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Abstract

Estimation of within-trial interactions in meta-analysis is crucial for reliable

assessment of how treatment effects vary across participant subgroups. However,

current methods have various limitations. Patients, clinicians and policy-makers

need reliable estimates of treatment effects within specific covariate subgroups,

on relative and absolute scales, in order to target treatments appropriately—
which estimation of an interaction effect does not in itself provide. Also, the focus

has been on covariates with only two subgroups, and may exclude relevant data

if only a single subgroup is reported. Therefore, in this article we further develop

the “within-trial” framework by providing practical methods to (1) estimate

within-trial interactions across two or more subgroups; (2) estimate subgroup-

specific (“floating”) treatment effects that are compatible with the within-trial

interactions and make maximum use of available data; and (3) clearly present

this data using novel implementation of forest plots. We described the steps

involved and apply the methods to two examples taken from previously pub-

lished meta-analyses, and demonstrate a straightforward implementation in Stata

based upon existing code for multivariate meta-analysis. We discuss how the

within-trial framework and plots can be utilised with aggregate (or “published”)
source data, as well as with individual participant data, to effectively demonstrate

how treatment effects differ across participant subgroups.
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1 | INTRODUCTION

Estimation of within-trial interactions in meta-analysis is
considered crucial for reliable assessment of how treat-
ment effects vary across participant subgroups.1 In recent
years, a strong recommendation has emerged for a focus

on covariate interactions derived within trials.2,3 How-
ever, the within-trial approach as previously described2

has various limitations. Where covariate interactions are
identified, clinicians and policy makers ultimately need
reliable estimates of effect specific to each patient
subgroup—ideally expressed on an absolute scale—to
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allow treatments to be targeted at those who might bene-
fit most and to inform patient choice. Furthermore, the
existing method is unable to incorporate information
from trials in which interactions cannot be estimated,
such as those with all participants belonging to a single
subgroup. Older approaches, whereby meta-analyses are
carried out separately for each subgroup and then com-
pared, allow the straightforward estimation of such quan-
tities and their presentation on forest plots. However,
such approaches conflate within- and across-trial infor-
mation and are therefore prone to aggregation
(or “ecological”) bias.1,4,5

In addition, while the described procedure for two
subgroups was straightforward,2 it was not extended to
the case of more than two subgroups, or for subgroups
without a clear ordering or choice of reference group.
Such cases require the estimation of more than one
parameter, necessitating multivariate meta-analysis.
Importantly, this imposed unwanted restrictions on the
range of patient covariates, potentially of clinical impor-
tance, that could be investigated in an appropriate way.

In this article, we extend our within-trial interaction
methodology2 to address these challenges. We intend
these methods to be applied with observed effect sizes
that are either extracted or calculated from aggregated
source data,6,7 although they may also be derived directly
from individual participant data (IPD) as the first stage of
a two-stage analysis.8,9 We provide a fully flexible frame-
work to: (1) estimate within-trial interactions across two
or more subgroups, ordered or unordered, for categorical
covariates; (2) estimate subgroup-specific treatment
effects (hereafter described as “floating” estimates) that
make maximum use of available data and are compatible
with the within-trial interactions in the sense which we
describe below; and (3) clearly present this data using
novel implementations of forest plots.

The article is structured as follows: in Section 2 we
describe motivating examples for this work, from two
previously published meta-analyses. We then proceed in
Section 3 to describe the within-trial framework and pre-
sent the steps involved in estimating within-trial interac-
tions and compatible floating subgroup-specific
treatment effects. In Section 4 we apply these methods to
data from our motivating examples. A discussion of the
capabilities, further considerations and future develop-
ments of the framework is given in Section 5, and we fin-
ish with a brief conclusion in Section 6.

2 | MOTIVATING EXAMPLES

Our motivating examples both come from published
meta-analyses in which detailed aggregate data were

available, thus enabling us to apply the within-trial
framework.

