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N E U R O S C I E N C E

Reassessing hierarchical correspondences between 
brain and deep networks through direct interface
Nicholas J. Sexton1* and Bradley C. Love1,2

Functional correspondences between deep convolutional neural networks (DCNNs) and the mammalian visual 
system support a hierarchical account in which successive stages of processing contain ever higher-level informa-
tion. However, these correspondences between brain and model activity involve shared, not task-relevant, variance. 
We propose a stricter account of correspondence: If a DCNN layer corresponds to a brain region, then replacing 
model activity with brain activity should successfully drive the DCNN’s object recognition decision. Using this 
approach on three datasets, we found that all regions along the ventral visual stream best corresponded with 
later model layers, indicating that all stages of processing contained higher-level information about object cate-
gory. Time course analyses suggest that long-range recurrent connections transmit object class information from 
late to early visual areas.

INTRODUCTION
Despite some shortcomings (1, 2), deep convolutional neural net-
works (DCNNs) have emerged as the best candidate models for the 
mammalian visual system. These models take photographic stimuli 
as input and, after traversing multiple layers consisting of millions 
of connection weights, output a class or category label. Weights are 
trained on large datasets consisting of natural images and corre-
sponding labels.

The deep learning revolution in neuroscience began when layers 
of DCNNs were related to regions along the ventral visual stream in 
an early-to-early and late-to-late pattern of correspondence between 
brain regions and model layers (Fig. 1A) (3–5). This correspon-
dence supported the view that the ventral stream is a hierarchy in 
which ever more complex features and higher-level information 
are encoded as one moves from early visual areas like V1 or V4 to 
inferotemporal (IT) cortex (6–8).

However, the conceptual foundations of what constitutes a satis-
fying correspondence deserve scrutiny. Although the field uses a 
variety of methods to assess correspondence (4, 5, 9), they all focus 
on some notion of fit or correlation between model and brain mea-
sures. In essence, all of these approaches measure the variance shared 
between brain and model activity (Fig. 1B). This hidden assumption 
may be problematic. Much of cortex-wide neural variance does not 
relate to the task of interest (10) and may covary with but not drive 
behavior. Correspondences established by correlation alone do not 
necessitate that model layers and brain regions play the same func-
tional role in the overall computation. Just as correlation does imply 
causation, correlation does not imply correspondence.

We propose a stronger test for evaluating how brain-like a model 
is. If, as is frequently claimed (3–5), a specific layer in a DCNN cor-
responds to a brain region, then it should be possible to substitute 
the activations on that layer with the corresponding brain activity 
and drive the DCNN to an appropriate output [cf. (11–13) and Fig. 1C]. 
For example, if we take V4 activity from a monkey viewing an image 
of a car and interface that brain activity with an intermediate DCNN 
layer hypothesized to correspond to V4, then the DCNN should respond 

“car” absent any image input. How well the DCNN performs when 
directly interfaced (through a simple linear mapping) (see Materials 
and Methods) with the brain provides a strong test of how well the 
interfaced brain region corresponds to that layer of the DCNN. In the 
direct interface approach, shared variance is not assessed. Rather than 
rely on statistical measures of correspondence, we assess brain-model 
correspondences in the context of the computational model performing 
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Fig. 1. DCNNs trained on large naturalistic image datasets have emerged as 
leading models of the mammalian ventral visual stream. (A) Typically, pro-
cessing in DCNNs is hierarchical starting with the stimulus and proceeding across 
successive layers as higher-level information is extracted, culminating in predicting 
the class label (14). Numerous analyses (3–5) based on shared variance suggest that 
the brain follows related principles with an early-to-early and late-to-late pattern of 
correspondence between the ventral visual stream and DCNN layers. LOC, lateral 
occipital complex; IT, inferotemporal cortex. (B) These shared variance corre-
spondences are evaluated locally, typically involving one brain region and one 
model layer, with no recourse to behavior (i.e., the object recognition decision). 
(C) We propose a stronger test of correspondence based on task-relevant variance 
(i.e., activity relevant to the model’s task). If a model layer and brain region corre-
spond, then model activity replaced with brain activity should drive the DCNN to 
an appropriate output (i.e., decision). The quality of correspondence is evaluated by 
comparing DCNN performance when driven by a stimulus image versus interfaced 
with brain activity. AUC, area under the receiver-operator characteristic (ROC) curve. 
Photo credit: N. J. Sexton, University College London.
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a task of interest. In that sense, we are only concerned with the 
task-relevant variance, which is the variance that can drive the model 
to perform its task.

RESULTS
Driving model response with brain activity
We interfaced a pretrained DCNN, VGG-16 (14), with data from 
two human brain imaging studies (15, 16) and a macaque monkey 
study (17). All three studies involved viewing complex images. For 
a chosen model layer and brain region, we calculated a linear map-
ping from brain to model activity by presenting the same images to 
the model for which we had neural recordings (Fig. 1C). This sim-
ple linear mapping is a translation between brain and model activity. 
We evaluated the quality of this translation by considering held-out 
images and brain data that were not used in calculating the linear 
mapping (Materials and Methods).

Notably, for the two functional magnetic resonance imaging (fMRI) 
studies (Fig. 2, A and B), the DCNN was most accurate at classifying 
previously unseen images when the brain activity across regions (both 
early and late along the ventral stream) was interfaced with later model 
layers. In contrast to previous analyses that focused on shared vari-
ance, we did not find the early-to-early and late-to-late pattern of 
correspondence. Even primary visual cortex, V1, best drove the DCNN 
when interfaced with an advanced layer. For comparison, classifiers 
commonly used to decode information from fMRI data through 
multivariate pattern analysis (MVPA) were at chance levels (fig. S2), 
which highlights the useful constraints captured in the pretrained 
DCNN. After training on a million naturalistic images, the DCNN 
developed representations that paralleled those of the ventral 
stream, which made decoding object class possible by way of a linear 
mapping from the brain activity to an advanced DCNN layer.

The interpretation is that all brain regions contain advanced ob-
ject recognition information, which conflicts with strict hierarchi-
cal views of the ventral visual stream. The hierarchical view implies 
an early-to-early and late-to-late pattern of correspondence, which 
we did not observe using our direct interface approach.

