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Abstract 

 

 On-lattice Kinetic Monte Carlo (KMC) is a powerful computational method 

that is widely used to study chemical reaction on catalytic surfaces. It is an exact 

method able to capture surface inhomogeneities, e.g. due to interactions among 

the participating species, and handle systems with complex chemistries. KMC is 

exact in the sense that the method itself does not introduce approximations of 

any kind. Therefore, the results produced from a KMC simulation depend 

exclusively on the input, i.e. the lattice, the chemical reaction model, and the 

kinetic and energetic parameters thereof. However, KMC simulations of realistic 

systems tend to be computationally demanding, mainly due to the inherently 

serial nature of KMC since the reaction events are scheduled and executed one 

at a time. 

 This thesis focuses on methods and approaches to accelerate KMC 

simulations of reactive systems. First, the focus is on the scheduling of KMC 

events undertaken by suitable queueing systems. Different data structures are 

developed, implemented and benchmarked to identify those that deliver the best 

computational performance. Next, detailed performance evaluation and 

optimisation studies are performed for a newly implemented algorithm that 

enables distributed, on-lattice, KMC simulations. Lastly, the focus turns towards 

well-mixed chemical reaction systems exhibiting timescale disparity, i.e. system 

in which some reactions occur much more frequently than others. To tackle 

timescale disparity, a novel method is developed that reduces (downscales) the 

appropriate rate constants on the fly in an optimal and data-driven way. The 

developed method also provides estimates for the error introduced by the 

downscaling procedure. 

 The approaches developed and benchmarked enable KMC simulations to 

reach temporal and spatial scales that were previously unattainable. Thus, these 

methodological advancements are expected to have significant positive impact in 

future studies of complex systems. 
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Impact Statement 

 

 The energy problem along with the environmental impact and pollution due 

to human and industrial activities are more concerning than ever. The field of 

catalysis, which focuses, among others, on the conversion of chemicals in an 

energy-efficient manner, may play a critical role against these global challenges. 

The traditional experimental pathway towards developing better catalysts for 

specific needs is, in principle, trial-and-error based, time consuming and 

expensive. Virtual experimentation, i.e. computational modelling, is becoming 

more and more dominant on catalysts development. Kinetic Monte Carlo (KMC) 

is one such computational method that is widely used to study the performance 

of catalysts for specific reactions. KMC however tends to struggle to reach 

industrially relevant length and time scales due to its serial nature. 

 This thesis focuses on various methods to accelerate KMC simulations of 

reactive systems that are relevant to catalysis. From the fundamental research 

point of view, the outcomes of this Thesis can (a) guide the development of more 

efficient and accurate modelling software that is indispensable in all 

computational studies, (b) make possible the computational simulation of 

industrially relevant timescales, enabling, at the same time, the study of reaction 

systems that were impossible to model before, (c) provide insights, better 

understanding of the underlying physics and eventually a way to perform multi-

scale simulations of catalytic reactions, from the molecular to the reaction level. 

From the academic perspective, the research projects completed on this thesis 

are the first steps towards expanding the applicability of KMC to larger scales that 

have been impossible to reach previously, and further work would enrich the 

literature with pioneering studies. In addition, the impact of this research may be 

far reaching to other fields, especially to biological physics. From the industrial 

perspective, these developments will provide a significant contribution towards 

realising the vision of “rational catalyst design”. From that point onwards, the 

potential applications are virtually unlimited, as may be reasonably assumed 

based on the usage of catalysts in the production of a vast range of chemical 

products, e.g. pharmaceuticals, fuels, fertilizers, plastics, etc. 
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1. Introduction 

 

 Simply stated, a catalyst is a substance that increases the rate of a 

chemical reaction without being consumed and can be homogeneous or 

heterogeneous. A homogeneous catalyst is in the same phase (often liquid or 

gaseous) as the reactants. On the other hand, a heterogeneous catalyst is not in 

the same phase as the reactants; in this case, the latter are usually in the gas or 

liquid phase, whereas the catalyst is a solid. The field using the latter category of 

catalysts, namely heterogeneous catalysis, is the cornerstone of the chemical 

industry where, regardless of application and process specifics, the principle is 

the same: a composite, solid material is used to facilitate the transformation of 

the input material to something more useful or less harmful. Probably, the most 

familiar example is the catalytic converters that are widely used in vehicles to 

catalyse reactions such as the oxidation of CO and reduction of NOx species [1, 

2]. Other examples include gas synthesis such as hydrogen [3] and ammonia 

(NH3) production from nitrogen and hydrogen for fertilizers through the Haber–

Bosch process [4]. Especially for the latter example, although widely used for 

more than 100 years, there is ongoing research [5, 6] on the various conditions 

under which ammonia is produced. 

 Due to the complex nature of the conversion process of reactants to 

products, it is expected that an efficient catalyst for a specific application is not 

going to perform the same for other processes. This issue gives rise to the need 

of catalyst development suitable for specific applications, a task that is certainly 

not trivial [7]. Traditional catalyst development is more trial-and-error oriented, an 

approach which may turn out very expensive, particularly time consuming and 

without any sort of guarantee for success. It should, then, be clear that the design 

of a catalyst requires a more rigorous approach based on an in-depth 

understanding of the physico-chemical phenomena that occur at the interface of 

the catalyst and the substrate. However, phenomena relevant to catalysis span 

many scales, both spatial and temporal. The necessary insights on the occurring 

phenomena could come from computational modelling that is based on physics 

and chemistry principles. To understand the chemistry at the atomistic level, the 

electronic structure needs to be resolved. Then, molecular interactions, that 
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largely determine catalytic functionality, have to be well understood so that 

accurate predictions could be made. At higher scales, specifically at the reactor 

level, other relevant phenomena such as the type of the flow of the reactants over 

the catalyst need to be modelled. Consequently, a reliable computational 

technique that would drive the design of modern catalysts needs to be multi-scale 

as the observed outcome is a combination of contributions from the atomistic to 

the macroscopic scale. In addition, using computational modelling, one may 

perform catalyst screening, namely, choose the most promising combination of 

materials that enhances the efficiency of a catalyst and then proceed to their 

experimental characterisation in order to assess their performance. This is 

obviously advantageous as compared to the trial-and-error approach. 

 At the atomistic scale, first-principles methods, such as density functional 

theory (DFT), are used to study the chemistry (bond formation and breaking) of 

the reactions of interest as well as the interactions between molecules [8, 9]. At 

a slightly higher scale, molecular dynamics (MD), able to resolve trajectories of 

molecules using Newtonian mechanics, may be utilised to simulate the evolution 

of a catalytic system by capturing the interactions, calculated by DFT for example, 

via a reactive force field [10, 11]. MD can also provide additional information [12] 

that could not be obtained by lower level methods, because of intrinsic 

assumptions or computational constraints. Moving further towards larger spatial 

scales, the kinetic Monte Carlo method, abbreviated as KMC, coarse-grains 

space and time and provides statistical averages by sampling over simulated 

configuration trajectories [13-17]. Again, information obtained by lower level 

methods, such as reaction rates, energy barriers and energetic contributions of 

the configurations of interest, is properly parametrised and incorporated into the 

KMC simulation. Finally, at the reactor scale, which is the scale of industrial 

activity in chemical engineering, computational fluid dynamics (CFD) methods 

are used to numerically solve the equations governing the transport of mass, 

momentum, heat and species and direct the reactor design process [18, 19]. 

Reactions may also be taken into account in CFD [20] but information about them 

is obtained from lower level methods. Apart from the indirect coupling of methods 

just mentioned, the exchange of information can be direct and done during the 

simulation, namely the two methods run concurrently, each one of them 
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calculating quantities relevant to their scale and communicate the relevant 

quantities when necessary [21-23]. 

 Since the goal of the research done on catalysts is the prediction of their 

performance, kinetic modelling of the relevant chemical processes is inevitable. 

For this purpose, macroscopic rate equations, for example Langmuir-

Hinshelwood models, may be used. However, the fundamental assumptions 

thereof, i.e. the random distribution of adsorbates on the surface, the absence of 

interactions between the adsorbates, as well as the single site type, are not valid 

for real catalytic surfaces [24, 25]. Therefore, for reliable results, one has to look 

for more sophisticated kinetic modelling strategies. 

 The kinetic Monte Carlo method, introduced above, is intrinsically able to 

capture the structural inhomogeneity of a catalyst since multiple site types can be 

considered. In addition, adsorbate interactions and multi-dentate species, i.e. 

occupying more than just one lattice site, can be incorporated in the kinetic model. 

The above elements, considered altogether, make the KMC method able to deal 

with real-life surface problems of advanced complexity [15]. Extensive reaction 

networks with a large number of reactions and an even larger number of 

intermediate chemical species can, in principle, be studied using KMC. 

 No method comes, however, without any limitations. Compared to MD, 

KMC is certainly capable of accessing longer timescales since it only models the 

events relevant to catalysis (adsorption, desorption, surface diffusion and 

reaction), which are, in principle, rare compared to atomic vibrations [7]. Yet, even 

rare events themselves may occur across different timescales [16], a fact that 

brings KMC in the same disadvantageous position as MD when it comes to 

simulating a representative system and providing useful information on catalytic 

performance. The latter issue, which appears in both well-mixed and on-lattice 

KMC simulations, is known as the “timescale disparity” problem or “KMC 

stiffness” and it arises when at least one of the reactions or elementary steps 

considered in the model occurs at a (much) higher frequency than the other ones, 

i.e. has a larger kinetic rate. The “severity” of the timescale disparity is determined 

by the difference of the execution frequencies of the fastest and slowest step. 

The greater this difference is, the more pronounced the timescale disparity 

problem becomes. Especially for on-lattice KMC, multiple reasons may contribute 

to that such as very low energy barrier, high pre-exponential factor or the density 



18 

of reactive configurations might be much higher as compared to that of other 

reaction steps. For example, if the diffusion of an adsorbed species on the surface 

is much faster than the reaction involving two adsorbed molecules of this species, 

the simulation spends most of time mixing the adsorbates on the surface, which 

might be unimportant from one point onwards, rather than performing reactions 

that are of interest. Tackling the timescale disparity to reduce the computational 

cost of the KMC simulation can, in principle, be done by reducing the execution 

frequency of the very fast reaction via the manual reduction of the corresponding 

rate constants. Depending on the type of KMC simulation, i.e. well-mixed, where 

the species are uniformly distributed on a volume, or on-lattice, where space is 

explicitly taken into account, various simulation strategies have been developed 

to address the issue. A more detailed account on those studies is provided on 

the relevant sections in the main body of the thesis. 

 The power of the KMC method comes from explicitly simulating every 

event in a sequential order. If one wants to have an efficient implementation of a 

KMC method for on-lattice simulation, it is imperative to make sure that, among 

other operations, the scheduling and execution of elementary reaction events is 

implemented in the most efficient way possible. Such procedures are usually 

undertaken by queueing system modules, and their implementation may have a 

huge impact on performance. 

 In on-lattice KMC simulations [26], the catalytic surface is represented 

using a suitable lattice with one or more site types [27]. The size of this lattice is 

usually on the order of a few tens of nanometers [17], which is sufficient for most 

applications, since larger lattices increase the computational cost and might not 

provide additional insight into the process studied. However, certain 

experimentally observed phenomena on catalytic surfaces [28, 29], such as 

oscillations due to surface reconstruction and the formation of patterns whose 

wavelengths are on the order of μm and mm, cannot be captured using such 

small lattices. To enable the simulation of even larger domains, one has to resort 

to distributed computing methods [30, 31] and divide the workload among many 

computational processes, so that the simulation becomes tractable within a 

reasonable amount of time. 

 All the above techniques share the same goal: to accelerate KMC 

simulations. The goal is achieved by (a) reducing the rate constants of fast 
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reactions, which results in approximate methods, and (b) using more efficient 

algorithms, more powerful hardware, or distributing the workload. From the 

physics perspective, in the latter approach, the sequence of steps executed by 

the simulation software remains unchanged, namely the methodology is left 

intact. What is modified, however, is the way these operations are executed. It is 

crucial to note that, regardless of the implementation, the results given by any 

approach belonging to category (b) above should be exact, i.e. entail no 

approximations. In certain cases, the results of approach (b) should even be 

numerically identical. The latter restriction is also a powerful way of evaluating 

the correctness of alternative implementations. 

 In the current thesis, and in line with what has already been described, we 

follow different approaches aiming to accelerate the Kinetic Monte Carlo 

simulations of reactive systems. After a brief overview of the fundamental of the 

KMC approach (Chapter 2), we focus on implementing different data structures 

that take care of the scheduling and execution of elementary events during on-

lattice KMC simulations (Chapter 3). We further develop another data structure 

to address specific needs of a particular class of simulations [32]. In Chapter 4, 

we investigate the performance of the newly implemented Time-Warp algorithm 

into the Graph-Theoretic KMC framework [33] of the software package Zacros 

[27, 34, 35]. Following the performance benchmarks, we move on into a detailed 

study on the dependence of the performance on the user-defined parameters 

using a few but representative chemical reaction models. Further, Chapter 5 of 

the thesis focuses on developing an approximate method the scales the rate 

constants of the fast reactions in well-mixed chemical reaction systems. As a final 

note, we re-iterate that Chapters 3 and 4 of the thesis (data structures for event 

scheduling & execution, and performance benchmarks and optimisation of the 

Time-Warp algorithm) are concerned with exact methods for accelerating KMC 

simulations. In contrast, Chapter 5, the scaling methodology of the rate constants, 

provides an approximate algorithm to reduce the computational cost of KMC 

simulations while providing error estimates. Finally, Chapter 6 provides a 

summary and future directions on accelerating KMC simulations. 
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2. Kinetic Monte Carlo (KMC) Fundamentals 

 

 Parts of this chapter have already been published. In accordance with the 

policy of the copyright holder, the material in this chapter is Reproduced with 

permission from G. D. Savva and M. Stamatakis, J. Phys. Chem. A 124, 7843 

(2020). Copyright 2020, American Chemical Society. 

 

2.1. Introduction 

 

 A chemical reaction can be seen as the conversion of interacting 

molecules from reactant to product species via rearrangement of their atoms. The 

simulation of the dynamic evolution of such reactive processes can in principle 

be achieved by atomistic simulation methods like molecular dynamics (MD), 

whereby the numerical integration of Newton’s equations of motion resolves the 

trajectory of each atom in the system, under the effect of the chosen interatomic 

potential and boundary conditions. However useful this method has been so far 

[36], it is limited by the fact that accurate and stable integration requires extremely 

small time steps (~10-15 s) in order to capture atomic vibrations which, in turn, 

limits the accessible timescales to a few microseconds [37]. Therefore, 

phenomena or processes that take place on longer timescales, e.g. slow 

(infrequent) chemical reactions, are inaccessible by MD methods.  

 Kinetic Monte Carlo is a stochastic computational method that, unlike MD, 

does not resolve the entire trajectory followed by individual atoms and molecules 

[26, 38]. In KMC, the motion of the molecules is spatially coarse-grained in the 

sense that vibrations, which are not of interest, are not resolved at all. What is of 

interest, especially in the field of catalysis, is the occupancy of each site on the 

catalytic surface, represented by a suitably defined lattice, and the statistics of 

transitions from reactant to product states. This crossing of states is simulated 

explicitly in MD along with all the vibrations that lead to it. In KMC instead, only 

the initial and final states are considered and information about the transition is 

provided as an input in the form of a rate constant. Given an initial surface (lattice) 

configuration, with occupied and vacant sites, the chemical system is propagated 
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in time through a discrete set of configurations with known transition rates among 

the various states. This different simulation scope enables KMC to reach much 

longer timescales than what is achievable by MD methods [39, 40]. The 

stochastic nature of this method lies in the fact that only the transition rates 

among the different configurations are known instead of the exact occurrence 

time of each transition; the latter is in fact a random variable that depends on the 

transition rate constant. 

 In the heterogeneous catalysis field, where the interest is on modelling 

surface reactions, one uses an appropriate computational lattice as a 

representation of the catalytic surface. The lattice is simply a collection of discrete 

sites that, in principle, may differ in type. The sites that compose the lattice can 

be either vacant or occupied by an adsorbate. Furthermore, any species 

participating in the chemical reaction system may adsorb to a site, desorb from a 

site, hop from one site to a neighbouring one, i.e. diffuse, and finally react with 

other adsorbates found on the lattice. Given a particular state of the lattice, α, we 

may, at least, theoretically, calculate the probability that the system “jumps” to a 

different state, β. All the accessible states compose the state space of the 

particular system, denoted with Ω. In addition, the transition rate from a state α to 

another state β is denoted by kαβ. These kinetic constants can be computed from 

transition state theory expressions parametrised with ab initio results. The 

equation that describes the dynamics of the above system can be written as [26, 

41]: 

 

𝑑𝑃(𝛼, 𝑡)

𝑑𝑡
= ∑[ 𝑘𝛽𝛼 𝑃(𝛽, 𝑡) − 𝑘𝛼𝛽 𝑃(𝑎, 𝑡)]

𝛽≠𝛼

(2.1) 

 

where P(α,t) is the probability of finding the system at the state α in time t. This 

equation, referred to as the “Master Equation”, captures the statistics of a KMC 

simulation. It is actually a balance equation: the positive term under the sum 

operator over all states β accounts for the probability of jumping to state α while 

being in any state β and the negative term accounts for the probability of leaving 

state α towards any other state β. 
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 The master equation seems deceptively simple for its capability to 

describe a system in its entirety. Indeed, even for small lattices and simple 

chemical systems, the state space is composed of an enormous number of 

configurations that makes its numerical solution intractable. As an example, 

consider a lattice with 100 sites (let it be a 10×10 lattice), and a reactive system 

with two participating species, each of which occupying a single site once 

adsorbed on the lattice. In this case, the number of all possible states is 

approximately 5×1047. If, instead, we choose a 20×20 lattice (400 sites), the 

number of states is on the order of 10191. If more complexity is added by 

considering one more single-site species, thus three species in total, the 

configuration space ends up having more than 10240 states. Fortunately, one does 

not have to numerically solve the master equation. What is done, instead, is to 

produce trajectories that are statistically consistent with the master equation [42]. 

In other words, spatial KMC methods are simulating a single configuration 

trajectory that can be followed by the system under study. Statistical averages 

are obtained by performing the simulation multiple times and the averaged results 

are statistically equivalent to the results that would have been obtained if the 

master equation was solved [14]. 

 

2.2. KMC methods 

 

 KMC is a purely numerical method, which means no further 

approximations are introduced once the mechanistic details under study and the 

corresponding rate constants have been determined [14]. For the generation of 

one or multiple sequences of configurations, or trajectories, consistent with the 

underlying master equation, many algorithms have been developed that yield 

statistically equivalent results. The main idea is to determine the time of 

occurrence of the next elementary event and the type of process that will occur. 

In addition, for on-lattice systems, one needs to determine the position of the 

executed process on the lattice. The latter is usually done along the process 

selection procedure. Each one of these steps can be performed in multiple ways 

that leads to different algorithms. In the subsequent sections two of these 

methods are discussed: the Direct Method (DM) and the First Reaction Method 
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(FRM), both developed and proved equivalent by Daniel T. Gillespie in 1976 [43]. 

The Direct Method is also referred to as Variable Step Size Method, VSSM [26, 

44]. Following Gillespie’s methods, additional KMC methods have been 

developed as extensions of the FRM. Those are the Next Reaction Method 

(NRM) by Gibson and Bruck [45] and the Modified Next Reaction Method (Mod-

NRM) by Anderson [46]. To facilitate the readability of the thesis, avoid repetition 

and improve continuity, the last two methods are introduced and discussed in 

chapter 5 due to their closer relevance with the work presented there. 

 Gillespie laid the foundations of both the Direct and the First Reaction 

Methods in his seminal work published in 1976 [43]. Then, he applied the Direct 

Method on multiple well-mixed, i.e. spatially homogeneous chemical reaction 

systems, such as the radioactive decay, the Lotka reaction, the Brusselator and 

the Oregonator [47]. In those systems, the evolution of the species’ populations 

was tracked over time and different phenomena on the phase-space were 

demonstrated, e.g. limit cycles. On the contrary, in on-lattice systems, one is 

interested in production rates, or species coverages. For both well-mixed and on-

lattice systems, the same principles apply when it comes to simulating them using 

a KMC method. Since Chapters 3 and 4 are related to the on-lattice KMC 

implementation of the First Reaction Method, in the following subsections, the 

methods are described in the context of on-lattice simulations and further details 

are provided in the appropriate chapter. 

 

2.2.1. Direct Method 

 

 Suppose that we are given a system in a particular state and based on the 

defined reaction mechanism, we want to find the reaction (with its position on the 

lattice) that is going to happen next and the time that this reaction will occur. 

Given a lattice configuration, we identify all realisable elementary events so that 

each one corresponds to a particular set of lattice sites. For example, if our 

reaction system incorporates adsorption of a species, we identify and uniquely 

label all adsorptions to vacant sites on the lattice. Using this approach, a reaction 

and its position can be determined simultaneously. 
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 Two uniformly distributed random numbers, r1 and r2, in the range of (0, 1) 

are needed in every KMC step in order to determine the next reaction and its 

time. The time advancement, tadv, is calculated as: 

𝑡𝑎𝑑𝑣 = −
𝑙𝑛(𝑟1)

𝑘𝑡𝑜𝑡
(2.2) 

where ln denotes the natural logarithm and ktot is the sum of all the reaction rates 

of the feasible events on our lattice. Then, the occurrence time, tKMC, of the next 

event is: 

𝑡𝐾𝑀𝐶 = 𝑡𝑐𝑢𝑟 + 𝑡𝑎𝑑𝑣 (2.3) 

where tcur is the current KMC time, that equals to zero in the beginning of the 

simulation. We note that the determination of the occurrence time is completely 

decoupled from the reaction that is going to occur; the only quantity involved in 

the equation (2.2) is the sum of rate constants (apart from the random number 

which is not system dependent). 

 The second uniformly distributed random number r2 is used for the 

determination of the next process, jp, as: 

∑ 𝑘𝑖 < 𝑟2 × 𝑘𝑡𝑜𝑡 ≤ 

𝑗𝑝−1

𝑖=1

∑𝑘𝑖

𝑗𝑝

𝑖=1

(2.4) 

where ki is the rate constant of the ith realizable event on the lattice. Practically, 

the second random number is multiplied by the sum of the kinetic rates to form 

the quantity r2 × ktot. We start summing the kinetic constants of all the realizable 

reactions until our running sum exceeds the quantity r2 × ktot. The last reaction 

constant added will indicate the reaction that occurs next. An important point is 

that the order in which we sum the reaction rates does not statistically affect the 

simulation, in the sense that the latter will still reproduce the correct probabilistic 

dynamics as described by the master equation. 

 Computationally, one has to identify (and uniquely label) all feasible 

processes on the lattice, sum their rate constants to form ktot, generate the time 

of the next event, sum individual kinetic rates ki to find the next event and execute 

it. Post-execution, some new elementary processes are enabled and some are 

disabled. The sum of the kinetic rates, ktot, has changed and should be updated. 

Lastly, the previous procedure is repeated and the system is propagated in time 

through a single trajectory, which is consistent with the master equation. 
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2.2.2. First Reaction Method 

 

 The main idea of this method is that a random inter-arrival time is 

generated for every feasible process on the lattice and the one with the minimum 

time is going to occur next. The waiting time ti of each event i is calculated via the 

equation: 

𝑡𝑖 = −
𝑙𝑛(𝑟𝑖)

𝑘𝑖
(2.5) 

where ri is a random number from the uniform distribution in the unit interval and 

ki is the rate constant of elementary event i. All these inter-arrival times are 

properly catalogued and a procedure to identify their minimum is executed. The 

minimum waiting time, tmin = min(ti), corresponds to a lattice process, jexe, that is 

chosen as the next event to occur. The KMC clock then advances by tmin. 

 In contrast to the direct method, the first reaction method necessitates the 

generation of multiple random numbers per KMC step. In the beginning of the 

simulation, N random numbers are needed, where N is the total number of 

feasible processes identified on the lattice. In the subsequent steps, one does 

not have to generate new random inter-arrival times for all events; that would 

make this method very inefficient. Since the execution of an event incurs “local” 

changes around the neighbourhood of the executed event, only the waiting times 

of the affected events have to be recalculated. On the other hand, the waiting 

times of all other realisable events may remain intact and are still valid. 
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3. Accelerating the scheduling and execution of 

elementary reactions on lattice KMC 

 

 The work presented on this chapter has already been published. In 

accordance with the policy of the copyright holder, the main body, tables and 

figures that appear in this chapter are Reproduced with permission from G. D. 

Savva and M. Stamatakis, J. Phys. Chem. A 124, 7843 (2020). Copyright 2020, 

American Chemical Society. 

 

3.1. Introduction and previous works 

 

 In general, kinetic Monte Carlo algorithms undertake the simulation of a 

trajectory that stems from the properties of the system under study. Regardless 

of implementation specifics, at every step of a KMC simulation we have a list of 

all the possible events that may happen on the lattice. We, then, need to randomly 

select an event along with its time of occurrence and execute it. Finally, we 

perform the necessary updates on both the lattice and the list of possible events. 

