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Abstract

This thesis is made up of three main essays that aim to develop a deeper understanding of issues involving the

public insurance programs for the elderly, and the risks they insure against.

In the first essay (Chapter 2), using data from the Health and Retirement Study linked to administrative Medicare

and Medicaid records, along with the Medical Expenditure Panel Survey, we estimate the stochastic process for

total and out-of-pocket medical spending. By focussing on dynamics, we consider not only the risk of catastrophic

expenses in a single year, but also the risk of moderate but persistent expenses that accumulate into a catastrophic

lifetime cost. We also assess the reduction in out-of-pocket medical spending provided by public insurance schemes

such as Medicare or Medicaid. We find that although Medicare and Medicaid pay the majority of medical expenses,

households at age 65 will on average incur $59,000 in out-of-pocket costs with 10 percent of households incurring

more than $121,000 in out-of-pocket expenses over their remaining lives.

In the second essay (Chapter 3), we compare dementia prevalence and how it varies by socioeconomic status (SES)

in the United States and England. We compare between country differences in age-gender standardized dementia

prevalence, across the SES gradient. Dementia prevalence was estimated in each country using an algorithm based

on an identical battery of demographic, cognitive, and functional measures. Dementia prevalence is higher among

the disadvantaged in both countries, with the United States being more unequal according to four measures of SES.

Once past health factors and education were controlled for, most of the within country inequalities disappeared;

however, the cross-country difference in prevalence for those in the lowest income decile remained disproportionately

high. This provides evidence that disadvantage in the United States is a disproportionately high risk factor for

dementia.

In the final essay (Chapter 4), we assess the optimal structure the U.S. Social Security system, taking into account

the current system’s unfunded liabilities, transition dynamics and political feasibility constraints. We base the

assessment on an estimated overlapping generations general equilibrium model that features both aggregate and

idiosyncratic uncertainty. The quantitative analysis establishes that although transition costs greatly restrict the

U.S. government’s ability to move away from the current Social Security system, ignoring the political feasibility

constraints allows the government to increase welfare by transitioning to a more progressive and less costly to

operate system. However, taking into account the political feasibility constraints overturns this result, as no reform

is simultaneously welfare increasing and politically feasible.
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controlling for past health factors and education eliminates most of the within country inequalities, the cross-country

difference in prevalence for those in lowest income decile remains disproportionately high. The implications of our

results are that interventions designed to prevent dementia should be targeted towards the most disadvantaged.
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Chapter 4 has direct policy implications for the design and reform of the US Social Security system. The chapter
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U.S. government’s ability to move away from the current Social Security system, ignoring the political feasibility

constraints allows the government to increase welfare by transitioning to a more progressive and less costly to

operate system. However, political feasibility constraints are far more restrictive than transition costs. Our results

highlight the competing interests of different generations, that manifest even for minor Social Security reforms.
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Chapter 1

Introduction

In this thesis, I use applied micro and macroeconomic techniques to address a range of questions pertaining to

public insurance programs and the risks that they insure against, drawing evidence from the US and UK. There

are three primary chapters. The chapters address topics that should be of interest to policy makers. Each chapter

can be read as a free-standing essay, however there are important connections between each and all highlight the

risks that the elderly face.

The first two chapters focus on modelling and analysing the medical spending and dementia risks that the elderly

face. In Chapter 2 (co-authored with Eric French and John Bailey Jones and Jeremy McCauley) we estimate the

stochastic process for total medical spending. We also assess the reduction in out-of-pocket medical spending risk

provided by public insurance schemes such as Medicare or Medicaid. In Chapter 3 (based on co-authored work

with Eric Brunner, Eric French and Jeremy McCauley) we we compare dementia prevalence and how it varies by

socio-economic status (SES) across the United States and England. We also compare between country differences

in age-gender standardized dementia prevalence, across the SES gradient.

In Chapter 2 our results suggest that lifetime medical spending is high and uncertain. The spending’s level and the

dispersion diminish slowly with age. Most of these expenditures will be covered by Medicare, Medicaid, or other

private and public insurers. Our data suggest that out-of-pocket spending rises more or less linearly with total

spending, with households covering about 22% of their total expenditure. We find that at age 65, households will

on average incur over $59,000 of medical spending over the remainder of their lives. Those at the 90th percentile of

the spending distribution will incur spending of $121,000. A household alive at age 90 will on average spend more

than $21,000 out-of-pocket before they die, highlighting the slow decline of expected lifetime costs as households

age.

In Chapter 3 we find that Dementia prevalence is lower in England at 9.7% than the US at 11.2%, a difference of

1.4 percentage points that is highly statistically significant. For all four SES measures, income, education, wealth,

and non-housing wealth, there is a clear gradient in dementia prevalence, with the most disadvantaged groups in
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both England and the US having higher dementia prevalence. Also, we find that the poorest individuals in the

US face a disproportionately high burden. We find that the high burden can be partly but not fully explained by

past health factors. Specifically, once past health factors and education were controlled for, althought most of the

within country inequalities disappeared, the cross-country difference in prevalence for those in lowest income decile

remained disproportionately high.

In the final chapter of the thesis, Chapter 4, we assess the US government’s ability to reform the current Social

Security system. We base the assessment on an estimated overlapping generations general equilibrium model that

features both aggregate and idiosyncratic uncertainty1. The model is estimated using the PSID data, and it

includes an infinitely lived government, a Pay-as-You-Go Social Security system, a private pension fund, households

of multiple generations and competitive firms. This setup allows us to study both the short term and the longer

term implications of the reform.

The findings suggest that the U.S. government’s ability to move away from the current system is greatly restricted by

transition costs. However, the U.S. government can implement a new Social Security system that is more progressive

and less costly to operate. The new system imposes fewer distortions in the model economy and increases welfare on

both the transition path and the longer-term. Specifically, a simultaneous reduction in the average level of benefits

combined with a reform of the benefit function can deliver welfare gains, that provide an increase of 0.7% in terms

of consumption equivalent variation. The life-cycle profiles of the current and new systems are similar.

Then we consider household votes at the start of the transition and find that reforms that reduce the level of

benefits do not gather a household majority. Given the model’s results, we create the sets of welfare increasing and

politically feasible Social Security reforms. We find that the intersection between the two sets is equal to the empty

set. This implies that transitioning to a new Social Security system is no longer possible, as there is no reform that

is simultaneously welfare increasing and politically feasible.
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Chapter 2

On the Distribution and Dynamics of

Medical Expenditure among the Elderly

2.1 Introduction

Despite nearly universal enrollment in Medicare, most elderly Americans still face the risk of catastrophic medical

expenses. This is because Medicare does not pay for long hospital and nursing home stays and requires co-payments

for many other treatments. Medicaid fills many of these gaps, but only for households that pass a means test.

Medical spending is thus a major financial concern among elderly households. In a recent survey, more affluent

individuals were worried about rising health care costs than about any other financial issue (Merrill Lynch Wealth

Management 2012).

In this paper we document patterns of medical spending among older households, distinguishing between spending

covered by public insurance programs such as Medicare or Medicaid and the out-of-pocket expenses borne by

the households themselves. Even though numerous papers have estimated the medical spending risks that older

Americans face in any given year, very few studies have estimated the distribution of cumulative lifetime spending.

These lifetime totals, however, are critical when assessing the income and savings adequacy of older households.

Households care not only about the risk of catastrophic expenses in a single year, but also about the risk of moderate

but persistent expenses that accumulate into catastrophic lifetime costs. We use new data and methods to improve

the measurement and assessment of this risk. In particular, we make three contributions.

First, to the best of our knowledge, this is the first paper to estimate the dynamic process for total spending by

all payors among the population aged 65+. Our main dataset is the Health and Retirement Study (HRS) which

has high quality information on out-of-pocket medical spending, linked to Medicare and Medicaid administrative

data. To this we add data from the Medical Expenditure Panel Survey (MEPS), which allow us to impute private

insurance and other payments not measured directly in the HRS. This yields an estimate of medical spending for
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HRS households that accounts for all payors, giving us the first long panel measures of comprehensive medical

spending for the age 65+ population.

Second, we estimate the stochastic process for medical spending with a specification far more flexible than those

used in previous studies. Specifically, we use the framework developed by Arellano et al. (2017), which allows for

non-linear persistence and non-normal shocks. Using this specification allows us to more accurately predict the

distribution of medical spending, both annual and cumulative, after age 65. This allows us to better understand

the risks facing elderly households over the entirety of their remaining life.

Third, we model the share of medical spending paid for by Medicare and Medicaid, and calculate the extent to

which Medicare and Medicaid reduce lifetime medical spending. Using detailed data and an advanced methodology

allow us to better understand who benefits from Medicaid and Medicare.

In our framework medical spending depends on household structure and health, among other factors. We estimate

dynamic models of these variables. Simulating our estimated models allows us to construct household histories and

compute the distribution of total lifetime medical spending. Thus we can calculate the share of people who face

catastrophic medical spending over the course of their lives.

We find that lifetime medical spending during retirement is high and uncertain. Over their remaining lives, house-

holds at age 65 will incur, on average, $272,000 in total medical spending, of which $59,000 will be paid out of

pocket. At the top tail, 10% of households will incur more than $563,000 in total medical spending of which

$121,000 will be paid out-of-pocket. The level and the dispersion of remaining lifetime spending diminishes only

slowly with age. For example, a household alive at age 90 will on average spend more than $99,000 in total and

$21,000 out-of-pocket before they die. The reason for this is that as households age, surviving individuals on aver-

age have fewer remaining years of life, but are also more likely to live to extremely old age when medical spending

is very high. Although initial health, and initial marital status have large effects on this spending, much of the

dispersion in lifetime spending is due to events realized in later years. We find that Medicare and Medicaid cover

a large amount of lifetime medical spending, substantially lowering the risk of catastrophic medical bills. However,

on average, households still pay for 22% of all medical spending out of pocket.

The rest of the paper is organized as follows. Section 2.2 contains a literature review. In section 2.3 we discuss

some key features of the data sets that we use in our analysis, the HRS and MEPS, and describe how we construct

our measure of medical spending. In section 2.4 we introduce our model and describe our simulation methodology.

We discuss our results in section 2.5 and conclude in section 2.6.

2.2 Previous Literature

The life-cycle implications of health and medical spending, especially at older ages, are an area of considerable

interest. Several papers (De Nardi et al. 2010, Kopecky and Koreshkova 2014, Ameriks et al. 2020, De Nardi et al.

2021) show that health care costs that rise with age and income can explain much of the U.S. elderly’s saving
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behavior. Other work suggests that medical spending risk is important in explaining cross-country differences in

the consumption (Banks et al. 2019) and savings decisions (Nakajima and Telyukova 2018) of elderly households.

Still other studies have considered the role of medical expenses in: bankruptcy (Livshits et al. 2007); the adequacy

of savings at retirement (Scholz et al. 2006, Skinner 2007); and annuitization (Lockwood 2012, Pashchenko 2013,

Reichling and Smetters 2015).

Relative to the work exploring the consequences of medical spending risk, the number of papers attempting to

measure this risk is limited. Most studies in this literature analyze out-of-pocket spending (e.g., Feenberg and

Skinner 1994, French and Jones 2004, Fahle et al. 2016, Hurd et al. 2017); the studies analyzing total spending in

the U.S. use data from individual insurance plans (Alemayehu and Warner 2004, Hirth et al. 2016) or short panels

of two years or less (Pashchenko and Porapakkarm 2016).

Several studies have found that out-of-pocket medical spending shocks are reasonably well-described as the sum

of a persistent AR(1) process and a white noise shock (Feenberg and Skinner 1994, French and Jones 2004, Jones

et al. 2018, De Nardi et al. 2021). French and Jones (2004) also find that the innovations to this process can

be modelled with a normal distribution that has been adjusted to capture the risk of catastrophic health care

costs. However, they also note that their procedure must be applied with care. They point out, for example, that

estimates are sensitive to bottom coding decisions, in part because of left skewness in the data that the normal

distribution does not capture. De Nardi et al. (2010, 2016) extend French and Jones’s (2004) spending model to

account for additional covariates, and embed the medical spending model in a model of lifecycle savings decisions,

but consider only singles and do not control for end-of-life events.1 Jones et al. (2018) and De Nardi et al. (2021)

extend the model further to account for the risk of end-of-life spending and the joint spending of couples. Our paper

differs from these studies in two ways. First, it analyzes spending by all payors, as opposed to just out-of-pocket

spending. This allows us to assess the extent to which Medicare and Medicaid reduce the medical spending risk

facing older households. Second, we replace the common specification, which assumes a Gaussian AR(1)-plus-white

noise, with a more advanced semi-parametric framework developed by Arellano et al. (2017). This framework allows

for non-Gaussian shocks and persistence that varies with age and the value of the shock.2

2.3 Data and Descriptive Statistics

We use HRS data matched with administrative Medicare and Medicaid records. We use MEPS data to impute

payments for payors missing in the HRS. The result is a version of HRS medical spending data that is representative

of all payors. We use data from 1999-2012, when we also have the Medicare and Medicaid records.

1See French et al. (2006) and Poterba et al. (2017) on the importance of these events.
2Yet another model of out-of-pocket spending appears in Webb and Zhivan (2010). They estimate a rich model of stochastic morbidity

and mortality with multiple health indicators and assume that medical expenditures are a function of these health conditions, along
with a collection of socioeconomic indicators. In their framework, all of the variation in medical spending is due to variation in these
controls; there are no residual shocks.
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2.3.1 The HRS

The HRS is a representative biennial survey of the population ages 51 and older, and their spouses. To focus

on the Medicare population, we focus on those ages 65 and older, using data starting in 1999. Although drawn

from the non-institutionalized population when first interviewed, these individuals are tracked and reinterviewed as

they enter nursing homes and other institutions. Consistency with our demographic model also leads us to drop a

small number of households who, for example, are “partnered” or whose partner reports conflicting marital status.

Furthermore, we drop households who do not consent to provide their Medicare and Medicaid information or there

appear to be problems with the matching. This leaves us with 4,391 households comprising 39,002 household year

observations. Appendix 2.A.2 documents our sample selection criteria.

The HRS conducts interviews every other year. Households are followed until both members die; attrition for other

reasons is low. When the respondent for a household dies, in the next wave an “exit” interview with a knowledgeable

party – usually another family member – is conducted. This allows the HRS to collect data on end-of-life medical

conditions and spending (including burial costs). Fahle et al. (2016), compare the medical spending data from the

“core” and exit interviews, show that out-of-pocket spending rises significantly in the last year of life.

The HRS has a variety of health indicators. We assign individuals to the nursing home state if they were in a

nursing home at least 120 days since the last interview or if they spent at least 60 days in a nursing home before the

next scheduled interview and died before that scheduled interview. We assign the remaining individuals a health

status of “good” if their self-reported health is excellent, very good or good and a health status of “bad” if their

self-reported health is fair or poor.

The HRS collects data on all out-of-pocket medical expenses, including private insurance premia and nursing home

care. The HRS medical spending measure is backward-looking: medical spending at any wave is measured as total

out-of-pocket spending over the preceding two years. French et al. (2017) compare out-of-pocket medical spending

data from the HRS, MEPS, and the Medicare Current Beneficiary Survey (MCBS). They find that the HRS matches

up well with the MEPS for items that MEPS covers, but that the HRS is more comprehensive than the MEPS in

terms of the items covered.