To rule out any alternative explanation based on the indirect na-
ture of fMRI recordings, we considered a third study consisting of 
direct multiunit recording of spiking neurons implanted in the ventral 
visual stream of macaque monkeys (17). These monkeys were shown 
images that did not readily align with the pretrained DCNN’s class 
labels, so we evaluated neural translation performance by comparing 
the outputs of the DCNN when its input was a study image versus 
when a DCNN layer was driven by brain data elicited by the same 
image. For the distance measure, KL (Kullback Leibler) divergence, 
lower values imply a better translation between brain and model 
activity. As in the fMRI studies, both relatively early regions (i.e., 
V4) and late regions (i.e., IT) best translated to later DCNN layers 
(Fig. 2C). Note that while V4 is intermediate in ventral stream, we 
subsequently refer to it as “early” as relative to IT and for consistency 
with other datasets.

Across three diverse studies, we found a remarkably consistent 
pattern that strongly diverged from previous analyses—both early 
and late regions along the ventral visual stream best corresponded 
(i.e., translated) to the late model layers. It is not that previous anal-
yses were poorly conducted [see fig. S1 for a successful reanalysis of 
data (17) finding the early-to-early and late-to-late canonical pattern]. 
Rather, our novel analyses focused on task-relevant activity, i.e., 

variance that can drive behavior, provided a different view of the 
system than standard statistical analyses focused on shared variance. 
Integrating these two views suggests a nonhierarchical account of 
object recognition marked by long-range recurrence transmitting 
higher-level information to the earliest visual areas.

Long-range recurrence as opposed to strict hierarchy
One way to reconcile the existing literature based on shared variance 
with our analyses based on task-relevant activity is to propose that 
long-range connections from IT transmit higher-level information 
to early visual areas. Even if most variance in lower-level visual 
areas is attributable to stimulus-driven, bottom-up activity, most 
of the task-relevant information could be attributable to signals 
originating from IT (Fig. 3).

This view predicts specific patterns of Granger causality between 
early and late areas along the ventral visual stream. Do past values 
of one time series predict future values of the other? In terms of total 
spiking activity, lower-level areas should first cause activity in higher-
level areas during the initial feed-forward pass, in which stimulus-
driven activity propagates along the ventral visual stream. Later in 
processing, the causality should become reciprocal as top-down 
connections from IT affect firing rates in the lower-level areas, such 
as V4 (Fig. 3, bottom row). In contrast, Granger causality for task-
relevant information should be first established from IT to V4 (i.e., 
the top-down signal) and only later in processing should recurrent 
activity lead to causality from V4 to IT (Fig. 3, top row). In this 
fashion, all areas are effectively “late” after long-range recurrent con-
nections transmit information from IT to early visual areas along 
the ventral stream although most variance for these areas would be 
dominated by lower-level (bottom-up) stimulus information.

We tested these predictions using the monkey multiunit spiking 
data (17) that has the temporal resolution to support the analyses. 
Images were presented one after the other, each visible for 100 ms, 
with a 100-ms period between stimuli. Figure 4A shows the mean 
firing rates (10-ms time bins) with activity in V4 increasing shortly 
before IT, consistent with stimulus-related activity first occurring in 
V4. Figure 4B revisits our previous analyses (Fig. 2C) but with spike 
counts binned into 10-ms intervals rather than aggregated over the 
entire trial. Even with only 10 ms of recordings, neural translation 
from V4 and IT to an advanced DCNN network layer minimizes KL 
divergence between model outputs arising from image input versus 
when driven by brain activity.

Turning to the key Granger causality analyses, we evaluated whether 
early ventral stream regions become more like late ventral stream 
regions over time due to recurrence (Fig. 3). As processing unfolded, 
we found mutual causality between the lower-level (V4) and higher-
level (IT) areas for analyses conducted over spike counts (Fig. 4C) 
and for analyses on the KL divergence times series that assessed the 
ability of the brain regions to drive DCNN response (Fig. 4D).

Critically, the specific predictions of the long-range recurrence 
hypothesis were supported with V4 first driving IT (V4 → IT) for 
the analysis of spike counts but IT first driving V4 (V4 ← IT) for the 
task-relevant information analysis using the KL divergence time series 
(see Materials and Methods for details). These results are consistent 
with the stimulus-driven bottom-up activity proceeding from V4 to IT 
on an initial feed-forward pass through the ventral stream with action-
able information about object recognition first arising in IT. Then, 
recurrent connections from IT to V4 make task-relevant information 
available to V4. As this loop is completed and cycles, both areas 
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mutually influence one another with the impact of bottom-up stim-
ulus information maintained throughout the process.

DISCUSSION
Computational models can help infer the function of brain regions 
by linking model and brain activity. Multilayer models, such as 
DCNNs, are particularly promising in this regard because their layers 

can be systematically mapped to brain regions. The deep learning 
revolution in neuroscience began with analyses suggesting an early-
to-early and late-to-late pattern of correspondence between DCNN 
layers and brain regions along the ventral visual stream during object 
recognition tasks (3–5).

However, as we have argued, correspondences based on shared 
variance should be treated with caution. To complement these ap-
proaches, we presented a test focused on task-relevant activity that 

Fig. 2. Results from interfacing neural data with VGG-16, a DCNN. Using the method shown in Fig. 1C, brain activity is directly inputted to a model layer to assess 
correspondence between a brain region and a model layer. (A) For this human fMRI study (16), all brain areas drive DCNN object recognition performance to above chance 
levels. The performance is best for all brain areas when interfaced with later model layers. (B) The same pattern of results is found for a second human fMRI study (15). 
OPA, occipital place area; PPA, parahippocampal place area; RSC, retrosplenial cortex. (C) In a third study, KL divergence is used (see Results and the Supplementary 
Materials) to measure the degree of correspondence for when the DCNN is driven by image input versus multiunit recordings from macaque monkeys (17). For KL diver-
gence, lower values indicate better correspondence. Once again, all regions best correspond to later network areas. These three analyses indicate that higher-level visual 
information is present at all stages along the ventral visual stream.
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directly interfaced neural recordings with a DCNN model. If a brain 
region corresponds functionally to a model layer, then the brain ac-
tivity substituted for the model activity at that layer should drive the 
model to the same output as when an image stimulus is presented. 
Of course, models and brains speak different languages, so a trans-
lation between brain and model activity must first be learned, which, 
in our case, was accomplished by a linear transformation. Once the 
translation function is learned, novel brain data and images can be 
used to evaluate possible brain-model correspondences.