2.1 | Effects of interleukin-6 antagonists
on 28-day all-cause mortality in
hospitalised COVID-19 patients

Our first example is a collaborative, prospective meta-
analysis of the effects of interleukin-6 antagonists, includ-
ing tocilizumab, on outcomes for patients hospitalised
with COVID-19.10 One aim was to investigate whether
there was a difference in the effect of tocilizumab on
28-day all-cause mortality in subgroups of patients who
were and were not assigned to concomitant corticoste-
roids at baseline. A total of 15 trials were included: 1 that
did not use corticosteroids, 2 that gave corticosteroids to
all patients and 12 that administered corticosteroids to
varying proportions of patients.

2.2 | Effects of postoperative
radiotherapy on survival of patients with
non-small cell lung cancer

Our second example is an IPD meta-analysis which
showed that post-operative radiotherapy (PORT) was
associated with poorer survival of patients with non-
small cell lung cancer. In the original analyses of these
data,11,12 using the older approach of pooling separately
within subgroups, there was strong evidence that the
negative effect of PORT increased with the number of
affected lymph nodes. However, in the most recent
update, the data were re-analysed using a within-trial
approach, which showed much weaker evidence for such
a trend.13 This meta-analysis included 11 trials that pro-
vided data on patients' lymph node status, categorised as
either N0, N1 or N2/N3. Only three of the trials recruited
patients across all three lymph node categories, and four
recruited patients only within one lymph node category.
Although this was an IPD meta-analysis, hazard ratios
and confidence intervals were reported for each nodal
status subgroup for each trial, allowing subgroup-specific
effect estimates and standard errors to be extracted.

3 | GENERAL METHOD: THE
WITHIN-TRIAL FRAMEWORK

3.1 | Model setup

Suppose we have n studies, within which patient observa-
tions are split into k disjoint subgroups. Let bβji represent
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the treatment effect estimated within subgroup j of trial i,
and bβi be the vector of estimated subgroup-specific treat-
ment effects from trial i, with covariance matrix Si. We
suppose, at least for now, that the full set of subgroup-
specific treatment effects are observed for every trial, so
there is no missing data. Then the standard multivariate
meta-analysis model is:

bβi �MVN β,SiþΣβ
� �

, ð1Þ

where β is the vector of subgroup-specific treatment
effects and Σβ is the between-trial heterogeneity covari-
ance matrix associated with β, to be estimated from the
data. Structures for Σβ are discussed in Section 3.2 below.
Under this model alone, the standard estimator and vari-
ance gives results consistent with the older method of
pooling within each subgroup separately.

Now, the interaction between treatment and the
covariate from trial i may be represented by the k � 1
treatment effect contrasts bγi with respect to a reference
subgroup, with covariance matrix V i. These effect vec-
tors, which we refer to as “within-trial interaction” vec-
tors, are derived from bβi and Si via a simple linear
combination, represented by the “contrast matrix” M.
We may write another multivariate meta-analysis model,
similar to Equation (1), for the contrasts bγi:

bγi �MVN γ,V iþΣγ
� �

where bγi ¼Mbβi, V i ¼Var bγið Þ¼MSiM
T

ð2Þ

Typically, covariances between the bβji at the trial level
will be unreported but may be assumed to be negligible,
so that Si is diagonal and we may write, where J k�1ð Þ is
the k � 1 by k � 1 matrix full of ones:

bγi ¼
bβ2i�bβ1i
..
.

bβki�bβ1i

2664
3775, V i ¼ Si1J k�1ð Þ þdiag Si2 � � � Sik½ � ð3Þ

However, unless explicitly stated, nothing in what follows
is affected by the precise form of V i; the equations above
demonstrate that non-diagonal matrices Si are easily
incorporated.