The bookkeeping of these procedures, namely the selection of a process, its 

execution and the post-execution updates, depends on the algorithmic 

implementation and is usually carried out using appropriate data-structures. For 

instance, Jansen has used a binary search tree to store the reactions while 

simulating systems with time-dependent rate constants [44]. Later, Lukkien and 

co-workers developed three KMC methods and have used a binary tree to store 

the possible reactions [48]. Along these lines, Gibson and Bruck developed 

another KMC algorithm relying on an indexed priority queue [45], which enables 

the retrieval of an arbitrary reaction in constant time. The same authors have also 

proposed the use of a complete tree data-structure with a divide-and-conquer 

search algorithm in order to achieve an execution time that scales logarithmically 

with respect to the total available reactions on the lattice. More recently, 

Chatterjee and Vlachos [49] reviewed the available KMC algorithms along with 

the efficiency of the various implementations. They report that implementations 
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involving linear search on the data-structure scale as O(Nqueue) with Nqueue being 

the total number of elements in the queueing data-structure. They first report 

further extensions to the linear search such as the two-level and n-level linear 

search that scale as 𝑂(√𝑁𝑞𝑢𝑒𝑢𝑒) and 𝑛𝑂(√𝑁𝑞𝑢𝑒𝑢𝑒
𝑛 ) respectively. The binary and 

hash-table search are discussed as well. Chatterjee and Vlachos [49] conclude 

that sophisticated search algorithms can result in significant computational 

savings. In addition, due to the fact that reaction occurrence in a lattice KMC 

affects only a limited number of neighbouring sites, updates to the corresponding 

queueing data-structures are limited (“local updates”). Thus, exploiting this 

property also leads to computationally efficient simulations. 

 In the studies just noted, the main motivation behind the development of 

new data-structures for KMC was to improve the efficiency of the simulation, and 

this was shown to be achievable using some variant of a divide-and-conquer 

strategy (binary trees are essentially implementations based on this concept). 

However, a detailed comparative study on the performance of a wider variety and 

more modern data-structures as queueing systems for KMC is lacking. Such 

comparisons could be of interest to developers of kinetic Monte Carlo software, 

such as Zacros [50, 51], SPPARKS [52, 53], KMCLib [54], kmos [55], EON [56], 

CARLOS [57], MonteCoffee [58], and MoCKa [59] for materials and catalysis 

simulations, or Dizzy [60], StochPy [61], and CERENA [62] for biological reaction 

simulations, but also for users, who would like to adopt the most efficient 

implementations for their simulations. In this work, we present the implementation 

and comparison of four data-structures (i.e. the unsorted list, the binary heap, the 

pairing heap and the skip list), as alternative queueing systems for KMC 

simulations, and we further develop the skip list to address specific needs of such 

simulations. These four+one queueing systems are incorporated in the Graph-

Theoretical kinetic Monte Carlo (GT-KMC) framework as implemented by the 

KMC software package Zacros [51, 63]. The performance of the queueing 

systems is evaluated using three different chemical reaction models: the Ziff-

Gulari-Barshad (ZGB) CO oxidation model [64], a simplified water-gas shift 

(WGS) model based on Ref. [65] and a temperature-programmed-desorption 

(TPD) model of CO from a pure Cu surface [66]. As a comparison measure, we 

use the time taken to simulate a fixed number of KMC steps with each of the 
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different approaches. Aiming to assess the core performance of our algorithms in 

a variety of settings, we compile our code with and without optimisations and we 

present and compare results for both cases. 

 In the following sections, we present briefly the KMC method as 

implemented by Zacros and the development and implementation methodology 

for the data-structures (Section 3.2). We then proceed with the description of the 

chemical models used to benchmark our queueing systems along with our results 

in Section 3.3. Finally, Section 3.4 summarizes our results as well as their 

importance, while we provide some useful generic guidelines on the choice of 

data-structures depending on the chemical system under study. 

 

3.2. Methodology 

 

3.2.1. Kinetic Monte Carlo 

 

 The backbone of the on-lattice KMC method, schematically shown in 

Figure 1(a), consists of repeatedly identifying and randomly selecting a realizable 

elementary event among adsorption, desorption, diffusional hops and reaction on 

the surface as listed in Figure 1(c). As already mentioned, the widely used and 

statistically equivalent KMC methods are the Direct Method and First Reaction 

Method, by Gillespie [43]. The idea behind the Direct Method is to use two 

random numbers, one that picks the reaction r that is going to happen next and 

another that determines the time, τ*, when this reaction is going to occur. On the 

other hand, the First Reaction Method makes use of the intuitive idea that the 

next reaction to be executed has to be the most imminent one, namely the one 

with the smallest waiting time. Therefore, a tentative reaction time τi is generated 

for every possible reaction i. Then, the reaction to execute and its occurrence 

time are both determined by picking the minimum time, τ*, among all the reaction 

times τi. These two methods are able to stochastically simulate a system exactly 

and are equivalent [43], in the sense that the pair (r, τ*) in both methods is drawn 

from the same probability distribution. Zacros [51, 63] implements the First 

Reaction Method, which is described in more detail below. 
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 A KMC simulation is initiated by providing Zacros with an appropriate 

representation of the catalytic surface in the form of a lattice (e.g. as the one 

shown in Figure 1(b)), as well as an ensemble of chemical reactions along with 

the relevant reaction rates and energetic contributions to the lattice. Next, all 

elementary events are identified, as listed in Figure 1(c), and for each one of them 

a random occurrence time ti is generated as 

𝑡𝑖 = 𝑡𝑐𝑢𝑟 −
1

𝑘𝑖
 ln(𝑢) (3.1) 

where tcur is the current KMC time (in the beginning tcur = 0), ki is the kinetic rate 

constant of that particular elementary event and u is a uniform random number in 

the range (0, 1). Subsequently, the minimum time among all the reaction times is 

retrieved and the reaction that it corresponds to is executed. Reaction execution 

Label Lattice Process 

1 Desorption from site 1 

2 Diffusion 1  2 

3 Diffusion 1  4 

4 Adsorption to site 2 

5 Adsorption to site 3 

6 Adsorption to site 4 

7 Desorption from site 5 

8 Diffusion 5  6 

9 Diffusion 5  8 

10 Diffusion 5  4 

11 Diffusion 5  2 

12 Adsorption to site 6 

13 Adsorption to site 7 

14 Adsorption to site 8 

15 Adsorption to site 9 

Figure 1: (a) Flowchart of the KMC method. (b) Non-periodic square lattice with 

sites 1 and 5 being occupied by an adsorbate. (c) List of all realisable elementary 

events of the lattice shown in (b). 

(a) 

3 6 9

2 5 8

1 4 7
(b) 

(c) 
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includes updating the state of the lattice and the occurrence times of the affected 

elementary events only [45, 49]. 

 Computationally, one has to create a process queue to store the absolute 

occurrence times, generated via equation (1), of all the available processes, and 

identify their minimum along with the individual event it corresponds to. Then, the 

chosen event, j, is executed and the lattice state and the process queue entries 

are updated. Updating the process queue includes: 

(i) removing the elementary processes that are no longer realizable, 

(ii) detecting the new possible elementary processes, assigning each of 

them a random time and inserting it in the queue, and 

(iii) modifying the inter-arrival time of processes for which the rate constant 

changed due to adsorbate-adsorbate lateral interactions as a result of 

the execution of process j. 

This procedure is iteratively repeated until a termination condition is met, e.g. a 

final KMC time is reached or a predefined number of KMC steps have been 

simulated. If numerous lattice processes are stored in the queue and long-range 

interactions are included in the modelling mechanism, inserting, deleting and 

updating elements may become computationally expensive. 

 Throughout the course of a KMC simulation, all the elementary lattice 

processes have a unique identifier, their label, which is generated upon their 

insertion in the process queue. Moreover, each lattice process holds all the 

information needed for its execution: (i) the reactants involved and (ii) the 

products and the lattice sites on which the former have to be added post-

execution. These lattice processes are always referenced using their unique label 

and for that reason the update and removal operations of the process queue, as 

highlighted in the previous paragraph, take as input the label of the lattice process 

that needs to be updated or removed. Such labels constitute extra information 

that needs to accompany the occurrence time of each lattice process; whenever 

not possible to infer the label indirectly, it has to be stored in the queueing system 

in a way described in more detail in the following section. 

 



32 

3.2.2. Queueing system data-structures 

 

 In this subsection, we present the main architecture of the data-structures 

implemented as queueing systems. For the skip list data-structure, we elaborate 

on the motivation for further development as well as the modifications to the 

original data-structure. In the following discussion, we refer to the occurrence 

times as elements, unless a different definition is given [32]. 

 

3.2.2.1. Unsorted list 

 

 The simplest way to keep track of all the occurrence times is to store them 

in a one-dimensional array as they are being generated via equation (1). The 

array index serves as the elementary event identifier (label) since it uniquely 

describes an event. The retrieval of the minimum element requires to iterate over 

all the entries in the array, therefore, this operation scales as O(N) where N is the 

number of elements the array contains. Given its label, removing an element is a 

constant time operation, namely, the time required to perform it does not depend 

on the size of the array. In addition, if no “gaps” are allowed in the array, that is, 

upon a removal, we move the last element to the position of the just-removed-

element, then the insertion of a new element is done in constant time, since it is 

always inserted at the back of the list. Similarly, the modification of an existing 

value in the list is a constant time operation. 

 

3.2.2.2. Binary heap 

 

 The binary heap (chapter 6 in Ref. [67]) is a data-structure that belongs to 

the broader family of binary tree structures, in which each node has at most two 

children. In addition, the binary heap is always complete in the sense that all 

levels, with the exception of the bottom one, are fully filled with elements (Figure 

2). Moreover, every node in the binary heap has “priority” over all its children, a 

property that makes the binary heap partially ordered. However, no other 

conclusions may be inferred regarding elements in different branches and 
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different levels. Due to the partial order, the minimum element is always on the 

top node of the binary heap and its retrieval is a constant time operation. 

 A new element is inserted as a new leaf at the bottom level to the left-most 

position. If the new element has priority over its parent, the two elements are 

swapped (refer to the Appendix I, section 1, for graphical representation of the 

operation). These swaps restore the partial order of the binary tree in O(log2N) 

computational time. On removal of an element, the rightmost node of the bottom 

level replaces the removed node. Since it is likely that partial order is now 

violated, the previously last element is swapped by its current parent or the 

minimum of its children depending on the priority it has over them. Likewise, on 

update, the new value floats upwards or sinks down based on its priority over its 

parent and children nodes. Both operations exhibit O(log2N) execution time 

scaling. 

 Since the binary tree is complete, it can be implemented using an array 

instead of pointers (see Appendix I, section 1); therefore, each element 

(occurrence time) has a unique index that serves as the element identifier, just 

like in the case described in subsection 3.2.2.1. Nevertheless, this array index 

does not correspond to the lattice process label. Other supporting arrays are used 

to ensure a one-to-one connection between a lattice process, its occurrence time 

and its position on the binary heap, equivalently, its position on the 1-D array 

representing the binary heap (refer to Appendix I, section 1 for more details). 

Figure 2: A binary heap with 10 elements 

where the bottom level is incomplete. 
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Given its label, any element is retrievable in constant time and therefore no 

additional overhead is incurred on the update and removal operations. 

 

3.2.2.3. Pairing heap 

 

 The pairing heap, introduced by Fredman and co-workers,[68] is a heap 

data-structure in which elements are stored partially sorted. Unlike the binary 

heap, the pairing heap allows for an arbitrary number of children per node as 

illustrated in Figure 3. However, due to this shape flexibility, the notion of 

completeness does not apply to the pairing heap; therefore, from the 

implementation point of view, a pairing heap requires pointers to connect the 

nodes. In addition, for an efficient implementation, the binary tree representation 

(chapter 10.4 in Ref. [67], [68]) is often used (see Appendix I, section 2, for 

details). Direct access to elements is provided by an indexing array with pointers, 

in a similar manner as the indexed priority queue of Gibson and Bruck [45]. 

 To insert a new element in a pairing heap, we compare its value with the 

value of the top node. If the value of the new element is smaller than the top node, 

then the new element becomes the top node, otherwise the new element is added 

as the left-most child of the top node. The insertion operation involves just a 

numerical comparison, so it is a constant time operation. Due to the partial order 

property, finding the minimum is a constant time operation as well. 

 

Figure 3: A pairing heap representation. 
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 The deletion operation requires reconnecting together all the children 

(single nodes and entire subtrees) of the deleted node. However, the order in 

which the tree recombination is carried out is crucial for performance as 

discussed in Ref. [68]. Five different variants are presented in Ref. [68] and in our 

implementation we have chosen the two-pass-in-opposite-directions variant (as 

illustrated by Fig. 7 in Ref. [68]). It can be proven [68] that the removal operation 

runs in O(log2N) amortized time. 

 The update operation, namely, the modification (increase or decrease) of 

an existing value of the pairing heap, can be implemented as a removal following 

an insertion operation. Therefore, it also has amortised time complexity O(log2N). 

Observing that increasing a value may not violate the partial order property if the 

node of interest has no children, we are able to perform the update operation in 

constant time at the cost of checking whether the node whose value is to be 

decreased has a child or not. 

 

3.2.2.4. Skip list 

 

 The skip list is a fully ordered, linked list based data-structure proposed by 

W. Pugh as a probabilistic and simpler alternative to balanced trees.[69] Figure 

4 illustrates a simple skip list containing six elements. The bottom layer is an 

ordinary linked list, where every node points to its next one in the queue. 

Removing an element from a linked list requires the traversal of all the nodes 

preceding the element being sought for deletion. Similarly, inserting a new 

element requires the identification of its proper location. Therefore, the main idea 

behind the development of this data-structure was to find a way to traverse a 

linked list as quickly as possible using a divide-and-conquer approach instead of 

sequential access. 

 This functionality is achieved by allowing the nodes to have variable height 

thus forming interconnected linked lists, which compose the levels of the skip list. 

The “higher-level” linked lists are sparser, as they skip progressively more and 

more elements of the original list. Thus, these different levels provide a shorter 

path (i.e. faster access) to the nodes further down the list, thereby accelerating 

the search, remove and insert operations. These operations are performed 
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hierarchically, starting from the top linked list and continuing to the lower levels, 

enabling the skipping of a significant number of intermediate nodes. The above 

strategy (essentially a divide-and-conquer implementation) improves the 

amortized execution time of the search, insertion and deletion operations to 

O(log2N), where N is the number of elements in the skip list. The update 

operation, seen as a combination of a removal plus an insertion, also has an 

amortized execution time of O(log2N). 

 Each node stores the key value and one pointer per level, pointing to the 

next node in the linked list of that level. For our purposes, the key value is the 

time of occurrence of an elementary lattice process. As already mentioned, the 

skip list’s nodes may have heights greater than one, whose unitary increments 

are determined by independent identically distributed Bernoulli random variables 

with success probability 𝑝 ∈ (0, 1). Therefore, the resulting heights follow the 

geometric distribution with parameter p. Following the definition, the expected 

maximum number of levels an individual node may have is given as: 

𝐻𝑁 = log1
𝑝
𝑁 (3.2) 

Most often, a value of p=1/2 is used, which offers a good balance between 

speedup and memory requirements. Different applications may benefit from 

choosing a different value for p, for example 1/4 or 1/e, as discussed in Ref. [69], 

by trading the search cost with storage cost. 

 The search operation starts from the topmost level of the head element 

and follows the forward pointers as long as the element being searched for is not 

overshot, supposing that it exists in the skip list. The search continues to the 

immediate lower level until the bottom level is reached and the element is found. 

If the element does not exist in the list, the search operation finds its predecessor 

and therefore the appropriate position to insert it. Deletion also uses the search 

operation to find the element to be deleted. 

Figure 4: A simple skip list representation. The first and last nodes are termed 

head and tail respectively. 
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 Both insertion and deletion operations require that the rightmost pointer of 

every level in the search path is temporarily stored in an array, which we refer to 

as update_array in subsequent sections. These pointers are used to correctly 

connect the new node with the existing ones upon insertion or the remaining 

nodes upon removal. A more thorough description of the skip list data-structure, 

its operations and pseudocode can be found in the original study.[69] 

 

3.2.2.5. Developing skip list for KMC simulations 

 

 From the event scheduling perspective along the course of a KMC 

simulation, an efficient data-structure serving as the queueing system should 

incorporate effective implementations of the following operations: 

a) Retrieval of the element with minimum key value. This value is the 

occurrence time of the next event, which is accompanied by a unique 

identifier / label that points to a lattice process. 

b) Insertion of new elements. These new elements represent lattice 

processes that are created as a result of the previously occurred event. 

c) Deletion of existing elements identified by their label (instead of their 

occurrence time as in the original skip list data-structure). The elements to 

be deleted represent the lattice processes that are no longer 

valid/realisable, for example, diffusion of a species that has desorbed in 

the previous KMC step. 

d) Update of values that exist in the event queue. These elements represent 

events that are affected by a previously occurred reaction, as a result of 

changing the lateral interactions in the local neighbourhood of the just-

occurred event. An example of such a case would be updating the inter-

arrival time of a desorption event as neighbouring sites become more 

crowded and the spectators exert repulsive forces to the desorbing 

molecule. 

 Aiming at improving the timing of the above operations in the context of a 

KMC simulation, we further developed the skip list data-structure. The insertion 

operation remains the same as originally proposed.[69] However, the data-
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structure was heavily adapted in order to improve the efficiency of the deletion 

operation. The rationale behind the development as well as the algorithm of the 

modified operations are presented below. 

 By definition, a skip list enables the execution of the “retrieve minimum 

value” operation (a) discussed above, since the entries are fully sorted and the 

element with the minimum key value is located at the very first node, immediately 

after the head element. We modify the node’s structure so that the unique 

element identifier, i.e. the label, is also stored within the node in addition to the 

key value. In the KMC context, this minor modification enables finding both the 

lattice process label and the time of occurrence in the most efficient way, i.e. in 

constant time, O(1). 

 As mentioned further above, deleting an element from a skip list, given its 

key value, requires searching for it, at a cost of O(log2N). However, if we wish to 

delete an element that is described by its label rather than its key value, as per 

operation (c) above, the situation is even worse, since skip list is fully sorted 

based on key values and not the labels. Searching for a specific label would 

require accessing all the nodes sequentially, thereby causing the deletion 

operation to scale as O(N). The need to search elements in the process queue 

by their label comes from the fact that when a lattice process is executed in 

Zacros (or other KMC implementations), certain subroutines provide the labels of 

all the lattice processes which are eliminated (becoming obsolete) as a result of 

the “ongoing” process. Thus, the lattice processes affected by e.g. a diffusional 

hop, are given by their label, and using this label, one is able to find their 

occurrence time. 

 To enable deletion of an element given its label, we created an auxiliary 

array, called mapping_array, which provides access to the skip list’s elements by 

label in ascending order. Each entry of the mapping_array is a pointer to the 

corresponding element of the skip list as shown in Figure 5. It is now possible to 

retrieve in constant time the element with label j (where j corresponds to a lattice 

process) by evaluating mapping_array[j], without going through the whole skip 

list. For the deletion operation to be fully functional, the skip list is turned from a 

singly linked-list based into a bidirectional linked-list based. Each node now 

retains information about its forward nodes but also its backward nodes. 

Reconnecting the remaining nodes after a deletion is possible using the 
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backwards node instead of the update_array. Algorithm 1 presents the core of 

the deletion operation; looping over the levels of a node and performing 

reconnections. Through these modifications, the deletion operation is performed 

in almost constant time, O(1), since only a few node reconnections, with an upper 

bound of 2×HN, are needed. 

 Referring to the operation list at the beginning of this subsection, the 

insertion operation (b) is also adapted according to our modifications. Upon the 

creation of a new node with key value t and label N+1, the pointer 

mapping_array[N+1] is connected to the new node. Necessary operations are 

performed so that the backward pointers of the new node, as well as those of its 

following node, are connected (refer to Algorithm 2 and Figure 6). It is important 

to emphasize that all the pointers are pointing to the whole node (illustrated as 

grey rectangles in Figure 5) and not at an individual level of a certain node. We 

now proceed to discuss the insertion procedure in more detail with reference to 

the numbered lines of Algorithm 2 and Figure 6, which represents the operation 

graphically. Once the new node is created (Alg. 2, 2-4) and its position in the skip 

list is identified (Alg. 2, 5-6), the next step is to connect it with its predecessor and 

Figure 5: Schematic representation of the developed skip list-based data-structure. 

Nodes are represented by grey rectangles. The green cells contain the key value while 

the orange ones contain the corresponding label. The mapping_array is represented 

with yellow color and provides direct access to elements identified by their label. The 

first (head) and last (tail) node serve as “guard” nodes and they have only forward and 

backward pointers respectively. Levels are numbered from bottom to top. 

5 
4 
3 
2 
1 

levels 
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successor nodes. At first, the new node is linked to its previous node via the 

update_array (Alg. 2, 7.1) which stores the rightmost pointer of every level in the 

search path. Likewise, the link to its next node is obtained from the update_array 

(Alg. 2, 7.2). Then, the previous node is redirected to point to the new node (Alg. 

2, 7.3). Finally, the backward pointer of the next node is redirected to point to the 

new node as well (Alg. 2, 7.4). 

 Following the insertion and deletion operations, the update operation, 

which is a combination of a removal and an insertion, benefits from the improved 

deletion algorithm. In the following sections, we refer to the developed data-

structure described above as 2-way skip list while we refer to the original skip list-

based queueing system by the name 1-way skip list. These names originate from 

the direction of the pointers of each data-structure. 

 

 

 

Delete(x) 

Figure 6: Reconnection of the nodes upon insertion of the element with key 

value of 0.24 and label 11. Top panel: a part of the queue with the initial 

connectivity. Bottom panel: connectivity of new pointers after insertion of the new 

element. The numbered arrows, (7.1)-(7.4), represent the links created by the 

respective code lines in Algorithm 1. The rest of the pointers are omitted for visual 

clarity. Green cells correspond to key values; orange cells to labels. 

87
0.23

31
0.29

11
0.24

87
0.23

31
0.29(7.1)

(7.2)(7.3)

(7.4)
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1) temp → mapping_array[x] 

2) for i:=1 up-to height(temp) do 

 2.1) temp.backward[i].forward[i] → temp.forward[i] 

 2.2) temp.forward[i].backward[i] → temp.backward[i] 

Algorithm 1: Delete the node with label x. 

 

Insert (list, new_key, new_label) 

1) current_list_level := height of the tallest node in  

      list 

2) height := random_height() 

3) new_node → create_node(height, new_key, new_label) 

4) mapping_array[new_label] → new_node 

5) temp → list.head 

6) for i:=current_list_level down-to 1 do 

 6.1) while temp.forward[i].key < new_key do 

  6.1.1) temp → temp.forward[i] 

 6.2) update_array[i] → temp 

7) for i:=1 up-to height do 

 7.1) new_node.backward[i] → update_array[i] 

 7.2) new_node.forward[i] → update_array[i].forward[i] 

 7.3) new_node.backward[i].forward[i] → new_node 

 7.4) new_node.forward[i].backward[i] → new_node 

Algorithm 2: Insert a new elementary process to the list with new_key and 

new_label as the key and label values respectively. 

 

3.2.3. Implementation 

 

 The data-structures described above were implemented in Zacros (a 

Kinetic Monte Carlo software package written in Fortran 2003 for simulating 

heterogeneous catalysts), as alternative queueing systems for the first reaction 

propagation method. For further details on the structure of the KMC software 

package, we refer the reader to Ref. [63, 70]. Further to the algorithms already 

presented, a few language-specific additions were incorporated to make the data-



42 

structure operational and efficient; nevertheless, the generality of the above 

algorithms remains unaffected. 

 

3.3. Benchmark models, results and discussion 

 

 In this section, we compare the performance of the queueing systems 

presented in section 2, which were implemented in KMC software Zacros. In 

order to evaluate the efficiency of these data-structures as queueing systems, 

benchmark KMC simulations were performed for three simple, yet representative 

chemical reaction systems: the first two in stationary conditions and the third one 

in non-stationary conditions. The simulations were performed on an Intel(R) 

Xeon(TM) E5-1620 processor, running at 3.60 GHz, with 8GB of RAM, under the 

Ubuntu Linux operating system, version 18.04 LTS. The Zacros source code was 

compiled for serial execution (the OpenMP directives, although present, were not 

processed) using the GNU Fortran (GFortran) compiler, version 8.3.0. 

 We would also like to investigate the effect of compiler-induced 

optimisations on the performance of our queueing systems, because the data-

structures we implement differ in their building blocks and compiler optimisations 

may be able to transform certain operations into a more efficient executable code. 

In particular, our data-structures are either array based (unsorted list and binary 

heap) or linked list based (pairing heap, 1-way and 2-way skip list), and compiler 

optimisations may have different effect on each one of them. Consequently, in 

order to assess and compare the inherent performance of the various queueing 

systems, two executables of Zacros were compiled, one with compiler 

optimisations off (option -O0 added during compilation) and the other one with 

optimisations on (option -O3). Although it is less likely that the unoptimised 

executable will be useful for production runs, the insights given might be helpful 

in validation of results, as well as in further development of our software or the 

compilers. Thus, in the rest of the section, we present the results obtained from 

both the optimized and unoptimised executables of Zacros. 
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3.3.1. Stationary simulations 

 

3.3.1.1. Ziff-Gulari-Barshad model system 

 

 The first model used is a continuous-time adaptation of the Ziff-Gulari-

Barshad (ZGB) system,[64] as discussed by Stamatakis and Vlachos (Section 

III.A of Ref. [63]). The ZGB is a prototype surface-reaction model for the oxidation 

of carbon monoxide on a catalytic surface represented by a rectangular lattice. 