Our approach, which focuses on task-relevant activity within the 
overall computation, as opposed to shared variance (Fig. 1) uncov-
ered a pattern of correspondences that markedly differed from the 
existing literature. We found that all brain regions, from the earliest 
to the latest of visual areas along the ventral stream, best corre-
sponded to the later model layers. These results indicate that neural 
recordings in all regions contain higher-level information about ob-
ject category even when most variance in a region is attributable to 
lower-level stimulus properties (Fig. 3).

To resolve this discrepancy between our analyses focused on 
task-relevant activity and those based on shared variance, we evalu-
ated the hypothesis that long-range recurrence between higher-level 
brain regions, such as IT, influenced activity in lower-level areas 

Fig. 3. Hypothesized interactions between early (V4) and late (IT) regions 
along the ventral visual stream as processing unfolds. We hypothesize how 
stimulus and object-class information propagate between V4 and IT over time. At 
t0, the forward pass reaches IT from V4, with V4 activity reflecting low-level stimulus 
properties but little information about object class. At t1, object-class information 
from IT flows back to V4, increasing its task-relevant activity, which, in turn, influ-
ences IT at t2. Notice that later in processing, V4 reflects object class information, 
but most of its activity remains tied to bottom-up stimulus properties. These hy-
pothesized interactions would reconcile our results (Fig. 2) based on task-relevant 
information with previous results based on shared variance.

Fig. 4. Analyses of monkey multiunit recordings time locked to stimulus presentation in 10-ms time bins. In the recordings (17), each visual stimulus was presented 
for 100 ms (shaded green) with 100 ms before the next (shaded gray). (A) Mean normalized spike counts for all electrodes for V4 and IT. (B) Task-relevant analysis (lower 
values imply closer correspondence with a late DCNN layer) shows that both V4 and IT can appropriately drive DCNN response (Fig. 1B), starting around 70 ms after 
stimulus onset. (C) Consistent with our long-range recurrence hypothesis (Fig. 3), Granger causal modeling indicates that, while V4 first drives IT in terms of raw firing 
rates (V4 → IT), (D) IT first drives V4 in terms of task-relevant information (V4 ← IT). These results are consistent with information about object category information (as 
assessed by interfacing with a late layer in a DCNN), first arising in IT and then feeding back to V4. At later time steps, Granger causality between V4 and IT becomes recip-
rocal (V4 ↔ IT) as the loop cycles.
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like V4. Analyzing both firing rates of cells and information-level 
analyses using our brain-model interface approach, we found evi-
dence that recurrent activity renders all areas functionally late as 
processing unfolds, even when most activity in some early visual 
regions is largely driven by bottom-up stimulus information. In this 
way, we integrate previous findings with our own and highlight how 
our method can be used to test hypotheses about information flow 
in the brain.

One concern is that our notable results may arise from some 
artifact. For instance, perhaps the data quality or dimensionality 
recordings from early visual regions were insufficient to drive the 
DCNN’s lower layers, which themselves are high dimensional. First, 
logically, this argument fails because claims of correspondence 
require high-quality data. For example, it would be imprudent to 
claim that a single noisy neuron functionally corresponds to an early 
network layer because such data are not functionally sufficient to 
carry the relevant state information, which we directly assess in our 
substitution approach. Second, in terms of network dimensionality, 
because we project from the brain to the model, rather than the oth-
er way around as in encoding approaches, differences in extrinsic 
network dimensionality are not critical as each DCNN unit is essen-
tially fit by its own regression model (i.e., the covariance term is on 
the brain side, not the DCNN side).

A related critique is that simply being early is a disadvantage be-
cause errors in mapping from brain data to a network layer may be 
magnified across later processing stages. Again, this argument ignores 
the logic of our substitution approach in that sensitivity to pertur-
bations at early layers implies that higher quality data are required 
to establish functional correspondences. Empirically, we observe 
the exact opposite when perturbing networks—the network shows 
attractor-like behavior, in which successive stages of processing re-
move added noise rather than amplify it (fig. S7). Last, we can ob-
serve correspondences to early network layers, such as when we use 
an image as the data source rather than brain data (fig. S6), which 
indicates that there is no inherent bias in the substitution approach.

Our approach, which considers task-relevant activity or variance, 
may help resolve conflicting interpretations on the function of brain 
regions. For example, the fusiform face area (FFA) responds selec-
tively for faces, but its wider functional role in object recognition 
has been the subject of extensive debate (18). Here, we show that 
interfacing FFA into the late model layers drives object recognition 
comparably to the lateral occipital complex (Fig. 2B) on nonface 
natural images. We suspect that the function of a region will only be 
fully understood by considering task-relevant variance across several 
tasks in light of activity in connected brain regions. The tight inter-
face that we champion between computational models and brain 
activity should prove useful in evaluating theoretical accounts of 
how the brain solves tasks over time.

Computational models that perform the tasks end to end, from 
stimulus to behavior, should be particularly useful. In essence, trans-
lating between brain regions to layers of these models can make clear 
what role a brain region plays within the overall computation. In 
the case of object recognition, our results suggested that recurrent 
models may be best positioned to explain how the nature of infor-
mation within brain regions changes as the computation unfolds.

This conclusion is in line with a growing body of modeling work 
in neuroscience that affirms the value of recurrent computation 
(19–21). Unlike the aforementioned work, we suggest that long-
distance recurrent connections that link disparate layers should be 

considered [cf. (22)]. We suspect that such models will be necessary 
to capture time course data and the duality found in some brain 
regions, namely, how most variance in a brain region can be attributable 
to lower-level stimulus properties while co-mingling with import-
ant higher-level, task-relevant signals.

As deep learning accounts in neuroscience are extended to other 
domains, such as audition (23) and language processing (24), the 
lessons learned here may apply. Our brain-model interface approach 
can help evaluate whether the brain processes signals across domains 
in an analogous fashion. By minding the distinction between shared 
and task-relevant variance (i.e., activity that can drive the computa-
tion), the role that the brain regions play within the overall compu-
tation may more readily come into focus.