Under our proposed within-trial framework, we wish
for our subgroup-specific estimates bβ to be compatible
with the pooled within-trial interactions bγ, in the sense
that the contrasts of bβ are equal to bγ. Let bθ represent the
subgroup-specific treatment effect estimate in the refer-
ence subgroup, which without loss of generality we
choose as j = 1. Then bβ is parameterised by bθ plus the

k � 1 estimated contrasts bγ with respect to that reference,
under the relationships shown in Equation (4). In this
scenario, we describe bβ as the “floating” subgroup-
specific effect estimates.

bβ¼ 1 kð Þbθþ 0bγ
" #

¼ 1 kð ÞbθþZbγ
Mbβ¼bγdVar bγð Þ¼MdVar bβ� �

MT , Σγ ¼MΣβM
T

ð4Þ

If, as stated above, the reference subgroup is identified by
j = 1, then it is easily shown that M ¼ �1 k�1ð Þ,I k�1ð Þ

� �
;

that is, a column of length k � 1 full of ‘�1’ adjacent to
the identity matrix of order k � 1. Similarly, we have the
design matrix Z¼ 0 k�1ð Þ,I k�1ð Þ

� �T
acting on the contrast

vector bγ. These two matrices have a simple and intuitive
relationship (see Appendix 1.1) which holds regardless of
the choice of reference factor.

3.2 | Random effects considerations

We propose three basic forms for the heterogeneity
covariance matrices Σβ and Σγ, described below in order
of increasing complexity:

3.2.1 | Common-effect

A fully common-effect model—that is, with the interac-
tion term(s) and the subgroup-specific treatment effects
common across studies—is obtained simply by setting
both Σγ and Σβ to zero.

3.2.2 | Exchangeable random-effects

An exchangeable structure implies that heterogeneity
variances and covariances do not depend on which sub-
groups are being compared. Given the constraint
Σγ ¼MΣβMT (Equation 4), it can be shown that:

Σγ ¼ 1
2
τ2γ J k�1ð Þ þ I k�1ð Þ
� �

, Σβ ¼ τ2β�
1
2
τ2γ

� �
J kð Þ þ1

2
τ2γI kð Þ

ð5Þ

That is, we have a single heterogeneity parameter τ2γ
shared across all estimated interaction contrasts; since
contrasts are correlated due to their dependence on the
reference subgroup, the correlation between each pair

GODOLPHIN ET AL. 3



must be one-half.14,15 Similarly, we have a shared sub-
group heterogeneity variance, τ2β. Note that Equation (5)
includes the special case where τ2γ is set to zero, implying
Σβ ¼ τ2βJ , so that the contrasts γ are estimated under a
common-effect model with a shared heterogeneity vari-
ance τ2β both across and within subgroups.

3.2.3 | Unstructured random-effects

Finally, we could allow Σγ and Σβ to be unstructured,
subject to the constraint Σγ ¼MΣβMT (Equation 4). This
formulation allows a different heterogeneity variance to
be estimated within each subgroup.

3.3 | Estimation

In order to derive floating subgroup-specific treatment
effects, we first estimate the vector of pooled contrasts γ
using a within-trial approach. By subtracting this from
the set of trial-level subgroup effects bβi, we proceed to
estimate the treatment effect θ in the reference subgroup.
Importantly, this ensures that all available data is used,
and that the trial-specific weighting is identical across
subgroups (see Appendix 1.2). Finally, we associate the
floating subgroup-specific treatment effect in the refer-
ence subgroup β1 with bθ, and derive the remaining float-
ing effects as shown in Equation (4). Hence, the floating
subgroup-specific effects are constrained to differ by the
values of the pooled contrasts γ.

We present this approach below, broken down into
three steps which are straightforward to implement. In
general, the facility to estimate multivariate meta-
analysis models is required, such as “mvmeta” in
Stata14,16 or R17; sample Stata code to implement the
framework under a common-effect model is presented in
Appendix 2, and a full Stata package “metafloat” is avail-
able via GitHub (https://github.com/UCL/metafloat).
However, with a binary subgroup (k = 2) and under a
common-effect model, the approach simplifies consider-
ably (see Appendix 1.5) such that the floating subgroup
estimates and variances may be evaluated using spread-
sheet software, or even by hand.