The elementary steps taken into account in the ZGB system are as follows: 

𝐶𝑂(𝑔) + ∗ → 𝐶𝑂∗ 

𝑂2(𝑔) +  2 ∗ → 𝑂
∗ + 𝑂∗ 

𝐶𝑂∗ + 𝑂∗ → 𝐶𝑂2(𝑔) + 2 ∗ 

where * denotes a vacant site on the catalyst surface, CO* and O* denote 

adsorbed species, and (g) stands for gas. The partial pressures of CO and O2 in 

the gas phase are taken as PCO = 0.525 and PO2 = 0.475 respectively. Since the 

original algorithm by Ziff et al.[64] operates in discrete time, the kinetic constants 

were carefully chosen to be appropriate for the continuous time simulation used 

herein. Summarizing the discussion of Stamatakis and Vlachos,[63] the kinetic 

constants of the CO adsorption and the O2 dissociative adsorption are chosen to 

be proportional to PCO and PO2 as 10·PCO and 10/4·PO2 respectively. The constant 

factor of 10 is arbitrary, and allows for adjusting the frequency of the events per 

unit time (rescaling of time). Thus, for the aforementioned values, CO adsorption 

would happen on average 10·PCO = 5.25 times per KMC time-unit for each empty 

lattice site. On the other hand, the 1/4 factor in the O2 dissociative adsorption 

comes from the 4-fold coordination of each site on the rectangular lattice used for 

the simulations. Thus, for the given values, O2 adsorption would happen 

10/4·PO2·nen = 1.1875 times per KMC time-unit for each empty lattice site 

surrounded by nen empty neighbouring sites (0 ≤ nen ≤ 4). The kinetic constant of 

the CO oxidation and desorption from the surface is taken much larger (1/4·105) 

than the other kinetic constants, so that the instantaneous oxidation assumed by 

Ziff et al. [64] is reproduced. 
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3.3.1.2. Water-gas shift reaction model 

 

 The water-gas shift (WGS) reaction produces carbon dioxide and 

molecular hydrogen from carbon monoxide and water vapour: 

𝐶𝑂 + 𝐻2𝑂 → 𝐶𝑂2 + 𝐻2 

It has been the subject of intense theoretical research for the past 30+ years, 

which has focused on its accurate modelling and on the identification of the rate-

limiting step(s) and the optimal reaction conditions [65, 71-75]. For our second 

benchmark, we use a simplified variant of the WGS model on Pt(111) presented 

in Ref. [65]. The elementary steps taken into account are as follows: 

𝐶𝑂(𝑔) + ∗ ↔  𝐶𝑂∗ 

𝐻2(𝑔) +  2 ∗ ↔  2𝐻∗ 

𝐻2𝑂(𝑔) + ∗ ↔  𝐻2𝑂
∗ 

𝐻2𝑂
∗ + ∗ ↔  𝑂𝐻∗ + 𝐻∗ 

𝑂𝐻∗ + ∗ ↔  𝑂∗ + 𝐻∗ 

𝐶𝑂∗ + 𝑂𝐻∗  ↔ 𝐶𝑂𝑂𝐻∗ + ∗ 

𝐶𝑂𝑂𝐻∗ + ∗ → 𝐶𝑂2(𝑔) + 𝐻
∗ + ∗ 

𝐶𝑂∗ + 𝑂∗ → 𝐶𝑂2(𝑔) +  2 ∗ 

where * denotes a vacant site on the catalyst surface, starred species such as 

CO*, H*, H2O* etc. denote adsorbed species, and (g) stands for gas. The partial 

pressure of the gas species, namely CO, H2O, H2 and CO2, are taken as 

PCO = 1.0·10-8, PH2O = 0.950 and PH2 = PCO2 = 0 respectively. The procedure for 

calculating the rate parameters is described in detail in the “Mapping DFT 

Energies to Zacros Input” tutorial webpage of Ref. [76] while the numerical values 

used in our simulations are provided in Appendix I, section 3. 

 

3.3.1.3. Computational details 

 

 The simulations were performed on periodic lattices of increasing size up 

to a total of about 106 lattice sites: starting from 20×20 up to 1000×1000 for the 

ZGB system, where rectangular lattices were used and from 10×10 up to 

707×707 for the WGS model, where hexagonal lattices were used to represent 

the Pt(111) surface. For each different lattice size, the system being simulated 
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was propagated in time until the surface coverages of the dominant species were 

fluctuating around constant values, i.e. until stationary behaviour was attained. 

As the dominant species, CO* and O* were chosen for the ZGB model, and CO*, 

H* and H2O* for the WGS model, Then, 106 KMC steps were further simulated 

and the simulation clock time needed to execute these 106 steps was recorded 

for post processing. Initially, for every lattice size, five simulations were run, one 

for each of our five queueing systems. Then, we ran the previous set of five 

simulations three more times to ensure consistency in our benchmark results. In 

total, twenty simulations were run for a given lattice size. Worth mentioning, the 

various queueing systems produced numerically identical results, proving the 

correct implementation of the data-structures presented as queueing systems for 

KMC simulations. Lastly, both models presented above do not incorporate lateral 

interactions between adsorbates, therefore, during the simulations, there were no 

updates to the occurrence times of the process queue. Consequently, from the 

queueing system perspective, the update-an-element operation was never 

invoked. We will refer to this remark later on during the discussion of our results. 

 

3.3.1.4. Results and discussion 

 

 The results from the benchmark simulations appear in Figure 7 where the 

simulation clock time, viz. the real-time taken to execute the 106 KMC steps while 

on stationary conditions, is plotted against the total lattice sites, NL. The top 

panels, Figure 7 (a) and (b), correspond to the runtime scaling of the ZGB system 

whereas the bottom panels, Figure 7 (c) and (d) correspond to the runtime scaling 

of the WGS reaction system. Both cases discussed above, with compiler 

optimisations disabled and enabled are presented in the left (Figure 7 (a) and (c)) 

and right (Figure 7 (b) and (d)) panels respectively, where each curve represents 

the average simulation time from four individual runs. 

 At the first glance, the benchmark results for the ZGB (Figure 7 (a), (b)) 

and the WGS (Figure 7 (c), (d)) reaction systems appear almost identical. Indeed, 

the ordering of the queueing systems is largely the same: the computational 

expense of the unsorted list scales very quickly with the size of the lattice, making 

this the slowest queueing system followed by the 1-way skip list, the 2-way skip 
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list, the binary heap and the pairing heap. As an exception to these similarities, 

the binary heap outperforms the pairing heap for the ZBG simulations in the 

presence of optimisations, as seen in Figure 7 (b). In addition, the differences in 

the runtimes (and the dissimilar y-axis time ranges) are to be expected, as the 

runtime is system dependent. As an early conclusion, our results indicate that the 

performance of our queueing systems is generic regardless of the chemical 

system under study, as long as the queueing system related dominant operations 

are the same. We elaborate on the last point in greater depth below. Let us now 

discuss the performance of each queueing system and compare our results with 

theoretical expectations. 

 Referring to Figure 7(a) and (c), we verify the expected poor performance 

of the unsorted list queueing system due to its linear scaling with system size, 

O(NL). Indeed, this queueing system, however simple in implementation, is 

extremely inefficient in KMC simulations, whereby the find-minimum operation 

(which is the inefficient one in this queueing system) is performed at every KMC 

step. For comparison purposes, we note that for the WGS system (Figure 7c), 

the unsorted list took 9658.6 seconds to complete 106 KMC steps on a 707×707 

lattice, whereas pairing heap (the fastest queueing system) completed the same 

simulation in 17.2 seconds and the 1-way skip list in 38.8 seconds. Therefore, 

the speedups are 562× for the pairing heap and 249× for the 1-way skip list. 

Crucially, the latter exhibits logarithmic scaling with respect to the system size 

(compared to the linear scaling of the unsorted list). The developed 2-way skip 

list has logarithmic scaling as well, but is always faster than its 1-way alternative, 

especially for larger lattices. This time difference comes from the fact that the 

deletion operation takes constant time in 2-way skip list, in contrast to O(log2NL) 

time in 1-way skip list. Furthermore, the binary heap and pairing heap share the 

same excellent performance, with the latter being constantly faster than the 

former by 4% in the ZGB and by 20% - 30% in the WGS. The constant time 

insertion of pairing heap has a crucial role in the observed performance, since it 

enables the pairing heap to outperform the array-based binary heap queueing 

system. 
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 Apart from the unsorted list that exhibits linear scaling, and to which the 

following discussion does not apply, the other queueing systems exhibit 

logarithmic scaling with respect to the simulated system size. However, they differ 

in their multiplicative constant factor. The theoretical time complexities of the 

performed operations, summarized in Table 1, may clarify the observed 

performance. In both our benchmark chemical reaction models, only insertions 

and removals, but no updates, are executed during the simulation. Comparing 

binary heap and 1-way skip list, we observe that, while both have O(log2NL) time 

scaling on the relevant operations, their actual runtime differs substantially. In a 

binary heap of size N, at every insertion we perform at maximum log2N key value 

comparisons against the parent of the inserted key value. On the skip list, 

Figure 7: Runtime scaling of the various queueing systems for simulating 106 

KMC steps while on stationary conditions in the ZGB (top panels) and the WGS 

(bottom panels) models, with compiler optimisations disabled (left panels) and 

enabled (right panels). 
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however, due to its probabilistic nature originating from the random assignment 

of levels to the nodes, the number of key value comparisons is at most N, the 

number of elements in the list. Nonetheless, this upper limit is not representative. 

What is more insightful, instead, is the average number of key value comparisons 

performed against existing values in the skip list, which is 3/2 log2N + 7/2, for a 

skip list with p=1/2, as reported by Pugh.[69] These extra key value comparisons 

are also performed during deletion on the 1-way skip list. Furthermore, the skip 

list is linked-list based, which means that its nodes are not likely to reside on a 

consecutive chunk of the computer’s memory. On the contrary, binary heap, 

being array based, occupies memory that is always consecutive, and thus might 

benefit from lower-level acceleration schemes, such as memory caching. To 

summarize, the skip list’s additional key value comparisons as well as its memory 

discontinuity incur computational overhead that accumulates over the large 

number of repetitions and largely contributes to the observed performance. 

 Considering now the results from the compiler optimized variant, shown in 

Figure 7(b) and (d) for the ZGB and WGS systems respectively, we observe that 

the runtime scaling seems similar, apart from two important features. First, the 

runtime, shown in the y-axis, has dropped significantly for all queueing systems. 

Second, the binary heap queueing system has outperformed pairing heap in the 

ZGB system. Let us discuss both in more detail. 

 

Table 1: Expected computational time scaling with respect to the system size, N, 

of the various operations of all the queueing systems implemented. The expected 

computational times of pairing heap and both variants of skip list are amortized 

times (denoted by italics). 

 

Queueing system Find minimum Insertion Removal Update 

Unsorted List O(N) O(1) O(1) O(1) 

Binary Heap O(1) O(log2N) O(log2N) O(log2N) 

Pairing Heap O(1) O(1) O(log2N) O(log2N) 

1-way Skip List O(1) O(log2N) O(log2N) O(log2N) 

2-way Skip List O(1) O(log2N) O(1) O(log2N) 
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 Enabling the compiler optimisations had the expected outcome: reduction 

of the runtime, which implies that the compiler utilized sophisticated techniques 

and algorithms to execute the same operations more efficiently. The unsorted list 

benefits from optimisations only when small and moderate size lattices are used. 

For lattices larger than 100×100 the runtime of the optimized version is almost 

the same as the unoptimised one. Moving on to the skip list queueing systems, 

we report that both are, at least, 1.3 times faster than before (i.e. without 

optimisations) for both the ZGB and WGS models. Lastly, heaps are the most 

favoured, since for the ZGB system, the speed up gain for pairing heap is 1.55×, 

whereas for the binary heap it is 1.75× (comparing panels (b) and (a) of Figure 

7). For the WGS reaction system, the respective speed up gains for the pairing 

and binary heap are 1.65× and 1.85× (Figure 7 (d) vs (c)). Thus, in the presence 

of compiler optimisations, comparing the performance of 1-way skip list vs binary 

heap for the largest lattice size in the ZGB benchmark reveals an acceleration 

factor of 3.1× (Figure 7 (b)), while for the WGS benchmark, an acceleration factor 

of 2.8× is obtained for 1-way skip list vs pairing heap (Figure 7 (d)). 

 The most interesting result from the above benchmarks is the change in 

the ordering of the pairing heap and binary heap queueing systems, in the ZGB 

model, when compiler optimisations are enabled. Since no changes were made 

to our code, we attribute this result, i.e. that binary heap becomes the most 

efficient queueing system, exclusively to the optimisations. It is very likely that the 

compiler used in this study (GFortran v8.3.0) is more capable in delivering very 

efficient machine-level instructions when dealing with array-based data-

structures, such as the binary heap. On the other hand, the pairing heap, being 

a data-structure that heavily relies on pointers, would not benefit from such array-

level optimisations. The above explanation is also reinforced by the observed 

speed up gains as reported in the previous paragraph. In the case of the WGS, 

the initial separation of the binary and pairing heap curves is substantial, as seen 

in Figure 7 (c), so that when optimisations are applied, the pairing heap is still the 

most efficient queueing data-structure, as illustrated in Figure 7 (d). 

 To summarize, the ZGB and WGS reaction systems used for benchmarks 

require no updates of the occurrence times due to the absence of lateral 

interactions. Therefore, only the insertion, find-minimum and removal operations 

are executed during the simulation. When compiling with no optimisations, the 
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pairing heap queueing system was the most efficient one, followed by the binary 

heap. As for the optimized version, the binary heap, favoured by the compiler 

optimisations, becomes the most efficient queueing data-structure for the ZGB 

system, closely followed by pairing heap. In both versions, unoptimised and 

optimized, and in both benchmark systems, ZGB and WGS, the 2-way skip list is 

faster than its 1-way variant, showing that our development has had a positive 

impact on its performance. Nonetheless, the performance improvement was 

inadequate so that skip list could compete against the binary or the pairing heap. 

 Reiterating our early conclusions, and based on the above discussion, we 

note that the qualitative performance of our queueing data-structures is agnostic 

to the chemical system simulated, in the sense that it only depends on the 

execution frequency of the insertion, removal and find-minimum operations. In 

turn, a single execution of these three operations depends on the size of the data-

structure holding the occurrence times of all realizable events. In its own turn, the 

total number of realizable events depends on (a) the total lattice sites and on (b) 

the number of elementary steps of the chemical model, where the latter is the 

only information that uniquely identifies the chemical system under study. 

Information directly related to a chemical system affects the runtime only 

indirectly via the dependence chain just described. Based on these arguments 

as well as the similarity of the runtime scaling of the ZGB and the WGS reaction 

models, it is reasonable to expect that the runtime scaling of the implemented 

queueing systems will be similar to the results presented above for all other 

chemical systems simulated, as long as these systems include no lateral 

interactions. 

 

3.3.2. Non-stationary simulations 

 

3.3.2.1. Temperature Programmed Desorption (TPD) model 

 

 We will proceed into discussing a set of benchmarks for a different 

chemical system, but let us first make a brief note on our motivation. The binary 

heap and pairing heap queueing systems store their elements partially sorted; on 

the contrary, both skip list variants are fully sorted. Also, the 2-way skip list has a 
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constant time removal operation. In order to make full use of these two properties, 

we sought a chemical system in which only event deletions happen, as we know 

that the 2-way skip list is very efficient for this: O(1) vs O(log2N) for all other 

queueing systems. 

 To assess the previous rationale, KMC simulations were performed for a 

Temperature-Programmed Desorption (TPD) model of CO from a pure Cu (111) 

surface. The only elementary step considered for the TPD model is: 

𝐶𝑂∗ →  𝐶𝑂(𝑔)  + ∗ 

The partial pressure of the CO in the gas phase was set to zero in order to 

simulate ultra-high vacuum environment conditions. Since adsorption events are 

not taken into account, the reaction mechanism contains only the forward step of 

the above reaction. The rate constant of CO desorption is calculated from the 

Arrhenius equation parameterized by DFT calculations, which yield the 

adsorption energy and the vibrational frequencies for CO on the pure Cu (111) 

surface (refer to Section 2.3 by Darby et al.).[66] The temperature dependence 

of the pre-exponential factor of the rate constant is taken into account in the KMC 

simulation using the following fitted function of T: 

𝐴𝑓𝑤𝑑(𝑇) = exp [−(𝑎1 log(𝑇) +
𝑎2
𝑇
+ 𝑎3 + 𝑎4𝑇 + 𝑎5𝑇

2 + 𝑎6𝑇
3 + 𝑎7𝑇

4)] (3.3) 

where T is the temperature in K, and α1 - α7 are the parameters listed in Table 2. 

The units of these parameters are such that the exponent of equation (3.3) is 

dimensionless and Afwd is evaluated in units of s-1. Lastly, the occurrence times 

of desorptions are calculated by solving a non-linear version of equation (3.1) 

with the Newton-Raphson method; a detailed discussion on how occurrence 

times are calculated when rate constants are time-dependent is given by Jansen 

in Ref. [44]. 

 

Parameter Value 

α1 6.535 

α2 -2.762 

α3 -6.300 × 101 

α4 -7.076 × 10-2 

α5 1.885 × 10-4 

α6 -2.964 × 10-7 

α7 1.957 × 10-10 

Table 2: Parameter values for fitting the equation (3.3) 
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 To carry out the TPD simulations and represent the Cu(111) surface, we 

used hexagonal periodic lattices for which the unit cell contains two sites and 

each site has a coordination number (number of 1st
 nearest neighbors), of six. We 

studied lattices of increasing size, starting from 100×100 up to 1000×1000. At t = 

0 s, the temperature is set to 100 K and the whole surface is covered by CO. 

During the simulation, the temperature ramp was set to 1 K s-1 for 100 s to a final 

temperature of 200 K and the coverage of CO* on the lattice surface was 

recorded at constant time intervals of 0.05 s. The clock time elapsed for the 

software to execute the necessary KMC steps was recorded and used as 

measure of comparison between the queueing systems tested. Similarly to the 

ZGB and WGS models, all the queueing systems produced numerically identical 

results, therefore, the difference in computational times is indeed a measure of 

their efficiency, since all the other operations in the simulation remain the same. 

At the post-processing stage, the TPD signal was calculated as the moving 

average of the instantaneous desorption rate, thereby enabling the determination 

of the temperature at which the CO desorption rate is maximized. 

 Our benchmark results from the TPD model are shown in Figure 8 and 

Figure 9 corresponding to the unoptimized and optimized versions respectively. 

Similar to the benchmarks under stationary conditions, we plot the simulation 

clock time against the total number of sites on the lattices used. Each curve in 

Figure 8 and Figure 9 represents the average simulation time from four individual 

runs. In addition, we normalize the simulation time, namely, we calculate the 

simulation time per 106 KMC steps and plot that quantity against the total lattice 

sites as shown Figure 10. The unsorted list is excluded from Figure 10 since its 

computational expense scales very rapidly and is out the range of that of the other 

queueing systems. The reason we normalize the running time of each queueing 

system in the TPD model is that the number of adsorbates on the surface is 

proportional to the KMC steps performed. Therefore, in the smaller lattices, the 

simulation executes less than 106 steps and using only the absolute simulation 

time (Figure 8 and Figure 9) would prevent us from being able to compare the 

performance between the stationary (ZGB, WGS) (Figure 7) and non-stationary 

(TPD) simulations. 

 A general observation drawn from Figure 8 and Figure 9 is that the scaling 

of all but the unsorted list queueing systems appears linear with respect to system 
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size, i.e. the number of sites on the lattices; we elaborate on the reason at the 

end of the current section. It is evident that, in both unoptimised and optimized 

variants, Figure 8(a) and Figure 9(a) respectively, the unsorted list scales rapidly 

and becomes extremely inefficient as compared to the other queueing systems. 

In the unoptimised variant, Figure 8, the two heap-based queueing systems 

exhibit the same performance. In addition, the two alternatives of the skip list, 

being faster than binary and pairing heap, require approximately the same time 

to complete a given simulation. The two-way skip list appear slightly faster than 

its one-way variant though and the difference in their runtimes increases for larger 

lattices. 

 Moving forward to the results in the presence of compiler optimisation 

(Figure 9), we observe that with compiler optimisations enabled and in 

accordance to our expectations, the performance of the queueing systems is 

improved. Furthermore, in line with previous observations on the ZGB and WGS 

systems, the compiler optimisations favour the binary heap over pairing heap. 

Indeed, both heap-based queueing systems exhibit the same performance before 

optimisations are applied (Figure 8 (b)), whereas after optimisations (Figure 9 

(b)), there is a notable difference between their runtimes, with the binary heap 

being around 11% faster than the pairing heap. As for the skip list based queueing 

systems, we observe that their performance is similar and their ordering is 

Figure 8: Benchmark results obtained from the unoptimised variant. The inset in (a) 

shows the O(N2) scaling of the unsorted list; its x- and y-axis represent number of 

sites and runtime respectively. (b) Magnification of the shaded area of (a). The curve 

labeling in (b) also applies to (a). 

unsorted list

1-way 
skip list

2-way 
skip list

Binary 
heap

Pairing 
heap

(a) (b) 
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preserved, namely, the 2-way skip list is still slightly faster than the 1-way variant. 

However, for all practical purposes, their performance is identical and both benefit 

from a 1.5× speed up with respect to their unoptimised counterparts. 

 The normalized runtime with respect to the total lattice sites, illustrated in 

Figure 10, also verifies the above conclusions. The normalisation of the 

benchmark results clarifies the behaviour of our queueing systems especially in 

the region of smaller number of lattice sites. It is now clearer that the two-way 

skip list is consistently faster than the one-way skip list for the unoptimised variant 

(Figure 10(a)) whereas their difference in runtime becomes very small in the 

optimized one (Figure 10(b)). Equivalently, pairing heap and binary heap perform 

the same in the absence of compiler optimisations (Figure 10(a)) whereas they 

are well separated in the presence of optimisations (Figure 10(b)). In addition, the 

greater normalized runtime corresponding to small lattices indicates that the 

bottleneck i.e. the slowest operation of the Zacros software is not related to the 

queueing system. To better understand this, consider a TPD simulation on a fully 

covered 100×100 hexagonal lattice (20,000 sites). The maximum number of KMC 

steps that can be simulated is 20,000, equal to the maximum number of 

adsorbates on the lattice. The absolute simulation time of the above case using 

the binary heap (or any of the skip list-based) queueing system is 0.130 seconds 

while the corresponding normalized simulation time is 6.5 seconds. However, 

since the absolute simulation time obtained is very small, it is not representative 

unsorted list

2-way 
skip list

Binary 
heap

Pairing 
heap

Figure 9: Benchmark results obtained from the compiler-optimized variant of Zacros. 

(b) Magnification of the shaded area of (a). The curve labeling in (b) also applies to 

(a). 

(a) (b) 



55 

of the queueing system because other internal procedures require more time to 

run and therefore, their contribution on the absolute simulation time dominates. 

On the other hand, for large lattices, the time required for all other procedures is 

becoming negligible as compared to the time of the queueing system related 

operations. 

 For the large lattices, the skip list-based queueing systems outperform the 

heap-based ones, a completely different outcome as compared to the ZGB and 

WGS results presented in section 3.3.1.1 and in particular in Figure 7. The TPD 

reaction model benefits from the fact that the skip list stores all inter-arrival times 

fully sorted, the minimum one is located in the beginning of the queue and no 

other elementary events are added during the simulation. Therefore, the entries 

in the queue of realizable events are retrieved one after the other, with a small 

number of pointer reconnections necessary to ensure the queue’s proper 

connectivity. On the contrary, the binary heap stores the inter-arrival times 

partially sorted. After every event execution, namely finding the minimum and 

removing it from the queue since the corresponding event has occurred, the 

algorithm restores the partial order on the heap by performing element swaps 

(refer to section 1 of Appendix I for a schematic representation of the process). 

In the case where the queue contains a very large number of elements, like the 

TPD model on large lattices, these frequent swaps incur an overhead on the 

simulation that accumulates and becomes measurable as shown by the “Binary 

heap” curves in Figure 10. The same principle applies to the pairing heap as well: 

(a) (b) 

Pairing heap

Binary heap

1-way skip list

2-way skip list

Pairing heap

Binary heap

1-way skip list

2-way skip list

Figure 10: Normalised runtime corresponding to the unoptimized (a) and the 

optimized (b) variant of Zacros. 
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following the execution (removal) of an event, the pairing heap has to be 

rebalanced via operations that are responsible for the observed behavior shown 

by the curves labelled “Pairing heap” in Figure 10. It is also reasonable to assume 

that the rebalancing procedure on the pairing heap is not optimized at the same 

level as the swap procedure on the binary heap. Therefore, the former dominates 

the runtime and results in the pairing heap having the worst performance as 

compared to the two skip list-based queueing systems and the binary heap 

(Figure 9 and Figure 10(b)). 