Our approach may also have practical application in brain machine 
interfaces (BMIs). Recent BMI developments have emphasized the 
readout of motor commands, neural processes taking place close to 
the periphery. In contrast, by leveraging the constraints provided by 
a pretrained DCNN, we were able to gain traction on the “stuff of 
thought,” categorical and conceptual information in IT. Because we 
learned a general translation from brain to model, our approach 
applied to BMI would allow distant generalization. For example, we 
were able to extrapolate to novel categories (fig. S3). For example, a 
translation from the brain to the model that never trained on horses 
but trained on other categories can perform zero-shot generaliza-
tion when given brain activity elicited by an image of a horse. The 
interface has the potential to produce a domain-general mapping 
rather than one dependent on specific training data. In the future, 
BMI approaches that address general thought without exhaustive 
training on all key elements and their combinations may be feasible.

MATERIALS AND METHODS
Datasets
We reanalyzed three existing neural datasets. Two, BOLD5000 (15) 
and Generic Object Decoding (16), consist of fMRI from human 
participants who viewed images taken from ImageNet (25), a bench-
mark large dataset of natural images. We restricted the BOLD5000 
dataset to only those images drawn from ImageNet (2012 ImageNet 
Large Scale Visual Recognition Challenge) edition and to partici-
pants 1 to 3 who completed the full experiment. The analysis of 
Generic Object Decoding used the data from the “training” portion 
of their image presentation experiment, consisting of 1200 images 
from 150 categories drawn from the ImageNet Fall 2011 edition. 
For both datasets, each image was presented once; thus, each row 
represents individual trials.

The third dataset consists of neuron spike counts directly recorded 
from V4 and IT of two macaque monkeys (17) in a rapid serial visual 
presentation paradigm, where each image is passively viewed for 
100 ms, with 100 ms between images. We used the publicly available 
data processed as detailed in those publications. For the neural in-
terfacing analysis of the spiking neural dataset, we used spike rates 
aggregated over multiple presentations of each of 3200 unique im-
ages, in the interval of 70 to 170 ms after stimulus onset, with the 
electrodes from the two participants concatenated, as in the original 
analysis (18). For the Granger causal modeling analysis of the same 
dataset, we used spike rates at the level of the individual trial (i.e., no 
aggregation) for each 10-ms time bin.

The neural data corresponding with each image were related to 
layer activations of a DCNN trained on image classification, when 
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processing the same pixel-level data. The three neural datasets 
contain data for various brain regions from ventral stream, including 
visual areas [V1, V2, V3, and V4, included as “EarlyVis” in (15)], areas 
responsible for processing shape and conceptual information [lateral 
occipital complex (LOC) and IT], and various downstream areas 
[occipital place area (OPA), parahippocampal place area (PPA), 
FFA, and retrosplenial cortex (RSC)].

For details on neuroanatomical placement or functional local-
ization of each region, we refer the readers to the original publica-
tions. Further details of brain regions and dimensionality of the data 
from each region are presented in table S1.

Deep convolutional neural network
As the base DCNN for all simulations, we used a reimplemented 
and trained version of VGG-16 [(14); configuration D] using Keras 
(26) version 2.2.4 and TensorFlow version 1.12. This model was 
selected for its uncomplicated architecture, near–human-level clas-
sification accuracy on ImageNet, and widely reported robust corre-
spondence with primate or human data on various measures, including 
human behavioral [similarity judgments (27), human image matching 
(21)], and neural (22, 28). We implemented and trained a version of 
the architecture with an input size of 64 × 64 × 3, with correspond-
ing changes in spatial dimensions for all layers (table S2). For all 
analyses, images from all datasets were cropped to a square and re-
sized to this resolution. For the monkey multiunit dataset, where 
images are contained in a circular frame, the central 192 × 192 portion 
of the 256 × 256 original was cropped and resized, to decrease the 
proportion of image taken up by blank space in the corners. While 
the original authors trained their network in a two-stage process, 
beginning with a subset of the layers, the inclusion of batch normal-
ization (29) between the convolution operation and activation func-
tion of each layer enabled training the complete network in a single 
pass. We used the authors’ setting for weight decay (𝓁2 penalty 
coefficient of 5 × 10−4) and a slightly different value for dropout 
probability (0.4). Model architecture details are presented in table S2.

DCNN training
Our training procedure followed (14). The model was trained on 
ImageNet 2012 (1000 classes) for analyses of the BOLD5000 and 
monkey multiunit datasets. For the Generic Object Decoding dataset, 
the model was trained until convergence on ImageNet Fall 2011 
(21,841 classes), before layer FC3 was replaced and retrained with 
150 classes, corresponding with the classes used in our reanalysis of 
(16). For ImageNet Fall 2011, we randomly allocated 2% of each class 
including all images used in (16) to an in-house validation set that was 
not used for training. One image used in the original study was miss-
ing from our image dataset and was excluded from all analyses. All 
images were resampled from their native resolution to 64 × 64 × 3 by 
rescaling the shortest side of the image to 64 pixels and by cen-
ter cropping.

Both versions of the model were trained using mini-batch sto-
chastic gradient descent, with a batch size of 64, an initial learning 
rate of 0.001, and a Nesterov momentum of 0.90561. The learning 
rate decayed by a factor of 0.5 when validation loss did not improve 
for 4 epochs, with training terminating after 10 epochs of no im-
provement. All layers used Glorot normal initialization. During train-
ing, images were augmented with random rescaling, horizontal flips, 
and translations. Final accuracy on the respective test sets for each 
version of the model is provided in table S3.

Cross-validation
Classifier-based methods require training classifier parameters, before 
evaluating it on data withheld from the training set. In all analyses, 
we use the standard approach of k-fold cross-validation (30), in 
which the dataset is randomly allocated into k equally sized parti-
tions, and the analysis is iterated k times, each time training on k − 1 
partitions and evaluating on one. In this way, the classifier is evaluated 
over the entire dataset. For all analyses, except where otherwise spec-
ified, we use stratified eightfold cross-validation, that is to say, dataset 
items are randomly allocated to partitions with the constraint that 
1/k of each class is allocated to each validation partition. For the spiking 
neural dataset (17), each unique image was rendered from 1 of 
64 objects, with varying position and orientation. Here, stratification 
was done at the object level.