3.3.1 | Step 1. Estimate the within-trial
interaction(s)

Our first step is to apply the multivariate model for the
interactions (Equation 2). In the general case, the stan-
dard estimator and variance under this model is:

bγ¼ Xn
i¼1

V iþΣγ
� ��1

" #�1Xn
i¼1

V iþΣγ
� ��1bγi, dVar bγð Þ

¼
Xn
i¼1

V iþΣγ
� ��1

" #�1

ð6Þ

This is a straightforward generalisation of the existing
concept of pooling within-trial covariate interactions.2

The heterogeneity covariance matrix Σγ may be estimated
using restricted maximum likelihood (REML) either with
an exchangeable structure or unstructured, as described
in Section 3.2. A global test of interaction may be per-
formed via a simultaneous Wald test of all elements of bγ
being equal to zero. With three or more subgroups in a
natural ordering, it may be useful to perform an addi-
tional test for linear trend across the elements of bγ. This
may be achieved with a simple modification to Equa-
tions (2) and (6); for further details see Appendix 1.4.

3.3.2 | Step 2. Estimate the floating
subgroup-specific treatment effects

We now subtract the fitted treatment effect contrasts bγ
from the observed subgroup-specific treatment effectsbβ2i…bβki in the non-reference subgroup(s) in each trial i.
Together with the effects bβ1i in the reference subgroup,
we then have a set of values which we may interpret as
estimates of the true underlying treatment effect θ in the
reference subgroup. The standard estimator under the
model described by Equations (1) and (2) is:

bθ¼ Xn
i¼1

1T SiþΣβ
� ��1

1

" #�1Xn
i¼1

1T SiþΣβ
� ��1 bβi�Zbγ� �

dVar bθ� �
¼

Xn
i¼1

1T SiþΣβ
� ��1

1

" #�1
ð7Þ

As stated in Section 3.1, the identification of the reference
subgroup by j = 1 is arbitrary; see Appendix 1.3 for sug-
gested modifications to the presented equations for a
choice of reference other than the first subgroup. Again,
the matrix Σβ may be estimated using REML; but now
constraints are required on the values of certain matrix
elements, dependent upon values taken from Σγ (see Sec-
tion 3.2; further details are given in Appendix 1.7). Hav-
ing estimated bθ, we form the vector of floating subgroup
estimates bβ by adding to bθ the appropriate elements of bγ;
see Equation (4). Note that at no point are different sub-
group estimates compared between studies, so avoiding
the risk of introducing aggregation bias.2
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3.3.3 | Step 3. Correct the variances of the
floating subgroup-specific treatment effects

Although we have now obtained the point estimates for
the floating effects, we have a little more work to do to
obtain their variance. Observe that not only is bβ a ran-
dom function of both bθ and bγ, but that bθ is itself a ran-
dom function of bγ. Therefore, although Step 1 gives us
Var bγð Þ, the apparent variance given by Step 2 only gives
us Var bθ γð Þ

� �
evaluated at the fixed value γ¼bγ. To

resolve this, note from Equation (7) that bθ may be sepa-
rated into two parts, only one of which is dependent onbγ. Therefore, with reference to Equation (4), we can
express the vector of floating effects bβ as a linear combi-
nation of the bβi and bγ. As these are independent (see
Appendix 1.1), the variance of bβ works out to take the fol-
lowing form:

Var bβ� �
¼dVar bθ γð Þ

� �
J kð Þ þAdVar bγð ÞAT ð8Þ

where the k by k � 1 matrix A is in terms of fixed, known
quantities (see Appendix 1.1 for further details).

3.4 | Accommodating studies where not
all subgroups are observed

If any estimates bβji are unobserved for trial i, then bβi andbγi contain estimates for just the observed subgroups. Sim-
ilarly, the right-hand side of Equations (1) and (2) con-
tain the corresponding subvectors of β and γ, and
submatrices of SiþΣβ and of V iþΣγ. This does not cause
any technical issues for estimation. Rather, the unob-
served estimates may be considered to be very imprecisely

estimated, for example by assigning to them a value of
zero for the effect size and a variance much exceeding the
largest observed variance (e.g., in our examples below, a
value of 10,000 was used). A similar approach has been
suggested in related contexts14; we echo their recommen-
dation to check that alternative values of the assigned var-
iance give near-identical results.