 Let us now discuss the observed scaling based on the theoretical time 

complexity of each queueing system. From the event scheduling perspective, 

only desorptions occur during the simulation and no other elementary events are 

added in the queue since adsorption is not considered. Therefore, once the 

simulation is initiated and every event is inserted in the queue, only the find-

minimum and remove-minimum operations are executed at every KMC step. In 

a lattice with N sites there will be a total of N adsorbates to desorb, hence, N KMC 

steps are executed. In the unsorted vector the pair of operations “find-minimum”- 

“remove-minimum” takes O(N) time and is executed N times. Consequently, we 

expect that the unsorted vector scales quadratically, O(N2). Indeed, our 

benchmark results verify the expected scaling (inset in Figure 8(a)). As for the 

binary and pairing heap queueing systems, the pair of operations mentioned 

above takes O(log2N) computational time. The simulation terminates after the 

execution of N desorption events, equivalently after N executions of “find-

minimum”-“remove-minimum”, and hence the expected time taken is O(N log2N). 

This scaling behavior mostly resembles the linear scaling (refer to Appendix I, 

section 4, for a comparison) which is the one we obtained from our benchmarks, 

in particular, Figure 8(a) and Figure 9(a). Lastly, the “find-minimum”- “remove-

minimum” pair of operations takes constant time, O(1) in both skip list variants. 

That pair is executed N time, therefore, the expected scaling is linear O(N) which 

is what we observe in both Figure 8(a) and Figure 9(a). 

 Upon normalisation of the runtime, presented in Figure 10, the scaling 

behavior changes. Binary and pairing heap are expected to scale as O(log2N), 

whereas in Figure 10 their scaling is mostly linear. It is very likely that we have to 

go to even larger lattices in order to see the logarithmic scaling, just like in either 

of the skip list curves in Figure 7(b) where a linearly increasing part precedes the 



57 

slowly increasing part that compose the entire logarithmic function. As for the skip 

list-based queueing systems, the expected scaling is O(1), namely constant, 

since retrieval of the minimum element and its deletion does not depend explicitly 

on the size of the list. The skip list curves of Figure 10 exhibit a slight increase, 

however. This is due to the removal operation and more specifically due to the 

reconnections of the nodes that are bounded by HN in the one-way skip list and 

by 2×HN in the two-way skip list, HN being the expected height of the skip list. The 

latter depends on the size of the skip list though (equation (2)) which makes our 

observation consistent with the theoretical analysis. 

 The advantage of running TPD simulations in very large lattices is 

portrayed in Figure 11 where the normalized TPD signal is plotted against the 

surface temperature. Since the signal is calculated as the derivative of the 

number of CO molecules desorbed from the surface with respect to time, the 

greater the number of molecules that desorb per unit time the better the obtained 

resolution is. Fine resolution is even more important in the presence of multiple 

desorption peaks, in which case the correct identification of the temperature at 

which the desorption rate is maximum, depends strongly on the quality of the 

simulated spectrum. 

 

 

 

 

 

Figure 11: TPD signal from a) 20×20 and b) 600×600 hexagonal lattice 

(a) (b) 
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3.4. Conclusions 

 

 In this study, we compared various data-structures as queueing systems 

for the first reaction method of the KMC algorithm and we further developed a 

skip list based queueing system. In order to compare their performance in 

common ground, we implemented these five approaches in the Zacros software 

package and performed benchmark simulations using a CO oxidation model 

adapted from the ZGB study [64], a simplified WGS reaction model on Pt(111) 

based on Ref. [65] and a TPD model of CO on Cu(111) [66]. We also studied the 

effect of compiler optimisations on the computational time required to complete 

the benchmarks. 

 The unsorted list was found to be extremely slow, as expected, and thus 

unusable for production simulations. The binary heap and the pairing heap have 

the best performance in the ZGB and WGS models, which involve insertion and 

deletion of elements in the queue. Our data indicates that for such simulations, 

the heap-based methods could be viewed as equivalent with each other, as their 

relative efficiency depends on the system and the compiler optimisation level. 

Regarding the skip list-based methods, even though the 2-way skip list 

consistently appeared to be slightly more efficient in our ZGB and WGS tests, the 

computational times are quite comparable with each other, so the skip list-based 

approaches could also be viewed as equivalent. We could potentially be more 

assertive in stating that the skip list-based queueing systems are less efficient 

than the heap-based ones, something that makes intuitive sense, since the skip 

list maintains a fully ordered list of elements, whereas the heap data-structures 

can only ensure partial ordering. In addition, the heap data-structures, especially 

the binary heap, appear to be more amenable to compiler optimisations. Still 

though, skip lists could outperform heap-based queueing systems, e.g. for 

special cases of systems in which all events are scheduled in the beginning and 

are executed in that predetermined order. Our TPD model falls precisely into this 

category and therefore, the skip list queuing systems demonstrated superior 

performance for these simulations. 

 The 2-way skip list developed herein is used as a queueing system during 

a KMC simulation; its usability, however, extends far beyond the applications 
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considered in this work. Any application that involves maintaining a large number 

of entities in a sorted manner with frequent access to arbitrary elements of this 

set may take advantage of our proposed design. In particular, choosing to adopt 

the 2-way skip list would leverage the conditional O(1) element retrieval, the 

O(logN) generic search and the O(1) element removal operations. 

 Any first-reaction method KMC implementation is, in one way or another, 

based on the following core operations: event identification and scheduling of 

realizable events, and execution of the most imminent process. Since KMC is 

becoming increasingly popular as a tool for understanding and predicting catalytic 

performance, optimal implementations for each one of the core KMC operations 

is of paramount importance. In our work, we focused on the efficient event 

scheduling, thereby evaluating existing data-structures and further developing a 

novel one (the 2-way skip list) for our purposes. The current work addresses the 

lack of benchmark studies of not-so-common data-structures for KMC 

implementations in the scientific literature. Moreover, our benchmarks could 

serve as a guide for further development of KMC approaches and related 

software aiming at high efficiency. While these approaches were benchmarked 

in heterogeneous catalysis problems, they could be applied equally well to other 

KMC frameworks, simulating for instance diffusion in porous media,[77] or 

intracellular reactions occurring in biological systems [45, 78]. 
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4. Evaluating and optimising the performance of 

distributed KMC simulations 

 

 Part of the work presented on this chapter has already been published. In 

accordance with the policy of the copyright holder, the relevant material (adapted 

text and figures) that appear in this chapter is Reproduced with permissions from 

Ravipati et al., Comput. Phys. Commun. 270, 108148 (2022) Copyright 2022, 

Elsevier. 

 

4.1. Introduction 

 

 KMC simulations have had a significant contribution towards 

understanding and predicting the dynamic properties of materials [77, 79-81]. 

Among the different fields, heterogeneous catalysis has widely adopted on-lattice 

KMC simulations where the catalytic surface is represented by a suitable lattice 

as discussed in more detail in Chapter 3. The increasing popularity of on-lattice 

KMC is also evident by the increase in software codes that implement such 

methods. Some examples of popular KMC software is Zacros [50, 51], SPPARKS 

[52, 53], KMCLib [54], and kmos [55], to name a few. Depending on the 

complexity of the chemical system under study in terms of number of reactions 

and adsorbate-adsorbate lateral interactions, either short- or long-range, the 

KMC simulation can be very computationally intensive. The latter complexity, in 

combination with the serial nature of KMC [82] limits the KMC simulation to small 

lattices, on the order of a few tens of nanometers [17, 83]. 

 Improving the computational efficiency of KMC simulations is an active 

area of research and tends to focus on tackling specific needs, for example 

addressing the timescale disparity [84-86], or on generic algorithms and 

implementations that improve certain procedures [32, 49, 87-89] without affecting 

the accuracy. One such example has already been presented in Chapter 3, where 

different data-structures have been implemented to undertake the scheduling and 

execution of elementary events during the KMC simulations. Despite these 
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developments, KMC simulations on larger lattices still face issues in terms of 

tractability due to their computationally intensive nature. 

 KMC simulations on small but representative lattices provide invaluable 

insights and even explain experimentally observed phenomena [90]. However, 

when the surface phenomena involve formation of patterns or spiral waves [91], 

the size of the computational lattice that is required to capture such phenomena 

is dictated by the length of the patterns or the wavelength of the spirals. For 

example, in the spirals reported by Nettesheim and coworkers [91], the 

wavelengths are on the order of a few μm. Due to the larger scale in which those 

patterns evolve, KMC simulations on the conventional nanometer-scale lattices 

cannot reproduce the experimental observations. The limiting factors to 

attempting such large-scale simulations are related to the computational 

resources, namely memory and processing power required to obtain meaningful 

results. Since the serially executed KMC implementations are unable to simulate 

systems in which patterns form on the μm scale, other means have to be sought 

to make such simulations possible. 

 To enable large-scale KMC simulations, one has to resort to distributing 

the workload to multiple processing units. Various approaches and 

methodologies have been developed to enable the execution of Kinetic Monte 

Carlo simulations in parallel [30, 31, 92-94]. Conceptually, these methods involve 

domain decomposition and algorithmic protocols to execute the elementary 

events in such a way that there are no conflicts on the boundaries of the 

subdomains. The latter is achieved via either synchronisation or reverting back 

and resimulating the history that is invalidated because of the boundary conflicts. 

In the latter approach, each processing unit generates a KMC trajectory for its 

subdomain and once all those trajectories are validated as consistent up to a 

specific point in time, they are all registered to the global history that corresponds 

to the entire computational lattice. 

 In terms of software implementations for catalysis, SPPARKS [52, 53] 

includes the semi-rigorous synchronous sublattice algorithm [92]. In addition, 

SPOCK [95] includes an exact parallel KMC implementation based on the Time 

Warp paradigm [31]. The downside of the implementation in SPOCK is that it is 

not generic and the user needs to provide system-specific code when building 

custom models. Also, both implementations mentioned above, lack validation 
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procedures that would verify the correctness of the implementation. To address 

the lack of a generic, parallel KMC implementation that can be validated, Ravipati 

and coworkers [33] have coupled the optimistic Time-Warp algorithm with the 

graph-theoretical KMC framework of the Zacros software package. 

 The implementation and all technical details on the Time-Warp 

implementation are covered fully in the relevant publication [33]. This chapter 

focuses on the performance evaluation and performance optimisation of the 

implementation, which is the main contribution of the author’s thesis on the latter 

work. Therefore, after a brief introduction on the main working principles of the 

Time-Warp algorithm, the results are presented, followed by the discussion. 

 

4.2. Methodology 

 

 Based on the Time-Warp paradigm, the main idea behind distributed KMC 

simulation is to decompose the entire lattice domain into smaller, non-

overlapping, subdomains, each one of which is assigned to a different processing 

unit (PU) or element (PE). A PU or PE is conventionally a CPU core. Each unit 

executes, independently from other units, the usual KMC method as applied to 

its subdomain and communicates the necessary events with its neighbours. 

Therefore, all events that happen away from the boundaries are executed 

asynchronously by each processing unit, whereas the events at the boundaries 

are communicated and handled appropriately. Due to the asynchronous nature 

of the execution of events and the random time advancement in KMC simulations, 

each processing unit has its own simulation time, and thus causality violations 

may occur, as will be discussed in more detail shortly. For the KMC trajectory to 

be exact, these violations need to be resolved in an algorithmically robust 

manner. The Time-Warp algorithm provides the required “machinery” so that 

exact KMC simulations can be performed in a distributed manner. 

 In this algorithm, each PU propagates the system in time broadly 

independently from other units. However, communication is required between 

PUs when an event happens on shared domain boundaries. For instance if PU1 

executes an event at a boundary shared with PU2, the latter neighbouring unit 

needs to have knowledge about this event, and thus, an appropriate message is 
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sent from PU1 to PU2. If the receiving process, PU2, is behind in time as 

compared to the process who sent the message, PU1, handling the message is 

straightforward. The message is put into a queue and appropriate action is taken 

when PU2 reaches that particular KMC time. What is not so straightforward, 

however, is when the sender, PU1 is behind in KMC time as compared to the 

receiver, PU2. Suppose that the message about an event that had just occurred 

on the timeline of PU1 is communicated to PU2. That message has a timestamp 

of t1. However, PU2 is ahead in KMC time and therefore the message is sent to 

its past. More importantly, the history of PU2, from the time t1 onwards is wrong 

because the communicated event is not taken into account. The only way to make 

the history consistent is to revert back and resimulate it. To do so, all processing 

units need to have snapshots available along their history so that they can revert 

to them when needed. Therefore, as the PUs propagate the system on their 

subdomain, they take complete snapshots of their entire simulation state and 

store them in the memory. Snapshots are necessary to resolve causality 

violations and are saved at regular intervals during the course of the KMC 

simulation. 

 The situation described above is even more complicated if PU2 had sent 

messages to other units after KMC time t1 before the causality violation occurred. 

Since the history of PU2 between t1 and t2 is now being resimulated, any actions 

performed by other PUs as a result of such messages need to be corrected. 

Then, PU2 needs to send to those units what is called an anti-message, that 

encodes an “undo” action to a previously sent message. The PUs that receive 

these anti-messages may have to revert back as well and correct their history 

(this would happen if the timestamp of an anti-message is smaller than the current 

KMC time of the receiving PU). A schematic representation of causality violations 

involving three processing units is illustrated on Figure 12. The causality 

violations and the rollback procedure are likely to produce a cascade of violations 

that could affect the entire domain. However, such cases are system-dependent 

and are rare in practice. In any case, the Time-Warp algorithm provides all the 

procedures necessary to resolve such conflicts and ensure the consistency of the 

simulated history. 

 To enable rolling back in KMC history, all PUs need to save snapshots in 

memory. Since memory is limited, the simulation needs a procedure to free up 
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memory and delete the snapshots that are no longer needed. The latter involves 

global communications. At regular intervals, all PUs communicate with each other 

to determine which one has the smallest KMC time, ts. Assuming that there are 

no pending messages, the history of all PUs is consistent up until ts, and 

therefore, any snapshots taken before ts may be safely deleted. The time ts until 

which the KMC history is correct and consistent is called Global Virtual Time 

(GVT), and it is a useful metric to quantify the progress of the KMC simulation 

and decide when the simulation can be terminated safely. More information and 

technical details on the implementation can be found in the original work [33]. 

Figure 12: Schematic procedure of causality violations and of the way they are 

resolved. The blue rectanges represent KMC timelines; black squares 

represent snapshots saved; circles with inward and outward arrows represent 

received and sent messages, respectively; triple arrows represent anti-

messages. (a) PU2 receives a message with timestamp t5, which is at its past. 

(b) PU2 reverts back to time t2 using a saved snapshot and resimulates the 

history until t5. PU2 sends anti-messages corresponding to the previously sent 

messages. (c) PU1 receives the anti-messages and reverts back to t4 using a 

saved snapshot. 
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 The last important detail that needs to be covered is what happens if the 

available memory is filled-up before a global communication takes place to 

remove the no-longer-needed snapshots. In the latter scenario, internal 

procedures of the Time-Warp algorithm are invoked to: (a) sparsify the queue in 

which snapshots are saved, namely delete every other snapshot to free memory, 

and (b) double the interval over which snapshots are taken so that the queue 

does not fill up again after the GVT is calculated. If needed, the above procedures 

are invoked again to ensure that the frequency of saving snapshots is 

appropriate, given the available memory.  

 The Time-Warp algorithm, as briefly introduced above, includes a few 

tunable parameters that eventually determine its performance. These are (a) how 

often the PUs are saving snapshots and (b) how often the global communication 

takes place to determine the GVT, the smallest KMC time among all PUs. The 

former is called Snapshot Saving Interval (SSI) and is measured in KMC steps. 

Practically, it denotes the number of KMC steps after which each subdomain 

saves a snapshot into the snapshot queue. Saving snapshots too often, for 

example, every 10 KMC steps, results in filling the memory too quickly, in which 

case sparsifications occur and the initial SSI is doubled, here to a value of 20. 

However, frequent snapshot saving means that there is always a snapshot in the 

recent past and, in case of causality violations, the PU does not spend much time 

resimulating a substantial part of its KMC history. From the hardware point of 

view, frequent reads and writes in the memory incur overheads that decrease the 

performance of the algorithm. Therefore, as a generic guideline, it is not advised 

to save snapshots too often. On the other hand, if the value of the SSI is large, 

namely, the snapshots are saved much less frequently, for example, every 1000 

KMC steps, the memory requirements are decreased significantly. However, 

more time is spent on resimulations when causality violations occur because the 

most recent suitable snapshot is likely to be further back in the past. Referring to 

Figure 12(b), when PU2 needs to roll-back in time because of the message with 

time-stamp t7, it uses the snapshot taken at time t4. If snapshots were saved less 

frequently, the most recent snapshot for all PUs could be at e.g. time t1. If 

reverting back to t1 instead of at t4, PU2 would need to spent more time to 

resimulate the history from t1 to t7 and then take appropriate action for the 
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received message. Likewise for PU1, upon receiving the anti-message with time-

stamp t8, as shown in Figure 12(c). 

 The second parameter, the interval after which a global communication 

takes places and the GVT is calculated is termed GVTi and is measured in real-

time seconds, for example 30 seconds of clock-time. As already mentioned, 

global communication is crucial to free up memory by deleting the snapshots that 

are no longer needed. Performing communication too often, e.g. every 1 second, 

might incur overheads that would slow down the simulation. Conversely, 

infrequent global communications, e.g. every 120 seconds, necessitate much 

more memory available to save the snapshots of each PU. 

 

4.3. Chemical Reaction systems 

 

 To better understand the scaling of the newly implemented Time-Warp 

algorithm in Zacros, we perform a scaling analysis of the algorithm on two simple, 

yet representative systems and present our results in the next section. 

 System 1 includes CO adsorption, CO* desorption and CO* diffusion, 

without lateral interactions. 

 System 2 includes CO adsorption and CO* desorption with 1st nearest-

neighbour lateral interactions among the adsorbed CO*. 

The reactions in both systems are considered reversible and are summarised 

below: 

𝐶𝑂(𝑔) + ∗ ↔ 𝐶𝑂∗ 

𝐶𝑂∗ + ∗ ↔ ∗  + 𝐶𝑂∗ 

where (g) stands for gas, * denotes a vacant site, and a superscript * denotes an 

adsorbed species on the surface. The rate constants of adsorption and 

desorption were both taken as 1.0 s-1 whereas the diffusion rate constant was 

taken as kdiff = 10.0 eV. Exclusively for system 2, lateral interaction between 

adsorbed CO* molecules is taken as εCO* = 0.1. Simulations were run at 500 K 

and at 1 bar pressure. 

 The above systems where chosen such that the coupling between the 

neighbouring domains is due to different factors. In system 1, the coupling comes 
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from the diffusion of the adsorbed CO* that results in CO* crossing the 

boundaries and diffusing to a nearby domain. In system 2, the coupling comes 

from the pairwise interaction between the adsorbed CO* molecules. If there was 

no diffusion in system 1 or no interactions in system 2, the simulation would be 

“embarrassingly parallel”, namely, it would be ideally parallelisable because the 

subdomains are not coupled. 

 In addition to the two simple toy models presented above, we make use of 

a third, more complicated system with rich dynamic behaviour and pattern 

formation. 

 System 3, is an on-lattice adaptation of the so-called Brusselator system 

[96], which exhibits autocatalytic behaviour and includes the following 8 

reactions: 

Elementary Event 𝑘𝑓𝑤𝑑(s-1) 𝑘𝑓𝑤𝑑/𝑘𝑟𝑒𝑣 

𝑋 + ∗ ↔ 𝑋∗ 0.70 0.91 

2𝑋∗  +  𝑌∗  →  3𝑋∗ 3.80 - 

𝑋∗ ↔ 𝑌∗ 9.00 15.00 

𝑋∗ + ∗ ↔∗ + 𝑋∗ 4.00×102 1.00 

𝑌∗ + ∗ ↔ ∗ + 𝑌∗ 4.00 1.00 

𝑋∗ + 𝑌∗ ↔ 𝑌∗ + 𝑋∗ 4.00×102 1.00 

Table 3: Reactions of the on-lattice Brusselator system 

 

No interactions were included among the adsorbates on the lattice and the 

simulations were run at a temperature of 500 K and at a pressure of 1 bar. To 

observe the patterns formed by system 3, we had to use a much larger lattice 

than system 1 and system 2. More information is provided in the relevant 

subsection below. 
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4.4. Scaling Benchmarks 

 

 To assess the performance of the Time-Warp implementation, we perform 

benchmarks in terms of weak- and strong-scaling. To ensure consistency in the 

results, we initially simulated our systems (1 and 2 only) until stationary state is 

reached and used this as the initial state for our benchmarks. Since much larger 

lattices were used in the benchmarks, we tiled the initial stationary state to create 

an input state suitable for the lattices used in the benchmarks. Specifically for 

system 3, we run a long simulation until the spirals were well developed and then 

we used a representative snapshot as the initial state for the benchmarks. 

Starting from stationary state is necessary because, for these benchmarks, we 

would like the average number of KMC steps executed per one KMC time unit to 

remain constant. 

 As already discussed, the user-defined parameters are the SSI and the 

GVTi. In addition, the user specifies the memory that is available to the software 

exclusively for saving snapshots (Smem). We summarise the values used in Table 

4. These settings were chosen after a small number of trials and a detailed study 

on them is provided in the next subsection. 

 

System Scaling MPI configuration 
Smem 

(GB) 

SSI 

(# events) 
GVTi (s) 

1 

Weak 
1×1 

2×2 - 30×30 
4.0 

109 (i) 

100 
5 

Strong 2×2 - 20×20 100 

2 

Weak 
1×1 

2×2 - 30×30 
3.5 

109 (i) 

50 
3 

Strong 2×2 - 20×20 50 

Table 4: Settings used in the performance benchmarks. In the strong-scaling, the 

single-processor runs were serial, thus the 1×1 MPI configuration is missing. 

(i) the snapshot saving is practically switched off in the serial runs. 
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 To quantify the scaling performance of the simulations, we define the 

scaled time, t* as the KMC time divided by the clock time: 

𝑡∗  =  
𝑡𝐾𝑀𝐶
𝑡𝑐𝑙𝑜𝑐𝑘

(4.1) 

We also define t*(nsites : nPU) as the scaled time of a distributed run of a lattice 

with total sites nsites that is distributed over nPU processing units. For serial runs, 

the nPU is omitted. 

 

4.4.1. Serial runs 

 

 The first part includes serial runs executed in progressively larger lattices, 

measuring their performance and comparing the latter against the expected 

scaling law. Ideally, the scaled time, t*, would be inversely proportional to the 

number of lattice sites. The efficiency is defined as: 

𝜂 =  
𝑡∗(𝑛𝑠𝑖𝑡𝑒𝑠)

𝑡∗(𝑛𝑠𝑖𝑡𝑒𝑠
𝑚𝑖𝑛 )

(4.2) 

where 𝑛𝑠𝑖𝑡𝑒𝑠
𝑚𝑖𝑛  is the number of sites of the smallest lattice used in the serial runs. 

The latter is a 100×100 lattice with 10,000 sites. The results are shown in Figure 

13(d-e), with open, red circles, which represent the efficiency as defined by the 

relation (4.2). The red lines on the same subplots represent the ideal scaling of 

the efficiency as: 

𝜂 =
𝑛𝑠𝑖𝑡𝑒𝑠
𝑚𝑖𝑛

𝑛𝑠𝑖𝑡𝑒𝑠
(4.3) 

 For system 1, Figure 13(d), the serial runs scale as expected up to lattices 

of size 500×500 and the efficiency deteriorates for larger lattices. For system 2, 

Figure 13(e), the actual performance deviates from the ideal one starting from the 

lattice of size of 200×200 sites. The difference in the behaviour observed between 

system 1 and system 2 is attributed to the additional workload that has to be 

executed in system 2 to compute the rate constants of events because of the 

pairwise lateral interactions among the adsorbed CO* species. The latter 

operation includes a pattern detection procedure and updating the relevant 

occurrence times; both operations incur overheads and slow down the KMC run 

as a result.  
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4.4.2. Weak scaling 

 

 The idea underlying the weak scaling analysis is to increase the size of the 

domain proportionally to the number of processing units so that the workload per 

PU remains constant. For the weak scaling benchmarks, the efficiency is defined 

as: 

𝜂𝑊𝑆  =  
𝑡∗(𝑛𝑠𝑖𝑡𝑒𝑠  ∶  𝑛𝑃𝑈)

𝑡∗(𝑛𝑠𝑖𝑡𝑒𝑠
𝑚𝑖𝑛 )

(4.4) 

 First, we compare the single-unit parallel run with the serial run for the 

same lattice size (leftmost point on Figure 13(d-e)). In the parallel run, although 

the snapshot taking is switched off, as per Table 4, and causality violations cannot 

happen, the MPI-related subroutines of the Time-Warp algorithm are still called, 

as also done during truly distributed runs (run on several PUs). These overheads 

cause a slowdown in the simulations by 30-40%. 

 

Figure 13: (a-c) Schematic representation of how the lattices change in the weak 

scaling benchmarks: the PUs increase along with the size of the lattice so that 

the workload per PU is constant. Our base lattice, the 1×1 in (a) is of size 

100×100. (d-e) Serial and weak scaling results for systems 1 and 2 respectively.  
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 A truly distributed run is performed using 4 PUs on a 200×200 lattice for 

both systems. The drop in efficiency with respect to the serial run is attributed to 

the emergence of communication and the procedures invoked to resolve 

causality violations. As the lattices become larger and larger, in particular, for 

lattice sizes of 800×800 and beyond, the distributed runs outperform the serial 

ones. In addition, the efficiency of the distributed runs remains constant whereas 

the serial runs are becoming more inefficient. For the largest lattice we used, of 

size 3000×3000, containing 9 million sites, the distributed run for system 1 is ~25 

times faster than the corresponding serial run. 