To control for socioeconomic status, we follow De Nardi et al. (2021) and construct a measure of lifetime earnings

or “permanent income” (PI). We first find each household’s “non-asset” income, a pension measure that includes

Social Security benefits, defined benefit pension benefits, veterans benefits and annuities. Because there is a roughly

monotonic relationship between lifetime earnings and these pension variables, post-retirement non-asset income is a

good measure of lifetime permanent income. Since these income sources tend to change only in response to inflation

and death of a family member, we assume this income is a deterministic function of a household specific effect (which

is a measure of PI) and household composition. We then use fixed effects regression to convert non-asset income,

which depends on age and household composition as well as lifetime earnings, to a scalar measure comparable across
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all households. In particular, we assume that the log of non-asset income for household i at age t follows

ln yit = αi + κ(t, fit) + ωit, (2.1)

where: αi is a household-specific effect; κ(t, fit) is a flexible function of age and family structure fit (i.e., couple,

single man, or single woman); and ωit represents measurement error. The percentile ranks of the estimated fixed

effects, α̂i, form our measure of permanent income, Îi.

2.3.2 Administrative Medicare and Medicaid Records

The Centers for Medicare and Medicaid Services (CMS) have confidential administrative spending records for

Medicare (Parts A, B and D) and Medicaid, that we link to the survey responses of consenting HRS respondents.

We have Medicare data for each year between 1991 and 2016. These records include reimbursement amounts

for inpatient, skilled nursing facility, home health, and hospice claims made under Medicare Part A, as well as

outpatient, carrier (non-institutional medical care providers such as individual or group practitioners, non-hospital

labs, and ambulances), and durable-medical-equipment payments made under Medicare Part B. To this total we

add drug-related spending made under Medicare Part D, which began in 2006.

As with the Medicare records, we link restricted Medicaid data for those who give permission, allowing us to measure

Medicaid spending for each year between 1999 and 2012. The Medicaid files contain information on enrollment,

service use, and spending. Appendix 2.A.1 describes the Medicare and Medicaid data in more detail. Linking these

data to the HRS results in a broad set of spending measures for the years 1999-2012. These will be the years used

in our main analysis.

2.3.3 Imputations Using MEPS Data

While the HRS contains accurate measures of out-of-pocket medical spending and can be linked to Medicare and

Medicaid records, it does not contain information on the payments made by private and smaller public insurers

(such as the Veterans Administration or state and local health departments). To circumvent this issue, we use data

from the 1996-2017 waves of the Medical Expenditure Panel Survey (MEPS).

The MEPS is a nationally representative survey of non-institutionalized households. MEPS respondents are in-

terviewed up to 5 times over a 2 year period, forming short panels. We aggregate the data to an annual level.

MEPS respondents are asked about their (and their spouse’s) health status, health insurance, and the health care

expenditures paid out-of-pocket, by Medicaid, by Medicare, private insurance and by other sources. The survey

responses are matched to medical spending information provided by health care providers. Although the MEPS

does not capture certain types of medical expenditures, such as nursing home expenditures, it captures sources of

medical spending extremely well.3

3Pashchenko and Porapakkarm (2016) compare MEPS data to the aggregate statistics and show that MEPS captures types of
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Table 2.1: Medical Spending by Total Expenditures and Payor

Total Total Spending Percent paid by

Spending Average Pct. of Out-of-

Percentiles Exp. Total Pocket Medicare Medicaid Other

All 24,000 100.0 21.6 64.0 10.7 3.7

95-100% 138,700 28.9 24.7 61.0 11.2 3.1

90-95% 74,200 15.5 17.9 63.9 16.2 2.0

70-90% 39,200 32.7 16.8 68.7 11.6 2.9

50-70% 16,000 13.4 23.3 64.7 6.0 6.1

0-50% 4,600 9.5 32.2 56.3 4.0 7.6

Notes: Total spending is the sum of annual household Medicare, Medicaid, out-of-pocket
and other spending, age 65+. Other includes private insurance and other government payors.
Expenditures are expressed in 2014 dollars.

To impute medical spending not captured in the HRS, we proceed in two steps. First, we use the MEPS data to

regress these payments on a set of observable variables found in both data sets. Variables include household income,

a fourth order age polynomial, labor force participation status, education, marital status, doctor and hospital visits,

race indicators, health measures, out-of-pocket spending and interactions. This regression has an R2 statistic of 0.13

for private insurance payments and 0.02 for other payors. Second, we impute these expenses in the HRS data using

a conditional mean-matching procedure, a procedure very similar to hot-decking. Applying the MEPS regression

coefficients to the HRS data yields predicted values for each HRS household, to which we add residuals drawn from

MEPS households with similar levels of predicted spending. We describe our approach in more detail in Appendix

2.A.3.

2.3.4 Our Medical Spending Measure

Table 2.1 summarizes the medical spending data contained in our HRS sample. The first two columns of the table

show total spending by all payors for older households, sorted by total spending percentile, while the remaining

4 columns decompose this total by payor. Table 2.1 shows that Medicare and especially Medicaid benefits are

concentrated among the top half of the total spending distribution, helping to ensure against catastrophic expenses.

Another way to see this outcome is to note that at the bottom half of the spending distribution, about 32% of

medical expenses are paid out of pocket, while at the top, out-of-pocket expenditures comprise between about 17%

and 25% of the total.

In Appendix 2.A.4 we compare our medical spending measures against the MCBS. French et al. (2017) finds that

the data on out-of-pocket and insurance premia in the two surveys match up well. We extend their exercise by

comparing Medicare and Medicaid payments in the HRS restricted data to Medicare and Medicaid payments in the

MCBS.

Figure 2.1 shows how the mean and 90th percentile of both total and out-of-pocket medical spending change with

spending very well.
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the age of the household head. Medical spending rises rapidly with age for both singles and couples. As noted in

Table 2.1, medical spending is very concentrated. Thus, it should come as no surprise that the 90th percentile is

significantly higher than the mean. Spending for couples is higher than for singles, but in most cases is much less

than double the spending of singles. It bears noting that as households age, they tend to transition from couples

to singles; at older ages, the number of couples is small, leading to erratic profiles.

(a) Total Spending: Means (b) Total Spending: 90th Percentile

(c) Out-of-Pocket: Means (d) Out-of-Pocket: 90th Percentile

Figure 2.1: Mean and 90th Percentile of Household Medical Spending by Age

2.4 The Model

We estimate the distribution of lifetime medical spending in five steps. In the first step we estimate the log of

total medical spending as a function of age, health, family structure and PI, using Ordinary Least Squares (OLS).

In the second step, we estimate the stochastic process for the unexplained component of medical spending – the

residuals from the first step regression – using the methodology developed by Arellano et al. (2017). In the third

step, we estimate the mapping from total medical spending to out-of-pocket medical spending. In the fourth step

we estimate a Markov Chain model of health and mortality. In the final step, we use the estimated models to

simulate health, mortality, and lifetime medical spending.
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2.4.1 Total Medical Spending

Underlying framework

Let Mi,t denote total medical spending for household i at time t ,and let mi,t denote its logarithm net of the

observed variables contained in the vector Xi,t:

lnMi,t = Xi,tγ +mi,t. (2.2)

We assume that mi,t can be expressed as the sum of the persistent first-order Markov component ηi,t and the

transitory component εi,t:

mi,t = ηi,t + εi,t, ∀i ∈ {1, ..., N},∀t ∈ {1, ..., T}. (2.3)

We assume the transitory component is i.i.d., but require only that it be zero-mean and satisfy the regularity

conditions set forth in Arellano et al. (2017). In practice the vector Xi,t includes an age polynomial, health

indicators, household structure and death-year indicators, PI percentile, and interactions among the aforementioned

variables.

A common specification

Many previous studies, following Feenberg and Skinner (1994) and French and Jones (2004), have used the following

specification for the shocks:

ηi,t = φηi,t−1 + ζi,t, (2.4)

ηi,init
iid∼ N

(
0, σ2

ηinit

)
, ζi,t

iid∼ N
(

0, σ2
ζ

)
, εi,t

iid∼ N(0, σ2
ε). (2.5)

Thus, the persistent component ηi,t is an AR(1) with the innovation ζi,t independent of ηi,t−1, whereas the transitory

component is homoskedastic white noise. We will refer to this specification as the “standard model”.

Equations (2.4) - (2.5) impose three types of restrictions.

1. Linearity of the process for the persistent component. In this context linearity means that the conditional

expectation of ηi,t−1 is linear in its lagged value ηi,t−1. Moreover, it is straightforward to show that the

expectation of mi,t given mi,t−1 is linear, mi,t = δmi,t−1 + ei,t, with E(ei,t |mi,t−1) = 0.

2. Stationarity of the distributions of ζi,t, εi,t and ei,t. The distribution of ζi,t, εi,t, is unconditionally stationary,

and the distribution of ei,t is stationary conditional on t.

3. Normality, not only of the shocks ζi,t and εi,t, but also of the forecast error ei,t.

See Appendix 2.A.5 for details.
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We assess the implications of the standard model in Figure 2.2, following the graphical analysis of earnings found

in De Nardi et al. (2020). Figure 2.2 shows moments of the medical spending residuals conditional on their lagged

percentile ranks. To construct the residual mi,t, we first regress the log of medical spending on age, household

composition, and health variables as in equation (2.2). We next regress each household’s time-t residual on its

lagged value, estimating mi,t = δmi,t−1 + ei,t and calculating the “second-order” residual ei,t.

Figure 2.2 plots the mean, standard deviation, skewness and kurtosis of ei,t as a function of the percentile rank of

mi,t−1. The top left panel plots means. This graph shows that at the 95th percentile of lagged medical spending,

mi,t−1, the current value of ei,t is on average -0.1. Put differently, if last period’s medical spending is high, this

period’s value is also high, but it is 10% lower than what would be implied by a linear regression on lagged medical

spending. The data thus reject the first restriction, linearity, of the standard model.

The top right panel of Figure 2.2 plots the standard deviation of medical spending. This is U-shaped, declining until

the 40th percentile of last period’s spending and increasing after the 60th percentile. In other words, dispersion in

medical spending is highest for those with low or high medical spending. The data thus reject the prediction that

the standard deviation will be constant in mi,t−1.

The bottom left panel shows skewness. Normality implies that skewness is zero across the distribution, but in the

data skewness is positive for low values of spending and is below -0.5 for high values. This means for people with

high medical spending last period, this period’s medical spending tends to fall a lot when it falls. The bottom

right panel shows kurtosis: normality would imply that this is three, but in the data it is often higher, implying

a distribution with tails fatter than those found in the normal distribution. In short, Figure 2.2 shows that data

rejects all three predictions of the standard model.

The Arellano et al. (2017) estimator

Our finding that the data are strongly at odds with the standard model leads us to seek a more general framework

that relaxes the previous three restrictions yet fits within our two-component structure. Thus we use the quantile-

based panel data model proposed by Arellano et al. (2017) and extended by Arellano et al. (2021).

To apply Arellano et al.’s (2017) framework, rewrite the conditional distribution for the persistent component ηi,t

as:

ηi,t = Qη(νi,t | ηi,t−1, ai,t), νi,t
iid∼ U [0, 1], (2.6)

where Qη(ν | ηi,t−1, ai,t) denotes the νth quantile of ηi,t conditional on its lagged value and age (ai,t). The quantile

function Qη maps ηi,t’s conditional rank, νi,t, into a value of ηi,t itself. To fix ideas, if we draw νi,t = 0.1, the

realized value of ηi,t will equal the 10th percentile of the conditional distribution of ηi,t at age ai,t, given ηi,t−1. As

a rank, νi,t is distributed uniformly over the [0, 1] interval.

In the standard model, it follows from equation (2.4) that the quantile function takes the linearly separable form

ηi,t = Qη(νi,t | ηi,t−1, ai,t) = φηi,t−1 + σζΦ
−1(νi,t), where Φ−1(·) is the inverse of the standard normal cumulative
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Figure 2.2: Moments of the Medical Spending Distribution

distribution function and σζ is the standard deviation of ζi,t. (Conversely, with νi,t ∼ U [0, 1], we have σζΦ
−1(νi,t) ∼

N(0, σ2
ζ )). Age-independence, normality, and linearity can thus be expressed as restrictions on the quantile function

in equation (2.6).

In its most unrestricted form, this specification allows for a great degree of flexibility. One way to see this is to

construct the persistence measure

φτ (ηi,t−1, ai,t) =
∂Qη(τ | ηi,t−1, ai,t)

∂ηi,t−1
, (2.7)

with τ denoting the conditional rank of interest. φτ (ηi,t−1, ai,t) measures the effect of ηi,t−1 on the τth conditional

quantile of ηi,t. Persistence can vary by rank (τ), age (ai,t) and prior realization (ηi,t−1). In contrast, in the

standard model persistence always equals the constant φ.

In estimation we parametrically approximate the conditional quantile function by low-order Hermite polynomials.

Let hηk(·) denote the kth Hermite polynomial used in the approximation of ηi,t, with
{
hηk(·)

}Kη
k=0

forming the poly-

nomial basis for the approximation. Qη(τ | ηi,t−1, ai,t) is thus a linear combination of the Kη Hermite polynomials,
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with the coefficients on the polynomials,
{
βηk(τ)

}Kη
k=0

themselves functions of the quantile rank τ . We thus have

Qη(τ | ηi,t−1, ai,t) =

Kη∑
k=0

βηk(τ) · hηk(ηi,t−1, ai,t), τ ∈ (0, 1]). (2.8)

The distributions of the initial shock ηi,1 and the transitory shocks {εi,t}t are handled in ways analogous to how

we handle the persistent component:

Q1(τ | ai,1) =

K1∑
k=0

β1
k(τ) · h1

k(ai,1), τ ∈ (0, 1), (2.9)

Qε(τ | , ai,t) =

Kε∑
k=0

βεk(τ) · hεk(ai,t), τ ∈ (0, 1). (2.10)

For these distributions we do not condition on ηi,t−1 but only only on age.

Each of the coefficient functions
(
{βηk(τ)}Kηk=0, {β1

k(τ)}K1

k=0, {βεk(τ)}Kεk=0

)
in equations (2.8)-(2.10) is modelled with a

set of polynomial splines defined over the intervals
{

[τ`−1, τ`]
}L
`=1

, along with two low-dimensional tail functions

defined over (0, τ1] and [τL, 1). It is the parameters for these weighting functions that we must estimate.

As both the persistent and transitory shocks are unobserved, we cannot estimate the parameters of the weighting

functions directly using quantile regressions. Furthermore, our data are unbalanced because sample members die.

We therefore follow the extension of the E-M algorithm described in and applied by Arellano et al. (2021).

• In the E-step we find the posterior distribution of the unobserved persistent shocks ({ηi,t}t) implied by

the data and the current parameterization of the model. In particular, we use the coefficients of the Hermite

polynomials
(
{βηk(τ)}Kηk=0, {β1

k(τ)}K1

k=0, {βεk(τ)}Kεk=0

)
, which fully determine the distributions of the shocks, and

a Monte Carlo method to simulate draws from the distributions of the initial shock ηi,1 and the subsequent

shocks {ηi,t}t.4 This part of the procedure is a special case of the Sequential Monte Carlo methods described

in greater detail in Creal (2012).

• In the M-step we use quantile regressions to update the coefficient functions for the Hermite polynomials,

using the distribution of {ηi,t}t found in the E-step. Once the coefficients have been updated, we return to

the E-step and simulate new draws.

We iterate between the E and M steps until the parameters converge. See Appendix 2.A.6 for a more detailed

description of the methodology.