For the out-of-training-class generalization analysis, we used 
leave-one-class-out cross-validation, where for m classes, the analy-
sis is iterated m times, the evaluation set consisting only of the 
entirety of a single class, on each iteration.

Neural interfacing analysis
Given a dataset D, consisting of an image matrix Di of shape (n,64,64,3), 
where n is the number of images, and a corresponding neural data 
matrix Dr of shape (n, d), where d is the number of neural features 
(electrodes, for multiunit data, or voxels, for fMRI data), consider a 
DCNN computing a function f on Di, mapping D to Pi, an (n, m) 
matrix of predictions, each row being a probability distribution over 
the m classes the DCNN was originally trained to classify

	​ f(​D​ i​​ ) = ​P​ i​​​	 (1)

For an arbitrary intermediate model layer q, we may decompose 
f into gq and ​​g​ q​ ′ ​​, by computing intermediate activations, gq(Di)

	​ f(​D​ i​​ )  ≡ ​g​ q​ ′ ​(​g​ q​​(​D​ i​​ ) ) = ​P​ i​​​	 (2)

The neural interface analyses proceeded by applying a linear 
transform W to the centered and column-normalized neural data, 
​​D​ r​​​, and inputting the result into DCNN layer q, to compute a matrix 
of model predictions for the neural data, ​​P​ r​​​

	​​ g​ q​ ′ ​(W ​D​ r​​ ) = ​P​ r​​​	 (3)

The transformation matrix W was computed by partitioning image 
and neural datasets Di, Dr into training and evaluation partitions 
using 8-fold cross-validation, and W was learned as a linear map-
ping from Dr to the layer q activations generated by the correspond-
ing images, Di, on the training partition

	​​ g​ q​​(​D​ i​​ ) = W ​D​ r​​ + ϵ​	 (4)

For each cross-validation fold, the model predictions were com-
puted for the evaluation partition. In practice, W was computed as 
a single-layer linear neural network with no bias or activation func-
tion, to minimize mean-squared error of supervision targets gq(Di) 
using mini-batch stochastic gradient descent with momentum 
(batch size of 64, momentum of 0.9, 𝓁2 regularization of 0.0003, 
initial learning rate of 0.1, decreasing by a factor of 0.5 when valida-
tion loss did not improve for 4 epochs and terminating after 400 
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epochs or after validation loss did not improve for 20 epochs). For 
the analysis of the macaque dataset (16), on the level of the individual 
trial, before performing the Granger causality model, W was com-
puted using the Adadelta optimizer (batch size of 128 and initial 
learning rate of 0.04).

We also considered an alternative mode for training W, by first 
assembling the model in the form of Eq. 3, composed of transfor-
mation matrix W initialized with small random weights, followed 
by DCNN layer q onward, gq′, thus mapping end to end from neural 
measures Dr to output. W was then trained by back-propagating the 
categorical cross-entropy error term from the softmax output layer, 
using the supervision target of the ground-truth labels for the neu-
ral dataset (Dr), with all other weights in the network frozen. This 
method produced a pattern of results that were qualitatively similar, 
although with lower absolute accuracy (fig. S4).

Given the success of dimensionality reduction techniques and 
penalized regression models in shared variance analyses (31), we 
explored those techniques in training the linear transformation ma-
trix. Specifically, we computed an intermediate latent space by com-
puting the first 5000 principal components of model layer q 
activations (trained on activations from 30,000 images randomly 
sampled from the ImageNet 2012 training set) and using this model 
to reduce the target activations, ​​g​ q​​(​D​ i​​)​, to 5000 dimensions. Learn-
ing the linear transformation matrix to this lower-dimensional 
space proceeded as above, with varying levels of ​​𝓁​ 2​​​ regularization. 
The results (fig. S5) show the same pattern of findings as previously 
described, with lower absolute accuracy. Better results are obtained 
with no ​​𝓁​ 2​​​ penalty.
Neural interface evaluation
The output of the model, P, is an (n, m) matrix of probability distri-
butions over the m output classes where the original DCNN was 
trained on, for each of n images in D. We computed this for the 
original DCNN on the image dataset, f(Di) = Pi, and also for the 
neural dataset for each brain region r and model layer q, ​​g​ q​ ′ ​(W ​D​ r​​ ) = ​P​ r​​​. 
The correspondence between r and q was evaluated by comparing 
the model predictions Pr either against model predictions from the 
image dataset [by computing the KL divergence of Pr from Pi for 
each row n) or against the ground-truth classes (by computing the 
overall AUC (area under the receiver-operator characteristic curve) 
of the classifier]. The AUC of the classifier was calculated as a mul-
ticlass generalization of the two-class AUC statistic by averaging 
overall pairs of classes (32). Each pairwise AUC was calculated via 
its equivalence with the Wilcoxon-Mann-Whitney U statistic (33): 
For each pair of classes (X, Y), U is calculated as the proportion 
overall n instances of X and m instances of Y, and the number of 
cases where X is assigned a higher probability than Y

	​ U  = ​  ∑ 
i=1

​ 
n
 ​​​ ∑ 
j=1

​ 
m

 ​​S(​X​ i​​, ​Y​ j​​)​	 (5)

where

	​​ S(X, Y ) = ​
⎧

 
⎪

 ⎨ 
⎪

 
⎩

​​​
 1 if X  >  Y

​ 0 if X  <  Y​ 
​ 1 ─ 2 ​ if X  =  Y

 ​​​	 (6)

Interfacing pixel-level data
For comparison, we conducted the interfacing analysis mapping 
pixel-level data derived from the images themselves in place of neu-
ral data. The BOLD5000 image stimuli, sized at 64 × 64 × 3 pixels, 

were flattened and projected down to the first 1200 principal com-
ponents using a principal components analysis (PCA) model trained 
on 20,000 images randomly sampled from the ImageNet 2012 training 
set. These 1200-dimensional image representations were used in place 
of neural data, with the remainder of the analysis proceeding identi-
cally with an adjusted learning rate of 0.4. Results (fig. S6) show best 
accuracy when interfaced with the earliest layers of the model (Conv1b) 
and demonstrate that interfacing with earliest model layers produces 
better results than late layers, provided that there are sufficient data.