4 | APPLICATION TO
EXAMPLE DATA

We now demonstrate this methodology in practice using
our two examples described in Section 2. The first exam-
ple will primarily demonstrate the simplicity of calcula-
tions involved in the case of a binary covariate, whilst the
second example demonstrates how to proceed in the case
of covariate with three levels.

4.1 | Effects of interleukin-6 antagonists
on 28-day all-cause mortality in
hospitalised COVID-19 patients

For this example, we use indices 1 and 2 to represent
the “no corticosteroids” and “corticosteroids” groups
respectively. The protocol [PROSPERO Identifier:
CRD42021230155] specified a priori the use of a
common-effect model, which is used here in the first
instance. As suggested in Section 2.2, to assist in calcula-
tion we assign a value of 0 to the unobserved subgroups
for the effect size and 10,000 for the variance. Box 1 con-
tains a detailed walk-through of the within-trial frame-
work under a common-effect model. Stata code to
replicate this example is provided in Appendix 2.

BOX 1 Demonstration of the three steps of the within-trial framework under a common-effect
model using the interleukin-6 antagonists meta-analysis example

Step 1: As we have a binary covariate and are using a common-effect model, we may apply the simpler formu-
lae given in Equations A12–A14 in Appendix 1.5. If No corticosteroids is chosen as the reference group, pooling
the interactions (Equation A12) gives an estimate of bγ¼�0:370 on the log odds ratio scale, with variancedVar bγð Þ¼ 0:020. Exponentiating, we obtain exp bγð Þ¼ 0:69 as shown in Figure 1.
Step 2: We next obtain estimates of the quantities bμ, A1 and A2 (see Equation A13), and hence the floating sub-
group effects bβ1 ¼bθ� �

and bβ2 constrained by the within-trial interaction bγ. Our estimates are bμ¼�0:189,
A1 ¼�0:768 and A2 ¼A1þ1¼ 0:232; and hence we obtain bβ1 ¼bθ¼ 0:095 and bβ2 ¼bθþbγ¼�0:275. Exponentiat-
ing to odds ratios, we have exp bβ1� �

¼ 1:10 and exp bβ2� �
¼ 0:76 as shown in Figure 1.

Step 3: In our final step, we refer to Equation A14. We find that Var bμð Þ¼Var bθ� �
¼ 0:003, and thence obtain

Var bβ1� �
¼ 0:003þ0:020� �0:768ð Þ2 ¼ 0:015 and Var bβ2� �

¼ 0:003þ0:020� 0:232ð Þ2 ¼ 0:004.
Indices 1 and 2 refer to "no corticosteroids" and "corticosteroids" groups respectively.
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In Figure 1, we demonstrate presentation of the effect esti-
mates for each subgroup within each trial on the left-hand
side, accompanied by the corresponding pooled floating
subgroup-specific treatment effects as derived above. The
within-trial interactions for each trial are shown on the right-
hand side of the plot, with the pooled interaction odds ratio
(OR) of 0.69 (95% CI 0.52–0.91, p= 0.01), suggesting a greater
benefit from Tocilizumab for patients that did receive cortico-
steroids compared to those who did not. Our floating
subgroup-specific treatment effect estimates for β1 and β2

translate to OR 1.10 (95% CI 0.87–1.39) and OR 0.76 (95%
CI 0.67–0.86) respectively; note that their ratio exactly
equals the pooled interaction estimate of 0.69. In this case,
the results are similar to additional published results,
which used the older method of pooling within each sub-
group separately (Figure 2 of WHO REACT Group10), so
here study conclusions remain unchanged. Supplementary
random-effects modelling showed no evidence of statistical
heterogeneity in either interactions or subgroups (τ2β and
τ2γ both <0.0001), and so results are not presented here.