4This approach takes advantage of the Markovian structure of the model and has been shown to perform well in low-dimensional
models.
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2.4.2 Health and Mortality

Let hsi,g,t denote the health of member g ∈ {h,w} in household i at age t. Health has four mutually exclusive possible

values: dead; in a nursing home; in bad health; or in good health. We assume that the transition probabilities for

an individual’s health depend on his or her current health, age, permanent income I, and gender g.5 It follows that

the elements of the health transition matrix are given by

πq,r(t, Ii, g
)

= Pr
(
hsi,g,t+1 = r

∣∣hsi,g,t = q; t, Ii, g
)
, (2.11)

with the transitions covering a one-year interval. Although the HRS interviews every other year, we adopt the

approach in De Nardi et al. (2016), who fit annual models of health to the HRS data for singles. We extend

their approach to account for the dynamics of two-person households. We estimate health/mortality transition

probabilities by fitting the transitions observed in the HRS to a multinomial logit model.6 See Appendix 2.A.7 for

further details.

2.5 Results

2.5.1 Health and Longevity

Table 2.2 shows the life expectancies implied by our demographic model for those still alive at age 65. The first

panel of the table shows the life expectancies for singles under different configurations of gender, PI percentile, and

age-65 health. The healthy live longer than the sick, the rich (higher PI) live longer than the poor, and women

live longer than men. For example, a single man at the 10th PI percentile in a nursing home expects to live only

4.14 more years, while a single woman at the 90th percentile in good health expects to live 22.5 more years. The

second panel of the table shows life expectancies for married households, that is, the average length of time that at

least one member of the household is still alive or, equivalently, the life expectancies for the oldest survivors. While

wives generally outlive husbands, a non-trivial fraction of the oldest survivors are men, and the life expectancy for

a married household is roughly three years longer than that of a married woman with same initial health and PI

quantile.

The results shown in Table 2.2 are disaggregated by PI and initial health. When we average over all these factors,

we find that a man alive at age 65 will on average live an additional 17.50 years, while a woman alive at age 65 will

on average live an additional 20.96 years.7

5We do not allow health transitions to depend on medical spending. The empirical evidence on whether medical spending improves
health, especially at older ages, is surprisingly mixed (De Nardi et al. 2016). Likely culprits include reverse causality – sick people have
higher expenditures – and a lack of insurance variation – almost every retiree gets baseline insurance through Medicare. We also do
not allow health transitions to depend on marital status. De Nardi et al. (2021) find that after controlling for income and past health,
marital status has little added predictive power.

6We do not control for cohort effects. Instead, our estimates are a combination of period (cross-sectional) and cohort probabilities.
This may lead us to underestimate the lifespans expected by younger cohorts as they age. Nevertheless, lifespans have increased only
modestly over the sample period. Accounting for cohort effects would have at most a modest effect on our estimates.

7We construct these distributions with bootstrap draws of people aged 63-67 in HRS.
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Table 2.2: Life expectancy in years, conditional on reaching age 65

Men Women
Permanent Nursing Bad Good Nursing Bad Good
Income Percentile Home Health Health Home Health Health All∗

Individuals

10 4.14 15.25 17.49 7.32 18.70 20.22 18.06
50 4.89 16.99 19.37 8.71 20.52 22.04 20.68
90 4.91 17.35 19.86 8.83 20.97 22.52 20.96

Couples (oldest survivors)†

10 9.35 21.95 23.15 22.50
50 11.27 24.04 25.17 24.98
90 11.46 24.56 25.69 25.52

All Men 17.50
All Women 20.96
All Couples (oldest survivor) 24.83
∗ Averages taken over initial health found in the data. Results indexed by PI percentile are taken

over the associated PI quintile.
† Health-specific results for couples based on the assumption that the spouses have the same health

at age 65.

Another key statistic for our analysis is the probability that a 65 year old will spend significant time (a stay of

more than 120 days) in a nursing home before he or she dies. We estimate this probability to be 24.4% for men

and 36.9% for women. Nursing home incidence differs relatively modestly across the PI distribution. Although

high-income people are less likely to be in a nursing home at any given age, they live longer, and older individuals

are much more likely to be in a nursing home. The nursing home risk also varies relatively little with initial health

status (good or bad), for similar reasons.

Although all households in the HRS are initially non-institutionalized, the HRS does a good job of tracking indi-

viduals as they enter in nursing homes. French and Jones (2004) show that the HRS sample matches very well

the aggregate statistics on the share of the elderly population in a nursing home by 1999 when the sample begins.

In 1999 roughly 2.8% of men and 6.1% of women in the data had entered nursing homes. We also understate the

number of nursing home visits because we exclude short-term visits: as Friedberg et al. (2014) and Hurd et al.

(2017) document, many nursing home stays last only a few weeks and are associated with lower expenses. We focus

only on the longer and more expensive stays faced by households.

2.5.2 The Cross Sectional Distribution of Medical Spending and Parameter Esti-

mates

The Persistence of Medical Spending: Panel (a) of Figure 2.3 shows the estimated persistence of medical

spending in the data. Formally, it is the derivative of the conditional quantile function, defined in equation (2.7),

averaged across age (ai,t). It shows how persistent next period’s medical spending is as a function of next period’s

shock (indexed by its percentile rank τshock) and the percentile rank of today’s medical spending (τinit).
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(a) HRS data (b) Model simulation (c) Persistent component

Figure 2.3: Persistence of medical spending

Panel (a) shows that persistence is higher near the middle of the distribution. This means that those in the middle

may face moderate but persistent expenses that can accumulate into a catastrophic lifetime cost. In contrast,

persistence is quite low (less than 0.1) for large medical shocks among those with low initial medical spending. It is

much higher, almost 0.6, for those with high initial spending and large shocks (the top point on the graph). What

this means is that catastrophic medical spending is particularly persistent. Persistence is also higher for those with

low initial spending and small shocks (the bottom point on the graph). In short, when medical spending is low, it is

likely to stay low, and when medical spending is high, it is likely to stay high. However, it follows from Figures 2.2

and 2.3 that when medical spending is high, it can fall a lot (as the conditional distribution is left-skewed when

current spending is high) and when medical spending is low, it can rise a lot (as the conditional distribution is

right-skewed when current spending is low). Recall that the AR(1)-plus-white noise specification often assumed in

the literature implies that persistence would be constant. Panel (b) shows persistence in the simulated data. The

similarity of Panels (a) and (b) shows that the model matches the persistence of medical spending observed in the

data.

Panel (c) shows persistence in the permanent component of medical spending η. The persistence of η is much higher

than for medical spending overall, as the latter includes the transitory shock ε. Over much of its distribution, the

persistence of η is close to 1, indicating that for severe health conditions, such as dementia, medical spending is

very persistent. It is these shocks, which cause high spending for many periods, that can drain a family’s resources.

Budget sets: Table 2.1 shows that the mapping from total expenditures to the out-of-pocket expenditures paid

by households is approximately linear. We therefore assume that everyone pays 21.6% of total costs out of pocket.

2.5.3 The Distribution of Lifetime Medical Spending

Panel (a) of Figure 2.4 shows the model-predicted mean and 90th percentile of annual health care spending for

surviving households (including those who died during the year). Medical spending rises rapidly with age. For

example, mean spending rises from $22,900 per year at age 70 to $34,700 at age 95. The upper tail rises even more

rapidly, with the 90th percentile increasing from $47,200 to $85,200. These patterns are broadly similar to the raw
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(a) (b)

Figure 2.4: Mean and 90th Percentile of Annual and Remaining Lifetime Medical Spending.

Notes: Mean and 90th Percentile of Annual (Panel a) and Remaining Lifetime (Panel b) Total Medical Spending for Surviving
Households, Initial Singles and Initial Couples.

data in Figure 2.1. One difference is that the medical spending gap between singles and couples is smaller at older

ages than in Figure 2.1. This is because here we are conditioning on initial household structure whereas Figure 2.1

conditions on current household structure. Virtually all initial couples have lost a spouse and are single if either

household member is still alive at age 90. Thus it is unsurprising that medical spending of initial singles and initial

couples is similar at this age. Here we focus on initial household structure so we can calculate the present value of

lifetime spending.

Panel (b) of Figure 2.4 plots our main variable of interest, lifetime total spending. At each age, we calculate the

present discounted value of remaining medical spending from that age forward, using an annual real discount rate

of 3 percent. These lifetime totals are considerable. At age 65, households will incur, on average, over $272,000 of

medical spending over the remainder of their lives. Those at the 90th percentile of the spending distribution will

incur spending of $563,000. One might expect the lifetime totals to fall rapidly as households age and near the ends

of their lives. This is not the case. A household alive at age 90 will on average spend more than $99,000 before they

die. The slow decline of lifetime costs is due mostly to the tendency of medical costs to rise with age. Households

that live to older ages have shorter remaining lives but higher annual spending rates.

A number of papers have considered whether most of the rise in medical spending with age is due rising mortality

and thus end-of-life expenses: see the discussion in De Nardi et al. (2016). In our spending model we allow for for

the jump in medical spending prior to death as well as age related medical spending.
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2.5.4 Out-of-Pocket Medical Spending

Our baseline measure is total medical spending, which is the sum of payments made out-of-pocket, by Medicare,

by Medicaid, and by other private and public payors. Figure 2.5 shows the distributions of out-of-pocket spending

predicted by the model. To construct these values, we take the total medical spending amounts, then calculate

the out-of-pocket amount using the budget sets discussed in Section 2.5.2. Parallel to Figure 2.4, Panel (a) of

Figure 2.5 shows the distribution of annual out-of-pocket spending and Panel (b) shows remaining lifetime out-of-

pocket medical spending.

(a) (b)

Figure 2.5: Mean and 90th Percentile of Annual and Remaining Lifetime Out-of-Pocket Medical Spending.

Notes: Mean and 90th Percentile of Annual (Panel a) and Remaining Lifetime Out-of-Pocket Medical Spending for Surviving
Households (Panel b), Initial Singles and Initial Couples.

Predicted out-of-pocket spending in Figure 5 mirrors the patterns seen in Figure 4, although the levels are lower. At

age 65, households will on average incur over $59,000 of medical spending over the remainder of their lives. Those

at the 90th percentile of the spending distribution will incur spending of $121,000. A household alive at age 90 will

on average spend more than $21,000 out-of-pocket before they die, again highlighting the slow decline of expected

lifetime costs as households age.

A number of recent papers have argued that Medicaid significantly reduces the out-of-pocket spending risk faced by

older households. Brown and Finkelstein (2008) conclude that Medicaid crowds out private long-term care insurance

for about two-thirds of the wealth distribution. De Nardi et al. (2016) find that most single retirees, including those

at the top of the income distribution, value Medicaid at more than its actuarial cost. While both of these papers

model Medicaid formally, they lack data to estimate the underlying distributions and thus rely heavily on functional

form assumptions. Furthermore, previous papers have tended to abstract away from Medicare payments, in large

part because Medicare spending data have not been available. We find that despite these payors, medical spending

risk is high in old age.
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2.6 Discussion and Conclusions

In this paper we use health and spending models to simulate the distribution of lifetime medical expenditures

as of age 65, adding to the handful of studies on this topic. We also assess the importance of Medicare and

Medicaid in reducing lifetime medical spending risk. The simulations show that lifetime medical spending is high

and uncertain, and that the level and the dispersion of this spending diminish only slowly with age. Most of these

expenditures will be covered by Medicare, Medicaid, or other private and public insurers. Our data suggest that

out-of-pocket spending rises more or less linearly with total spending, with households covering about 22% of their

total expenditure.

We find that at age 65, households will on average incur over $59,000 of medical spending over the remainder of

their lives. Those at the 90th percentile of the spending distribution will incur spending of $121,000. A household

alive at age 90 will on average spend more than $21,000 out-of-pocket before they die, highlighting the slow decline

of expected lifetime costs as households age.

We conclude by pointing out some caveats to our analysis. We assume, as do many other empirical papers, that

medical spending is exogenous, while in reality it is a choice variable. Although the demand for some medical goods

and services is extremely inelastic, the demand for others might be elastic. Nursing home care, for example, is a

bundle of medical and non-medical commodities, and the latter can vary greatly in quality, with the choice between

a single and a shared room being just one example. Thus households can reduce their medical spending risk by

purchasing fewer medical goods. While our assumption of exogenous spending arguably leads us to overstate out-

of-pocket spending risk, our assumption that the effective co-pay rate is always 22% arguably leads us to understate

the risk. For example, most households lack private nursing home insurance, Medicare coverage is extremely limited,

and Medicaid coverage is subject to means-testing. Thus many households (such as those in nursing homes whose

wealth is too high to qualify for Medicaid) pay more than 22% and others (who are in hospital for modest periods

of time) will spend less than 22%. This leaves many households potentially exposed to significant long-term care

expenditure risk. Our approach can be extended to consider these types of risks.
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2.A Appendix

2.A.1 Our Medicare and Medicaid Data

Medicare

We link restricted Medicare fee-for-service (Parts A and B), and Part D data for the years 1999-2012 (2006 was

the first year of Medicare Part D and thus our Part D data begins then) to our HRS survey data for respondents

who consent to allow their Medicare data to be linked to their survey responses (approximately 64.7% percent of

persons in our study population). These records have enrollment information and data on reimbursement amounts

for inpatient, skilled nursing facility, home health, and hospice claims (Medicare Part A), as well as outpatient,

carrier (non-institutional medical care providers such as individual or group practitioners, non-hospital labs, and

ambulances), and durable medical equipment claims for Medicare Part B.

We use the Beneficiary Annual Summary File (BASF), which summarizes information from the micro-level claims

records. The BASF contains annual information for each individual on the number of months of enrollment in

Medicare Part A, Part B, and non-fee-for-service plans. The BASF has information on Medicare fee-for-service

(FFS) claims. Almost all claims for services used by non-FFS Medicare patients are not observed in these data, so

all analyses exclude an individual in a given year if they were enrolled in a non-FFS Medicare plan for more than

half the year.

Medicare Part D is the prescription drug benefit. We calculate the Medicare Part D payment using the Part D

event files. For the Part D Medicare contribution we subtract from the gross drug cost the payments paid by the

beneficiary, family, or friends.

Medicaid

As with the Medicare data, we are able to link restricted Medicaid data (CMS Medicaid Analytic eXtract, or “MAX”

files) for those in the HRS who gave permission, allowing us to measure Medicaid expenditures for the Medicaid

beneficiaries in our data set for the years 1999-2012. The MAX files contain personal summaries (which contain

eligibility, enrollment, and demographic information) and claims data across four service categories (inpatient,

long-term care, prescription drugs, and other services). Other services include a variety of services (e.g., physician

services and lab work) that do not fit under the other three service categories. The inpatient, long-term care,

prescription drugs, and other services files contain the primary variable of interest, “Medicaid Payment Amount,”

which is the total amount of money paid by Medicaid for a particular service. We sum over all the claims for all

the different service categories for a particular individual in each year.
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2.A.2 Sample Selection

We drop households for various reasons. These include disagreement between household members, problematic

mortality transitions, households with multiple members of the same sex, and refusal to provide Medicare and

Medicaid spending records. Table 3 below denotes the starting public HRS sample size and the sample size after

every drop.

Table 2.3: Sample Selection

Drop reason Post-drop sample size
26,598

One spouse dead and the other claims never married or divorced 26,596
One spouse claims married and the other something else 25,343
Two or more members of the same sex 24,897
One spouse claims never married an the other is not missing 24,818
One spouse claims divorced and the other widowed 24,545
People who are partnered 23,466
People who ”died”, then came back to life 23,161
Transitions with widowed or both widowed 23,055
Transitions to got married or divorced 22,719
Household split etc. based on sub-household identifier 22,695
Households that appear once and have missing marital status 22,683
No domestic partner in sample but married in some wave 21,903
No living member the year household joined HRS 21,713
Households dead or under 65 in the estimation period (1999-2012) 9,969
2+ years post death Medicare and Medicaid spending 6,783
Incomplete Medicare and Medicaid records 4,391

Notes: Sample size refers to the number of unique households.