Shared neural variance analysis
For comparison, we present an example of a shared neural variance 
analysis using the macaque spiking neuron dataset (17) and our re-
implemented model. Conceptually, in common with the inter-
facing analysis (Fig.  2), the analysis evaluates the correspondence 
between a brain region r and a model layer q. Layer q model activations, 
gq(Di), were compared with a neural dataset obtained from the pre-
sentation of corresponding images, Dr. To establish that our results 
are comparable to those of the previous study, we used the neural 
predictivity method exactly as implemented in the Brain-Score 
benchmark for DCNNs (33).

The dataset was iteratively partitioned using 8-fold cross-validation 
into the training/validation partitions. Following the method in (24), we 
used the image stimuli from the training partition to generate model 
activations on each layer. We used PCA to calculate the first 1000 
principal components of these activations, before training a partial 
least squares regression model (25 components) to predict, for each 
electrode, the firing rate across the validation partition. The predic-
tivity for each electrode was computed as the Pearson correlation 
coefficient between the predicted firing rates across the dataset and 
the actual recorded values, with the overall predictivity given by the 
correlation coefficient of the median electrode.

Simple classifiers on the neural datasets
To establish performance baselines for the interfaced fMRI datasets, 
which were evaluated in terms of classification performance, we 
applied various standard classifiers to the neural data directly, to 
predict the image class from the neural data from various brain 
regions. Known as MVPA, evaluating the trained classifier’s ability 
to predict class labels from fMRI or spiking neural data is now a 
standard approach to quantifying the categorical-level information 
within a brain region (34). Nevertheless, in the present analyses, the 
number of different classes is unusually large, and the number 
of examples from each class is unusually small [1916 images from 
958 classes (15) and 1200 images from 150 classes (16)] for a 
straightforward MVPA analysis on these datasets. We report the 
AUC of the classifier computed in the same way as for the neural 
interfacing analysis. All classifiers were implemented as detailed below 
using version 0.20.3 of the scikit-learn library (35).
Multiclass logistic regression
The classifier was implemented as LogisticRegression with the 
“multinomial” option, the lbfgs solver, and a maximum of 103 iterations.
Nearest-neighbor classifier
The classifier was implemented as KNeighborsClassifier. Given the 
structure of the BOLD5000 dataset, with only two examples per class 
(thus, either one or two examples in the training partition, test clas-
sification of each class on the basis of one correct training example), 
we classified on the basis of the single nearest neighbor under a 
Euclidean distance function.
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Linear support vector machine
The classifier was implemented as LinearSVC, using a one-versus-rest 
multiclass strategy, with a maximum of ​1​0​​ 4​.​ iterations and C 
parameter of ​1​0​​ −3​​

Granger causal modeling
In contrast to the previous neural interfacing analysis of the spiking 
neural dataset, which aggregated spike rates over multiple presenta-
tions of each image, in the interval of 70 to 170 ms after stimulus 
onset, here, we trained and evaluated the model on data at the indi-
vidual trial level. We conducted a separate decoding analysis for 
each 10-ms time bin, from −20 ms (i.e., before stimulus onset) to 
270 ms, with all time indices referring to the preceding 10-ms time bin. 
Training linear transformation matrix W is described in the Neural 
Interfacing Analysis section of the method. Before the GCM, we 
preprocessed the trial-level relative entropy data to ensure station-
arity by, first, subtracting the temporal mean and SD from each trial 
and, second, subtracting the mean signal and dividing by the signal’s 
SD, thus ensuring that each time step has zero mean and unit variance.

Given two regions, X and Y, separate Granger causal models were 
computed for each direction X → Y and X ← Y, where each model 
takes the form of a linear regression, where the univariate outcome

	​ KL ​(​D​ X​​‖​D​ i​​)​ n​​​	 (7)

where the KL divergence of region X with , the base model predic-
tions, is predicted by the Granger null model (8) or the Granger 
causal model (9)

	​ KL ​(​D​ X​​‖​D​ i​​)​ n−1​​, … , KL ​(​D​ X​​‖​D​ i​​)​ n−p​​​	 (8)

​KL ​(​D​ X​​‖​D​ i​​)​ n−1​​, KL ​(​D​ Y​​‖​D​ i​​)​ n−1​​, … , KL ​(​D​ X​​‖​D​ i​​)​ n−p​​, KL ​(​D​ Y​​‖​D​ i​​)​ n−p​​​	 (9)

where p, the maximum number of previous time steps, is a hyper-
parameter that is determined using model selection criteria such as 
Bayesian Information Critereon. The appropriate model was deter-
mined by comparing log-likelihood ratios, given the data, for the 
causal and null models.

Perturbation analysis
One possible explanation for the observed pattern of neural inter-
facing results (Fig. 2) is the prediction error in input model activa-
tions becoming compounded over subsequent layers of DCNN 
processing in the DCNN. This may occur if perturbations in DCNN 
activations on a given layer become larger on subsequent layers. 
The opposite case is that DCNN layers implement a tolerance to 
activation error, such that perturbations become smaller on subse-
quent layers. We conducted a perturbation analysis (fig. S7), in 
which the BOLD5000 images were input to the base DCNN and 
activations on a given layer were perturbed with Gaussian noise (SD 
of , where  is the SD of each unit’s activations and  is a scaling 
parameter equal to 4.0), and the downstream effects on the final 
convolutional layer (Conv5c) were compared with those resulting 
from nonperturbed activations. The results show that perturbations 
on the preceding convolutional layer (Conv5b) produced much 
greater error on Conv5c than on layers further upstream. These 
results suggest that subsequent DCNN layers effectively correct 
activation error occurring upstream. We take these findings as 
suggestive that the prediction error does not bias neural decoder 
accuracy against early layers.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm2219

View/request a protocol for this paper from Bio-protocol.

REFERENCES AND NOTES
	 1.	 C. Buckner, Understanding adversarial examples requires a theory of artefacts for deep 

learning. Nat. Mach. Intell. 2, 731–736 (2020).
	 2.	 R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, W. Brendel, ImageNet-

trained CNNs are biased towards texture; increasing shape bias improves accuracy and 
robustness, in 7th International Conference on Learning Representations, ICLR 2019, New 
Orleans, LA, USA, 6 to 9 May 2019.