 In system 2, Figure 13(e), the difference between the serial and distributed 

runs is more pronounced. For the largest lattice used, as reported above, the 

distributed run is more than four orders of magnitude more efficient than the serial 

run. The great difference in the performance is attributed to the distribution of the 

additional workload: the pattern detection and occurrence time updates due to 

lateral interactions are happening “locally” for each subdomain as part of the 

execution of elementary events and are parallelised efficiently by the Time-Warp 

algorithm. 

 

4.4.3. Strong scaling 

 

 In the strong scaling analysis, the size of the domain remains constant 

while the computational resources increase. As a result, the work per processing 

unit becomes smaller and smaller. A schematic representation of the procedure 

is shown in Figure 14(a-c). For the strong scaling benchmarks, the efficiency is 

defined with respect to the serial run as: 

𝜂𝑆𝑆  =  
𝑡∗(𝑛𝑠𝑖𝑡𝑒𝑠  ∶  𝑛𝑃𝑈)

𝑡∗(𝑛𝑠𝑖𝑡𝑒𝑠)
(4.4) 

 Our strong scaling benchmark results are illustrated in Figure 14(d-e) for 

three different sizes as the base lattice (Figure 14(a)). A general observation is 

that, for a truly distributed run, i.e. with more than just one PU, the efficiency 

increases as more PUs are used. The point at which the distributed runs 

outperform the serial ones is system- and lattice size-dependent. In system 1, 

when 100 processing units are used, the distributed runs perform better than the 
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serial runs for all the lattices used. In system 2, all distributed runs, with 9 PUs or 

more, exhibit better performance than the serial ones. 

 It is also interesting to observe the plateau in the efficiency when a large 

number of PUs is used. As already mentioned, the more PUs are used, the 

smaller each subdomain becomes. As a result, the parallelisation overheads 

become dominant when the workload is not substantial enough to be executed 

by a PU. In addition, the ratio of the boundary sites over the internal sites 

increases which, in turn, increases the communication among the neighbouring 

PUs and the probability of causality violations. The efficiency plateau is not 

observed for the other two lattices size used, namely the 900×900 and 

1440×1440. It is expected, however, that, for a high enough number of PUs, the 

strong scaling efficiency, ηSS, will drop after going through a maximum. 

 

Figure 14: (a-c) Schematic representation of how the subdomains change in the 

strong scaling analysis: the workload per PU is progressively smaller. (d-e) Strong 

scaling results for systems 1 and 2 respectively. 
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4.5. Performance Investigation & Optimisation 

 

 The benchmarks of the previous section were performed for fixed values 

of the SSI and GVTi, for each system. These values were chosen after a few trial 

runs and are reported in Table 4. However, it should be clear from the discussion 

in the introduction, section 4.1, and the methodology, section 4.2, that the optimal 

values of SSI and GVTi are interlinked and depend on the chemical reaction 

system. In this section, we thus perform detailed investigations to understand the 

coupling between SSI and GVTi and their effect on the performance of a KMC 

simulation and present our results. We use all three systems presented in section 

4.3, and investigate a wide range of values for both SSI and GVTi. For the present 

analysis, our metric of performance is the inverse of the scaled time defined by 

equation (4.1): we define the simulation cost rate, ρ, as the real time (clock-time) 

needed to propagate the system by one KMC time unit. 

𝜌 =  
𝑡𝑐𝑙𝑜𝑐𝑘
𝑡𝐾𝑀𝐶

(4.5) 

Given the above definition, the lower ρ is, the better. 

 Our results, for system 1, on a domain of 200×200, distributed over just 4 

PUs (so that each PU gets a subdomain of 100×100), are shown in Figure 15. In 

Figure 15(a), we plot the simulation cost rate, ρ, against the GVTi, and the 

different values of SSI appear as different curves, while in Figure 15(b), we plot 

ρ against SSI and the different values of GVTi appear as different curves. In 

practice, since we calculate ρ when two parameters change, we get a 3D plot, 

and the panels in Figure 15 are the 2D projections. The most obvious conclusion 

drawn from Figure 15(a), is that the value of GVTi does not affect the 

performance, given that there is enough memory available to avoid doubling the 

user-provided SSI. On the other hand, as suggested by Figure 15(b), the value 

of SSI is crucial since a poor choice can make the simulation even three times 

more costly as compared to the optimal performance. As expected, too small and 

too large values of SSI deteriorate the performance. The optimal values for SSI 

that deliver the best performance range from 50 to 100 as seen by the broad 

minimum of Figure 15(b) and by the lower-most curves of Figure 15(a). 

 All the simulations performed were given access to the same amount of 

memory. The simulation in which SSI was set to 5 had the higher memory 
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utilisation, since a snapshot was saved every 5 KMC steps. To avoid running out 

of memory, thereby having to double the initial SSI, the global communication 

must be done more frequently. This is the main reason behind the small number 

of points in Figure 15(a), top-most curve, that corresponds to SSI=5. When the 

parameters were chosen as SSI=10, GVTi=10, the memory was not enough to 

hold all snapshots and therefore, sparsification was occurring and the SSI was 

doubled to a value of 20. To ensure that our results are consistent and 

representative, all those cases (where sparsification occurred) are omitted from 

the plots.  

 In Figure 16, we present our results, for system 1, on a domain of 

1200×1200, distributed over just 12×12=144 PUs (so that each PU gets a 

subdomain of 100×100). The 200×200 domain, used to produce the previous 

results, is distributed over 4 PUs, namely 4 CPU cores, and as a result, a single 

a computational node of the UCL-provided cluster Thomas was enough to 

execute each simulation. The 1200×1200 domain, however, is distributed across 

6 computational nodes, each one containing 24 CPU cores, therefore, our results 

might contain the effect of cross-node communication, if there is any. The results 

of Figure 16 are very similar to those presented in Figure 15. For a given SSI, the 

GVTi does not seem to affect substantially the performance of the simulation. The 

best range of values for the SSI for optimal performance is again over the range 

of 50 to 100. The difference is that the simulation cost rate is higher in the case 

of the large lattice, 1200×1200, as compared to the small one, 200×200. This is 

likely to be due to the increased number of causality violations because there are 

Figure 15: Simulation cost rate, ρ, against the GVTi (a) and against SSI (b) of 

system 1, for a 200×200 domain distributed over 4 PUs. 

(a) (b) 
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more subdomains and because of the cross-node communication overheads. 

The latter is not easy to quantify, it would require detailed profiling of the code, 

which is out of the scope of this investigation. 

 

 

 Moving on to system 2, the system that includes pair-wise lateral 

interactions among the adsorbed CO*, we perform simulations for multiple 

combinations of SSI and GVTi for two different lattice sizes, namely, 200×200 

and 1200×1200. The results that correspond to the domain of size 200×200, 

distributed over 4 processing units, are shown in Figure 17. Similarly, the results 

that correspond to the largest lattice of size 1200×1200, distributed over 144 

processing units, are shown in Figure 18. 

(a) (b) 

Figure 16: Simulation cost rate, ρ, against the GVTi (a) and against SSI (b) of 

system 1, for a 1200×1200 domain distributed over 144 PUs. 

Figure 17: Simulation cost rate, ρ, against the GVTi (a) and against SSI (b) of 

system 2, for a 200×200 domain distributed over 4 PUs. 
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 The performance of the Time-Warp algorithm for system 2 is similar to that 

already presented for system 1, namely there is little variability with respect to 

GVTi, especially in Figure 17(a), whereas the SSI is the parameter that 

determines the performance. As observed in system 1 and discussed above, the 

simulation cost rate, ρ, is higher for the larger lattice, 1200×1200, Figure 18, as 

compared to the smaller one, of size 200×200, Figure 17, for a given set of (SSI, 

GVTi) values. Despite depicting similar trends, Figure 17 and Figure 18 have 

different scales on the y-axis. A notable difference from the previous results, 

Figure 15(b) and Figure 16(b), is that the optimum values for SSI cover a wider 

range, from 20 up to 100, with the marginally better efficiency delivered by 

SSI=50. Also, comparing Figure 16(b) and Figure 18(b), we conclude that 

simulating system 2 is more efficient than simulating system 1. This is in line with 

the weak scaling results shown in Figure 13(d-e), where the efficiency drop due 

to the parallelisation is much less in system 2 than in system 1. In addition, SSI 

values on the higher end of the range used result in worse performance that SSI 

values on the lower end of the range. This is expected and is related to the 

structure of system 2, which includes pairwise lateral interactions among the 

adsorbed CO* species. The presence of interactions increases the workload 

because in every step, the KMC algorithm, regardless of whether it is distributed 

or not, has to check the neighbours of the species participating in the just-

executed reaction, and update accordingly the kinetic rates in which these 

species participate. When snapshots are saved less frequently, i.e. SSI is larger, 

then, the snapshot to be reinstated in case of a causality violation is likely to be 

(a) (b) 

Figure 18: Simulation cost rate, ρ, against the GVTi (a) and against SSI (b) of 

system 2, for a 1200×1200 domain distributed over 144 PUs. 
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further in the past. Therefore, more time is spent in resimulating part of the KMC 

history. Since every KMC step is more computationally expensive in the presence 

of interactions, the additional simulation-related workload becomes more than the 

overhead of the frequent memory accesses when SSI is smaller. 

 The last system for which we performed this performance analysis is 

system 3. We used a domain of 4000×4000 and start with an initial state in which 

the spirals of the Brusselator system are well developed (Figure 19, left panel). 

Due to the much larger size of our lattice, we distribute the simulation over 

25×25=625 processing units, so that each one of them is assigned a subdomain 

of 160×160 sites. Even with this more complex system, our results, shown in 

Figure 20, are similar, in terms of overall trends, to what has already been 

presented for the two simpler model systems. Due to the greatest complexity of 

the Brusselator system, even the most efficient set of parameters, i.e. SSI=150, 

the simulation requires 4500 sec (75 mins) to propagate the system for just one 

KMC time unit. In contrast to Figure 18(b) where the most inefficient runs are 

those with SSI values in the higher end of the range used, in Figure 20(b), the 

worst performance is observed towards the smallest SSI values. The latter is due 

to the much larger memory overheads incurred while saving and deleting 

snapshots, mainly because the snapshots themselves are large since the 

subdomain is of size 160×160. 

Figure 19: Surface density of species Y illustrating the evolution of the spirals at 

tKMC=0 (left) and tKMC=6 (right). 
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 In Figure 19, we present two snapshots of the state of the lattice for system 

3. Figure 19(left) illustrates the initial state, at tKMC=0. By the length of the arms 

of the two spirals evolved, it is obvious that we could not have obtained these 

results by just using “conventional size” lattices. In addition, these results could 

not be produced without the distributed Time-Warp algorithm that decomposes 

the initial domain into smaller subdomains, here of size 160×160. If we were to 

use the serial KMC algorithm on the 4000×4000 lattice, the simulation would have 

taken an extremely large amount of memory and time to produce the results 

shown in Figure 19. 

 

 

 The detailed investigations just presented aimed at better understanding 

the effect of the user-defined parameters, SSI and GVTi, on the performance of 

the Time-Warp algorithm. We performed simulations covering a wide range of 

values for both parameters. The SSI determines how often snapshots are saved 

in the memory whereas the GVTi determines how often global communication 

occurs. Given a fixed amount of memory, the two parameters cannot take 

arbitrary values: small values of SSI require equally small values of GVTi so that 

the obsolete snapshots are deleted. Otherwise, the simulation will run out of 

memory and it will adapt the SSI by doubling its value. The most important finding 

of the above investigation is that, as long as there is enough computer memory 

available, the value of the GVTi does not affect the performance of the KMC 

simulation. On the other hand, the performance is affected, sometimes heavily 

Figure 20: Simulation cost rate, ρ, against the GVTi (a) and against SSI (b) of 

system 3, for a 4000×4000 domain distributed over 625 PUs 
 

(a) (b) 
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as in Figure 20(b), by the value of SSI. Our results also suggest that the optimum 

SSI value, or range of values, is system-dependent: 

 system 1: 𝑆𝑆𝐼𝑜𝑝𝑡 = 100 

 system 2: 𝑆𝑆𝐼𝑜𝑝𝑡 ∈ [20, 50] 

 system 3: 𝑆𝑆𝐼𝑜𝑝𝑡 ∈ [100, 200] 

In addition, slight variations are observed when the domain size changes. 

 Based on the above findings, to achieve the maximum performance for an 

arbitrary system, the user might be required to perform a small number of 

exploratory runs and “construct the performance landscape” with respect to the 

SSI, as shown in Figure 15(b) - Figure 20(b). For the GVTi, a reasonable value 

is in the range of 20 - 60 seconds, while making sure that the memory is enough 

to accommodate the snapshots saved, especially towards the largest GVTi 

values. The user may, then, proceed with the production runs, after identifying 

the set of values for SSI, GVTi that deliver the optimum performance, namely 

achieving the minimum wall time for advancing their system for one KMC time 

unit. 

 

4.6. Conclusions 

 

 In this study, we evaluated the scaling of the Time-Warp algorithm [31] as 

implemented on the Graph-Theoretical Kinetic Monte Carlo framework [27] of the 

software package Zacros [51]. The Time-Warp algorithm is a sophisticated 

methodology that enables the exact, distributed execution of KMC simulations. 

The main idea is to decompose the domain (lattice) into smaller subdomains, and 

assign each one of them to a different processing element. Events are executed 

“locally” for the internal sites of each subdomain, and events that involve 

boundary sites are communicated to the neighbouring subdomains. Since each 

subdomain has its own timeline, causality violations may occur when, for 

example, one subdomain that is “lagging behind” in KMC time, tries to send a 

species via diffusion to a nearby domain that is further ahead in time. The KMC 

history of the domain that receives the particle is no longer valid and needs to be 
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corrected. This is achieved by saving snapshots along the KMC simulation and 

restoring the most suitable one when such conflicts arise. 

 Using two simple systems, we investigated the scalability of the Time-

Warp implementation in Zacros. For the weak scaling benchmarks, we observe 

that the distributed simulations are slower than the corresponding serial ones for 

lattices up to 600×600 for a system without lateral interactions. For larger lattices, 

the distributed implementation becomes faster, and, most importantly, there is no 

further decline in efficiency. For a system with lateral interactions, any truly 

distributed simulation, i.e. excluding the 1×1 MPI configuration, is progressively 

faster than the serial one, reaching efficiency factors up to 34×103 for lattices of 

size 3000×3000. For the strong scaling, we observe that, for a high enough 

number of processing units, both of our benchmark systems are more efficient 

than the corresponding serially executed ones. 

 In the second part of this study, we investigated thoroughly the 

dependence of the performance on two user-defined parameters: the SSI, how 

often snapshots are saved and the GVTi, how often all processing units 

communicate. For this study we used three systems, system 1 and system 2 that 

were used for the scaling benchmarks, and system 3 as the more complex 

system studied. We concluded that the GVTi does not affect the performance, 

whereas the optimal value for SSI depends on the system being simulated. 
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5. Tackling the timescale disparity on well-

mixed chemical reaction systems 

 

5.1. Introduction 

 

 Given a set of interacting species or molecules and the elementary 

reactions occurring between them, one is able to derive differential equations that 

fully describe the system using the law of mass action. The solution of the latter 

equations, obtained analytically or numerically, provides a complete description 

of the evolution of the system in time, given the initial conditions. Ordinary 

differential equations (ODEs) have been extensively used to study models of 

spatially homogeneous systems of particular interest in biology with the most 

notable example being the enzymatic reactions proposed by Michaelis and 

Menten [97]. However, an inherent weakness of this approach is its inability to 

take into account stochastic effects. In systems with low populations of 

molecules, stochastic noise is important, and in fact, determines the time 

evolution of the system by giving rise to macroscopic effects [98-100]. In addition, 

bistability effects, such as those observed in the Schlögl model [101], cannot be 

captured by treating the system deterministically, namely, by solving the 

differential equations that govern the system [102].  

 Kinetic Monte Carlo, and more specifically the Stochastic Simulation 

Algorithm (SSA), proposed by Gillespie [43], is a powerful computational tool that 

enables the study of interacting molecules and reaction intermediates in a well-

mixed vessel [47] or over a surface (on-lattice KMC) [17] while incorporating the 

inherent randomness of such systems. The trajectory produced using the SSA 

for a specific system is consistent with and, in fact, is a sample path (realisation) 

of the underlying Chemical Master Equation (CME) [103]. KMC is an exact 

method in the sense that it does not introduce any approximation and the time 

evolution of the system studied depends solely on stochastic effects and on the 

propensity, i.e. the probability per unit time for a reaction to occur [43]. In turn, 

the latter depends on the current state of the system, namely, the species 

populations, and on the rate constants of the reactions simulated. When 
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compared to the traditional reaction rate equations based approach, KMC is so 

powerful because it simulates explicitly and sequentially, i.e. one at a time, every 

single reaction that occurs in the system. 

 However, the benefits of KMC come with significant increase in 

computational cost. In systems with several species and multiple reactions, the 

accessible timescales might be too short to allow meaningful conclusions to be 

drawn. This issue is especially acute in systems in which some species exist in 

high populations. In addition, reactions may occur on different timescales, i.e. 

some reactions might be very frequent, while others very rare. Since the reactions 

are executed one at a time, the KMC simulation would be dominated by the fast 

reactions, whereas the slow ones, which might be of interest and contribute to 

the evolution of the system, are not executed and not sampled adequately. The 

scenario just described gives rise to an issue often termed “timescale disparity” 

or “stiffness” in a KMC simulation. 

 Multiple approximate acceleration methods have been developed 

throughout the years to tackle the timescale disparity in well-mixed chemical 

systems. A prominent such method is the τ-leap developed by Gillespie [104]. 

The main idea of this method is to “leap over” many fast reactions in a single step 

and advance the KMC time accordingly instead of executing all these events one 

at a time. The main assumption of the method is that the propensities of the fast 

reactions do not change significantly during the time leap. However, this 

assumption breaks down when species appear in small quantities, typically less 

than 10 molecules, which makes the method unusable for systems with low 

population species. Nevertheless, various refinements have been developed for 

the tau-leap method aiming to improve efficiency [105, 106], address stability 

issues [107] and prevent negative populations [108-110]. 

 Another approach to tackle timescale disparity is to develop hybrid 

methods [111, 112] that combine the reaction rate equations with a discrete 

stochastic treatment of the system. The first step is to partition the reaction 

network into fast and slow reactions. Then, to reduce computational cost, the fast 

reactions are approximated in a deterministic way or via Langevin equations and 

the slow reactions are simulated as stochastic events using an implementation of 

the SSA [111]. This approach achieves a bound on the computational cost by 

sacrificing accuracy since all fast fluctuations are eliminated, which might be 
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acceptable depending on the nature and dynamics of the system studied [111]. 

Building upon the previous work, Cao and coworkers developed a systematic 

approximate theory [113] and then presented the Multiscale Stochastic 

Simulation Algorithm (MSSA) [114] which assumes partial equilibrium for the fast 

reactions and works efficiently for low population species. Deterministically, 

partial equilibrium takes the form of algebraic constraints that the quasi-

equilibrated species concentrations must always satisfy. Stochastically, partial 

equilibrium means that the probability distribution(s) over the corresponding 

states must be at quasi-steady state. However, the distribution over the partially 

equilibrated states is, in general, not known, and not easy to obtain [114]. 

 Other methods [115-119] use perturbation analysis along with the quasi-

steady-state approximation to reduce the CME, eliminate fast reactions from the 

reaction network and use the SSA to obtain realisations consistent with the 

reduced CME. This approach is shown to perform well in systems presented in 

the aforementioned studies. However, according to perturbation analysis, the 

reduced solution converges to the solution of the full model as the perturbation 

parameter, usually denoted by 𝜖, approaches zero, or when it becomes 

“sufficiently small”. In general, 𝜖 is used to quantify the ratio of the slow versus 

the fast kinetics, and 𝜖 → 0 implies that the fast kinetics are much faster than the 

slow ones. In reality, 𝜖 is obtained by scaling appropriately the parameters of the 

model, and as a result, the order of magnitude of 𝜖 that ensures convergence 

depends on other parameters of the model. 

 In practice, to tackle timescale disparity and reduce the computational cost 

of KMC simulations, one may manually reduce the rate constants of fast reactions 

in such a way that the dynamics of the system at the slow timescale remain 

unaffected. To achieve the latter, one usually performs a “convergence study” of 

a quantity of interest against the rate constant(s) that cause the chemical reaction 

system to become stiff. Initially, the rate constants of the fast reactions are 

aggressively reduced, aiming to distort the dynamics of the system. Then, the 

same rate constants are gradually increased (not to exceed the original values, 

though) until key indicators, such as the production rate of a species, have 

converged to a specific value. When convergence is observed, it is implied that 

further increase of the rate constants would have no effect on the dynamics of 
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the system. Finally, the reaction rate constants for which the key indicators 

appear converged are used for production runs that are much cheaper 

computationally than using the original rate constants. 

 Similar to the approximate accelerated methods summarized above, the 

manual reduction of reaction rate constants does not provide any metric on the 

approximation error introduced by the reduction procedure. Although the 

procedure of reducing the rate constants of fast reversible reactions has physical 

meaning when the quasi-equilibration condition holds, there are no guarantees 

that the latter action has not incurred a change in the dynamics of the system 

under study. Aiming to address the lack of an accuracy index on the available 

methods, we have developed an on-the-fly downscaling scheme with an error 

metric that quantifies the effect of the rate constants reduction on the accuracy. 

The method we propose generates multiple trajectories with different rate 

constants and quantifies the computational cost and error. Based on the latter, 

the rate constants of the fast reactions are reduced in an optimal way, by taking 

into account the potential speedup gain while minimizing the error introduced. 

 The rest of the Chapter is organized as follows. First, we introduce briefly 

the background of the methods we use and make the connection to our work. 

The implementation of our on-the-fly rates scaling method along with the 

necessary theoretical background is discussed in detail in Section 5.2. The 

results obtained by applying the proposed methodology on a well-mixed system 

are presented in Section 5.3, along with the discussion of the performance and 

applicability of our approach. Finally, Section 5.4 summarises the motivation and 

main points of this work. 

 

5.2. Methodology 

 

 In this section, we first provide the necessary background on the relevant 

kinetic Monte Carlo methods and we discuss other relevant methods such as the 

Common Reaction Number and Common Reaction Path. Subsequently, we 

proceed by presenting in detail the developed methodology for scaling on-the-fly 

the rate constants of interest. 
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5.2.1. Background 

 

 The stochastic simulation algorithm (SSA), originally derived by Gillespie, 

is an exact method of simulating numerically the stochastic time evolution of 

spatially homogeneous mixtures of interacting species, often termed as “well-

mixed systems”. Since the introduction of two variants of this method by Gillespie, 

additional approaches and further improvements have been proposed. In the 

following subsections, we present briefly the relevant KMC methods and highlight 

features thereof that are further used in our work. In addition, we introduce two 

widely used methods in parameter sensitivity analysis, namely the Common 

Reaction Number and Common Reaction Path and make the connection to our 

work later on. 

 

5.2.1.1. First Reaction Method (FRM) 

 

 The First Reaction Method is one of the two procedures proposed by 

Gillespie [43]. It is based on the intuitive idea that, given a set of feasible reactions 

along with their inter-arrival firing times, the reaction to occur next is the one with 

the smallest waiting time. Therefore, for every possible reaction i, a tentative 

reaction time τi is generated via: 

𝜏𝑖 = −
𝑙𝑛(𝑟𝑖)

𝑎𝑖
(5.1) 

where ri is a uniformly distributed random number in the unit interval and ai is the 

propensity function of reaction i. The reaction μ that occurs next and its inter-

arrival time τμ are both determined by finding the minimum among all the reaction 

waiting times τi: 

𝜏𝜇 = min (𝑡𝑖) (5.2) 

Then, the KMC clock is advanced by τμ, and the reaction μ is executed by 

updating the molecular populations accordingly. New tentative reaction times are 

generated using equation (5.1) and the procedure described above is repeated. 

 For every iteration, the First Reaction Method requires N new random 

numbers, where N is the number of reactions in the reaction network. 

Regenerating all tentative reaction times might not be necessary, however. If the 
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execution of reaction μ does not change the propensity function aj of reaction j 

through the modification of the populations of any of the involved species, then 

the waiting time τj is still valid and could be used in the determination of the next 

reaction to occur. Although useful, the computational “trick” just described might 

not be applicable to complex and strongly coupled reaction networks, in the sense 

that, for such networks, the execution of any reaction event would affect the 

majority of the other reactions, and no computational savings would be obtained 

by the above “trick”. For such cases, one would still be forced to generate a 

significant number of uniformly distributed random deviates, which could lead to 

computational inefficiencies. 

 

5.2.1.2. Next Reaction Method (NRM) 

 

 Identifying the drawbacks of the First Reaction Method as using many 

random numbers per KMC step and having a computational cost that scales 

linearly with respect to the number of reactions, Gibson and Bruck developed the 

Next Reaction Method where they introduced a number of new features [45]. 

First, the method operates with absolute times, denoted by ti, instead of relative 

waiting times, τi. Second, the algorithm uses exactly one random number per 

reaction execution, excluding the initialisation step during which the random 

numbers used are as many as the reactions of the system modelled. Third, on 

the implementation level, the method makes use of a dependency graph and 

indexed priority queues to speed up the reaction scheduling operations. 