2.A.3 Imputing Missing Medical Expenditures

Our goal is to measure all medical spending: the variable Mit in equation (2.2) of the main text is defined to

include out-of-pocket spending, Medicare and Medicaid payments, and private and other public (such as Veterans

Administration benefits, and care provided by local and state health departments) insurance payments. While the

HRS includes information on out-of-pocket spending and can be linked to Medicare and Medicaid payments, it does

not include Medicare Part C, private, or other public insurance payments. In this appendix we describe how we

use data from the Medical Expenditure Panel Survey (MEPS) to impute these payments in the HRS. Although

the MEPS has extremely high quality information on all payors for all household members, it lacks the long panel

dimension of the HRS. Our imputation procedures allow us to exploit the best of both data sets.

Our imputation procedure has two steps. First, we use the MEPS to infer private and other public insurance

payments, conditional on variables observed in both datasets. Second, we impute private and other public insurance

payments in the HRS data using a conditional mean matching procedure (which is a procedure very similar to hot-

decking).
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First Step of Imputation Procedure

We use the MEPS to infer payments of other payors, conditional on the observable variables that exist in both the

MEPS and the HRS datasets.

Let i index individuals in the HRS and j index individuals in the MEPS. Define Mobs
it as out of pocket, Medicaid,

and Medicare (Part A, B, and D, but not Part C) payments observed in both the HRS and MEPS data sets, Mmiss
it

as the components of medical spending missing in the HRS but observed in the MEPS, and Mit = Mmiss
it +Mobs

it as

total medical spending. To impute Mmiss
it , which is missing in the HRS, we follow David et al. (1986), French and

Jones (2011), and De Nardi et al. (2020) and use a predictive mean-matching regression approach. There are two

steps to our procedure. First, we use the MEPS data to regress Mmiss
it on observable variables that exist in both

data sets. Second, we impute Mmiss
it in the HRS data using a conditional mean-matching procedure, a procedure

very similar to hot-decking.

First, for every member of the the MEPS sample, we regress the variable of interestMmiss on the vector of observable

variables zjt, yielding Mmiss
jt = zjtβ + εjt. Second, for each individual j in the MEPS we calculate the predicted

value M̂miss
jt = zjtβ̂, and for each member of the sample we calculate the residual ε̂jt = Mmiss

jt − M̂miss
jt. Third,

we sort the predicted value M̂miss
jt into deciles and keep track of all values of ε̂jt within each decile. We use this

procedure separately to impute Medicare Part C benefits, private payments, and other payments.

In practice we include in zjt a fourth-order age polynomial, marital status, gender, self-reported health (=1 if self

reported health is good, very good, or excellent), race, visiting a medical practitioner (doctor, hospital or dentist),

out-of-pocket medical spending, education of head (high school, some college, college), death of an individual, and

total household income. We estimate this regression two times: once for the privately insured, and once for other

payors.

Because the measure of medical spending in the HRS is medical spending over two years, we divide HRS out-of-

pocket medical spending by 2 and assume that medical spending is equal across the two years.

Second Step of Imputation Procedure

For every observation in the HRS sample with a positive Medicaid indicator, we impute M̂edit = zitβ̂, using the

values of β̂ estimated from the MEPS. Then we impute εit for each observation of this subsample by finding a

random observation in the MEPS with a value of M̂edjt in the same decile as M̂edit, and setting ε̂it = ε̂jt. The

imputed value of Medit is M̂edit + ε̂it.

As David et al. (1986) point out, our imputation approach is equivalent to hot-decking when the “z” variables are

discretized and include a full set of interactions. The advantages of our approach over hot-decking are two-fold.

First, many of the “z” variables are continuous. Second, to improve goodness of fit we use a large number of “z”

variables. We find that adding extra variables are very important for improving goodness of fit when imputing

payments. Because hot-decking uses a full set of interactions, this would result in a large number of hot-decking

cells relative to our sample size. Thus, in this context, hot decking is too data intensive.
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2.A.4 Validating the Administrative Medical Spending Data

Here, we examine in greater detail the accuracy of the administrative medical spending data, as well as the out-

of-pocket spending found in the Assets and Health Dynamics of the Oldest Old (AHEAD) cohort of the HRS,

comparing them to data from the MCBS. See De Nardi, French, and Jones (2016) and De Nardi et al. (2016) for

more details of the MCBS data and (for example) Nicholas et al. (2011) for details of the HRS linked data.

The MCBS is a nationally representative survey of Medicare beneficiaries, consisting of Disability Insurance recip-

ients and Medicare recipients aged 65 and older. The survey contains an over-sample of beneficiaries older than

80 and disabled individuals younger than 65. Respondents are asked about health status, health insurance, and

health care spending (from all sources). The MCBS data are matched to Medicare records, and medical spending

data are created through a reconciliation process that combines information from survey respondents with Medicare

administrative files. As a result, the survey is thought to give extremely accurate data on Medicare payments and

fairly accurate data on out-of-pocket and Medicaid payments. As in the HRS survey, the MCBS survey includes

information on those who enter a nursing home or die. Respondents are interviewed up to 12 times over a 4 year

period. We aggregate the data to an annual level. In both samples, we applied only modest sample selection

restrictions. The key sample selection issue shown in Table 2.3 is that in the HRS we drop households with missing

or erroneous Medicare or Medicaid records.

Here we compare distributions of total, out-of-pocket, Medicare, and Medicaid payments between the MCBS are the

HRS data. Medical spending the HRS is measured at an individual level (rather than household) to be comparable

with the MCBS. The comparison can be seen in Table 2.4. Medical spending is higher in our HRS sample than in

the MCBS sample. Furthermore, this higher level of spending is driven by higher out-of-pocket spending, Medicare,

and Medicaid spending. These differences potentially are an advantage of the HRS data since, as noted in De Nardi

et al. (2016), the MCBS clearly understates aggregate Medicare and especially Medicaid spending, potentially due

to the issue that the MCBS does not have administrative data on Medicaid spending, and thus relies heavily on

imputation.

The next set of benchmarking exercises that we perform is for out-of-pocket medical spending, Medicaid recipiency

and income between the AHEAD cohort of the HRS and MCBS. For both the HRS and MCBS, we restrict the

sample to singles (over the sample period) who meet the HRS/AHEAD age criteria (at least 70 in 1994, 72 in 1996,

...) and who are not working over the sample period. Because the MCBS sample lacks spousal information, for

this analysis we focus only on singles. We use De Nardi et al.’s (2016) measure of permanent income and construct

a measure of permanent income, which is the percentile rank of total income over the period we observe these

individuals (the MCBS asks only about total income). The first four columns of Table 2.5 show sample statistics

from the full HRS/AHEAD sample while the final three columns of the table show sample statistics from the MCBS

sample. The first statistics we compare are income. Total income in the HRS/AHEAD data (including asset and

other non-annuitized income) lines up well with total income in the MCBS data, although income in the top quintile

of the MCBS is higher than in the HRS/AHEAD. Next, we compare out-of-pocket medical spending in the MCBS

and HRS/AHEAD. Out-of-pocket medical spending (including insurance payments) averages $2,360 in the bottom
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Table 2.5: Income, Out-of-pocket Spending, and Medicaid Recipiency Rates: HRS versus MCBS

HRS/AHEAD Data MCBS Data

Out-of- Out-of-
Income Total Annuity pocket Medicaid Total pocket Medicaid
Quintile Income Income Expenses Recipiency Income Expenses Recipiency

1 7,740 4,820 2,550 60.9 6,750 4,050 69.9
2 10,290 8,270 4,270 28.1 10,020 5,340 41.8
3 15,500 10,900 5,050 11.0 13,740 6,470 15.5
4 19,290 14,390 6,360 5.6 19,710 7,300 8.0
5 33,580 26,300 7,000 3.0 44,150 8,020 5.4

Notes:1996-2010, for those age 72 and older in 1996.

PI quintile and $6,340 in the top quintile in the HRS/AHEAD. In comparison, the same numbers in the MCBS data

are $3,540 and $7,020. Overall, out-of-pocket medical spending in the MCBS and HRS/AHEAD are similar, which

may be surprising given that the two surveys each have their own advantages in terms of survey methodology.8 The

share of the population receiving Medicaid transfers is also very similar in the HRS/AHEAD and MCBS. 61% and

70% of those in the bottom PI quintile are on Medicaid in the the HRS/AHEAD and MCBS, respectively. In the

top quintile, 3% of people are on Medicaid in the HRS/AHEAD whereas 5% are in the MCBS.

2.A.5 Plotting the Moments of Medical Spending

This appendix shows how we plot the moments of medical spending in Figure 2.2. We follow closely De Nardi

et al.’s (2020) approach.

Assume that the log of medical spending for household (or person) i at period t is given by equation (2.2), which

we replicate here:

lnMi,t = Xi,tγ +mi,t, (2.12)

where Xi,t is a vector of conditioning variables such as age, household composition, and health. As long as we

impose no restrictions on mi,t, equation (2.12) is an identity that is true by construction. It is often commonly

assumed that mi,t is independent of Xi,t, but this is not necessary for our purposes. Likewise, we can construct the

autoregression

mi,t = δmi,t−1 + ei,t. (2.13)

Our procedure is as follows:

1. Using OLS, estimate the coefficient γ in equation (2.12) and construct {mi,t}i,t.

2. Find ri,t, the percentile rank of mi,t, using a single ranking across all periods.

8There are more detailed questions underlying the out-of-pocket medical expense questions in the HRS, including the use of “unfolding
brackets”. Respondents can give ranges for medical expense amounts, instead of a point estimate or “don’t know” as in the MCBS.
The MCBS has the advantage that forgotten medical out-of-pocket medical expenses will be imputed if Medicare had to pay a share of
the health event.
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3. Using OLS, estimate the coefficient δ in equation (2.13) and construct {ei,t}i,t.

4. Construct the variable yi,t = f(ei,t), where f(e) is a function that can be used to construct summary statistics.

(a) For means we use f(e) = e.

(b) For variances we use f(e) = e2. (To get standard deviations, we need to find the square root of the

predicted variances.) Let σ̂2 denote the estimated variance, the average value of e2.

(c) For skewness we use f(e) = e3/σ̂3, where σ̂3 utilizes the standard deviation from step (b).

(d) For kurtosis we use f(e) = e4/σ̂4.

5. For each summary statistic, regress the appropriate yi,t against ri,t−1, and plot the predicted values. In

practice, we use a kernel-weighted local polynomial regression.

If the medical spending residuals follow an AR(1), then equation (2.13) is equivalent to equation (2.4) and the

residuals {êi,t}i,t from equation (2.13) will deliver a consistent estimates of the residuals {ζi,t}i,t from equation

(2.4). Given that ζi,t is assumed to be iid and normally distributed (see equation (2.5)), it will at any value of

mi,t−1 have a mean of zero, constant variance, no skewness, and kurtosis of three.

In the more complex case where medical spending residuals follow an AR(1) plus white noise, the probability limit

of δ̂ from equation (2.13) will be:

plim δ̂ =
Cov(mi,t,mi,t−1)

V ar(mi,t−1)

=
Cov(ηi,t, ηi,t−1)

V ar(ηi,t−1) + V ar(εi,t−1)

= φ
V ar(ηit−1)

V ar(ηit−1) + V ar(εi,t−1)
, (2.14)

so that

ei,t = mi,t − δmi,t−1

= ηi,t + εi,t − δ(ηi,t−1 + εi,t−1)

= φηi,t−1 + ζi,t + εi,t − δ(ηi,t−1 + εi,t−1)

= (φ− δ)ηi,t−1 + ζi,t + εi,t − δεi,t−1.

All the objects above are normally-distributed and zero-mean, and thus unconditionally eit is also normally-
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distributed and zero-mean. This is also true conditional on mi,t−1, as

E[ei,t |mi,t−1] = E[(φ− δ)ηi,t−1 + ζi,t + εi,t − δεi,t−1 |mi,t−1]

= (φ− δ)E[ηi,t−1 |mi,t−1]− δ E[εi,t−1 |mi,t−1]

= (φ− δ)
(Cov(ηi,t−1,mi,t−1)

V ar(mi,t−1)
mi,t−1

)
− δ
(Cov(εi,t−1,mi,t−1)

V ar(mi,t−1)
mi,t−1

)
= (φ− δ) V ar(ηi,t−1)

V ar(mi,t−1)
mi,t−1 − δ

V ar(εi,t−1)

V ar(mi,t−1)
mi,t−1

= φ
V ar(ηi,t−1)V ar(εi,t−1)

V ar(mi,t−1)2
mi,t−1 − φ

V ar(ηi,t−1)V ar(εi,t−1)

V ar(mi,t−1)2
mi,t−1

= 0,

with the fifth line following from equation (2.14), which implies that

φ− δ = φ

(
1− V ar(ηi,t−1)

V ar(ηi,t−1) + V ar(εi,t−1)

)
= φ

V ar(εi,t−1)

V ar(mi,t−1)
.

The conditional variance of ei,t is given by:

V ar(ei,t |mi,t−1) = E
[
e2
i,t |mi,t−1

]
− E[ei,t |mi,t−1]2

= E
[(

(φ− δ)ηi,t−1 + ζi,t + εi,t − δεi,t−1

)2

|mi,t−1

]
= (φ− δ)2 E

[
η2
i,t−1 |mi,t−1

]
+ E

[
ζ2
i,t |mi,t−1

]
+ E

[
ε2
i,t |mi,t−1

]
+δ2 E

[
ε2
i,t−1 |mi,t−1

]
− 2δ(φ− δ)E

[
ηi,t−1εi,t−1 |mi,t−1

]
= (φ− δ)2

(
V ar(ηi,t−1 |mi,t−1) + E[ηi,t−1 |mi,t−1]2

)
+ σ2

ζ + σ2
ε

+δ2
(
V ar(εi,t−1 |mi,t−1) + E[εi,t−1 |mi,t−1]2

)
− 2δ(φ− δ)E

[
ηi,t−1εi,t−1 |mi,t−1

]
= (φ− δ)2V ar(ηi,t−1)

(
1− V ar(ηi,t−1)

V ar(mi,t−1)

)
+ δ2V ar(εi,t−1)

(
1− V ar(εi,t−1)

V ar(mi,t−1)

)

+(φ− δ)2 V ar(ηi,t−1)2

V ar(mi,t−1)2
m2
i,t−1 + δ2 V ar(εi,t−1)2

V ar(mi,t−1)2
m2
i,t−1

−2δ(φ− δ)V ar(ηi,t−1)V ar(εi,t−1)

V ar(mi,t−1)2
m2
i,t−1 + σ2

ζ + σ2
ε

= (φ− δ)2V ar(ηi,t−1)
V ar(εi,t−1)

V ar(mi,t−1)
+ δ2V ar(εi,t−1)

V ar(ηi,t−1)

V ar(mi,t−1)

+φ2V ar(ηi,t−1)2V ar(εi,t−1)2

V ar(mi,t−1)4
m2
i,t−1 + φ2V ar(ηi,t−1)2V ar(εi,t−1)2

V ar(mi,t−1)4
m2
i,t−1

−2φ2V ar(ηi,t−1)2V ar(εi,t−1)2

V ar(mi,t−1)4
m2
i,t−1 + σ2

ζ + σ2
ε

= ((φ− δ)2 + δ2)
V ar(ηi,t−1)V ar(εi,t−1)

V ar(mi,t−1)
+ σ2

ζ + σ2
ε .

Hence, the mean of ei,t conditional on mi,t−1 is zero and the variance of ei,t conditional on mi,t−1 is constant. For

the conditional skewness and kurtosis, note that the distribution of ei,t conditional on mi,t−1 is normal, as it is
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a linear combination of variables that themselves follow a multivariate normal distribution, conditional on mi,t−1

which is normal. It follows that the skewness and kurtosis are constant.

