistent 
with previous findings (Jacobs et al., 2018; Zhao et al., 2018; Fitria et al., 2019; Imran et al., 2019; Zhao et al., 2014; Li et al., 2019; Cao 
et al., 2016), our results demonstrate that during nighttime the release of urban heat stored within building and ground can induce a 
significant warming effect leading to large SUHI and CUHI development, especially in arid climates. 

Overall, the results suggest that there is not a unique driver that is triggering SUHI and CUHI developments, and that the 
importance of each driver is strongly related to both the background climate and the time of day, thus the design of mitigation 
strategies for both UHIs should take these complex patterns into consideration. 

4.1. Importance of urban management and planning 

During daytime, the dominant factor determining both SUHI and CUHI (UHIboth hereinafter to lump the results that refer to both 
SUHI and CUHI values) development is the lack of urban evaporative cooling. Most of the differences in evaporative cooling can be 
explained by the differences in green cover and leaf area between the urban and rural areas. Those differences are largest in cities 
located in more humid climates as cities replaced vegetated land with high evapotranspiration potential, contrary to arid cities that 

Fig. 7. The simulated summertime mid-day and mid-night SUHIh and CUHI intensities for 33 London Boroughs represented with boxplots. The 
circles represent the results for the ‘average’ London as analysed in previous sections. The crosses represent the weighted average values for 
Boroughs according to their areas. 
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replaced sparsely vegetated or barren land. For the wet cities, increasing green cover can partially reduce UHIboth. In dry areas, urban 
green cover is comparable and, in some cases, slightly larger than the surrounding rural areas (Paschalis et al., 2021). For those arid 
sites, increasing urban greening can also be an efficient urban heat mitigation practice, as there is a large potential of extending the 
currently relatively small urban green cover. However, that would only be feasible with a concurrent provision of water for plant 
irrigation. In fact, as our simulations show here, evaporative cooling in arid cities is strongly enhanced only in the presence of irrigation 
during daytime (Yang et al., 2020a). However, the benefits of irrigation may not always counterbalance their costs especially in water 
scare regions (Reyes et al., 2018). Irrigation application amount and schedule as well as Sustainable Urban Drainage Systems (SuDS) 
are worth considering for optimal and sustainable designs especially given the uneven distribution of water (Volo et al., 2014; Howells 
et al., 2013; Broadbent et al., 2018; Freni and Liuzzo, 2019; Coutts et al., 2013; Hoang and Fenner, 2016; Liu and Jensen, 2018)(Hoang 
and Fenner, 2016; Liu and Jensen, 2018). As part of SuDS operations, collected stormwater or reclaimed wastewater can be used for 
irrigation of public open green spaces and urban parklands to meet most of the demands (Liu et al., 2019). Proper species selection with 
high drought tolerance could also partially mitigate the water scarcity problem, but they will likely reduce the cooling potential. 
Efficient heat convection within and above canyon can offer an overall urban cooling potential for surface and canopy air respectively. 
Due to the direct link with the surface roughness of the urban boundary layer, urban planning can consider optimization of the ge-
ometry of urban canyons that best dissipate heat (Yu et al., 2020). Additionally, energy consumption was found to be a factor for 
daytime CUHI development. In our study anthropogenic heat fluxes were warming the cities particularly in arid climates. Energy 
consumption explained to a large degree the anthropogenic fluxes within the LUCY model, which was used in our study (Allen et al., 
2011) showing that energy management can also offer an urban heat mitigation potential. 

Contrary to daytime developments, nighttime UHIboth are predominantly affected by heat conduction of construction materials 
(Imran et al., 2019). Thus, improving the design of buildings for example reduced sky view factors that minimize net radiation ab-
sorption, or advanced materials and construction solutions that avoid excess heat storage and heat release from the buildings to the 
canyon can offer a great urban heat mitigation potential (He, 2019; Gago et al., 2013), particularly in arid cities, where the nighttime 
UHIboth is more significant. Best selection of building materials could reduce the urban canyon air temperatures (Hamdi and Schayes, 
2008) especially during nighttime when vegetation evaporative cooling is minimal also in more humid climates. In arid climates, 
urban vegetation with the aid of irrigation can not only provide daytime mitigation but also induce air cooling at night under high 
vapor pressure deficit (Ibsen et al., 2021). Though, as discussed before, water scarcity considerations would be very important. 