FIGURE 1 Interleukin-6 antagonists meta-analysis: Effects of tocilizumab on 28-day all-cause mortality by use of corticosteroids at baseline

Each filled square denotes the odds ratio (OR) for each subgroup of patients defined by corticosteroid use at randomisation within each trial, with

the horizontal lines showing the 95% CI. The dark blue open square represents the floating subgroup-specific treatment effects for No corticosteroids

and corticosteroids, with horizontal lines showing the 95% CI. Each green circle denotes the OR for the interaction between the effect of tocilizumab

and corticosteroid use for each trial, with the horizontal lines showing the 95% CI. The dark blue circle represents a (common-effect) meta-analysis

of the interaction ORs, with the horizontal line showing the 95% CI. [Colour figure can be viewed at wileyonlinelibrary.com]
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4.2 | Effects of postoperative
radiotherapy on survival of patients with
non-small cell lung cancer

As described in Section 2.2, data from this IPD meta-analysis
had already been analysed using a within-trial approach,
assuming a linear trend across the three subgroups to esti-
mate a single interaction.13 We now extend this example by
estimating separate within-trial interactions that compare
effects both between participants with N0 (no affected lymph
nodes) and N1 (one lymph node affected) disease to the

reference group N2/3 (2 to 3 lymph nodes affected), and esti-
mate floating subgroup-specific treatment effects compatible
with these interactions. We use the most up-to-date aggre-
gate data, presented in the 2016 Cochrane review,13 rather
than re-analysing the IPD. We choose the N2/3 subgroup as
the reference, as it is the best-represented category among tri-
als including more than one subgroup (see Appendix 1.3 for
details of implementation when the reference is not the first
subgroup). The floating subgroup-specific treatment effects
are presented in Figure 2, below the results for subgroups
within each trial (as in Figure 1), and with within-trial

FIGURE 2 Post-operative radiotherapy (PORT) for non-small lung cancer meta-analysis: Effect of PORT treatment on overall survival by

nodal status. Green interactions represent the interaction betweenN0 andN2/3, light blue interactions represent the interaction betweenN1 and

N2/3. Refer to Figure 1 for detailed descriptions on the various markers, except instead of odds ratios, these markers refer in the same way to hazard

ratios. Note also that there are two pooled interaction hazard ratios represented by dark blue circles. The top dark blue open circle represents a

(common-effect) meta-analysis of the interaction hazard ratios between N0 andN2/3, with the bottom dark blue open circle representing a

(common-effect) meta-analysis of the interaction hazard ratios between N1 andN2/3. [Colour figure can be viewed at wileyonlinelibrary.com]
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interactions with respect to the reference N2/3 subgroup on
the right-hand side.

Whereas the analysis using the older method of pool-
ing within each subgroup separately suggested that PORT
adversely affects the survival of participants with N0 dis-
ease, our floating estimate for N0 is near to null, similar
to the N2/3 subgroup (see Supplementary Figure 1).
Hence, where an across-and-within-trial approach
strongly suggests a trend (χ2 = 4.51 on 1 d.f., p = 0.034),
there is no such suggestion under our within-trial frame-
work (χ2 = 0.31 on 1 d.f, p = 0.58). This difference is
likely due to the Lille18 and Belgium19 trials, both of
which included only N0 patients and reported large detri-
mental treatment effects. Under the older method, these
trials heavily and directly influence the “naïve” pooled
subgroup estimates; whereas under the within-trial
framework their influence is more indirect, as they do
not contribute to the pooled interactions.

Although common-effect modelling was specified in the
PORT protocol (available on request), we fit random-effects
models here as a demonstrative example (see Figure 3). Fitting
an exchangeable structure results in a shared subgroup het-
erogeneity variance of τ2 ¼ 0:062, such that the floating
estimates all have moderately wider (compared to
common-effect) confidence intervals, whilst their point
estimates remain roughly the same. However, fitting an
unstructured model shows that there is substantially
more heterogeneity within the N0 subgroup (τ2 ¼ 0:795)
than in the other two subgroups (τ2 ¼ 0:017 and
τ2 ¼ 0:033 for N1 and N2/3 respectively). Hence, the N0

subgroup is now estimated noticeably differently, with an
extremely wide confidence interval and with a point esti-
mate shifted to the left (as a result of extreme estimates
from small trials which are now given relatively greater
weight). As a result, the floating estimates for N1 and
N2/3 are also shifted moderately to the left, although in
this particular example this does not affect the overall
interpretation.