2.A.6 Estimation methodology

We estimate the model using the extension of the E-M algorithm employed by Arellano et al. (2017). Recall

from equations (2.8)-(2.10) that the functions Qη(τ | ηi,t−1, ai,t), Q1(τ | ai,1) and Qε(τ | , ai,t) are constructed from

Hermite polynomials
(
{hηk(·)}Kηk=0, {h1

k(·)}K1

k=0, {hεk(τ)}Kεk=0

)
, using the coefficient functions {βηk(τ)}Kηk=0, {β1

k(τ)}K1

k=0,

and {βεk(τ)}Kεk=0. The coefficient functions are in turn modeled with a set of polynomial splines defined over the

intervals
{

[τ`−1, τ`]
}L
`=1

, along with two tail functions for (0, τ1] and [τL, 1). It is the parameters for these weighting

functions that we must estimate.

Define θ as the vector of all parameters (the β parameters) in equations (2.8)-(2.10). The procedure to estimate θ

is as follows. Starting with the vector θ̂(0) we iterate between the following two steps until θ̂(j) converges:

1. Stochastic E-Step: For each observation i, draw S values of η
(s)
i = (η

(s)
i1 , ..., η

(s)
iT ) from fi( . ; θ̂

(j))
(
derived from

Q
(j)
1 (·), Q(j)

η (·) and Q
(j)
ε (·)

)
.

2. M-step: Find

argmin
βη`0,...,β

η
`Kη

N∑
i=1

S∑
s=1

T∑
t=2

ρτ`

(
η

(s)
it −

Kη∑
k=1

βη`k h
η
k(η

(s)
i,t−1, ait)

)
, ` = 1, ..., L.

We use ρτ (·) to denote Koenker and Bassett Jr’s (1978) quantile “check” function. To identify the full set of

splines, this function is minimized at each point ` on the grid over τ . The coefficients for εi,t and ηi,1 likewise

solve

argmin
βε`0,...,β

ε
`Kε

N∑
i=1

S∑
s=1

T∑
t=1

ρτ`

(
mi,t − η(s)

it −
Kε∑
k=1

βε`k h
ε
k(ait)

)
, ` = 1, ..., L,

argmin
β1
`0,...,β

1
`K1

N∑
i=1

S∑
s=1

ρτ`

(
η

(s)
i1 −

K1∑
k=1

β1
`k h

1
k(ai1)

)
, ` = 1, ..., L.

There are also moment conditions related to the tails of the distribution: See Arellano et al. (2017). These

estimates give us θ̂(j+1).

For longer panels, settings with unbalanced data, or when estimating more complicated models the E-step can

perform poorly when using standard samplers (e.g., Metropolis-Hastings). We therefore employ the sequential

Monte-Carlo (SMC) approach implemented by Arellano et al. (2021). Comprehensive surveys of these methods can

be found in Doucet et al. (2009) and Creal (2012).

We will use the Gaussian analogues to equations (2.8), (2.9) and (2.10) as importance distributions.

Step 1: SMC Stochastic E-Step to sample from f(ηi,1, ..., ηi,T |Y Ti , aTi ). For i = 1, ..., N :
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At t = 1 :

1. Sample S particles η
(s)
1 ∼ g(η1|y1), where g(·) is the closed form posterior from the Gaussian model.

2. Compute the weights w1(η
(s)
1 ) and apply a self-normalization to obtain W

(s)
1 ∝ w1(η

(s)
1 ) .

3. If V ar(W (s)) exceeds some threshold, re-sample {W (s)
1 , η

(s)
1 } to obtain S equally weighted particles.

At t > 1 :

1. Sample S particles η
(s)
t ∼ g(ηt|ηt−1, yt), where g(·) is the closed-form posterior from the Gaussian model.

2. Compute the weights w(η
(s)
1:t ) and apply a self-normalization to obtain W

(s)
t ∝ wt(η(s)

1:t ).

3. If V ar(W (s)) exceeds some threshold, re-sample {W (s)
t , η

(s)
t } to obtain S equally weighted particles.

4. If t = T , sample P particles to be used in the M -Step. (We set P = 1).

Step 2: M-Step

1. Update quantile regressions for equations (2.8), (2.9) and (2.10) .

2. Update Laplace parameters for the tail functions.

3. Update parameters for Gaussian proposal distributions.

2.A.7 Demographic Transition Probabilities in the HRS

Let hsi,j,t ∈ {0, 1, 2, 3} denote death (hsi,j,t = 0) and the 3 mutually exclusive health states of the living (nursing

home = 1, bad = 2, good = 3, respectively) of household member j, household i, time t. Let xi,j,t be a vector that

includes a constant, age, permanent income, gender, and powers and interactions of these variables, and indicators

for previous health and previous health interacted with age. Our goal is to construct the likelihood function for the

transition probabilities.

Using a multivariate logit specification, we have, for q ∈ {1, 2, 3}, r ∈ {0, 1, 2, 3}, we rewrite equation (2.11) as

πq,r,t = Pr(hsi,g,t+1 = r|hsi,g,t = q;xi,g,t)

= γqr

/ ∑
s∈{0,1,2,3}

γqs,

γqs ≡ 1, s = 0

γqs = exp (xi,g,tβs) , s ∈ {1, 2, 3},

where {βs}3s=1 are coefficient vectors for each future state s and xi,g,t is the explanatory variable vector which

depends on the current state q.

The formulae above give 1-period-ahead transition probabilities, whereas what we observe in the HRS data set are

2-period ahead probabilities, Pr(hsi,g,t+2 = r|hsi,g,t = q;xi,g,t). The two sets of probabilities are linked, however,
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by

Pr(hsi,g,t+2 = r|hsi,g,t = q;xi,g,t) =
∑
s

Pr(hsi,g,t+2 = r|hsi,g,t+1 = s;xi,g,t) Pr(hsi,g,t+1 = s|hsi,g,t = q;xi,g,t)

=
∑
s

πsr,t+1πqs,t,

imposing π00,t+1 = 1. This allows us to estimate {βk} directly from the data using maximum likelihood.
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Chapter 3

Dementia and Disadvantage in the

United States and England

3.1 Introduction

Dementia, a severe and irreversible decline in memory and other cognitive functions, is a major and increasing

global health challenge. It is the fifth leading cause of death globally and is one of the most common comorbidities

for Covid-19 morbidity.(Nichols et al., 2019; Kuo et al., 2020) It results in large social and economic costs.(Hurd

et al., 2013; Hudomiet et al., 2019) Americans are more likely to be in poor health than their English counterparts

in multiple dimensions, including heart disease and diabetes.(Banks et al., 2006) These differences are large along all

points of the socioeconomic status (SES) gradient, although the gradient is generally steeper in the US. While the

SES gradient for many diseases has been well established,(Marmot, 2006; Brunner, 2016; Marmot, 2020) only a few

studies have focused specifically on dementia.(Rusmaully et al., 2017; George et al., 2020) The available evidence is

summarized in Table 3.3 in the online appendix. The evidence of the SES gradient for dementia is also less clear,

as in England while a strong association has been established between wealth and dementia incidence, the same

was not observed for education level.(Cadar et al., 2018) The Global Burden of Disease Study (GBD) reported that

in 2017 among those aged over 70, the US had a lower overall prevalence of dementia at 7.89% compared with the

UK at 8.91%.(of Disease, 2020) However, the GBD has identified substantial heterogeneity in case-ascertainment

methods throughout the dementia literature, resulting in location-specific inconsistencies and potentially biased

cross-country comparisons. This has led to calls for analyses with more consistent and comparable measures of

dementia to inform policy makers, researchers, and clinicians about global differences in dementia.(Launer, 2018)

In this study, we compared dementia prevalence in England and the US among non-Hispanic whites aged 70+, and

how it varied across the SES gradient of each country. Location-specific inconsistencies caused by differences in

diagnostic practices were not an issue in our study because we used an identical case definition for dementia, and

the surveys in the analysis shared the same design and sampling techniques. More specifically, we used two large
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surveys, the US Health and Retirement Study (HRS) and the English Longitudinal Study of Ageing (ELSA), that

contain a battery of the same demographic, cognitive, and functional measures, and we applied the same prediction

algorithm in both countries to detect undiagnosed as well as diagnosed cases. We compared dementia prevalence

within and across England and the US using important indicators of SES, specifically: income; education; wealth;

and non-housing wealth.

3.2 Strengths and limitations of this study

• This is the first study to compare dementia prevalence across countries using the same survey methodology and

the exact same measure of dementia. The surveys have similar sample selection and questionnaire design. We

standardise our estimates by age and gender to the English population aged over 70 in 2016. Any differences

in overall prevalence across the two countries should represent true differences.

• We measure the SES gradient of dementia across four different measures of SES: income; education; wealth;

and non-housing wealth.

• Dementia disproportionately affects the most disadvantaged in in both countries, although the gradient is

steeper in the US according to all four measures of SES.

• We do not ascertain dementia directly, but predict cases using a common battery of measures in ELSA and

HRS. One of the SES measures, education, is also used as a predictor of dementia.

3.3 Methods

3.3.1 Description of Surveys

Data were extracted from the 2016 and earlier waves of the HRS and ELSA, which are nationally representative

biennial surveys of the US and English populations, respectively.(Sonnega et al., 2014; Steptoe et al., 2012) Both

the HRS and ELSA follow respondents longitudinally until death, with new cohorts entering to maintain population

representativeness as the study sample gets older. The design of ELSA was based on the HRS, making the two

surveys analogous, with both collecting data on health, ability, demographics, employment, and wealth. In addition

to measuring health conditions and difficulties respondents have with Activities of Daily Living (ADLs) and Instru-

mental Activities of Daily Living (IADLs), sample members also have their cognitive function assessed. A range

of tests adapted from the Telephone Interview for Cognitive Status (TICS) have been carried out in HRS since

1996 and ELSA since 2014. If a sample member was unable to respond in person, a proxy respondent was asked

questions about the respondent’s change in memory. Both surveys have a high response rate, which is displayed in

the online appendix Table 3.4. We describe these surveys in more detail in the online appendix.
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3.3.2 Cohort Description

Our samples are restricted to non-Hispanic whites over the age of 70 years old that live in the community or in

nursing homes in 2016. This provides a study sample of 5,330 participants in the HRS and 3,147 participants

in ELSA. We restrict our sample to non-Hispanic whites to ensure estimates are comparable across countries.

Summary statistics of both the raw and selected samples are displayed in online appendix Tables 3.5 and 3.6, and

specifications that include ethnic minorities are also displayed.

3.3.3 Patient and Public Involvement

No study participants were involved in setting the research question or outcome measures, nor were they involved

in any other area of the design, implementation, and analysis of the study. There are no direct plans to disseminate

the results of the research to study participants.

3.3.4 Dementia Case Definition

The HRS included a detailed clinical substudy (ADAMS: Aging, Demographics and Memory Study) of 856 sample

members aged 70+ who completed an in-depth in-home assessment of cognitive status conducted by experienced

teams at the Duke University Dementia Epidemiology Research Center who diagnosed each participant as nor-

mal, cognitively impaired but not demented (CIND), or demented.(Hurd et al., 2013) Data from ADAMS is re-

garded as the gold-standard dementia diagnoses against which to train algorithms to predict dementia.(Gianattasio

et al., 2018) Hurd et al. estimated separate ordered probit models in the ADAMS subsample for self- and proxy-

respondents to generate a predictive algorithm for cognitive status, based on the ADAMS diagnoses, for the whole

HRS sample. The algorithm uses a range of variables including demographic information, Activities of Daily Living

(ADLs), Instrumental Activities of Daily Living (IADLs), TICS questionnaire, as well as the change in these vari-

ables across waves.(Hurd et al., 2013) Proxy respondents had a separate predictive algorithm as they were asked a

different set of questions from self-respondents, which included the short form of the Informant Questionnaire on

Cognitive Decline in the Elderly (IQCODE). The use of a proxy to assess cognitive decline and dementia in elderly

people is a recognised accepted standard method for identifying severe cognitive impairment and has been validated

many times.(Jorm et al., 2000) Importantly, the same set of questions used in the Hurd et al. algorithm is asked of

self- and proxy-respondents in both HRS and ELSA. Summary statistics for a variety of predictors are displayed in

online appendix Table 3.7.

We applied Hurd et al.’s predictive algorithm to estimate the probably of dementia for those in the HRS sample

in 2016 and extended the prediction to the ELSA sample. The algorithm predicts the probability of dementia in

the following year; therefore, we predicted dementia prevalence in 2017. Hurd et al’s predictive algorithm has been

shown to have an accuracy (percentage correctly classified as demented or nondemented) of 94%, sensitivity of 65%,

and a specificity of 98% in the estimation sample.(Gianattasio et al., 2018) An in-depth discussion of the predictive
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algorithm procedure can be found in the online appendix

Non-response for people unable or unwilling to participate in the survey is important when attempting to estimate

dementia prevalence across the population. While attrition exists in both surveys, it is unlikely to significantly

affect our estimates since among older ELSA and HRS respondents there is no statistically significant correlation

between attrition and prior health or the SES indicators of education, income and wealth.(Banks et al., 2010)

3.3.5 Measures of Socioeconomic Status

We considered four measures of SES: income; education; wealth; and non-housing wealth. Income is measured as

current household income from all sources. For education we used total years of schooling. Wealth is measured as

the sum of all household reported savings, stocks, bonds, business wealth, other assets, and the value of housing

assets (e.g., properties) after financial debt and mortgage debt has been subtracted. Non-housing wealth is the same

measure as wealth but excludes housing assets and mortgage debt, and therefore measure wealth that can be more

easily converted to cash. Wealth and non-housing wealth are both measured from 4 years prior to minimize reverse

causality, as medical expenses associated with dementia are high and may run down wealth.(Hudomiet et al., 2019)

For each measure, we created a SES gradient by ranking individuals based on that measure. For income, wealth,

and non-housing wealth, we assigned everyone to a decile in their respective country. For education, we ranked

individuals according to their number of years of schooling.

3.4 Statistical Analysis

We created a pooled dataset of the two surveys. In our statistical analysis we used HRS and ELSA sampling weights

to adjust for nonresponse and for the sampling design of the surveys. To make both within country estimates along

the SES gradient and cross-country estimates directly comparable, estimates were agegender standardized to the

English population aged over 70 in 2016 using direct standardization, categorising the population into ten groups:

five age bands (70-74; 75-79; 80-84; 85-89; and 90+) by gender. We estimated the prevalence of dementia in each

country, their difference, and compared the prevalence along the four SES gradients. For each estimate presented we

computed the corresponding 95% confidence interval (CI), and for any differences we computed the corresponding

p-values. For each SES factor, as well as estimating the age-gender standardized prevalence along the gradient, we

calculated the Relative Index of Inequality (RII) and Slope Index of Inequality (SII) using generalized linear models

(log binomial regression) with logarithmic and identity link functions, respectively. The RII can be interpreted as

the relative likelihood of dementia prevalence of those in the lowest SES group compared to those in the highest,

and the SII can be interpreted as the absolute effect on dementia probability of moving from the lowest SES group

to the highest.(Wagstaff et al., 1991) To assess whether any observed differences could be explained by disparities in

past health risk factors across countries we conditioned on a variety of risk factors and assessed how our estimates

changed. Where possible, when conditioning on these factors we used past health instead of current health to
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address the problem of reverse causality: i.e., the problem that dementia may cause health problems such as low

weight. Statistical analyses were performed using STATA software.