	 3.	 U. Güçlü, M. A. J. van Gerven, Deep neural networks reveal a gradient in the complexity 
of neural representations across the ventral stream. J. Neurosci. 35, 10005–10014 
(2015).

	 4.	 S.-M. Khaligh-Razavi, N. Kriegeskorte, Deep supervised, but not unsupervised, models 
may explain IT cortical representation. PLOS Comput. Biol. 10, e1003915 (2014).

	 5.	 D. L. K. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert, J. J. DiCarlo, Performance-
optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl. 
Acad. Sci. U.S.A. 111, 8619–8624 (2014).

	 6.	 J. J. DiCarlo, D. Zoccolan, N. C. Rust, How does the brain solve visual object recognition? 
Neuron 73, 415–434 (2012).

	 7.	 D. J. Kravitz, K. S. Saleem, C. I. Baker, L. G. Ungerleider, M. Mishkin, The ventral visual 
pathway: An expanded neural framework for the processing of object quality. Trends 
Cogn. Sci. 17, 26–49 (2013).

	 8.	 J. H. Siegle, X. Jia, S. Durand, S. Gale, C. Bennett, N. Graddis, G. Heller, T. K. Ramirez, 
H. Choi, J. A. Luviano, P. A. Groblewski, R. Ahmed, A. Arkhipov, A. Bernard, Y. N. Billeh, 
D. Brown, M. A. Buice, N. Cain, S. Caldejon, L. Casal, A. Cho, M. Chvilicek, T. C. Cox, K. Dai, 
D. J. Denman, S. E. J. de Vries, R. Dietzman, L. Esposito, C. Farrell, D. Feng, J. Galbraith, 
M. Garrett, E. C. Gelfand, N. Hancock, J. A. Harris, R. Howard, B. Hu, R. Hytnen, R. Iyer, 
E. Jessett, K. Johnson, I. Kato, J. Kiggins, S. Lambert, J. Lecoq, P. Ledochowitsch, J. H. Lee, 
A. Leon, Y. Li, E. Liang, F. Long, K. Mace, J. Melchior, D. Millman, T. Mollenkopf, C. Nayan, 
L. Ng, K. Ngo, T. Nguyen, P. R. Nicovich, K. North, G. K. Ocker, D. Ollerenshaw, M. Oliver, 
M. Pachitariu, J. Perkins, M. Reding, D. Reid, M. Robertson, K. Ronellenfitch, S. Seid, 
C. Slaughterbeck, M. Stoecklin, D. Sullivan, B. Sutton, J. Swapp, C. Thompson, K. Turner, 
W. Wakeman, J. D. Whitesell, D. Williams, A. Williford, R. Young, H. Zeng, S. Naylor, 
J. W. Phillips, R. C. Reid, S. Mihalas, S. R. Olsen, C. Koch, Survey of spiking in the mouse 
visual system reveals functional hierarchy. Nature 592, 86–92 (2021).

	 9.	 S. Kornblith, M. Norouzi, H. Lee, G. Hinton, Similarity of neural network representations 
revisited, in Proceedings of the 36th International Conference on Machine Learning (2019), 
Long Beach, California, USA, 9 to 15 June 2019.

	 10.	 S. Musall, M. T. Kaufman, A. L. Juavinett, S. Gluf, A. K. Churchland, Single-trial neural 
dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).

	 11.	 J. E. Kragel, N. W. Morton, S. M. Polyn, Neural activity in the medial temporal lobe reveals 
the fidelity of mental time travel. J. Neurosci. 35, 2914–2926 (2015).

	 12.	 B. A. Purcell, R. P. Heitz, J. Y. Cohen, J. D. Schall, G. D. Logan, T. J. Palmeri, Neurally 
constrained modeling of perceptual decision making. Psychol. Rev. 117, 1113–1143 
(2010).

	 13.	 B. M. Turner, B. U. Forstmann, B. C. Love, T. J. Palmeri, L. Van Maanen, Approaches to 
analysis in model-based cognitive neuroscience. J. Math. Psychol. 76, 65–79 (2017).

	 14.	 K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image 
recognition. arXiv:1409.1556 [cs.CV] (4 September 2014).

	 15.	 N. Chang, J. A. Pyles, A. Gupta, M. J. Tarr, E. M. Aminoff, BOLD5000, a public fMRI dataset 
while viewing 5000 visual images. Sci. Data 6, 49 (2019).

	 16.	 T. Horikawa, Y. Kamitani, Generic decoding of seen and imagined objects using 
hierarchical visual features. Nat. Commun. 8, 15037 (2017).

	 17.	 N. J. Majaj, H. Hong, E. A. Solomon, J. J. DiCarlo, Simple learned weighted sums of inferior 
temporal neuronal firing rates accurately predict human core object recognition 
performance. J. Neurosci. 35, 13402–13418 (2015).

	 18.	 R. W. McGugin, J. C. Gatenby, J. C. Gore, I. Gauthier, High-resolution imaging of expertise 
reveals reliable object selectivity in the fusiform face area related to perceptual 
performance. Proc. Natl. Acad. Sci. U.S.A. 109, 17063–17068 (2012).

	 19.	 K. Kar, J. Kubilius, K. Schmidt, E. B. Issa, J. J. DiCarlo, Evidence that recurrent circuits are 
critical to the ventral stream’s execution of core object recognition behavior. Nat. 
Neurosci. 22, 974–983 (2019).

	 20.	 T. C. Kietzmann, C. J. Spoerer, L. K. A. Sörensen, R. M. Cichy, O. Hauk, N. Kriegeskorte, 
Recurrence is required to capture the representational dynamics of the human visual 
system. Proc. Natl. Acad. Sci. U.S.A. 116, 21854–21863 (2019).