 The NRM builds upon the ideas of the FRM with some modifications. At 

the beginning, all reactions are assigned an occurrence time ti using the 

expression (5.1) above. The minimum among all the occurrence times, tμ, is 

obtained and the KMC clock is set to tμ, tKMC = tμ. Reaction μ is executed, the 

molecular populations are updated and the propensities αi of the affected 

reactions are updated as well. Then, for the reaction just occurred (i = μ), a new 

random number, r, is generated and the new occurrence time is obtained as: 

𝑡𝑖
𝑛𝑒𝑤 = 𝑡𝐾𝑀𝐶 −

𝑙𝑛(𝑟)

𝑎𝑖
𝑛𝑒𝑤 (5.3) 
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For all other affected reactions (i ≠ μ), the occurrence times are adjusted without 

the generation of new random numbers according to the equation: 

𝑡𝑖
𝑛𝑒𝑤 = 𝑡𝐾𝑀𝐶 +

𝑎𝑖
𝑜𝑙𝑑

𝑎𝑖
𝑛𝑒𝑤 (𝑡𝑖

𝑜𝑙𝑑 − 𝑡𝐾𝑀𝐶) (5.4) 

where 𝑎𝑖
𝑜𝑙𝑑 and 𝑎𝑖

𝑛𝑒𝑤 are the propensity functions of reaction i before and after 

the execution of reaction μ respectively, and 𝑡𝑖
𝑜𝑙𝑑 is the occurrence time of 

reaction i before the execution of reaction μ. In practice, the occurrence time is 

decreased or increased, with respect to the current KMC time, tKMC, so that it 

reflects the increase or decrease of the propensity function. No new random 

numbers are used at this stage. 

 During a KMC run, it may happen that a propensity function ai becomes 

zero. For as long as the propensity is zero, the corresponding occurrence time, 

ti, should be set to ∞, i.e. the reaction will not occur at any finite time. In such 

cases, the equation (5.4) presented above requires modification [45]. The correct 

time adjustment transformation when a propensity goes to zero and then ceases 

to be zero is: 

𝑡𝑖
𝑛𝑒𝑤 = 𝑡2 +

𝑎𝑖
𝑜𝑙𝑑

𝑎𝑖
𝑛𝑒𝑤 (𝑡𝑖

𝑜𝑙𝑑 − 𝑡1) (5.5) 

where t1 is the KMC time when ai first became zero, t2 is the KMC time when ai 

ceased to be zero, 𝑎𝑖
𝑜𝑙𝑑 is the last pre-zero propensity and 𝑎𝑖

𝑛𝑒𝑤 is the first post-

zero propensity. 

 Especially in biological systems, where species participate in low 

populations, propensities might become zero and then reach non-zero levels 

again quite frequently. Implementing the NRM in a way to handle zero 

propensities would require significant bookkeeping of pre- and post-zero 

quantities thereby complicating the implementation significantly. 

 

5.2.1.3. Modified Next Reaction Method (Mod-NRM) 

 

 By changing the representation of reaction times and viewing them as 

firing times of independent, unit rate Poisson processes, Anderson [46] 

developed a modified version of the Next Reaction Method of Gibson and Bruck 

[45]. The advantages of the new method that are relevant to our work are (a) the 
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randomness in the model is uncoupled from the state of the system and (b) the 

approach is general and inherently able to handle zero propensities without any 

change to the core algorithm. The latter naturally leads to a simpler 

implementation even for complex systems with multiple species and reactions. 

For these reasons, we used the Modified Next Reaction Method in our work and 

we outline its algorithm below. For mathematical derivations and physical 

meanings of the quantities defined, the reader is referred to the original work [46] 

and more specifically to Section III thereof. 

 At the beginning of the KMC run, set the KMC time, tKMC, to zero. For every 

reaction i, calculate the propensity functions ai, initialize the “internal times” Ti to 

zero and set 

𝑃𝑖 = −𝑙𝑛(𝑟𝑖) (5.6) 

where ri is a uniformly distributed random number in the range (0,1). Then, 

calculate the firing times of every reaction i as:  

𝜏𝑖 =
𝑃𝑖 − 𝑇𝑖
𝑎𝑖

(5.7) 

Find the minimum among all τi, 𝜏𝜇 = 𝑚𝑖𝑛(𝜏𝑖), advance the KMC time, tKMC, by τμ 

and update the molecular populations according to reaction μ. For every reaction 

i, update the “internal times” Ti as: 

𝑇𝑖 → 𝑇𝑖 + 𝑎𝑖 𝜏𝜇 (5.8) 

For the reaction that just occurred (i = μ), generate a new random number, r, and 

update Pμ as follows: 

𝑃𝜇 → 𝑃𝜇 − 𝑙𝑛(𝑟) (5.9) 

Lastly, recalculate all the propensities ai, or just the affected ones for increased 

efficiency. New waiting times are generated using equation (5.7) and the steps 

following equation (5.7) are repeated until a step-based or time-based termination 

criterion is met. 

 We note again that the Modified Next Reaction Method consumes exactly 

one random number per reaction execution via equation (5.9), excluding the 

initialisation step. As compared to the NRM, the Mod-NRM operates with time 

advances, τμ, instead of absolute times and, more importantly, zero propensities 

do not require a different transformation. Elaborating on the latter point, we note 

that when a propensity ai becomes zero, the corresponding inter-arrival firing 

time, as per equation (5.7), becomes infinity. However, the internal time, Ti, 
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remains unaffected since it is “updated” to the same value as per (5.8). Pi is also 

unaffected since the reaction i will never occur because its propensity is zero. 

When ai becomes non-zero, a finite value is generated for τi via (5.7), using values 

for Pi and Ti that are not infinity. 

 

5.2.1.4. Random Time Change (RTC) method 

 

 Working towards efficient methods for computing parameter sensitivities 

in biochemical networks and changing the representation of reaction times, 

Rathinam and co-workers developed the Random Time Change (RTC) method 

[120]. Their method is mostly similar to the Modified Next Reaction Method of 

Anderson [46] apart from a conceptually significant difference. In the Mod-NRM 

[46] and, in fact, in any other KMC method described so far [43, 45], all the 

random numbers consumed during the initialisation step, via the relations (5.1) 

or (5.6), and during the simulation via (5.1), (5.3) or (5.9), are drawn from a single 

random number stream. In the RTC method, N independent, parallel random 

number streams are used, where N is the number of reactions in the system 

studied, corresponding to one random number stream per reaction channel. 

Therefore, when using equations (5.6) and (5.9), a different random number 

stream is used for each value of the index i, i.e. for each different reaction 

channel. 

 

5.2.1.5. Common Random Number (CRN) method 

 

 In the context of KMC simulations, one wishes to collect uncorrelated 

samples of the state of the simulated process or system, so a high-quality random 

number generator is used. Not unexpectedly, reusing the same random numbers 

has generally been avoided in production runs. In sensitivity analysis studies, 

however, using on purpose the same random numbers across different runs, 

hence the term “common”, has been an easy and well-known method to reduce 

the variance by introducing dependence, viz. non-zero covariance, between the 

results being compared [121]. By using the same random numbers among 

different runs, one is able to rule out stochasticity-induced changes to the 
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system’s trajectories. By combining the latter approach with appropriate 

mathematical methods such as finite differences, one may quantify how the 

system’s trajectory changes if one parameter is perturbed from c0 to c0+h. In other 

words, the CRN method makes it possible to obtain quantitative metrics of the 

sensitivity of a stochastically simulated system on certain parameters by 

comparing appropriately the reference and the perturbed results. 

 For sensitivity analysis purposes, when combined with any KMC method, 

the CRN method is used as follows [120]: a random seed, rs, is used to initialize 

the random number generator and for a given parameter c0, a solution trajectory 

of the system studied is obtained. Next, a second trajectory is generated by 

performing another KMC run in which (a) the random number generator is 

initialized using the same random seed, rs, that was used for the first run, and (b) 

the rate parameter is perturbed by h and its value is changed from c0 to c0+h. 

Since the same random numbers are used in the two runs, thereby eliminating 

the stochastic component that would differentiate the results, any differences 

between the two trajectories corresponding to the parameters c0 and c0+h 

respectively, are attributed exclusively to the perturbation h, added to the original 

rate parameter c0. 

 Even though the idea of the CRNs is not a novel concept, the combination 

of a KMC method, and specifically the RTC, along with the CRN enabled the 

development of yet another method described below. 

 

5.2.1.6. Common Reaction Path (CRP) method 

 

 The Random Time Change (RTC) method described in section 5.2.1.4 

differs from all other KMC methods because it uses as many random number 

streams as the reactions in the systems for the generation of tentative firing times. 

This unique feature of the RTC algorithm in conjunction with the CRN method 

has been instrumental in the development of the Common Reaction Path (CRP) 

method by the same authors [120] as an efficient approach for computing 

parameter sensitivities. Without getting into the details about its performance as 

compared to other methods, we outline the idea of the CRP method and make 

the connection with our work later on. 
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 We have already mentioned that the RTC uses one random number 

stream per reaction channel and that the CRN method reuses the same 

sequence of random numbers for multiple runs by initialising the random number 

generator with the same seed. Combining these two features results in the CRP, 

an algorithm in which the internal jump times of each reaction channel remain 

unaffected among the perturbed and unperturbed simulations. Note that this 

invariance of the internal jump times requires both that each channel has its own 

random number stream and that the same random numbers are used. On the 

contrary, if using the CRN method along with any KMC method other than the 

RTC, such invariance would not be achieved, i.e., the internal jump times of the 

perturbed simulation would be different from those of the unperturbed one. This 

happens because, even though the random numbers are drawn from a single 

stream, there is no guarantee that they are used in the same order in the 

perturbed versus in the unperturbed run [120]. 

 

5.2.2. On-the-fly rate scaling algorithm 

 

 In this section, we describe our algorithm in connection with the methods 

introduced above. At first, we provide a conceptual description of our algorithm 

focusing on its features without any technical details. Next, we proceed by 

presenting a more detailed outline of the algorithm where we introduce its main 

components. Then, we discuss in detail all parts of our algorithm and last, we list 

explicitly the user-tunable parameters and provide further details on their 

importance on obtaining an accelerated simulation with minimal error. 

 

5.2.2.1. Conceptual description 

 

 The purpose of our algorithm is to tackle the timescale disparity in well-

mixed systems by reducing, on the fly, namely along the course of the KMC 

simulation, the execution frequency of the very fast (extremely frequent) reactions 

so that the KMC simulation reaches far greater timescales. We combine the 

Modified Next Reaction Method [46], multiple random number streams and the 

ideas of the Common Random Number method as used in sensitivity analysis 
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studies [120, 121] and develop a methodology that is capable of providing metrics 

on the error introduced in the system because of the reduction of the reaction rate 

constants. 

 The main idea of our algorithm is to use the Mod-NRM, CRNs and distinct 

random number streams, one for each slow reaction and another one for all the 

fast reactions of the mechanism (reaction network), to generate and compare 

over a short and representative KMC time interval two trajectory chunks obtained 

by using the original and reduced rate constants respectively. When an 

appropriate comparison, based on all the inter-arrival times of the slow reactions, 

identifies no differences between the two trajectories, it is implied that the 

reduction in the rate constants did not incur a perceivable effect on the dynamics 

of the system. Therefore, it is valid to continue propagating the system in time 

using the reduced rate constants instead of the original ones. Expanding the idea 

further, multiple trajectory chunks are generated over a specific KMC time 

interval, with each one of them corresponding to rates having been downscaled, 

i.e. reduced, by a progressively larger downscale factor. Among the multiple 

downscale factors used, the best one is chosen by taking into account the gain 

in computational efficiency versus the reduction in accuracy, as described below. 

 It is easy to understand that the more the rate constants are reduced or 

equivalently, downscaled, the faster the KMC simulation advances in time, but 

the more inaccurate it becomes due to the introduction of approximation error. In 

our algorithm, we quantify both computational cost and error, combine them in an 

objective function and solve an optimization problem for identifying the optimum 

downscale factor that maximizes the speed gain and minimizes the error. 

 

5.2.2.2. Outline 

 

 Continuing from the brief conceptual description, we now proceed by 

providing a detailed outline of the procedures involved during a KMC simulation 

that incorporates our on-the-fly rate constant scaling algorithm. More technical 

and implementation details are provided in subsequent sections. 

 Once the simulation is up and running with the original reaction rate 

constants, the algorithm determines a KMC time interval, (ts, tf), tf > ts, over which 
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it is invoked, in order to perform and evaluate the feasibility and correctness of a 

downscaling (the latter refers to a reduction in the rate constants of the fast 

reactions). Over that KMC time interval, (ts, tf), and while using the CRN method 

and multiple random number streams, the algorithm generates multiple 

trajectories that correspond to rate constants reduced by an exponentially 

increasing downscaling factor, such as 5, 25, 125, 625, etc. Since the 

downscaling factor is applied only to the rate constants of the very frequent 

reactions that consume most of the computational time, the execution frequency 

thereof decreases proportionally to the downscale factor. As a result, the 

generation of each addition trajectory chunk is progressively less costly. From a 

quantitative perspective, we estimate the computational cost of each individual 

trajectory chunk using the number of KMC steps executed over the 

aforementioned time interval (ts, tf). In fact, the very definition of the computational 

cost is often the number of steps executed or operations performed. 

 It is intuitive to realise that the higher the reduction in the rate constants of 

the fast reactions, the faster the simulation progresses and the computational 

cost decreases. However, the more aggressive the downscaling is, the more 

inaccurate the simulation becomes. By downscaling, one gains in terms of speed 

and loses in terms of accuracy. Quantifying accuracy is non-trivial due to the 

inherently stochastic nature of KMC simulations. Thus, we need a reliable 

procedure to discern changes in the system’s trajectory arising from (a) the 

reduction of the rate constants of the fast reactions versus (b) the inherent 

stochasticity of KMC. Aiming to eliminate stochasticity and focus on changes 

incurred solely because of the modification of the rate constants, we use the 

standard technique of the sensitivity analysis studies: Common Random 

Numbers. In addition, we make use of multiple random number streams, along 

the principles of the RTC method presented above. More specifically, we 

generate the firing inter-arrival times for all the fast reaction channels by drawing 

random numbers from a single random number stream, whereas we use separate 

random number streams, one per reaction channel, for the slow reactions. Finally, 

we quantify the accuracy of the downscaled trajectories as compared to the 

reference one, in terms of the inter-arrival time differences of the slow reactions 

in a way that is described in detail further below. 
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 By collecting information on the scaling of the computational cost, C, and 

error, E, with respect to the downscale factor, df, we compose the following 

objective function, F(df): 

𝐹(𝑑𝑓) = 𝑎 × 𝐶(𝑑𝑓) + 𝑏 × 𝐸(𝑑𝑓) (5.10) 

with a, b, being the weights on the computational cost, C, and error, E, 

respectively. Given the objective function, the goal is to identify the optimal 

downscale factor, dfopt, which maximises the speed-up gain with the least error. 

Once that factor has been determined, the rate constants are modified 

accordingly, and the simulation continues propagating the system in time with the 

reduced rate constants. The above procedure is invoked regularly at specific 

KMC time intervals throughout the KMC run and aims at identifying whether 

further downscaling would be possible without increasing the error to 

unacceptable levels. 

 Our method, as outlined above, applies state-of-the-art concepts from 

sensitivity analysis [120, 121] to make long KMC simulations tractable. The ideas 

we use have not appeared before in the context of accelerating KMC simulations 

of spatially homogeneous chemical reaction systems. Our algorithm reduces on 

the fly the rate constants of fast reactions in such a way that the introduced error 

is imperceptible and indistinguishable from the KMC error itself. Most importantly, 

the rate reduction procedure of our algorithm is data-driven and optimises for 

maximum speed-up and minimum error by solving an appropriate optimisation 

problem. 

 

5.2.2.3. Partitioning the reaction network into fast and slow reactions 

 

 A key component of our methodology is the use of a different random 

number stream for each one of the slow reaction channels in the system 

simulated. Therefore, the correct identification of the reactions that are expected 

to be slow is a crucial first step towards setting up our algorithm, so as to initialise 

the correct number of independent random number streams. 

 To classify the reaction channels into fast and slow, the user needs to first 

provide information on the ordering of the execution frequency of reactions, 

obtained from a short trial run. In practice, the user provides a ranking of the 
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reaction channels from the fastest to the slowest and pinpoints those reactions 

whose rates are allowed to undergo downscaling. The “downscalable” reactions 

are restricted to forward-reverse pairs only in order to maintain detailed balance 

and quasi-equilibrium and before invoking a downscaling we check whether 

those reactions are indeed quasi-equilibrated (QE) using the criterion: 

|𝑁𝑓 − 𝑁𝑟|

𝑁𝑓 + 𝑁𝑟
≤ 𝛿 (5.11) 

where Nf and Nr is the number of executions of the forward and reverse reaction 

respectively and δ is a threshold value chosen as 0.05, namely the forward and 

reverse reaction executions should differ by a maximum of 5% to be considered 

quasi-equilibrated. 

 The above criterion along with the user provided information on the 

expected ordering of the reaction frequencies are taken into account while 

attempting a downscaling. If the above criterion fails, namely, the value of the 

ratio in equation (5.11) is greater than 5% or the ordering of execution frequencies 

changes, then the attempt is terminated and the KMC simulation continues with 

the most recent rate constants. 

 The classification of processes into fast and slow can, in principle, be done 

automatically. In the presence of non-reversible reactions however and especially 

in oscillatory systems [100, 122], the latter procedure is not trivial and requires 

deeper analysis of the reaction network. Since our focus is to develop an on-the-

fly rate scaling algorithm that optimises cost and error, we opted for requesting 

user input on the reaction network and postponed the automation of the 

partitioning procedure for a future improved version of our algorithm. 

 

5.2.2.4. Generating multiplicates with CRNs and different rate 

constants 

 

 Our methodology is based on the idea of generating multiple trajectories 

using progressively reduced rate constants and comparing all those against a 

reference trajectory to evaluate the error introduced and the gain in computational 

cost. To meaningfully compare the various trajectories, we use Common Random 

Numbers in a way described below. 



98 

 Following the initialisation step, the KMC simulation starts as usual and 

after the execution of N KMC steps, at KMC time ts, our algorithm is invoked to 

check whether a reduction on the rate constants of the fast processes is feasible. 

At time ts, a snapshot is saved that contains information on the current state of 

the system such as the species populations, the rate constants of all reactions 

and the states of the random number generators that correspond to the slow 

reactions. 

 Following the snapshot saving, the algorithm propagates the system until 

KMC time tf with the same rate constants used up until ts, that is, the rate 

constants are not modified. The time tf is chosen such that (a) propagating the 

system further for w = tf  – ts KMC units is still tractable in a reasonable amount of 

time and (b) all reactions, especially the slow ones, are sufficiently sampled, 

although the latter is not strictly necessary for reasons that will become clear 

further below. In addition to the usual KMC procedures performed, such as 

population sampling over time and incrementing of reaction counters, over the 

interval (ts, tf) we record the occurrence times ti,j of every single reaction firing i 

belonging to any slow reaction channel j. As a reminder, we reiterate that a 

different random number stream is used for each of the different slow reaction 

channels j. The generation of the trajectory with the unmodified rate constants is 

very important because it serves as our reference in subsequent comparisons. 

For this reason, we refer to this trajectory as the “unscaled” or “reference” 

trajectory. 

 Once the unscaled trajectory is generated, we perform the checks 

described previously in subsection 5.2.2.3. At first, we check whether the fast 

reversible reactions, whose rates we are allowed to reduce, are quasi-

equilibrated using the criterion (5.11). Second, we order the reaction frequencies 

from the fastest to the slowest and we compare their ordering against the user-

provided, i.e. the expected ordering. More specifically, we check if the anticipated 

fast reactions are indeed fast and the anticipated slow reaction are indeed slow 

in terms of their execution frequencies. The latter is a necessary check because 

in oscillatory systems the execution frequencies might not have the same 

ordering for any arbitrarily chosen KMC time interval. Third, we quantify the 

timescale separation, TSS, namely, the difference on the execution frequencies 

among the fast and slow reactions, in terms of orders of magnitude. The user 
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provides TSSmin, the minimum timescale separation, which implies that if the fast 

reactions are not fast enough, no downscaling is attempted. The purpose of the 

timescale separation criterion is to prevent making the initially fast reaction too 

slow, or comparably slow to the initially slow ones. If any of the above checks 

fails, the unscaled trajectory is accepted as the “official” trajectory over the 

interval (ts, tf) and the simulation continues from KMC time tf. In the case where 

the above checks yield a positive outcome, namely, the fast processes are quasi-

equilibrated in the interval (ts, tf), their ordering is as expected, and the fast 

reactions are fast enough, the algorithm proceeds in generating the downscaled 

trajectories. 

 Having generated the unscaled trajectory, the algorithm restores the state 

of the system back at time ts using the saved snapshot. The latter action restores 

the random number generators of the slow reactions to the state they had at ts. 

This is done intentionally, so that the same random numbers are used for the 

generation of the occurrence times for the slow reactions in the interval (ts, tf), in 

line with the CRN methodology [120]. On the other hand, the occurrence times of 

the fast processes are not of interest and are thus not saved at all, neither is their 

generator’s state saved or restored. Then, the rate constants of the fast 

processes are reduced by a user-defined “base downscale factor”, dfb, a 

downscaled trajectory is generated over the KMC time interval (ts, tf), and the 

occurrence times ti,j of all slow reactions are recorded. Using the state snapshot 

at ts as the starting point, a total of kmax downscaled trajectories are generated, 

each one with an exponentially increasing downscale factor of 𝑑𝑓𝑏
𝑘−1, where k is 

the index of the downscaled trajectory being generated. It is important to note 

here that during the generation of the first downscaled trajectory, corresponding 

to k=1, the rate constants are actually not reduced since the downscale factor is 

one. Despite the additional computational cost, this trajectory, in combination with 

the unscaled trajectory, whose generation was described above, are both crucial 

in determining a baseline for the error calculations as we will see shortly. To 

conclude with an example, if the user provides dfb = 5, then the first downscaled 

trajectory is generated by dividing the original rate constants by 𝑑𝑓 = 1, the 

second by 𝑑𝑓𝑏
2−1 = 51 = 5, the third by 𝑑𝑓𝑏

3−1 = 52 = 25 and so on. 
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 At the end of the above procedure, we have obtained one unscaled and 

kmax downscaled trajectories, over the same KMC time interval (ts, tf) while reusing 

exactly the same random numbers for the occurrence of the slow reactions. In 

addition, we have obtained the absolute occurrence times of all the slow reaction 

firings along with the total KMC steps executed for every trajectory generated. 

The latter quantities are used to quantify the error and computational cost 

respectively, as we shall see in the next section. 

 

5.2.2.5. Cost and error quantification & optimization 

 

 In this section, we describe the way we quantify the computational cost 

and the error for each slow reaction introduced because of the reduction of the 

rate constants of the fast processes. To this end, we use the number of KMC 

steps executed during the generation of the unscaled and downscaled 

trajectories and the occurrence times of all slow reaction firings that were 

generated from the procedures described in section 5.2.2.4. 

 A direct measure of the computational cost for the generation of each one 

of the alternative trajectories is the number of KMC steps executed. To derive a 

relative dimensionless cost for each trajectory we divide the total number of KMC 

steps executed therein by the number of KMC steps of the unscaled trajectory, 

so that the latter has a dimensionless cost of one. Then, we identify the maximum 

downscale factor that does not distort the dynamics of the system with the 

following reasoning and procedure. Since we are downscaling only the fast 

reactions, we expect the computational cost (equivalently: the number of KMC 

steps executed) to drop according to an inversely proportional relation with 

respect the downscale factor: cost ~ 1/df. Hence, the normalised cost plotted on 

log-log axes with respect to the downscale factor would appear as a line with 

gradient of -1. The relationship just noted should hold true as long as the 

reactions whose rate constants are reduced are much faster than all other 

reactions and dominate the computational simulation. Violations of this condition 

may occur, and potentially indicate that the initially fast reactions are no longer 

the most time-consuming ones. To detect such violations and identify the 

downscale factor after which the cost does not decrease as expected, we use 
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two different methods, thereby ensuring the robustness of the procedure. First, 

we perform successive linear fittings on the log(cost) versus log(df) data using a 

“sliding window” approach with a set of just four data points each time. When the 

gradient of the linear fit is larger than -0.9, the second to last data point of the set 

is marked as the maximum valid downscale factor, dfmax_1. Second, we calculate 

the second derivative of our data points using central finite differences. For a 

linear relation the second derivative is zero; thus, when the second derivative 

exceeds the threshold of 0.05, we have identified the maximum valid downscale 

factor, dfmax_2. The minimum among (dfmax_1, dfmax_2) is taken as the final dfmax and 

we discard the data points for larger downscale factors as invalid. Next, to obtain 

an analytical expression for the cost, i.e. the first component, C(df), of equation 

(5.10), we fit a line to the above data points that are deemed valid. 

 We have so far discussed how we quantify the cost of the simulation, and 

we now move on to discuss the error. The main motivation in using the Modified 

Next Reaction Method of Anderson [46] is that it uncouples the randomness in 

the model from the state of the system. In addition, using different random 

number streams for each slow reaction channel makes the firing times of each 

channel independent from the firing times of other channels. Restoring the states 

of the random number generators when generating a new downscaled trajectory 

ensures that the internal firing times are preserved across the different runs which 

is equivalent to keeping the reaction path of the slow processes the same, in line 

with the CRP method [120]. 