3.5 Results

Table 3.1 shows the age-gender standardized prevalence of dementia for the aged over 70 white nonHispanic pop-

ulation in both England and the US. Dementia prevalence is lower in England at 9.7% (95% CI, 8.9% to 10.6%)

than the US at 11.2% (95% CI, 10.6% to 11.8), a difference of 1.4 percentage points (pp) that is highly statistically

significant (P = 0.0055). Table 3.1 also shows dementia prevalence for different SES groups, in terms of income,

education, wealth, and non-housing wealth. Regardless of the measure of the SES, there is a clear gradient in

dementia prevalence, with the most disadvantaged groups in both England and the US having higher dementia

prevalence. The gradient is steeper in the US and is driven by significantly higher dementia prevalence for those

at the very bottom of the distribution. In the US, those in the lowest income decile have a dementia prevalence of

18.7% (95% CI, 16.6% to 20.8%), which is considerably higher than in England, with a prevalence among those in

the lowest decile of 11.4% (95% CI, 8.9% to 13.9%). The difference is highly statistically significant (P < 0.0001).

For income deciles above the lowest, the difference across the two countries is much smaller and not statistically

significant. This same general pattern is evident across the other measures of SES that we consider, although

when using wealth, the difference between those in the bottom decile is not statistically significant. Figure 3.1

presents the same dementia prevalence information shown in Table 3.1, but in graphical format. It also reports the

Slope Index of Inequality (SII) for the four different measures of the SES for both countries. In both the US and

England, dementia is more prevalent among the more disadvantaged. The gradient tends to be steeper in the US,

corresponding to a larger (in absolute value) SII in the US for each SES measure. For income, the SII is -0.062

(95% CI, -0.097 to -0.028) and -0.085 (95% CI, -0.114 to -0.057) for England and the US, respectively. The SIIs

are not statistically different. If the lowest income decile is excluded, the SII for England becomes slightly steeper

(-0.067 (95% CI, -0.107 to -0.027)) whereas the SII for the US becomes less steep than England (-0.060 (95% CI,

-0.093 to -0.027)). Next, we attempted to understand the potential drivers of these gradients and the differences

in the gradients across countries. We extended the analysis to account for cardiometabolic diseases (i.e. diabetes,

heart disease and stroke), and behaviours (i.e. smoking and body mass index) as dementia risk factors.(Nichols

et al., 2019; Yaffe et al., 2013) Previous research showed these factors to be more prevalent in the US than England,

especially among the most disadvantaged.(Banks et al., 2006) Table 3.2 displays the percentage point difference in

dementia prevalence after we controlled for various measures of past health and behaviours. The results are split

into three panels: the whole sample; the whole sample excluding those in the lowest income decile; and the lowest

income decile. As was shown in Table 3.1, the difference in the prevalence of dementia between England and the

US was 1.43 pp (P = 0.0055). Table 3.2 shows this difference declined to 0.894 pp (P = 0.11) when we excluded

the lowest income decile. Controlling for past health and behaviours modestly reduced this cross-country difference

further: the difference declined by a maximum of 19%. For the lowest income decile, controlling for past health and

behaviour reduced the cross-country difference of 7.27 pp (P < 0.0001) by a more substantial 33%.
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In the online appendix Tables 3.8-3.10 we investigated whether past health and behaviour explained the SES gradient

within each country. We found that in England and the US these factors accounted for most of the SES gradient,

as shown in online appendix Figure 3.3. However, in the US, prevalence in the lowest income decile remained

disproportionately high.

Education has also been shown to be a risk factor for dementia. Table 3.1 shows that in both the US and England,

the less educated have higher dementia prevalence. Controlling for education increased the estimated difference

across countries, from 1.43 pp to 2.82 pp, as can be seen in the online appendix Table 3.9. Education cannot

explain these differences since the English have lower educational attainment. In our main analysis we exclude

ethnic minorities, who have higher dementia prevalence and comprise a larger share of the US than the English

population. Including minorities increased the estimated difference across countries, from 1.43 pp to 2.42 pp, as

can be seen in the online appendix Tables 3.2 and 3.11. This is largely caused by the high prevalence of dementia

among minorities in the US as displayed in online appendix Table 3.12.
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Table 3.1: Prevalence of dementia, USA versus England, 2017

England USA
Age-gender standardised Age-gender standardised

prevalence (95%CI) prevalence (95%CI) Difference P value

All 0.097 (0.089 to 0.106) 0.112 (0.106 to 0.118) 0.014 0.0055
Household income decile

1 (lowest) 0.114 (0.089 to 0.139) 0.187 (0.166 to 0.208) 0.073 <0.0001
2 0.113 (0.090 to 0.136) 0.141 (0.119 to 0.163) 0.028 0.090

3 0.124 (0.097 to 0.151) 0.111 (0.095 to 0.127) -0.013 0.42

4 0.099 (0.071 to 0.126) 0.118 (0.099 to 0.137) 0.019 0.26

5 0.094 (0.072 to 0.116) 0.086 (0.069 to 0.102) -0.008 0.56

6 0.098 (0.070 to 0.127) 0.108 (0.088 to 0.128) 0.010 0.59
7 0.068 (0.042 to 0.093) 0.100 (0.078 to 0.122) 0.032 0.060

8 0.083 (0.053 to 0.114) 0.082 (0.066 to 0.097) -0.002 0.92

9 0.082 (0.041 to 0.122) 0.093 (0.071 to 0.116) 0.012 0.62

10 (highest) 0.059 (0.035 to 0.083) 0.077 (0.052 to 0.103) 0.019 0.30

Years of schooling

9 or fewer 0.128 (0.101 to 0.154) 0.190 (0.162 to 0.218) 0.062 0.0015
10 0.095 (0.074 to 0.116) 0.137 (0.109 to 0.165) 0.042 0.018

11 0.096 (0.077 to 0.115) 0.109 (0.080 to 0.139) 0.013 0.471

12 0.071 (0.042 to 0.100) 0.124 (0.114 to 0.133) 0.053 0.0006

13 0.061 (0.038 to 0.083) 0.116 (0.090 to 0.141) 0.055 0.0013

14 or more 0.056 (0.039 to 0.073) 0.085 (0.076 to 0.093) 0.029 0.0031
Household wealth decile

1 (lowest) 0.165 (0.132 to 0.198) 0.187 (0.162 to 0.211) 0.022 0.31
2 0.117 (0.092 to 0.143) 0.149 (0.129 to 0.169) 0.031 0.061

3 0.100 (0.073 to 0.127) 0.107 (0.091 to 0.122) 0.006 0.68

4 0.093 (0.071 to 0.115) 0.115 (0.098 to 0.132) 0.022 0.12

5 0.110 (0.085 to 0.134) 0.091 (0.077 to 0.106) -0.018 0.21

6 0.080 (0.057 to 0.103) 0.089 (0.074 to 0.103) 0.008 0.55
7 0.070 (0.046 to 0.094) 0.103 (0.084 to 0.123) 0.034 0.034

8 0.092 (0.066 to 0.118) 0.089 (0.072 to 0.106) -0.003 0.85

9 0.082 (0.048 to 0.116) 0.103 (0.084 to 0.123) 0.021 0.28

10 (highest) 0.060 (0.038 to 0.081) 0.067 (0.051 to 0.084) 0.008 0.58

Household non-housing wealth decile

1 (lowest) 0.136 (0.103 to 0.168) 0.201 (0.176 to 0.226) 0.065 0.0019
2 0.109 (0.084 to 0.134) 0.137 (0.119 to 0.156) 0.029 0.074

3 0.123 (0.095 to 0.151) 0.131 (0.111 to 0.150) 0.008 0.66

4 0.096 (0.073 to 0.118) 0.101 (0.085 to 0.116) 0.005 0.71

5 0.108 (0.082 to 0.134) 0.107 (0.091 to 0.123) -0.001 0.95

6 0.093 (0.067 to 0.119) 0.086 (0.070 to 0.101) -0.007 0.64
7 0.099 (0.072 to 0.125) 0.086 (0.070 to 0.102) -0.013 0.42

8 0.078 (0.051 to 0.105) 0.090 (0.073 to 0.106) 0.011 0.49

9 0.058 (0.036 to 0.081) 0.092 (0.074 to 0.111) 0.034 0.024

10 (highest) 0.063 (0.043 to 0.084) 0.079 (0.062 to 0.095) 0.015 0.26

52



Figure 3.1: SES Gradient of Dementia, USA versus England
SES Gradient of Dementia, USA versus England, 2017, according to four measures of SES. Absolute and relative inequality shown
with 95% CI. The points in this figure represent the mean age-gender standardised dementia prevalence for each country by SES,
along with 95% CI for these predictions. The solid lines represent the fitted Slope Index of Inequality (SII: absolute inequality) for
each country. The values of the SII and the corresponding Relative Index of Inequality (RII: relative inequality) are listed in the top
right of each figure, with 95% CI in brackets. For education, individuals are ranked based on their years of schooling within each
country, and as the USA has higher educational attainment, individuals with 14+ years of schooling are the 80th percentile of the US
education distribution, but at the 90th percentile of the English educational distribution. SES, socioeconomic status.

3.6 Discussion

3.6.1 Main findings

Using nationally representative samples of older individuals from England and the US, and applying the same

algorithmic procedure to predict dementia in both samples, we showed that in both the US and England dementia

is more prevalent among the disadvantaged, and the SES gradient of dementia is steeper in the US. The steeper

gradient in the US is largely driven by those in the lowest decile. In both countries, most of the SES gradient

disappeared when we controlled for past health related factors, although prevalence for those in lowest income
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decile in the US remained disproportionately high. If the lowest income decile is excluded from our sample the

difference in dementia prevalence across the countries is statistically insignificant, and the remaining SES gradient of

dementia is remarkably similar across countries. While poorer individuals face a higher burden of dementia in both

England and the US, the extremely poor in the US face a disproportionately high burden of dementia. Controlling

for past health-related factors can explain some, but not all, of the cross-country difference. It can explain up to

around one third of the difference for those in the lowest income decile. While past health factors such as adiposity

and smoking are correlated with dementia, those in the lowest income decile in the US do not smoke more or

have higher BMIs than their English counterparts. Therefore, this cannot explain their disproportionately higher

prevalence of dementia. Education also cannot explain the difference, as the US population is more educated at every

income decile, and in fact the educational difference masks some of the underlying dementia risk difference between

countries. Adding minorities increased estimated dementia prevalence, especially in the US, because dementia

prevalence is higher among minorities, who comprise a higher share of the US than the English population. This

fits with prior research which showed dementia prevalence is higher for non-whites and Hispanics.(Yaffe et al., 2013;

Vega et al., 2017) We did not observe higher dementia prevalence among Hispanics and non-whites in the US for

those in relatively high socioeconomic groups.

Table 3.2: Difference in prevalence of dementia, USA vs England, 2017

Whole sample

Percentage point difference 1.43 1.34 1.15 1.21 1.18
p value 0.0055 0.0091 0.025 0.020 0.034

% Difference from baseline - -6% -19% -16% -17%

Excluding lowest income decile

Percentage point difference 0.89 0.88 0.74 0.75 0.81

p value 0.11 0.11 0.18 0.18 0.18

% difference from baseline - -2% -17% -16% -10%
Lowest income decile

Percentage point difference 7.27 6.14 5.45 5.93 4.85

p value <0.0001 0.0003 0.002 0.0011 0.012

% difference from baseline - -15% -25% -18% -33%

Control for

Past cardiometabolic diseases X X X X
Past psychiatric conditions X X X
Ever smoked X X
Past BMI X

3.6.2 Comparison with previous studies and how findings are an advance on current

literature

Previous studies have shown cross-country variation in dementia prevalence. However, substantial heterogeneity

in case-ascertainment methods across countries and studies makes interpreting any observed differences difficult.

We believe this is the first study to compare dementia prevalence in England and the US using the exact same
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measure of dementia, thus overcoming previous difficulties in making comparisons across the two countries due

differences in diagnostic practices and case definitions. We also compared the SES gradient of dementia in both

countries. While some studies have shown in both England and the US those with lower education and less wealth

have been found to have higher rates of dementia,(Hudomiet et al., 2019; Rusmaully et al., 2017; Cadar et al., 2018;

Langa et al., 2017; Rocca et al., 2011) there are no systematic comparative studies. We compared prevalence along

the SES gradient using almost identical measures of income, wealth, and education. Further, we standardized the

cross-country comparison for age and gender, using the English over 70 population as the standard population.

We found that dementia prevalence is higher and more concentrated among the poorest in the US than England.

Detailed disaggregation according to SES measures shows the true extent of the excess burden of dementia in the

very poorest group in the US.

We showed that risk factors for dementia such as cardiometabolic diseases, psychiatric conditions, high BMI,

smoking have similar affects across countries. Accounting for these risk factors removes most of the SES gradient

for both countries, but disproportionately high prevalence remains for the most disadvantaged in the US.

3.6.3 Implications (wider interpretation)

Much research has shown that low income Americans are more likely to be in poor health and die younger than

their high-income counterparts.(Chetty et al., 2016) We show that these health differences also extend to dementia

prevalence.

While risk factors contribute to higher prevalence among those who are more disadvantaged, those in the US appear

to have an undue burden that is caused by risk factors for which we cannot account. One possible explanation

is differential access to healthcare. The NHS provides broadly equitable care according to education in the older

population after accounting for health status.(Stoye et al., 2020) In the US, the poor often go uninsured, and

although virtually every American aged 65 or older is eligible for Medicare, around 20% of Medicare beneficiaries

healthcare must be financed out of pocket.(De Nardi et al., 2016) The extent to which health care provision below

and above aged 65 may account for the relative excess dementia burden in the US is unclear.

The implications of our results are that interventions designed to attempt to prevent dementia should be targeted

towards the most disadvantaged. This is especially true in the US. As yet, we are unable to advocate specific

measures as we do not yet understand the specific nature of disadvantage in respect to dementia risk

3.6.4 Strengths and Weaknesses of Analysis

This study has a strong design. Results are directly comparable across England and the US. The same predictive

algorithm was applied to both countries, addressing the problem of heterogeneity in case ascertainment which has

affected the literature.(Nichols et al., 2019; Launer, 2018) Further, because ELSA and HRS share sample selection

and questionnaire design, any differences in overall prevalence and SES gradients in prevalence across the two
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countries should represent true differences. In contrast to the Global Burden Disease study, we find higher dementia

prevalence in the US. Furthermore, we measured the SES gradient of dementia across four different measures of

SES, with consistent results. Our work also highlights the usefulness of the standardized measure of dementia to

allow for meaningful comparisons across countries.

This study had three limitations. First, we do not ascertain dementia directly, but predict cases using a common

battery of measures in ELSA and HRS. Importantly, Hurd’s prediction algorithm has high accuracy and although

our case definition lacks a clinical point of reference in England, it is based on a detailed clinical substudy in the

US.(Gianattasio et al., 2018) Further, cross-cultural subjectivities in reporting of impairment severity are likely to

be similar in the US and England (see online appendix Table 3.7). It would be of great value for future work to

use the Harmonized Cognitive Assessment Protocol (HCAP) data to provide a standard clinical point of reference

to validate and verify the cross-country dementia prevalence estimates.(Langa et al., 2020) Second, education is

one of the factors in the predictive algorithm for dementia and also one of our measures of SES. The dementia

algorithm takes account of the well-documented correlation between education level and cognitive function in adult

life. Nevertheless, we found substantial absolute and relative inequalities in dementia prevalence according to

education level in the US and UK. Education may be a successful approach for reducing dementia risk. (Nguyen

et al., 2016) Third, while we show risk factors explain a large proportion of the differences in dementia between the

England and the US - although cannot account for the difference in the lowest income decile - there are likely other

unmeasured confounding factors that impact dementia prevalence which we do not observe.