4.2. Study limitations and perspectives 

The lack of validation of CUHI intensity is one of the difficulties of studying CUHI at the global scale. A thorough global scale 
validation would only be possible with in situ air temperature data at high frequencies at multiple locations for all cities and their 
surroundings. Currently very few cities in the world are monitored at this level of detail, with a few exceptions including CUHI oriented 
city wide monitoring networks (Kolokotroni and Giridharan, 2008; Giannaros et al., 2018; Warren et al., 2016), which however have 
been mostly limited in terms of duration. Alternative sources of data to support such a validation include measurements from portable 
weather stations/sensors (Lin et al., 2017; Liu et al., 2017), citizen science data initiatives, e.g. the Weather Underground (Krüger and 
Emmanuel, 2013) and Netatmo (Varentsov et al., 2020; Meier et al., 2017; Venter et al., 2021), and even smartphone battery tem-
peratures (Overeem et al., 2013). However, the quality of observations might prevent very accurate analyses. 

Lack of data regarding key details of urban geometry and vegetation species within every city at the global scale is also a limitation 
of this study. Even though we used state of the art remote sensing data for both building heights and plant traits, both were retrieved at 
low resolutions that do not allow to resolve within city heterogeneity. Improvements in machine learning algorithms applied at very 
high-resolution satellite imagery can provide a way forward for estimating urban geometries in detail, including the shapes and heights 
of every building (Muftah et al., 2021). Those detailed 3D building geometry data can further help to sample the land surface tem-
perature observed by the non-nadir viewing satellites. Additionally, new data from multiband aerial imagery can be used to retrieve 
reflectivity properties of the building roof at the global scale (Ban-Weiss et al., 2015). Another limitation of this study is the estimation 
of plant physiological traits. In this study urban and rural vegetation properties were considered as identical, but in reality, within the 
urban environment non-native species are commonly planted. Detailed knowledge of the species distribution within cities could 
improve the estimation of evapotranspirative cooling. However, with the exception of few cities, for example London (Greater London 
Authority, 2021), such information currently does not exist. 

Additionally, the present study used a lumped representation of the whole city land surface dynamics using a simplified single park 
and urban canyon approach, that neglects within city heterogeneities. As demonstrated with the London example, a lumped scale 
simulation can provide good estimates of city average SUHI and CUHI intensities, however it cannot estimate within city variability, 
which is significant, especially if large variations in city morphology exist. Those finer-scale results could further guide the selection of 
locations where representative measurement stations should be placed, providing information for long-term projects as for example 
BUBBLE (Rotach et al., 2005). 

Our approach also does not resolve the atmospheric and boundary layer dynamics within a city. To fully understand the devel-
opment of UHIboth and associated feedbacks, a full urban climate model combined with a detailed land surface scheme as the UT&C 
model would be necessary, even though results obtained in this study suggest that dominant effects on surface and near-surface 
temperature can be captured well with an uncoupled urban canyon model. Previous studies used urban climate models such as 
urban WRF (Li et al., 2014; Touchaei and Wang, 2015; Georgescu et al., 2011), or reduced complexity models such as UrbClim (Zhou 
et al., 2016a) for a detailed description of atmospheric dynamics within cities. Coupling of urban land surface models like UT&C with 
those atmospheric urban climate models, can potentially provide a way forward to quantify the role of city heterogeneities, albeit with 
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a considerable increase in computational demand. 

5. Conclusion 

A state-of-the-art urban ecohydrological model (UT&C), parametrized with multi-source remote sensing data, was used to 
investigate the canopy and surface urban heat island (CUHI and SUHI) effect in 49 North-hemisphere large urban clusters charac-
terized by different background climates. Using such an approach, our simulations could robustly reproduce the observed dynamics of 
SUHI viewed from above in different climates. Our study shows that summer ground-level pedestrian SUHI and CUHI are both 
dependent on the city's background climate, with daytime UHIs both decreasing with aridity level and nighttime UHIs both following 
the opposite patterns. More humid cities experience higher daytime SUHIs and CUHIs, which was predominantly caused by a lack of 
evaporative cooling, related to the difference between urban-rural green cover and leaf area index. Arid cities experience higher 
nighttime SUHIs and CUHIs, which were attributed predominantly to the release of heat stored in buildings and ground to the urban 
canyon. Anthropogenic heat is a unique source of canopy air warming mainly during daytime and in arid climates due to higher energy 
demand for air conditioning. Urban roughness and associated heat convection within and above canyon can largely explain the dif-
ference between SUHI and CUHI development. Our results provide a mechanistic explanation and quantification of both SUHI and 
CUHI development in different climates and can be used to guide design to improve urban heat mitigation practices for both surface 
and canopy air in different regions. 
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