5 | DISCUSSION

In this article, we extend the previously recommended2

within-trial approach to a simple yet flexible framework for
estimating treatment-covariate interactions in meta-analy-
sis. Both ordered and unordered categorical covariates may
be analysed, and heterogeneity covariance is handled
straightforwardly. Crucially, we also provide practical
methods of estimating floating treatment effects for each
level of a covariate.

Previous criticism of testing for interactions using a
within-trial approach has included the potential for loss of
power relative to older methods, for example from exclusion
of “single-subgroup” studies. By contrast, the within-trial
framework discussed here allows the entirety of information
from all trials to be incorporated, whilst also taking account
of the magnitude, direction and precision of the within-trial
pooled interaction. The floating subgroup-specific treatment
effects from this framework are compatible with within-trial
interactions—that is, each contrast is equal in magnitude to

FIGURE 3 Post-operative radiotherapy (PORT) for non-small lung cancer meta-analysis: Effect of PORT treatment on overall survival

by nodal status. Results from a common-effect model, and from random-effects models with exchangeable and unstructured heterogeneity

covariances Floating subgroup-specific treatment effects (left panel) and pooled within-trial interactions (right panel). The top dark blue

open circle represents a meta-analysis of the interaction hazard ratios between N0 and N2/3, with the bottom dark blue open circle

representing a meta-analysis of the interaction hazard ratios between N1 and N2/3. Note only summary information is presented on this plot

and not trial-level information as in Figures 1 and 2. [Colour figure can be viewed at wileyonlinelibrary.com]
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that of the corresponding interaction—and each is estimated
using the same set of trial-specific weights which reflect the
totality of information in each trial. By comparison, pooling
separately within subgroups assigns a different set of weights
within each subgroup, making interpretation of subgroup
contrasts difficult. Note that, when the subgroup of interest
is fully observed and “balanced” in all trials (in the sense
that Si ¼ siI 8i), then subgroup-specific treatment effects
from our within-trial framework and from the “pooling
within subgroups” approach can be shown to coincide
under a common-effect model (see Appendix 1.6). Hence,
we propose our framework as giving a more appropriate
representation of comparative subgroup-specific treat-
ment effects. As such, where clinical decision-making is
best served by deriving additional statistics, such as trans-
lation (where appropriate) from relative to absolute
scale,20,21 this may be done most effectively via floating
subgroup estimates.

5.1 | Further considerations

We assume that treatment effects for the different sub-
groups within each trial can be extracted or calculated
from aggregated source data,6,7 or are derived directly
from IPD. The results of a previous methodological
review2 suggested that the availability of suitable aggre-
gate data from peer-reviewed articles was uncommon.
However, this can be obtained through working collabo-
ratively with trialists,22,23 which allows prospective agree-
ment on the important patient-level covariates to
analyse, as demonstrated in recent meta-analyses in pros-
tate cancer24–26 and COVID-19.10,27,28

As discussed previously in both our examples, whilst
studies including only a single participant subgroup can-
not contribute to the within-trial interaction, we can use
their information in the within-trial framework when
estimating floating subgroup-specific treatment effects
compatible with this interaction. Doing so requires that
we make the assumption of transitivity across subgroups:
that is, that any non-observed subgroup-specific treat-
ment effect could in principle have been observed, and
that its true value (or its true distribution under a
random-effects model) would be identical to those of the
remaining studies. If such studies (either singly, or taken
together) are assigned relatively large weights, then this
assumption may have a substantial impact upon the
floating subgroup estimates. Conversely, if a “single-sub-
group” estimate is extreme relative to the remaining data,
then it may be questionable whether the pooled interac-
tion (and therefore the transitivity assumption) is appli-
cable to that trial. In the context of our within-trial
framework, we therefore strongly recommend that