3.7 Conclusion

Given the large social and economic costs of dementia, there is great value in understanding the scope and burden

of dementia in the population along the SES gradient. This study indicates that more disadvantaged individuals

face a higher burden of dementia and that the poorest individuals in the US face a disproportionately high burden.

The high burden faced by these individuals can be partly but not fully explained by past health factors. We lacked

data on other important possible contributing factors such as habitual drug use. Further research is needed to fully

understand this issue using data from multiple sources.
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3.A Appendix

Table 3.3: Studies on Dementia Prevalence by Socioeconomic Status (SES)

Authors Country Socioeconomic Indicator Years Findings

Langa et al. United States Education 2000 Link between education and
(2017) and 2012 dementia risk

Hudomiet et United States Education and Social Security 1998 to Link between education and
al, (2019) Benefits 2014 dementia risk

Rusmaully United Education, height, occupational Various years High cognitive reserve associated
et al, Kingdom position between with lower risk for dementia
(2017) 1985 and

2015

Cadar et al, United Education, wealth and the index of 2002 to 2015 Lower wealth in but not education
(2018) Kingdom multiple deprivation associated with increased risk for

dementia

Rocca et United States Education, net worth 1993 and Higher education, higher net
al,(2011) 2002 worth protected against cognitive

impairment.

Basu United States Education 2000 - 2002 Education has causal effect on
(2013) dementia risk

Nguyen et al, United States Education 1998 to 2010 Education protective against
(2016) dementia risk

Crimmins et United States Education 2000 and More education linked to lower
al, (2018) 2010 dementia prevalence

Garcia et al, United States Race, ethnicity, nativity, and 2012 Education reduces the odds for
(2018)[9] education CIND

Weden et al, United States Race, ethnicity, total number of 2000 and Strong protective role of
(2018) children, marital status, highest 2010 educational attainment and

educational attainment, and net persisting rural disadvantages for
total assets in 2000 dementia
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3.A.1 HRS Data

The Health and Retirement Study (HRS) is a nationally representative, biennial longitudinal survey of adults in

the United States.(Cadar et al., 2018) It started in 1992 and since it collects a wide range of questions on income,

wealth, employment, health, cognition, and demographics. It utilises a steady-state sampling design, with a new

cohort aged 51-56 entering every 6 years. In total, 43,478 individuals have been interviewed to date. We used data

from the 2016 and earlier waves to predict dementia and focused on the over the age of 70 years old that live in

the community or in nursing homes in 2016. This left a sample of 7,165 individuals. We restricted our attention

to non-Hispanic whites for comparability with ELSA. These restrictions generated a main study sample of 5,330

participants with 4,932 being self-respondents, and 398 proxy interviews.

3.A.2 ELSA Data

The English Longitudinal Study of Ageing (ELSA) is a biennial longitudinal survey of adults in England, developed

as a companion study to the HRS.(of Disease, 2020) ELSA was also designed to be nationally representative of

the non-institutionalised population. Respondents remain the study if they become institutionalised. While it is

has been shown to be representative of the English population in terms of sociodemographic characteristics, the

proportion of non-white people in the survey is very small.[12] We used data from the 2016 and earlier waves and

focused on the aged over 70 years old that live in the community or in nursing homes in 2016. This left a sample

of 3,224 individuals. We restricted our attention to non-Hispanic whites for comparability. These restrictions

generated a study sample of 3,147 participants with 3,007 being selfrespondents, and 140 proxy interviews.

3.A.3 Harmonised Variables HRS and ELSA

We use the same set of cognitive and demographic variables available in both the HRS and ELSA.

For cognitive and demographic measures, we used the same questions as Hurd et al.(Launer, 2018) Specifically, we

used variables on demographics, difficulties respondents have with Activities of Daily Living (ADLs), Instrumental

Activities of Daily Living (IADLs), and a range of cognitive function tests adapted from the Telephone Interview

for Cognitive Status (TICS) and their change across waves. For Proxy respondents we also used the shortened 16

question form of IQCODE.

We used four variables to measure socioeconomic status (SES). These are household income, education, total

household wealth, and total household non-housing wealth. For the HRS we used variables from HRS RAND

dataset. To establish each respondent’s SES in terms of income, wealth, and non-housing wealth, we assigned

everyone to a decile rank for each variable in their respective country. For education, we ranked respondents

according to their number of years of schooling. We used respondents’ reported wealth and non-housing wealth

from 4 years prior. If a respondent had a missing value of income, wealth, or nonhousing wealth we used the most

recent non-missing observation from previous waves. All amounts of income, wealth and non-housing wealth were
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deflated to 2016 GBPs, and USD amounts were converted to GBPs using 1 USD = 0.75 GBP.

Finally, in our analysis, we investigated how variables that have been associated with dementia affect our results.

These include Body Mass Index (BMI), past smoking behaviour, past stroke. Respondents are asked whether they

have any health conditions, of which we use whether they had any cardiometabolic diseases (diabetes, heart disease,

and stroke) and/or psychiatric conditions 4 years prior. BMI is collected by a nurse for every ELSA respondent

when they first enter the survey, which for everyone over 70 in the 2016 survey means their BMI was collected

over 10 years prior. BMI is recorded in each wave of HRS based on self-reported height and weight. To make the

BMI measures in HRS comparable with ELSA, we used respondents first ever recorded BMI in HRS, which for our

sample was at least 10 years prior.

3.A.4 Hurd et al. Dementia Prediction Algorithm

To estimate the probability of dementia for each individual present in our pooled data we follow the method of Hurd

et al. that is based on the HRS supplement Aging, Demographics and Memory Study (ADAMS).(Launer, 2018) It

is a representative subsample of HRS members aged over 70 that received a detailed in-home assessment of their

cognitive status by experienced teams at the Duke University Dementia Epidemiology Research Center.(Sonnega

et al., 2014) Consensus conferences were used to establish a final diagnosis of dementia or a cognitive impairment

with no dementia (CIND) for each participant. Hurd et al. applied separate ordered probit models to self- and

proxy-respondents to generate a predictive algorithm, based on the ADAMS diagnoses, for the whole HRS sample,

using a range of variables including demographic information, ADLs, IADLs, the TICS questionnaire, IQCODE,

lagged variables and differences in variables between waves. The algorithm predicts the probability of dementia in

the following year.

Most of the coefficients used in the predictive algorithm can be found in the online appendix of the Hurd et al.

paper. To account for the small number of missing variables in HRS and ELSA we either used coefficients provided

by the authors or estimated them by a conditional minimum distance estimator using the publicly available HRS

data and the predicted values of the researcher contribution Dementia Predicted Probability Files (DPPF), that

follows the method of Hurd et al. To verify our predictions in HRS, we compared our predictions with the DPPF

data available on the HRS website for the year 2008 and found that we accurately matched predicted dementia.

Hurd et al’s predictive algorithm has been shown to have high specificity and accuracy, and generally performs well

in terms of sensitivity compared to other predictive algorithms for dementia.(Steptoe et al., 2012)
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Table 3.4: HRS and ELSA Response Rates

Year 2010 2012 2014 2016
HRS

Wave 10 11 12 13
Response rate (%) 81.0 89.1 87.1 84.3

ELSA

Wave 5 6 7 8
Fieldwork response rate (%) 79.1 80.2 80.1 82.4

Notes: The response rates are calculated differently in HRS and ELSA. For the HRS, the response rate includes all
individuals who were determined to be eligible for HRS who completed a baseline interview.(Gianattasio et al., 2018)
For ELSA, the fieldwork response rate is the proportion of eligible survey units who participate in the research study,
where ’eligible’ means not having been found to be ineligible through death or moving out of Great Britain.(Jorm
et al., 2000)
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Table 3.5: Summary Statistics, Raw Sample, England vs United States

Raw Full Sample With Population Weights
Non-Standardized Mean Non-Standardized Mean
England USA England USA

Total Sample Size 3,147 5,330 3,147 5,330
Proxy Respondents (%) 0.044 0.075 0.050 0.072

Age 78.8 80.5 79.5 79.7
Female 0.551 0.590 0.553 0.561
Married 0.580 0.517 0.584 0.536

Current Income and Wealth (£)
Income 21,070 28,800 20,215 30,240
Wealth 280,000 210,000 270,000 230,000
Non-Housing Wealth 40,000 88,275 36,000 96,150

Wealth 4 Years Prior (£)
Wealth 270,000 220,000 250,000 230,000
Non-Housing Wealth 42,300 96,800 35,727 100,000

Education
Less than High School 0.362 0.174 0.424 0.161
High-school or Some College 0.473 0.573 0.444 0.560
College 0.165 0.253 0.132 0.279

Current Health
ADLs (Out of 6) 0.510 0.583 0.561 0.548
IADLs (Out of 5) 0.348 0.513 0.411 0.482
Arthritis 0.569 0.728 0.578 0.715
Cancer 0.190 0.251 0.189 0.244
Lung disease 0.117 0.135 0.118 0.127
Diabetes 0.162 0.246 0.166 0.240
Heart Disease 0.390 0.383 0.396 0.365
High Blood Pressure 0.576 0.684 0.583 0.671
Psychiatric Condition 0.134 0.171 0.132 0.175
Stroke 0.092 0.103 0.096 0.095

Health 4 Years Prior
ADLs 0.346 0.274 0.381 0.267
IADLs 0.159 0.228 0.185 0.219
Diabetes 0.131 0.215 0.135 0.212
Heart Disease 0.309 0.316 0.312 0.303
High Blood Pressure 0.513 0.653 0.519 0.643
Psychiatric Condition 0.120 0.157 0.118 0.162
Stroke 0.063 0.074 0.065 0.067

Other Health Factors
Ever Smoked 0.660 0.553 0.674 0.561
BMI: <20 (Underweight) 0.016 0.038 0.015 0.036
BMI: 20-24.9 (Normal Weight) 0.266 0.352 0.262 0.343
BMI: 25-29.9 (Overweight) 0.461 0.405 0.461 0.410
BMI: 30+ (Obese) 0.256 0.205 0.262 0.211
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Table 3.6: Summary Statistics, Age-Gender Standardized, England vs United States

Full Sample Lowest Income Decile
Age-Gender Standardized Mean Age-Gender Standardized Mean
England USA England USA

Age 79.5 79.3 79.7 79.7
Female 0.553 0.553 0.553 0.553
Married 0.584 0.547 0.148 0.170

Current Income and Wealth (£)
Income 20,547 31,927 8,247 8,645
Wealth 271,511 236,431 120,261 46,762
Non-Housing Wealth 38,715 100,996 7,778 5,509

Wealth 4 Years Prior (£)
Wealth 257,459 242,655 111,830 55,953
Non-Housing Wealth 40,604 110,530 6,476 13,724

Education
Less than High School 0.424 0.160 0.619 0.323
High-school or Some College 0.444 0.559 0.318 0.556
College 0.132 0.281 0.063 0.122

Current Health
ADLs (Out of 6) 0.561 0.523 0.559 0.827
IADLs (Out of 5) 0.411 0.457 0.421 0.679
Arthritis 0.578 0.715 0.617 0.750
Cancer 0.189 0.244 0.157 0.196
Lung disease 0.118 0.127 0.137 0.217
Diabetes 0.166 0.242 0.157 0.283
Heart Disease 0.396 0.364 0.402 0.427
High Blood Pressure 0.583 0.671 0.619 0.703
Psychiatric Condition 0.132 0.174 0.158 0.262
Stroke 0.096 0.094 0.111 0.135

Health 4 Years Prior
ADLs 0.381 0.255 0.424 0.546
IADLs 0.185 0.205 0.218 0.393
Diabetes 0.135 0.214 0.131 0.254
Heart Disease 0.312 0.302 0.345 0.352
High Blood Pressure 0.519 0.640 0.559 0.662
Psychiatric Condition 0.118 0.162 0.142 0.271
Stroke 0.065 0.066 0.064 0.099

Other Health Factors
Ever Smoked 0.674 0.565 0.741 0.594
BMI: <20 (Underweight) 0.015 0.036 0.025 0.032
BMI: 20-24.9 (Normal Weight) 0.261 0.342 0.361 0.364
BMI: 25-29.9 (Overweight) 0.461 0.410 0.397 0.339
BMI: 30+ (Obese) 0.262 0.212 0.216 0.265
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Table 3.7: Summary Statistics for Predictor Variables, England vs United States

Full Sample Lowest Income Decile
Age-Gender- Standardized Mean Age-Gender- Standardized Mean
England USA England USA

Cognitive Scores
Dates (Out of 4) 3.663 3.387 3.573 3.198
Backward counting 20 0.912 0.875 0.935 0.830
Serial 7 (Out of 5) 3.787 3.364 3.667 2.580
Scissor 0.978 0.920 0.993 0.912
Cactus 0.915 0.891 0.913 0.842
PM/Vice-President 0.846 0.900 0.828 0.854
Immediate recall (Out of 10) 5.318 4.631 5.010 3.972
Delayed recall (Out of 10) 3.797 3.684 3.185 2.894

Limitations
ADLs (Out of 6) 0.561 0.523 0.559 0.827
IADLs (Out of 5) 0.411 0.457 0.421 0.679

Proxy Respondent 0.050 0.068 0.038 0.075

Notes: Sample includes non-Hispanic white population aged 70+ only. The sample size is 3,147 participants in
England and 5,330 participants in the United States. The Cognitive Scores are from a range of tests adapted from
Telephone Interview for Cognitive Status (TICS). Only non-proxy respondents answered the TICS questions. ADL
and IADLs are Activities of Daily Living and Instrumental Activities of Daily Living, respectively.
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Table 3.8: Indexes of Inequality

Slope Index of Inequality (SII) Relative Index of Inequality (RII)
England USA Difference England USA Difference

Income -0.062 -0.085 -0.023 1.946 2.341 1.203
[-0.097 to -0.028] [-0.114 to -0.057] (0.31) [1.333 to 2.841] [1.774 to 3.089] (0.44)

Education -0.087 -0.099 -0.011 3.001 2.820 0.940
[-0.120 to -0.055] [-0.126 to -0.072] (0.56) [2.013 to 4.474] [2.131 to 3.731] (0.80)

Wealth -0.069 -0.096 -0.026 2.157 2.730 1.265
[-0.104 to -0.035] [-0.123 to -0.069] (0.24) [1.467 to 3.174] [2.070 to 3.601] (0.33)

NH Wealth -0.071 -0.093 -0.022 2.213 2.311 1.044
[-0.106 to -0.035] [-0.124 to -0.062] (0.36) [1.463 to 3.348] [1.748 to 3.056] (0.87)

Excluding Most Disadvantaged Group
Income -0.067 -0.060 0.007 2.104 1.833 0.871

[-0.107 to -0.027] [-0.093 to -0.027] (0.79) [1.343 to 3.296] [1.313 to 2.560] (0.63)
Education -0.070 -0.062 0.008 2.509 1.932 0.770

[-0.107 to -0.032] [-0.094 to -0.030] (0.76) [1.548 to 4.065] [1.378 to 2.708] (0.39)
Wealth -0.065 -0.059 0.005 2.092 1.887 0.902

[-0.104 to -0.025] [-0.091 to -0.028] (0.84) [1.319 to 3.317] [1.349 to 2.639] (0.72)
NH Wealth -0.064 -0.075 -0.012 2.077 1.981 0.954

[-0.107 to -0.020] [-0.110 to -0.040] (0.69) [1.217 to 3.544] [1.433 to 2.740] (0.88)