	 21.	 J. Kubilius, M. Schrimpf, K. Kar, R. Rajalingham, H. Hong, N. J. Majaj, E. B. Issa, P. Bashivan, 
J. Prescott-Roy, K. Schmidt, A. Nayebi, D. Bear, D. L. K. Yamins, J. J. Di Carlo, Brain-Like 

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity C

ollege L
ondon on July 18, 2022

https://science.org/doi/10.1126/sciadv.abm2219
https://science.org/doi/10.1126/sciadv.abm2219
https://en.bio-protocol.org/cjrap.aspx?eid=10.1126/sciadv.abm2219
https://arxiv.org/abs/1409.1556


Sexton and Love, Sci. Adv. 8, eabm2219 (2022)     13 July 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 9

Object Recognition with High-Performing Shallow Recurrent ANNs. Advances in Neural 
Information Processing Systems 32 (NeurIPS 2019).

	 22.	 A. Nayebi, D. Bear, J. Kubilius, K. Kar, S. Ganguli, D. Sussillo, J. J. Di Carlo, D. L. K. Yamins, 
Task-driven convolutional recurrent models of the visual system. Adv. Neural. Inf. Process. 
Syst. 31, 5290–5301 (2018).

	 23.	 A. Kell, D. Yamins, S. Norman-Haignere, D. Seibert, H. Hong, J. D. Carlo, J. M. Dermott, 
Computational similarities between visual and auditory cortex studied with 
convolutional neural networks, fMRI, and electrophysiology. J. Vis. 15, 1093–1093 
(2015).

	 24.	 M. Schrimpf, I. Blank, G. Tuckute, C. Kauf, E. A. Hosseini, N. Kanwisher, J. Tenenbaum, 
E. Fedorenko, The neural architecture of language: Integrative reverse-engineering 
converges on a model for predictive processing. bioRxiv 2020.06.26.174482 [Preprint]. 
9 October 2020. https://doi.org/10.1101/2020.06.26.174482.

	 25.	 O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, 
A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei, ImageNet large scale visual recognition 
challenge. Int. J. Comput. Vis. 115, 211–252 (2015).

	 26.	 F. Chollet, Keras (2015); https://github.com/fchollet/keras.
	 27.	 B. D. Roads, B. C. Love, Enriching ImageNet with Human Similarity Judgments and 

psychological embeddings. arXiv:2011.11015 [cs.CV] (22 November 2020).
	 28.	 K. R. Storrs, T. C. Kietzmann, A. Walther, J. Mehrer, N. Kriegeskorte, Diverse deep neural 

networks all predict human IT well, after training and fitting. bioRxiv 2020.05.07.082743 
[Preprint]. 8 May 2020. https://doi.org/10.1101/2020.05.07.082743.

	 29.	 S. Ioffe, C. Szegedy, Batch Normalization: Accelerating deep network training by 
reducing internal covariate shift. arXiv:1502.03167 [cs.LG] (11 February 2015).

	 30.	 T. Hastie, The Elements of Statistical Learning: Data Mining, Inference, and Prediction 
(Springer, 2009).

	 31.	 M. Schrimpf, J. Kubilius, M. J. Lee, N. Apurva Ratan Murty, R. Ajemian, J. J. Di Carlo, 
Integrative benchmarking to advance neurally mechanistic models of human 
intelligence. Neuron 108, 413–423 (2020).

	 32.	 D. J. Hand, R. J. Till, A simple generalisation of the area under the ROC curve for multiple 
class classification problems. Mach. Learn. 45, 171–186 (2001).

	 33.	 J. A. Hanley, B. J. McNeil, The meaning and use of the area under a receiver operating 
characteristic (ROC) curve. Radiology 143, 29–36 (1982).

	 34.	 J. V. Haxby, A. C. Connolly, J. S. Guntupalli, Decoding neural representational spaces 
using multivariate pattern analysis. Annu. Rev. Neurosci. 37, 435–456 (2014).

	 35.	 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, 
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, 
M. Perrot, É. Duchesnay, Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 
2825–2830 (2011).

Acknowledgments: We thank colleagues in the LoveLab for discussion and comments on 
early versions of this manuscript. Funding: This research was supported by a Royal Society 
Wolfson Fellowship (183029; https://royalsociety.org/) and a Wellcome Trust Senior 
Investigator Award (WT106931MA; https://wellcome.org/) held by B.C.L. The funders had no 
role in study design, data collection and analysis, decision to publish, or preparation of the 
manuscript. Author contributions: N.J.S: Conceptualization, methodology, software, validation, 
formal analysis, investigation, data curation, writing—original draft, writing—review and editing, 
and visualization. B.C.L.: Conceptualization, methodology, resources, writing—review and 
editing, supervision, and funding acquisition. Competing interests: The authors declare that they 
have no competing interests. Data and materials availability: All datasets analyzed in this paper 
are available for public download from repositories associated with the original publications: 
BOLD5000 v1.3.0 (https://openneuro.org/datasets/ds001499/versions/1.3.0) (15), Generic Object 
Decoding v6 (https://figshare.com/articles/dataset/Generic_Object_Decoding/7387130) (16), 
and Brain-Score public benchmarks dicarlo.MajajHong2015.public and dicarlo.
MajajHong2015.temporal.public (https://github.com/brain-score/brain-score) (17).

Submitted 2 September 2021
Accepted 27 May 2022
Published 13 July 2022
10.1126/sciadv.abm2219

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity C

ollege L
ondon on July 18, 2022

https://github.com/fchollet/keras
https://arxiv.org/abs/2011.11015
https://doi.org/10.1101/2020.05.07.082743
https://arxiv.org/abs/1502.03167
https://royalsociety.org/
https://wellcome.org/
https://openneuro.org/datasets/ds001499/versions/1.3.0
https://figshare.com/articles/dataset/Generic_Object_Decoding/7387130
https://github.com/brain-score/brain-score


Use of this article is subject to the Terms of service

Science Advances (ISSN ) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW,
Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.
Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

Reassessing hierarchical correspondences between brain and deep networks
through direct interface
Nicholas J. SextonBradley C. Love

Sci. Adv., 8 (28), eabm2219. • DOI: 10.1126/sciadv.abm2219

View the article online
https://www.science.org/doi/10.1126/sciadv.abm2219
Permissions
https://www.science.org/help/reprints-and-permissions D

ow
nloaded from

 https://w
w

w
.science.org at U

niversity C
ollege L

ondon on July 18, 2022

https://www.science.org/about/terms-service