 Thus, to quantify the error incurred by downscaling, we use the occurrence 

times ti,j to calculate the inter-arrival times τi,j for every single reaction firing i from 

the slow reaction channel j for the unscaled and all the downscaled trajectories. 

Then, for each downscaled trajectory k, and each slow reaction channel j, we 

calculate the inter-arrival time (IAT) difference vector, d, with respect to the 

unscaled trajectory as: 

𝒅𝑗
𝑘 = 𝝉𝑗

𝑢 − 𝝉𝑗
𝑘 (5.12) 

where 𝝉𝑗
𝑢 is the vector holding the inter-arrival times of the unscaled trajectory, 

hence the superscript u. In general, 𝝉𝑗
𝑢 and 𝝉𝑗

𝑘 have the same number of 

elements, imax, which is equal to the number of reactions fired. If it happens that 

their sizes differ, namely, there was a different number of reactions fired in the 
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unscaled, u, and in the downscaled trajectory with index k, the common reaction 

firings, i.e. the minimum number thereof is used to calculate 𝒅𝑗
𝑘. Observing a 

different number of firings for a slow reaction channel j is more likely to occur at 

large downscale factors. Lastly, for each j we define the IAT error norm as the 

Euclidean norm of the IAT difference vector 𝒅𝑗
𝑘: 

𝒆𝑗
𝑘 = √∑|𝒅𝑖,𝑗

𝑘 |
2

𝑖𝑚𝑎𝑥

𝑖=1

(5.13) 

The above metric quantifies the difference between two trajectories in terms of 

differences in their inter-arrival times. We calculate the error norm for every 

downscaled trajectory k thus obtaining the error scaling for a particular slow 

reaction channel j up to dfmax. To obtain an analytical expression for the scaling 

of the overall error, we fit the scaling equation 𝑦 = 𝑝𝑥𝑞 to all error norm data 

points, with p and q being parameters determined by the fitting, and x, y being 

the downscale factor and IAT error norm respectively. Fitting the equation 𝑦 =

𝑝𝑥𝑞 is equivalent to fitting a first-order polynomial to the logarithms of the error 

norm and downscale factor, just like in the case of the computational cost. 

Following the above procedure, we obtain the second component, E(df), of 

equation (5.10), and we are now ready to form the objective function to optimise. 

 Using the user-provided weights on cost and error, along with the 

analytical expressions for the scaling of cost and error, C(df) and E(df) 

respectively, fitted to the data obtained from the KMC simulation, we form the 

objective function as per equation (5.10). Then, we find its minimum, thereby 

identifying the optimal downscale factor, dfopt, to use for the current downscaling 

attempt. Using dfopt, we generate a trajectory using rate constants reduced by 

dfopt, until a KMC time of tf, and save the trajectory as the “official one”, along with 

the samples taken before ts. 

 At KMC time tf, the algorithm exits the downscale mode and continues 

propagating the system with the most recent, downscaled, rate constants. 

Following the execution of N new KMC steps, the algorithm is invoked again to 

check whether further downscaling is feasible. This is done over a different KMC 

time interval (ts, tf )m, where the subscript m counts the number of the downscaling 

attempts. The previous description corresponds to the first attempt, and the 
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subscript m was omitted for brevity since m=1. Finally, the cost and error are 

calculated in terms of the absolute downscaling factor, that is, from the second 

downscaling attempt onwards, m>1, we take into account any previous 

successful downscaling attempts. This is to prevent the loss of information 

regarding the overall speed gain and loss in accuracy. 

 

5.2.2.6. Additional considerations in decision making 

 

 Following the formation of the objective function, the identification of the 

optimum downscale factor is easy. Apart from the weighting factors on cost and 

error, there are additional criteria put in place while evaluating whether the 

optimum downscale factor leads to an acceptable increase in the error. 

 We mentioned above that the kth downscaled trajectory has the kinetic rate 

constants of the fast reaction reduced by 𝑑𝑓𝑏
𝑘−1. Practically, the first downscaled 

trajectory uses the same kinetic rate constants as the unscaled trajectory. In 

addition, the same random numbers are used for the generation of the slow 

reaction firings. What is different is that the fast reaction channels do not have 

their random number generator restored, and thus, the slow reaction firings in the 

unscaled trajectory do not occur in the same time instances as those of the 

“downscaled” one with df = 1. For reasons explained in detail in the SI, the slow 

reaction firing times have a distribution, with a certain mean and variance, and 

the latter depends on the timescale separation, i.e. how much faster are the fast 

processes with respect to the slow ones. To obtain a reference point for the IAT 

error norm, the generation of a trajectory with df = 1 is not only necessary but 

crucial as well, and its importance outweighs the additional computational 

expense for its generation. 

 By taking into account the reference IAT error norm and the IAT error norm 

of dfopt, we impose the following additional criteria to prevent the overall error from 

increasing excessively: 

(a) absolute threshold: the IAT error norm that corresponds to dfopt should not 

exceed emax, taken as 0.05 in our benchmarks, and 
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(b) relative threshold: the IAT error norm corresponds to dfopt should not 

increase by more than two orders of magnitude with respect to the IAT 

error norm of the downscaled trajectory generated using df=1. 

 A last criterion taken into account considers cases where the IAT error 

norm appears saturated, i.e. it does not increase further with increasing 

downscale factor over the interval up to dfmax, as illustrated in Figure 21, curve 

(c). This phenomenon is an indication that the KMC time interval over which we 

attempt to do a downscaling is inappropriate for downscaling. To detect such 

cases, we impose a lower bound of 0.2 to the coefficient q of the equation 𝑦 =

𝑝𝑥𝑞 that is fitted to the IAT error norm data points for each slow reaction channel. 

We also note that we take into account data points up to dfmax, the vertical dashed 

line of Figure 21. As a result, the error curve of reaction channel (a) on Figure 21 

does not suffer from error saturation, it is the scaling of reaction channel (c) that 

will cause the downscaling attempt to be aborted. 

Figure 21: Qualitative error scaling with respect to the downscale factor for three 

fictitious slow reaction channels (a)-(c). Both axes are on logarithmic scale. The 

IAT error norm of reaction channel (c) appears saturated over the small 

downscale factors, whereas for reaction channel (a), the error norm is saturated 

over the large downscale factors, which are discarded anyway. Reaction channel 

(b) exhibits a more conventional scaling, for both small and large downscale 

factors. The vertical dashed line represents the maximum allowed downscale 

factor and data-points to its right are discarded. 
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5.2.2.7. User-tunable parameters 

 

 In this subsection, we summarize all the user tunable parameters involved 

in our algorithm and discuss their effect on the performance thereof. 

 N: the number of KMC steps after which our downscaling algorithm 

is invoked. The larger N is, the less often our algorithm is called. 

 w = tf – ts: the width, in KMC time units, of the window over which 

the algorithm performs the downscaling evaluations. The larger w 

is, the more confidence we have on a downscaling if accepted, but 

at an increased computational cost. A good value for w is, 

generally, system dependent. 

 dfb: the base downscaling factor used in the generation of multiple 

downscaled trajectories. Small values such as dfb = 2 would 

increase the total cost the downscaling attempts, whereas large 

values such as dfb = 20 could result in sub-optimal choices for dfopt 

during the optimisation procedure. 

 n: the total number of downscaled trajectories generated inside the 

downscaling window including the one with df = 1. The generation 

of each subsequent trajectory is becoming cheaper, so large values 

on n do not affect performance. At the same time, generating too 

many downscaled trajectories may be redundant, because the 

trajectories in which the system is distorted are discarded. 

 TSSmin: the minimum timescale separation, i.e. the difference of the 

execution frequencies among the fast and slow reaction channels, 

in terms of orders of magnitude, that is required in order to proceed 

with the generation of the multiple downscaled trajectories. Larger 

values favour accuracy whereas smaller values allow for more 

downscaling and greater speedup. 

 a, b: weight coefficients for the computational cost and error 

respectively. Higher values of b favour the accuracy and therefore 

the dfopt is shifting to smaller values. 
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 emax: maximum absolute error threshold for any chosen downscale 

factor dfopt. Smaller values may cause attempts to be rejected due 

to stricter accuracy requirements. 

 einc: maximum allowed absolute increase in orders of magnitude of 

the overall error norm. Smaller values limit the number of 

successful attempts as well as the overall reduction in the rate 

constants for the fast processes. 

 

5.2.2.8. Summary of algorithm and flowchart 

 

 Summarising all the steps described in detail in the previous subsections, 

we present the flowchart of our algorithm (Figure 22) and highlight its important 

components. The main KMC loop that propagates the system forward in time is 

the same as in “traditional” KMC algorithms. The counter iDS keeps track of the 

KMC steps executed for the purposes of invoking our algorithm when iDS = N, at 

KMC time ts. The simulation enters the downscale mode, saves the state of the 

system, and generates the unscaled trajectory (subsection 5.2.2.4). If there is 

sufficient separation between the fast and slow reaction in terms of execution 

frequency, then the downscaled trajectories are generated. Using the KMC steps 

executed and the firing times of all slow reaction events, we calculate the cost 

and IAT error and fit the appropriate equations to both. If the error checks on the 

scaling of the IAT error norm pass successfully, we form the objective function 

and find the optimum downscale factor. If its error is below the threshold, the 

corresponding trajectory is generated and officially accepted/registered, the rate 

constants are reduced, and the algorithm exits the downscale mode. Then the 

system is propagated in time using the reduced rate constants. In the case where 

a check fails, the downscaling attempt is aborted, the unscaled trajectory is 

registered as the official trajectory over the KMC time interval (ts, tf ) and the KMC 

simulation continues as usual. The counter iDS is reset and keeps track of the 

KMC steps to invoke the algorithm again when iDS = N. 
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Figure 22: Flowchart of the proposed algorithm. The green shaded and 
numbered shapes represent the decision steps of the algorithm. 

 

5.3. Computational Model, Results and Discussion 

 

 To validate our methodology and study its performance and efficiency, we 

apply the algorithm described above to an oscillatory reactive system inspired 

from biology. In the following, we first present our benchmark system along with 

its main features and identify the source of its temporal stiffness. We then present 

in detail the application of the downscaling algorithm on this system and show in 

practical terms the various algorithmic steps and decision criteria. In addition, we 

present and discuss cases where the downscaling is rejected, such as when the 

error is saturated. In the last subsection, we compare the results of the original, 

unscaled simulation with the downscaled one and discuss the validity of the 

methodology by presenting evidence that our algorithm did not distort the key 

features of the dynamics of the system. 
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5.3.1. Reaction model 

 

 Our motivation and aim was to develop a generic on-the-fly rate scaling 

methodology rather than a system-specific one. For this reason, the benchmark 

system was chosen carefully in order to try to push the limits of the methodology 

developed, towards ensuring the robust operation and effectiveness of the latter. 

Thus, we would like a system (a) with a good level of complexity, (b) with rich 

dynamic features such as oscillations, which must not be disturbed by the 

downscaling procedure, (c) with stiffness that arises from pairs of reversible 

reactions, and (d) that is of practical interest to multidisciplinary fields. Regarding 

point (d), we also note that in biological systems, where the number of interacting 

molecules is typically low, stochastic effects may be significant for the evolution 

of the system [123, 124]. Taking into consideration the above reasons, we have 

chosen, as out benchmark system, a biological oscillator that mimics the cell 

cycle. Our benchmark system is a slightly modified version of the model 

introduced by Stamatakis and Mantzaris, as summarised in Table III in [122] and 

includes the following nine reactions: 

1 𝑂
𝑘0
→𝑂 + 𝑋 

2 𝑂𝑋2
𝑘1
→𝑂𝑋2 + 𝑋 

3 2𝑋
𝜒
→𝑋2 

4 𝑋2
𝛽𝜒
→ 2𝑋 

5 𝛰 + 𝑋2
𝜑
→𝛰𝑋2 

6 𝛰𝑋2
𝑎𝜑
→ 𝛰 + 𝑋2 

7 𝑌𝑖 + 𝑋2
𝑘2
→𝑌 + 𝑋2 

8 𝑋 + 𝑌
𝜆1
→𝑌 

9 𝑌
𝜆2
→𝑌𝑖 

Table 5: Reactions included in our benchmark model. 

 

The reaction network of Table 5 involves the following six species: O, X, X2, OX2, 

Yi and Y. Due to the system’s conservation laws O + OX2 = Ototal and Y + Yi = 

Ytotal, stemming from reactions 5,6 and 7,9 respectively, only four of the 
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participating species are independent, viz. O, X, X2 and Y. The populations of 

OX2 and Yi are calculated using the conservation laws just presented. For 

detailed information on the physics of our benchmark model and the 

correspondence of species presented to actual biomolecules, we refer the 

interested readers to the original work [122]. Very briefly, we note that the 

oscillations on this system are caused by the autocatalytic action of species X, 

whose dimer, X2, exerts positive feedback, i.e. further enhances its own 

production, while Y, an active state of Yi, exerts negative feedback by degrading 

X via reaction 8 of Table 5. 

 To provide a quick overview of the behaviour of our benchmark system 

along with its main features, we use the parameters listed in Table 6, with ζ=10, 

and propagate the system up to a final time of 500 minutes (KMC time units). The 

obtained trajectory illustrating how the concentrations of the various species 

evolve in time is presented in Figure 23(a). Evidently, the main feature of the 

system is its oscillatory behaviour with a period of around T=200 minutes. For 

most of the time, the concentrations of species X and X2 are very close to or 

exactly zero. As a result, the propensities of reactions 3-6 are very small or zero. 

The KMC time advancement with respect to KMC time (Figure 23(b)) reveals that  

 

Parameter Value Unit 

Ototal 10 copy number 

Ytotal 1040 copy number 

k0 0.15 min-1 

k1 50 min-1 

k2 1.88×10-3 nM-1 ∙ min-1 

φ 9.77 ∙ ζ nM-1 ∙ min-1 

χ 3.91 ∙ ζ nM-1 ∙ min-1 

α 159.37 nM 

β 5.31 nM 

λ1 9.38×10-3 nM-1 ∙ min-1 

λ2 0.01 min-1 

Table 6: Parameter values for the benchmark model. The parameter ζ controls 

the timescale separation or the stiffness of the system. 
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the system has fast- and slow-propagating regions, whose time advancements 

exhibit periodicity as well. Figure 23(c) also shows that the computational cost, 

quantified by the number of KMC steps executed, is different during the course 

of the KMC simulation. More specifically, as illustrated in Figure 23(c), 8×106 

KMC steps are executed to propagate the system until KMC time 40, whereas 

only a tiny fraction thereof (13×103) are needed to further propagate the system 

until KMC time 200. Combining the visual information of the panels (a), (b) and 

(c) of Figure 23, we conclude that the slow-propagating regions occur when the 

concentrations of species X and X2 become non-zero and the concentration of Y 

increases rapidly. Lastly, the overall execution frequency of all reactions in our 

network is illustrated in Figure 23(d). It is obvious that reactions 3-4, and 5-6 are 

quasi-equilibrated as the forward and reverse steps of reversible reaction events. 

It is also clear that reactions 3-6 dominate the computational simulation, since 

they are executed at least two orders of magnitude more frequently than the next 

most frequently executed reactions, i.e. reactions 2 and 8. 

 

Figure 23: (a) Time evolution of the benchmark system. (b) KMC time 

advancement (dt) with respect to KMC time. (c) KMC steps executed with respect 

to KMC time. (d) Overall execution frequencies of all the reactions on the network. 

(a) 

(b) 

(c) 

(d) 
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 With a closer look at the reaction network and Figure 23, we may conclude 

that once reactions 3-6 are quasi-equilibrated, they no longer contribute any 

transient features to the dynamics of the system. Yet, reactions 3-6 consume 

most of the computational time, more specifically 99.5% of the total executed 

KMC steps, thereby making the system “stiff”. Based on the above, along with 

the criteria introduced in the beginning of this section, the chosen benchmark 

system is ideal for our downscaling methodology and could help us draw 

conclusions on the generality of the latter. The chosen benchmark system is 

relevant to the mathematical biology field. Nevertheless, any field studying 

interacting species and the evolution of reaction networks in time could benefit 

from the proposed methodology. 

 

5.3.2. Application of the downscaling algorithm 

 

 In this section, we present the application of the developed methodology 

to the conceptual “toy-model” of the cell cycle presented above. We present all 

the steps of the algorithm along with our results. We also discuss and present 

results on cases where the downscaling attempt is aborted because an error-

related check fails, as per the numbered decision-blocks of the flowchart in Figure 

22. 

 As already discussed in section 5.2.2.3, for the algorithm to scale down 

the rate constants of the fast reactions, we provide information about the 

expected execution frequency of the reactions in our network and indicate the 

reactions whose rates may undergo reduction. For the cell cycle model, the fast 

reactions are 3-6, the remaining reactions are expected to be (much) slower, and 

the parameters allowed to be downscaled are χ and φ only. A total number of 

N = 105 KMC steps are executed before our algorithm is invoked. We have 

chosen our base downscale factor as dfb = 5, hence the rate parameters χ and φ 

are reduced in powers of dfb such as 5, 25, 125, etc. A total of n = 9 downscaled 

trajectories are generated in each attempt. As a reminder, we note that the first 

trajectory has df = dfb0 = 1, therefore the maximum reduction of the rate constants 

is done by df = dfb8 = 390625. The minimum required Time-Scale-Separation, 

TSSmin, in the execution frequencies between the fast and the slow reactions is 
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set to two orders of magnitude. Thus, the algorithm will only attempt a 

downscaling if the fast reactions, especially 5-6, are at least 102 = 100 times 

faster than the fastest slow reactions, reactions 2 and 8 as shown in Figure 23(d). 

The weights on the cost and error are set as α = 1 and β = 2 respectively since 

we aim for better accuracy. Finally, we allow a maximum IAT error of 0.05 and a 

maximum increase in the error by two orders of magnitude. The latter is feasible 

since we obtain a reference error point by generating the trajectory with df = 1. 

The values of all user-defined parameters used in our simulations are 

summarised in Table 7. Lastly, for the parameter ζ that appears in the rate 

parameters in Table 6 we have chosen the value of ζ=100 unless stated 

otherwise. 

 

Parameter Value Units 

N 105 KMC steps 

wmin = tf – ts 10 KMC time units 

wmax = tf – ts 15 KMC time units 

dfb 5 - 

n 9 - 

TSSmin 2 Orders of magnitude 

α 1 - 

β 2 - 

emax 0.05 - 

eincr 2 Orders of magnitude 

Table 7: User-defined parameters of the developed algorithm as discussed in 

section 5.2.2 and summarised in 5.2.2.8. 

 

 In the beginning, the KMC simulation is initialised, the time is set to zero 

and the species populations are set to zero apart from OX2 and Yi that are 

initialised using the first two values of Table 6 respectively. The KMC simulation 

runs as usual for N = 105 and reaches a KMC time of tKMC = 1.503 minutes. Then 

the downscaling algorithm is invoked. The state of the system is saved and the 

width of the current downscaling window is chosen as w = 10 minutes, which is 

the minimum width imposed by us. Over the next KMC time the interval (1.503, 
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10.503) the algorithm generates the unscaled trajectory of the system and 

calculates the reaction execution frequencies (as illustrated in Figure 24). The 

Time-Scale-Separation, calculated as the logarithm of the difference of the 

execution frequencies of reactions 5 and 2, is found to be 3.093, which is 

sufficient based on the user-defined TSSmin, therefore, the algorithm proceeds in 

restoring the state of the system back to t=1.503 minutes and generating the n = 9 

downscaled trajectories. Once the downscaled trajectories are obtained, the 

algorithm moves on to the evaluation and decision-making stage. 

 

Figure 24: Execution frequencies of all reaction channels of the unscaled 
trajectory over the first downscaling interval (1.503, 10.503) 

 

 Using the collected data, such as KMC steps executed and the occurrence 

times of all slow reaction firings, the cost and IAT error norm are calculated as 

discussed in section 5.2.2.5. Both quantities are plotted against the downscale 

factor in Figure 25. The additional error check concludes that the IAT error norm 

for each of the slow reaction channels scales as expected, i.e. none of those error 

norms is saturated. Before forming the objective function, we fit the cost and IAT 

error data points to obtain the analytical expressions for the cost, C(df), and error, 

E(df), respectively, as shown in Figure 25 by the red and blue bold dashed lines. 

More specifically, for the fit on the IAT error, we use all the error data-points from 

all slow reactions and perform a single fitting to obtain E(df). Then, the objective 
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function is formed using equation (10) and the weights as reported in Table 7. 

The minimum of the objective function (bold dark orange curve in Figure 25) 

suggests that the downscale factor df = 81.3 strikes the ideal balance between 

cost and accuracy. The latter downscale factor does not violate any of the 

additional error checks, namely, the absolute error incurred is 0.013, below the 

emax = 0.05, and the overall error increase remains below the two orders of 

magnitude since the average error increases by a factor of 10. For comparison 

purposes, we use additional pairs of weight factors for the cost and error, to 

illustrate how the weights affect the objective function and thus the optimum 

downscale factor chosen. The additional objective function curves are illustrated 

with bold continuous curves in Figure 25 and the corresponding weights are as 

listed in the legend. 

 

Figure 25: Cost and IAT error norm with respect to the downscale factor. The red 

dashed line is the fit of the cost. The blue dashed line is the aggregated fit on the 

IAT error. The coloured bold lines are the objective functions for different weights 

on cost and error as listed in the legend. The coloured vertical lines and the 

overlaid numbers correspond to the minimum of the different objective functions, 

matched by color. 

 

 The decision-making procedure identifies the optimum downscale factor 

as dfopt = 81.3. Then, for the final time, the state of the system is restored back to 

tKMC = 1.503 minutes, to generate the final downscaled trajectory of the system 

using dfopt. The latter trajectory is registered as “official”, i.e. the species 

concentration samples are saved along the samples collected outside any 
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downscaling attempt, the rates χ and φ are reduced permanently by a factor of 

dfopt, and finally, the algorithm exits the downscale mode. In addition, the counter, 

iDS, that triggers the downscaling attempts is reset. From that point onwards, the 

system is propagated as usual with the reduced rate constants. Once another 

N = 105 KMC steps are executed, the algorithm is invoked again to check for 

downscaling. This happens at KMC time tKMC = 228.7. The second downscaling 

window (ts,tf)2 is determined as (228.7, 238.7)2 as illustrated in Figure 26. In the 

second attempt, the timescale separation between the fast and slow reactions is 

less than the user-defined minimum and thus, the attempt is aborted. We would 

like to note that an aborted attempt, due to insufficient timescale separation 

(decision block #1 in flowchart of Figure 22), has negligible overhead because 

the already generated unscaled trajectory is used to fill the KMC time interval 

(ts,tf)j for any j for which the attempt is aborted. 

 

Figure 26: Trajectory of the system obtained with downscaling algorithm active. 
The green vertical band represents the first downscaling attempt, which was 
successful whereas the red vertical band the second attempt, which was aborted. 

 

 In the run just discussed, the tunable parameters were chosen such that 

the first downscaling attempt reduces the execution frequency of the fast 

processes up to the point that no more downscaling is permissible. To illustrate 

how the algorithm takes into account previous successful attempts, we performed 
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a different test run, choosing a different value for the parameter ζ so that the 

timescale separation is larger and therefore, higher reduction factors of the 

corresponding rate constants are possible. Thus, the simulation results presented 

below are obtained using ζ = 1000, wmin = 5, and β = 10. These parameters were 

chosen such that the computational cost of the first downscaling attempt is 

reduced and that the first successful downscaling would allow the second one to 

be accepted as well, i.e. by favouring accuracy, the first downscaling is less 

aggressive. The first attempt is successful, identifying dfopt = 72.1, and the 

relevant error and cost curves along with various objectives functions are plotted 

in Figure 27(a). The second attempt is also successful. The methodology deems 

that a further reduction by a factor of 1.3 is acceptable so that the overall 

downscale factor becomes 94, as shown in Figure 27(b). The time-ranges over 

which the two successful attempts took place are illustrated in Figure 28. 

 Based on the results of Figure 27, it is worth discussing a few important 

points. First, in all attempts, the calculation of the cost takes into account any 

previous accepted attempts. This is a crucial to propagate information about the 

actual cost of the downscaled trajectories generated in subsequent downscaling 

attempts. Second, for every downscaling attempt, the downscaled trajectories are 

obtained by reducing the current rate constants by powers of the user-provided 

dfb. Since the current rate constants are used, the reduction procedure is done in 

a relative manner during a downscaling attempt. For example, during the second 

attempt, the rate constants that have already been reduced by a factor of 72.1 

(the dfopt of the first attempt), are further reduced by 5, 25, 125, etc. However, the 

decision procedures are performed using the absolute downscale factor as 

illustrated in Figure 27(b). 
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Figure 27: Scaling of the error norm and normalised cost with the corresponding 
objective functions for the two accepted downscaling attempts. On panel (b), the 
curves start at 72.1 which was the chosen dfopt during the 1st attempt. 

 

Figure 28: Location, in terms of KMC time, of the two accepted downscaling 
attempts denoted by the two vertical green bands. 