reviewers critically evaluate the design and setting of
“single-subgroup” trials to assess whether the transitivity
assumption holds, and whether construction of floating
subgroup estimates including such trials would involve
excessive extrapolation outside the range of observed
data. Whilst this is not an issue for the examples pre-
sented in this paper, the illustrative example in Fisher
et al.2 and the data presented in eFigure 1 of Sterne
et al.27 are examples of situations where such evaluation
might be recommended. One possible statistical approach
here might be to include within the model described by
Equation (4) an additional parameter, identifying “single-
subgroup” studies—or, more generally, the set of sub-
groups provided by each trial—analogously to identifica-
tion of “designs” and inconsistency parameters in
network meta-analysis.29 As a sensitivity analysis, this
approach might be used to test the effect of removing
such studies from the estimation procedure.

The choice between common-effect and random-
effects modelling is discussed elsewhere.30,31 In the multi-
variate case, as here, the most general random-effects
model uses an unstructured covariance matrix, estimating
a separate heterogeneity for each subgroup and thereby
allows conclusions to be drawn regarding the source of
heterogeneity or whether results from some subgroups
are more reliably estimated than others. However, the
number of parameters to be estimated increases sharply
with the number of subgroups, and models might not con-
verge with smaller datasets. Conversely, an exchangeable
structure estimates a single heterogeneity parameter
across all subgroups, with a common pairwise covariance.
This simpler structure borrows strength across subgroups
for the estimation of τ2β. The special case of τ2γ ¼ 0 places
random-effects on the subgroup estimates but not on the
interaction estimates, and is simpler still. Note that we do
not recommend random-effects formulations which vio-
late the compatibility relationships given in Equation (4).

A further consideration when utilising the within-
trial framework is presentation of the results on a forest
plot. Where possible, we advocate presentation of the
within-trial interactions alongside the within-trial
subgroup-specific treatment effects, as in Figures 1 and 2.
However, for covariates with three levels or more and/or
with large numbers of included studies (as in Figure 2),
such plots become challenging to present clearly. Fur-
thermore, although the choice of reference subgroup does
not affect the pooled interactions or floating subgroup
estimates themselves, it can have considerable impact on
presentation. Specifically, if a trial does not contain the
reference subgroup, then interactions cannot be plotted
on the second panel of the plot for that trial. Typically,
the reference subgroup should contain a relatively large
amount of information; but it is possible that a suitable
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choice does not always exist. In such cases, we would rec-
ommend checking the “transitivity assumption” as
described above; otherwise, displaying only the summary
results (as in Figure 3 and Supplementary Figure 1), or
only the left-hand panel, may be a suitable alternative.

5.2 | Future developments

The methods presented here may be generalised to
encompass two-stage IPD meta-analysis8 which, among
other things, would allow interactions with continuous
covariates to be analysed in a within-trial framework.
However, our methods are not directly compatible with a
one-stage IPD meta-analysis, in which a single general-
ised linear model is fitted to all trial data simultaneously.
It has been noted32 that simply including a global
treatment-covariate interaction term into a one-stage
model would incorporate across-trial information and is
at risk of aggregation bias,2,3 and so it has been recom-
mended that within- and across-trial information should
be separated out to provide the equivalent one-stage
within-trial interaction.32 Further possibilities to estimate
patient-level interactions exist for a one-stage IPD meta-
analysis, with shrinkage methods suggested for use when
a large number of treatment-covariate interactions are to
be modelled simultaneously.33 Further work is needed to
extend the within-trial framework into a one-stage IPD
meta-analysis setting in order to estimate subgroup-
specific treatment effects that are compatible with
patient-level interactions and free from aggregation bias,
and also in settings where “personalised” treatment
effects utilising multiple covariates are desired.

6 | CONCLUSIONS

Our within-trial framework allows straightforward esti-
mation of a range of within-trial treatment-covariate
interactions, compatible subgroup-specific treatment
effects and corresponding forest plots, to clearly and
effectively demonstrate how treatment effects differ
across patient subgroups.
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