 

5.3.3. Results and validation 

 

 We use the parameters of Table 6 with ζ=10 and run our benchmark model 

twice until a final time of 5×106 KMC minutes. For the first run, the downscaling 

methodology is disabled and therefore the simulation is executed from start to 

(a) (b) 
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finish using the initial rate constants. For the second run, the downscaling 

algorithm is enabled. The user-defined parameters values are as listed in Table 

7 except for the weight on the error, β, which was chosen as β = 1 thus favouring 

the cost reduction. In the latter run, and following the procedure described above, 

the optimum downscale factor was identified as dfopt = 125 right from the first 

downscaling attempt with no further reductions for the rest of the run. The run 

using the original rate constants reached the final KMC time in 66 hours of wall 

time. On the other hand, the run in which the rates were reduced was completed 

in just 90 minutes. Consequently, the developed methodology accelerated the 

second run by 44 times, thereby achieving a significant reduction in the total 

computational cost. 

 At this point, we would like to discuss the achieved acceleration as just 

presented. The acceleration factor we obtained by comparing the runs above is 

underestimating the full capabilities of the developed methodology. The reason 

is that we have chosen the parameter of our benchmark chemical system, more 

specifically, ζ = 10, so that we are able to run it using the initial rates within a 

reasonable amount of time (66 hours). Choosing a much larger value for ζ would 

have resulted in greater overall speedup, however running the original system 

would have been intractable without spending computational resources for an 

unreasonably high amount of time. As an example, we estimate that the original 

simulation with ζ = 100 would have a runtime between 27 and 28 days, while the 

one with the downscaling enabled takes only 3.2 hours (parameters as Table 7, 

wmin = 5, dfb = 12, β = 1, dfopt = 288). Using the former estimate of 27-28 days, 

along with the actual runtime of 3.2 hours we obtained for the reduced system, 

the speed-up gain ranges from 200× to 207×. In principle, the speedup may be 

much higher than that in cases where the timescale separation is much larger 

than two to three orders of magnitude. 

 The main reason we have opted for a tractable original system is to enable 

the validation of the downscaling procedure. The stochastic nature of the KMC 

method makes it impossible to directly compare the equivalence of the original 

and the downscaled versions of the system in terms of concentrations with 

respect to time. Due to the on-the-fly reduction of certain rate constants, the two 

trajectory sets, original and downscaled, will not be identical. However, the aim 

of the downscaling procedure is to speed-up the computational simulation while 
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preserving the important features of the system under study and not the exact 

path in the concentrations space. In our benchmark model, the oscillatory 

behavior is the main feature, and here we examine whether the reduction in rates 

incurred a change on the dominant oscillation frequency. To investigate the 

oscillatory patterns and extract the dominant frequency, we calculate the 

autocorrelation function of the concentration of species Y and from the latter we 

calculate the power spectral density via a cosine transformation, as explained in 

detail in Section IV of Stamatakis and Mantzaris [122]. In Figure 29, we plot the 

spectral density of the trajectory of species Y for both the original and downscaled 

system. It is impressive to see that the dominant frequency of f = 5×10-3 min, 

which corresponds to a period of T = 200 min is obtained almost intact from the 

reduced system, thereby validating the developed method. More specifically, the 

on-the-fly reduction did not alter the dynamics of our benchmark system and, by 

choosing system-informed parameters for the algorithm, we are able to extract 

the system’s main features in a fraction of the time as compared to the original 

system. 

 

Figure 29: Spectral density of species Y for the original and downscaled system, 
both run for 5×106 KMC minutes. 

 

 



120 

5.4. Summary & conclusions 

 

 In this study, we developed a methodology to reduce on the fly the kinetic 

rate constants of very frequent processes in well-mixed chemical systems. At 

specific intervals during the course of the simulation, our algorithm generates 

multiple trajectory sets that utilise rate constants that are reduced by different 

factors, and collects data regarding the computational cost and the error 

introduced. Then, an objective function is formed and an optimisation problem is 

solved, to identify the downscale or reduction factor that achieves the best 

balance between accelerating the simulation with the least error. Our algorithm 

includes some well-defined, user-provided parameters to tune its performance, 

depending on the user’s preference on favouring speed or accuracy. To assess 

the performance of our algorithm, we have chosen as our benchmark a chemical 

system from biology [122], which exhibits oscillatory behaviour. 

 The application of our algorithm on the benchmark system demonstrated 

reductions of the simulation runtime from 66 hours to 90 minutes, providing an 

acceleration factor of 44×. The reported acceleration factor probably 

underestimates the capabilities of the methodology since we have chosen the 

parameters of the benchmark system such that we may obtain the original run 

with a reasonable amount of time. We also estimate that acceleration factors of 

200×-207× are easily obtained. In principle, much larger acceleration factors may 

be obtained if the timescale separation between the fast and slow reactions is 

greater. 

 This study comes to fill the gap in methods that tackle the timescale 

disparity on well-mixed systems especially regarding the quantification of error 

introduced because of the reduction of the rate constants of the fast processes. 

By having a quantifiable error, we can obtain trajectories that converge to the 

“true” solution, and therefore have confidence that the final results are reliable 

approximations of this “true” solution. 
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6. Concluding remarks and future work 

 

 The current thesis explored various approaches in accelerating Kinetic 

Monte Carlo simulations of reactive systems. The major inherent drawback of 

KMC is its serial nature, namely the scheduling and execution of computational 

steps one after the other. For this reason, industrially relevant length-scales are 

virtually impossible to simulate, at least for complex systems, with the current 

methodologies. In addition, certain chemical reaction systems are even more 

challenging because of the vastly different timescales on which the reactions take 

place. In practice, such systems are out of reach with current methods. 

 Chapter 3 investigated the performance of different scheduling data 

structures. Queuing systems available in the literature were implemented in the 

KMC software Zacros, and another one was developed to address specific 

needs. It was found that the queuing system that delivers the best performance 

depends on the chemical system studied. Based on our results, the compiler-

induced optimisations provide an advantage to the array-based queueing 

systems as compared to the node-based ones. 

 Chapter 4 investigated the scaling performance of the Time-Warp 

algorithm, as implemented in Zacros. Time-Warp enables distributed, on-lattice, 

KMC simulations of reactive systems and it is the first-of-its-kind approach 

implemented in a general-purpose code. In addition, performance optimisation 

benchmarks were conducted to tune the user-defined parameters of Time-Warp 

so that the best possible performance is delivered. For sufficiently large lattices, 

distributed simulations offer a significant speedup as compared to the serial runs 

and the speedup itself depends on the system studied. The performance 

investigation studies revealed that the frequency of global communications 

among the different processors does not affect the performance, provided that 

there is enough memory to save snapshots. Conversely, the snapshot saving 

interval may decrease the performance dramatically if it is not chosen 

appropriately. 

 Lastly, Chapter 5 focused on tackling the timescale disparity on well-mixed 

systems by developing an on-the-fly methodology for downscaling rate constants. 

The algorithm developed reduces the rate constants of fast reaction channels in 
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an optimal, data-driven way, by balancing the introduction of error and the 

reduction of the computational cost. Most importantly, it provides metrics on the 

error introduced, and along with some user tunable parameters, one may favour 

accuracy or computational efficiency according to their needs. 

 The conducted research is by no means exhaustive in what can be done 

to accelerate KMC simulations. It provided, however, a few starting points for 

further exciting research. Extending the downscaling algorithm to on-lattice 

systems will have a significant impact on simulating industrially relevant systems 

accurately. Further studies and developments on the Time-Warp algorithm will 

soon make it possible to break the billion-site KMC simulation barrier, which is 

necessary towards capturing the formation of patterns on catalytic surfaces. 

Apart from direct extensions of the current research, one could investigate other 

avenues as well in terms of software and hardware paradigms. The use of 

Graphics Processing Units (GPUs) is becoming the norm for accelerating 

computationally intensive calculations. It may be worth investigating the 

applicability of such hardware acceleration for on-lattice KMC simulations. In 

addition, Field-Programmable Gate Arrays (FPGAs), i.e. integrated circuits that 

can be configured to perform specific functions, may be worth investigating for 

executing the computationally intensive procedures of a KMC simulation. Lastly, 

the development of mathematical methods related to the perturbation and 

convergence analysis for reactive systems would provide the necessary 

theoretical support on top of which KMC simulations can be developed. This is 

especially needed on approximate KMC algorithms with error bounds in order to 

tackle stiff systems and reach relevant timescales. 

 The efforts for reducing the computational cost of stiff systems, well-mixed 

or on-lattice, may be aided by methods developed in other fields. One such 

method is the Graph Transformation (GT) method as applied to finite-state 

discrete-time markovian systems [125-130]. For such systems, one needs to 

know all the accessible states and the transition rules among them. Then, the 

system is represented as a graph, with the nodes representing the states and the 

edges connecting the nodes representing the transition probabilities. Stiff 

systems arise in the presence of metastable states which are visited extremely 

frequently as compared to the rarely visited states. This “flickering” in metastable 

states may be eliminated via the GT method. The main idea of the GT method is 
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to remove nodes from a graph gradually in such a way that the average properties 

of interest are left unchanged. This is done by renormalizing, i.e. adjusting the 

transition or branching probabilities to preserve the system’s average properties, 

such as the mean first-passage time (MFPT). The complexity of the GT method 

depends on the average number of connections of nodes, depends on the 

heterogeneity of the distribution of the number of connections, and especially the 

renormalization procedure is shown to scale as O(|S|3) [125, 130] where |S| the 

number of nodes in the graph. In addition, the linear scaling of the memory 

requirements with respect to the graph size [125] might be substantial for 

extensive systems. There are however certain techniques to reduce memory 

usage [128]. In the context of KMC, stiff systems arise in the presence of 

reactions being executed extremely frequently as compared to other rarely 

executed reaction channels. Accelerating such a KMC simulation would entail 

reducing the execution frequency of the fast events without affecting the 

dynamics of the system. Therefore, the ideas and applications of the GT method 

would be worth investigating given that the GT method has been shown to 

perform well in various applications [130].  

 Another promising method to tackle stiffness in KMC simulations is the 

kinetic Path Sampling (kPS) [130, 131], which is statistically equivalent to the 

usual KMC algorithm [131]. The main ideas around the kPS are (a) a state 

reduction procedure is applied to a set of metastable states or a trapping basin, 

and (b) sampling a single exit state and the exit time that the system escapes 

from the subnetwork of metastable states. The kPS does not require an a priori 

knowledge of the trapping states since the mapping of these states is done 

iteratively and they are eliminated through path factorization[131]. The kPS 

method may be used to accelerate a KMC simulation when the latter becomes 

extremely inefficient due to fast processes. When implemented and performed in 

a correct manner, a stochastic simulation using kPS and KMC interchangeably, 

and as needed, is always more efficient than the KMC simulation alone [131]. An 

exciting direction of research could be the investigation of the generality of the 

kPS method, and especially to chemical reactions systems relevant to catalysis. 

 Building upon the work presented in chapter 5, attempts to accelerate on-

lattice KMC simulations without introducing significant error could benefit from 

existing studies such as that of Chatterjee & Voter [84] in which states are lumped 
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together as belonging to a wider energetic super basin. If states within a super 

basin are visited very often, the corresponding barriers are raised i.e. their rate 

constants are decreased so the execution of the slower events is favoured. 

Following similar approach, Dybeck and co-workers [86] developed an 

acceleration scheme for KMC simulations that operates on the reaction channels 

and not by monitoring individual lattice configurations as in Ref. [84]. The main 

idea of the work done by Dybeck and co-workers is to reduce the rate constants 

of reactions that are QE and that have been executed a certain amount of times. 

Once a non-QE event occurs, all rate constants are unscaled to their original 

values. Along the same lines, Danielson and co-workers developed the 

Staggered Quasi-Equilibrium Rank-based Throttling for Steady-state algorithm, 

abbreviated SQERTSS [85]. This algorithm monitors all the executed processes 

during the simulation and classifies them into ranks based on their frequency. 

Once enough data have been gathered, a test is performed to assess whether 

downscaling of fast processes or upscaling of slow processes can be performed 

and by which factor. The main difference of SQERTSS as compared to the 

already presented methods is that the slow processes are upscaled so that they 

occur more often. A common characteristic of the above methods is that they 

introduce an approximation error due to the down- or up-scaling of the rate 

constants. More importantly, this error is not quantified and the success of the 

algorithm depends on the nature of the system [132]. A new research direction 

could endeavour in combining the above works along with our rate scaling 

algorithm for the acceleration of on-lattice KMC simulations with quantifiable 

error. 

 Lastly, in further development efforts, one could borrow ideas from 

research performed in other fields, for example the work of Rosta & Hummer 

[133]. These authors develop a formula to calculate the error and efficiency of 

simulated tempering (ST) simulations, where ST is a method to accelerate 

conformational sampling that is limited by the slow interconversion rate between 

the energetic basins. 
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Appendix I 

 

1. Binary heap 

 

 In this section, we briefly discuss the operations implemented in the binary 

heap data-structure. A new element is inserted at the bottom level and at the left-

most available position as illustrated by Figure 30(a) where the new node is the 

orange one with value 0.3. Comparison of this value is performed with that of its 

parent node and if the new node has priority over its parent, the two nodes are 

swapped. The value comparisons and swaps continue until the new node has a 

parent with smaller value than itself (Figure 30(c)), in which case no further swaps 

are performed. Executing the previous steps at every insertion ensures that 

partial order is never violated in the binary heap. 

 As for the removal operation, referring to Figure 31, we want to remove 

the element with value 0.5, coloured orange (Figure 31(a)). The last element of 

the binary heap, in this case the one with value 2.3, coloured green, replaces the 

element to be removed (Figure 31(b)). Now, both children have priority over the 

green node. The smallest one is swapped with the parent node until the green 

node reaches a level that does not violate partial order (Figure 31(d)). An 

optimised alternative of this algorithm, that does not require swapping the 

elements, goes as follows: the element to be removed is actually removed, 

leaving a gap in its place. Then, the last element takes the place of the gap only 

virtually, that is, when a numerical comparison is performed between a node and 

the gap, the empty node appears to have the value of the last node. The last node 

overwrites the empty node only when the float-up or sink-down operations are 

Figure 30: Graphical representation of the insertion operation 
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completed. Using this approach, one avoids performing swaps that may have an 

impact on performance. 

 Due to its completeness, the binary heap can be represented using an 

array as shown in Figure 32. The nodes are numbered from left to right and from 

the top to the bottom. In one-based arrays, that is, the index of the first element 

is one, for an arbitrary node i we may find the indices of parent and child nodes 

as follows: 

 left child: 2i 

 right child: 2i+1  

 parent: ⌊
𝑖

2
⌋ 

 Figure 32 illustrates the correspondence between an occurrence time and 

its position on the binary heap. In addition, Table 8 shows the two extra arrays of 

the data-structure: array “labels” stores the labels of each one of these individual 

lattice processes, while array “map” is used to map the labels to the correct 

occurrence times. The “indices” and “occurrence times” rows are the same as the 

ones already presented in Figure 32. The “Labels” row links the lattice processes 
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(a) (b) 

(c) (d) 

Figure 31: Graphical representation of the deletion operation. See text for details  
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with the corresponding occurrence times, e.g. the lattice process with label 3 has 

an occurrence time of 0.1 time units, the lattice process with label 7 has an 

occurrence time of 0.5 time units etc. For an efficient implementation, the “Labels” 

array is not enough and we show why. Let us assume that the lattice process with 

label 3 occurred and as a result, the lattice process with label 4 has been 

invalidated. In order to find the occurrence time of the lattice process with label 4 

and remove it, one has to iterate over the “Labels” array, an operation with 

expected computational time O(N), N being the size of the “Labels” array. If one 

has another array that maps the position of every label into the “occurrence times” 

array then the operation described above takes constant time, O(1). The “Map” 

array, bottom row of Table 8, links an arbitrary label with its position on the 

“Labels” array and is used as follows: consider the query what is the position of 

the lattice process with label 4? To answer this, we evaluate the expression 

Map[4], namely we retrieve the element found at the 4th position of the “Map” 

array and we find that this is 7. We now know that the occurrence time of the 

lattice process with label 4 can be found on the 7th position of the “occurrence 

times”. Generalising this concept, we are able to retrieve the occurrence time of 

an arbitrary lattice process j by evaluating Occurrence_times[Map[j]]. 

Indices 1 2 3 4 5 6 7 

Occurrence_times 0.1 0.5 0.2 0.6 1.9 0.9 0.8 

Labels 3 7 1 6 2 5 4 

Map 3 5 1 7 6 4 2 

Table 8: Arrays used for an efficient implementation of the binary heap data-

structure (refer to text for the correspondence among the illustrated rows) 
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Figure 32: Representation of a binary heap using an array 
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2. Pairing heap 

 

 As compared to the binary heap, the pairing heap is more flexible in the 

sense that it allows multiple children per node. Due of this feature, implementation 

might become tricky and computationally demanding if one is tempted to pre-

allocate a sufficiently large number of pointers in order to build a pairing heap 

exactly as represented in Figure 33(a). Instead, the binary heap representation 

is a more suitable way to implement a pairing heap. In this representation, each 

node has only three pointers pointing to: (i) its left-most child, (ii) its next sibling, 

(iii) its previous node. As their name suggests, sibling nodes are those that have 

the same parent. The top node has only one non-null pointer pointing to its left-

most child and has no sibling and no previous node. Graphically, the binary tree 

representation of the pairing heap of Figure 33(a) is illustrated in Figure 33(b) 

where the black arrows represent the left-most child pointer, the red arrows 

represent the next sibling and the previous pointers are omitted for visual clarity. 

The previous pointer of a certain node X points back to the node whose either 

the left-most child pointer or the next sibling pointer points to X. For example, 

referring to Figure 33(b), the previous node for element 15.1 in the second level 

is the node 0.2 whereas the previous node for element 2.5 in the third level is the 

node 1.0. This representation provides a way to implement, in a simpler way than 

that of Figure S4a, the pairing heap data-structure and store elements without 

any restrictions on e.g. the maximum number of children. 

 

Figure 33: (a) Conventional representation of a pairing heap. (b) Binary tree 

representation of the pairing heap shown in (a). 
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3. Energetics for the water-gas shift reaction model 

 

 In our simulations, the reference set used was [Pt(111), CO, H2O, H2], 

which is the catalytic surface and three of the gas phase species. The formation 

energies of the surface species were taken as follows: 

 

Surface Species Form. Energy (eV) 

CO* -2.08 

H2O* -0.36 

OH* 0.83 

O* 1.30 

H* -0.62 

COOH* -1.49 

Table 9: Formation Energies of the surface species 

 

 The numerical values involved in the calculation of the rate parameters 

used in our simulations are summarised in the following table. For adsorption 

events, being spontaneous with zero activation energy, we calculated the pre-

exponential using the equation: 

𝐴𝑓𝑤𝑑 =
𝐴𝑠𝑖𝑡𝑒

√2 𝜋 𝑚 𝑘𝐵𝑇
 

where Asite is the effective area of the catalytic site where the reaction takes place 

and it is taken as 1 Å2, m is the mass of the adsorbing molecule, kB is the 

Boltzmann’s constant and T is the temperature, taken as 500 K. For surface 

events, the pre-exponential is estimated as Afwd = kBT/hPlanck at T=500 K. 

 

Elementary Event Afwd (s-1) Afwd/Arev 
Ea,fwd 

(eV) 

𝐶𝑂(𝑔) + ∗ ↔  𝐶𝑂∗ 2.23×107 bar-1 2.14×10-6 bar-1 0.00 

𝐻2(𝑔) +  2 ∗ ↔  2𝐻∗ 8.30×107 bar-1 7.97×10-6 bar-1 0.00 

𝐻2𝑂(𝑔) + ∗ ↔  𝐻2𝑂
∗ 2.78×107 bar-1 2.67×10-6 bar-1 0.00 

𝐻2𝑂
∗ + ∗ ↔  𝑂𝐻∗ + 𝐻∗ 1.04×1013 1.00 0.78 
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𝑂𝐻∗ + ∗ ↔  𝑂∗ +𝐻∗ 1.04×1013 1.00 0.94 

𝐶𝑂∗ + 𝑂𝐻∗  ↔ 𝐶𝑂𝑂𝐻∗ + ∗ 1.04×1013 1.00 0.41 

𝐶𝑂𝑂𝐻∗ + ∗ → 𝐶𝑂2(𝑔) + 𝐻
∗ + ∗ 1.04×1013 - 0.85 

𝐶𝑂∗ + 𝑂∗ → 𝐶𝑂2(𝑔) +  2 ∗ 1.04×1013 - 0.99 

Table 10: Rate parameters of the elementary events taken into account for the 

water-gas shift reaction model. The last two steps are considered as irreversible. 

 

4. Time scaling of operations 

 

 A way to estimate, at least theoretically, the performance of an 

algorithm is by counting the number of elementary operations executed by 

that algorithm. For example, referring to Figure 30(a), let us estimate the 

time scaling of the insertion operation in the binary heap. In the worst case, 

an inserted value will float up to become the top node. The number of value 

comparisons and swaps that have to be executed are equal to ⌊𝑙𝑜𝑔2𝑁⌋, 

where N is the number of nodes in the binary heap. Assuming that each 

such operation takes a constant amount of time to be executed, the 

expected time scaling of the insertion operation is O(log2N) in the worst 

case. Following similar logic, we can show that the removal operation in 

the binary heap is also O(log2N). If we want to remove all elements from 

our binary heap then we have to perform the remove operation N times at 

O(log2N) cost each. Therefore, the total time needed to complete this task 

is O(N log2N). 

 Depending on the algorithm or operation being studied, its time 

scaling may vary and various functions are used to describe their time 

complexity. A few of these functions are plotted in Figure 34. We observe 

that O(log2N) scaling is increasing slowly with respect to the size of the 

system (or equivalently, with respect to the size of the data the 

operation/algorithm is applied to). O(N) and O(N log2N) increase at almost 

the same rate, apart from the region corresponding to small system size. 
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Their similarity is the reason for which the binary and pairing heaps seem 

to scale linearly in our TPD benchmark results. 

 

 

  

Figure 34: Graphical representation of various time complexity functions used to 

describe the number of operations performed by an algorithm. 
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Appendix II 

 

 A major difference of the Modified Next Reaction Method (Mod-NRM) by 

Anderson [46] as compared to the First Reaction Method by Gillespie [43] is that 

the former consumes just one random number per KMC step, excluding the 

initialisation stage of the simulation. In Mod-NRM, the reaction channels affected 

by the executed reaction have their inter-arrival times adjusted in order to reflect 

the change of their propensities. Due to the change in the representation of firing 

times in the Mod-NRM, the loss of memory property is not invoked [46], i.e. the 

firing times of the reactions are affected by the previous history and not just by 

the state of the system, i.e. the molecular populations. 

 The coupling between the fast and slow reactions, and the use of internal 

times Ti, combined with not using the loss of memory property causes the 

occurrence times of the downscaled trajectory with df = 1 to differ from the 

unscaled trajectory, even though the rate constants are the same and the same 

random numbers are used to generate the firing times of the slow reactions. The 

latter is also the source of the non-zero error norm we have shown for df = 1 

(Figure 4). This error norm depends on the timescale separation between the fast 

and slow reactions. 

 Here, we demonstrate computationally the convergence of the firing times 

with respect to the timescale separation. Equivalently, the error norm gets smaller 

as the timescale separation becomes larger. To do so, we use the following “toy-

model”: 

𝐴
𝑘1
→𝐵 

𝐵
𝑘2
→𝐴 

𝐵
𝑘3
→𝐶 

We use the Mod-NRM to propagate the above system in time. We start with an 

initial population of A0 = 50 molecules and B0
 = 30 molecules. For the rate 

constants, we have chosen 

k1 = 5×10N s-1 

k2 = 8×10N s-1 

k3 = 1 s-1 
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where the exponent N controls the timescale separation. We use two different 

random number streams: one for the fast and reversible pair of reactions A ↔ B 

and another for the slow reaction B → C. The first random number stream is 

initialized randomly, whereas the second is initialized with a specific seed and is 

kept the same for all the runs. 

 To collect statistics on the occurrence time of the first B → C reaction, we 

run the system described above, with N = 1, for R = 5000 times. The distribution 

of the firing times of interest is plotted on Figure 35. It is easy to see that, despite 

the fact that the same random number is used to generate the firing time of the 

first B → C transition, the latter firing time is not exactly the same on every run. 

 

 

 To investigate the dependence of the distribution on the timescale 

separation, we run the same simulation as above for different values of the 

exponent N. We collect samples from R=5000 KMC runs for each value of N. Our 

results are presented on Figure 36. 

Figure 35: Distribution of the firing times of the first B → C reaction. 
The samples were collected from R = 5000 repetitions of the KMC 
simulation. 
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 From the above results, we observe that the distribution becomes 

narrower as the timescale separation between the fast and slow reactions 

increases, equivalently, the standard deviation of the distributions decreases, 

whereas the mean of the distributions seems unchanged. Our results suggest 

that the firing times of the slow reaction, here B → C, would converge to a single 

value, had the A ↔ B reversible isomerisation was infinitely fast. However, in our 

toy-model here, and our benchmark model as introduced in the main text, the fast 

reversible pairs of reactions are not infinitely fast. The latter along with the with-

memory Mod-NRM gives rise to the non-zero error norm, as defined in the main 

text, when the same system is simulated under the same conditions and the same 

random numbers for the slow reactions.  

 

  

Figure 36: Distributions of the firing time of the first B → C 
reaction. 
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