Full Sample with Controls
Income -0.040 -0.051 -0.011 1.499 1.698 1.133

[-0.075 to -0.004] [-0.079 to -0.023] (0.63) [1.028 to 2.187] [1.275 to 2.263] (0.61)
Education -0.0336 -0.056 -0.022 1.308 1.742 1.332

[-0.0754 to 0.008] [-0.086 to -0.026] (0.40) [0.899 to 1.903] [1.306 to 2.324] (0.24)
Wealth -0.060 -0.045 0.015 1.777 1.483 0.834

[-0.097 to -0.023] [-0.074 to -0.015] (0.53) [1.224 to 2.582] [1.131 to 1.945] (0.44)
NH Wealth -0.050 -0.051 -0.002 1.562 1.614 1.033

[-0.087 to -0.012] [-0.080 to -0.023] (0.94) [1.078 to 2.262] [1.231 to 2.116] (0.89)

Notes: This table shows the Slope Index of Inequality (SII) and Relative Index of Inequality (RII), calculated using
generalized linear models (log binomial regression) with identity and logarithmic link functions, respectively. The
SIIs are displayed graphically in Figure 1. The estimates of RII are risk ratios. P-values are displayed in parentheses
under differences. The panel ”Excluding Most Disadvantaged Group” excludes individuals in the bottom income
decile. The panel ”Full Sample with Controls” controls for whether an individual had any cardiometabolic diseases
(diabetes, heart disease, and stroke) and/or psychiatric conditions 4 years prior, whether an individual has ever
smoked, and Body Mass Index (BMI) from at least 10 years prior.
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Table 3.9: Difference in Prevalence of Dementia with Controls, United States vs England, 2017

Whole Sample:
England Prevalence 0.097 0.088 0.086 0.089 0.092

(0.089 to 0.106) (0.078 to 0.098) (0.073 to 0.099) (0.072 to 0.106) (0.072 to 0.111)
United States 0.112 0.100 0.098 0.101 0.120

(0.106 to 0.118) (0.092 to 0.108) 0.087 to 0.109) (0.087 to 0.114) (0.104 to 0.135)
Percentage Point Difference 1.43 1.15 1.21 1.18 2.82
p-value 0.0055 0.025 0.020 0.034 <0.0001

Excluding Lowest Income Decile:
England Prevalence 0.094 0.086 0.086 0.090 0.094

(0.085 to 0.103) (0.076 to 0.096) (0.073 to 0.1) (0.073 to 0.108) (0.074 to 0.114)
United States 0.103 0.093 0.094 0.098 0.115

(0.097 to 0.109) (0.085 to 0.102) (0.083 to 0.105) (0.084 to 0.113) (0.099 to 0.131)
Percentage Point Difference 0.89 0.74 0.75 0.81 2.09
p-value 0.11 0.18 0.18 0.18 0.0021

Lowest Income Decile:
England Prevalence 0.114 0.107 0.088 0.082 0.095

(0.089 to 0.139) (0.074 to 0.14) (0.036 to 0.14) (0.021 to 0.144) (0.025 to 0.164)
United States 0.187 0.162 0.148 0.131 0.163

(0.166 to 0.208) (0.129 to 0.195) (0.103 to 0.192) (0.078 to 0.184) (0.103 to 0.223)
Percentage Point Difference 7.27 5.45 5.93 4.85 6.85
p-value <0.0001 0.0020 0.0011 0.012 0.0015

Control for:
Past Health Conditions X X X X
Ever Smoked X X X
Past BMI X X
Education X

Notes: Sample includes non-Hispanic white population aged 70+ only. The sample size is 3,147 participants in
England and 5,330 participants in the United States. All estimates are age-gender standardized to the overall 2016
aged 70+ white population in England. The difference is calculated as the prevalence in the US minus prevalence in
England. Differences are displayed as percentage points. ’Past Health Conditions’ controls for whether an individual
had any cardiometabolic diseases (diabetes, heart disease, and stroke) and/or psychiatric conditions 4 years prior.
’Ever Smoked’ controls for whether an individual has ever smoked. BMI stands for Body Mass Index. ’Past BMI’
includes dummy variables to control for whether an individual is classed as underweight, normal weight, overweight
or obese. BMI measurements are based on when an individual first entered the survey, which is at least 10 years
prior. We assume the effect of each control is constant across countries and age/gender groups. The reference
groups are: No past health conditions; never smoked; normal weight; and high-school education.
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Table 3.10: Difference in Prevalence of Dementia with Controls, by Income Decile

England United States

Whole Sample:
Prevalence 0.097 0.092 0.089 0.112 0.105 0.101
CI (0.089-0.106) (0.082-0.102) (0.072-0.106) (0.106-0.118) (0.098-0.113) (0.087-0.114)

Income decile:
1 Prevalence 0.114 0.112 0.082 0.187 0.173 0.131

(0.089-0.139) (0.079-0.144) (0.021-0.144) (0.166-0.208) (0.142-0.205) (0.078-0.184)
2 Prevalence 0.113 0.119 0.118 0.141 0.145 0.148

(0.09-0.136) (0.088-0.149) (0.05-0.187) (0.119-0.163) (0.113-0.176) (0.086-0.21)
3 Prevalence 0.124 0.107 0.130 0.111 0.089 0.093

(0.097-0.151) (0.074-0.139) (0.073-0.187) (0.095-0.127) (0.067-0.11) (0.048-0.137)
4 Prevalence 0.099 0.095 0.094 0.118 0.114 0.111

(0.071-0.126) (0.065-0.126) (0.041-0.148) (0.099-0.137) (0.088-0.14) (0.062-0.16)
5 Prevalence 0.094 0.087 0.061 0.086 0.084 0.063

(0.072-0.116) (0.062-0.112) (0.024-0.098) (0.069-0.102) (0.063-0.104) (0.035-0.09)
6 Prevalence 0.098 0.097 0.116 0.108 0.107 0.100

(0.07-0.127) (0.064-0.131) (0.056-0.177) (0.088-0.128) (0.081-0.134) (0.053-0.148)
7 Prevalence 0.068 0.066 0.073 0.100 0.101 0.104

(0.042-0.093) (0.038-0.094) (0.021-0.124) (0.078-0.122) (0.073-0.129) (0.054-0.154)
8 Prevalence 0.083 0.084 0.097 0.082 0.078 0.085

(0.053-0.114) (0.051-0.117) (0.054-0.14) (0.066-0.097) (0.058-0.098) (0.054-0.117)
9 Prevalence 0.082 0.076 0.100 0.093 0.085 0.107

(0.041-0.122) (0.034-0.118) (0.048-0.151) (0.071-0.116) (0.06-0.111) (0.07-0.145)
10 Prevalence 0.059 0.058 0.051 0.077 0.077 0.068

(0.034-0.083) (0.029-0.087) (0.015-0.087) (0.052-0.103) (0.051-0.103) (0.036-0.1)

Control for:
Past Health Conditions X X X X
Ever Smoked X X
Past BMI X X

Notes: Sample includes non-Hispanic white population aged 70+ only. The sample size is 3,147 participants in
England and 5,330 participants in the United States. All estimates are age-gender standardized to the overall
2016 aged 70+ white population in England. ’Past Health Conditions’ controls for whether an individual had any
cardiometabolic diseases (diabetes, heart disease, and stroke) and/or psychiatric conditions 4 years prior. ’Ever
Smoked’ controls for whether an individual has ever smoked. BMI stands for Body Mass Index. ’Past BMI’ includes
dummy variables to control for whether an individual is classed as underweight, normal weight, overweight or obese.
BMI measurements are based on when an individual first entered the survey, which is at least 10 years prior. We
assume the effect of each control is constant across countries and age/gender groups. The reference groups are: No
past health conditions; never smoked; and normal weight.
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Figure 3.2: SES Gradient of Dementia, US vs England, Controlling for Past Health
Notes: The points in this figure represent the mean age-gender standardized dementia prevalence for each country
by socioeconomic status (SES) after controlling for past health and behaviour, along with 95% confidence interval
for these predictions. The solid lines represent the fitted Socioeconomic Index of Inequality (SII) for each country.
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Table 3.11: Prevalence of Dementia, United States vs. England, Full-Sample

England USA
Age-gender standardised Age-gender standardised

prevalence (95%CI) prevalence (95%CI) Difference P value

All 0.099 [0.091,0.108] 0.124 [0.118,0.129] 0.024 <0.0001
Household income decile

1 (Lowest) 0.116 [0.091,0.140] 0.211 [0.192,0.230] 0.095 <0.0001
2 0.126 [0.101,0.152] 0.161 [0.144,0.178] 0.035 0.025
3 0.124 [0.098,0.150] 0.141 [0.120,0.162] 0.017 0.32
4 0.100 [0.072,0.127] 0.143 [0.124,0.162] 0.044 0.0094
5 0.101 [0.078,0.124] 0.097 [0.082,0.111] -0.004 0.76
6 0.102 [0.072,0.131] 0.104 [0.086,0.121] 0.002 0.91
7 0.061 [0.043,0.079] 0.108 [0.088,0.127] 0.047 0.0006
8 0.088 [0.057,0.118] 0.085 [0.069,0.102] -0.002 0.91
9 0.081 [0.041,0.122] 0.089 [0.070,0.108] 0.008 0.74
10 (Highest) 0.057 [0.034,0.080] 0.076 [0.055,0.098] 0.020 0.22

Years of schooling

9 or less 0.128 [0.103,0.153] 0.212 [0.195,0.230] 0.084 <0.0001
10 0.099 [0.078,0.119] 0.143 [0.118,0.167] 0.044 0.0072
11 0.097 [0.079,0.116] 0.119 [0.093,0.144] 0.021 0.19
12 0.069 [0.041,0.097] 0.134 [0.124,0.143] 0.064 <0.0001
13 0.063 [0.040,0.085] 0.118 [0.095,0.141] 0.055 0.00071
14 or more 0.055 [0.039,0.071] 0.086 [0.078,0.094] 0.031 0.00071

Household wealth decile

1 (Lowest) 0.172 [0.136,0.207] 0.219 [0.198,0.241] 0.047 0.024
2 0.118 [0.093,0.144] 0.169 [0.151,0.188] 0.051 0.0014
3 0.105 [0.078,0.132] 0.138 [0.120,0.155] 0.032 0.049
4 0.090 [0.068,0.111] 0.120 [0.105,0.135] 0.030 0.023
5 0.118 [0.093,0.143] 0.116 [0.100,0.132] -0.002 0.89
6 0.077 [0.056,0.099] 0.097 [0.084,0.110] 0.020 0.13
7 0.073 [0.047,0.098] 0.092 [0.076,0.107] 0.019 0.21
8 0.093 [0.067,0.118] 0.103 [0.086,0.120] 0.010 0.52
9 0.080 [0.047,0.113] 0.101 [0.084,0.118] 0.021 0.27
10 (Highest) 0.060 [0.040,0.081] 0.074 [0.058,0.089] 0.013 0.30

Household non-housing wealth decile

1 (Lowest) 0.147 [0.113,0.180] 0.215 [0.195,0.235] 0.068 0.00055
2 0.114 [0.089,0.140] 0.184 [0.165,0.203] 0.070 <0.0001
3 0.121 [0.095,0.148] 0.148 [0.129,0.168] 0.027 0.11
4 0.100 [0.076,0.125] 0.129 [0.112,0.147] 0.029 0.054
5 0.110 [0.084,0.135] 0.104 [0.088,0.119] -0.006 0.70
6 0.093 [0.067,0.118] 0.099 [0.085,0.113] 0.006 0.66
7 0.098 [0.072,0.124] 0.085 [0.071,0.098] -0.013 0.37
8 0.079 [0.052,0.106] 0.090 [0.075,0.105] 0.011 0.48
9 0.057 [0.035,0.078] 0.094 [0.077,0.110] 0.037 0.0076
10 (Highest) 0.065 [0.045,0.085] 0.083 [0.067,0.099] 0.018 0.15
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Table 3.12: Difference in Prevalence of Dementia with Controls, Full Sample

Whole Sample:
England Prevalence 0.099 0.088 0.088 0.084 0.085

[0.091 to 0.108] [0.079 to 0.098] [0.076 to 0.1] [0.068 to 0.1] [0.068 to 0.103]
United States 0.124 0.107 0.107 0.105 0.123

[0.118 to 0.129] [0.1 to 0.114] [0.097 to 0.117] [0.093 to 0.118] [0.109 to 0.137]
Percentage Point Difference 2.44 1.87 1.90 2.14 3.80
p-value <0.0001 <0.0001 0.00015 0.00011 <0.0001

Excluding Lowest Income Decile:
England Prevalence 0.096 0.086 0.086 0.087 0.090

[0.087 to 0.105] [0.076 to 0.096] [0.073 to 0.099] [0.071 to 0.103] [0.072 to 0.108]
United States 0.113 0.098 0.099 0.100 0.117

[0.107 to 0.118] [0.091 to 0.106] [0.089 to 0.108] [0.086 to 0.113] [0.103 to 0.132]
Percentage Point Difference 1.64 1.25 1.27 1.24 2.70
p-value 0.0024 0.020 0.019 0.030 <0.0001
Lowest Income Decile:
England Prevalence 0.116 0.107 0.106 0.078 0.099

[0.091 to 0.140] [0.077 to 0.138] [0.062 to 0.15] [0.026 to 0.13] [0.036 to 0.162]
United States 0.211 0.187 0.186 0.161 0.195

[0.192 to 0.230] [0.16 to 0.214] [0.149 to 0.223] [0.117 to 0.206] [0.138 to 0.252]
Percentage Point Difference 9.54 7.93 7.96 8.37 9.60
p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Control for:
Past Health Conditions X X X X
Ever Smoked X X X
Past BMI X X
Education X

Notes: Full sample, population aged 70+, including minorities. The sample sizes are 3,224 participants in England,
and 7,165 participants in the United States. All estimates are age-gender standardized to the overall 2016 aged
70+ white population in England. The difference is calculated as the prevalence in the US minus prevalence in
England. Differences are displayed as percentage points.’Past Health Conditions’ controls for whether an individual
had any cardiometabolic diseases (diabetes, heart disease, and stroke) and/or psychiatric conditions 4 years prior.
’Ever Smoked’ controls for whether an individual has ever smoked. BMI stands for Body Mass Index. ’Past BMI’
includes dummy variables to control for whether an individual is classed as underweight, normal weight, overweight
or obese. BMI measurements are based on when an individual first entered the survey, which is at least 10 years
prior. We assume the effect of each control is constant across countries and age/gender groups. The reference
groups are: No past health conditions; never smoked; normal weight; and high-school education.
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Table 3.13: Prevalence of Dementia in United States, Whites versus Non-whites

England USA
Age-gender standardised Age-gender standardised

prevalence (95%CI) prevalence (95%CI) Difference P value

All 0.182 [0.169 to 0.195] 0.112 [0.106 to 0.118] -0.070 <0.0001
Household income decile

1 (Lowest) 0.224 [0.199 to 0.249] 0.204 [0.178 to 0.231] -0.020 0.28
2 0.21 [0.180 to 0.243] 0.143 [0.123 to 0.163] -0.068 0.00034
3 0.22 [0.158 to 0.282] 0.121 [0.102 to 0.140] -0.099 0.0023
4 0.202 [0.165 to 0.240] 0.133 [0.111 to 0.155] -0.069 0.0018
5 0.116 [0.076 to 0.156] 0.094 [0.079 to 0.109] -0.022 0.31
6 0.164 [0.097 to 0.230] 0.098 [0.081 to 0.116] -0.065 0.065
7 0.129 [0.080 to 0.178] 0.107 [0.086 to 0.128] -0.022 0.42
8 0.10 [0.047 to 0.166] 0.084 [0.067 to 0.101] -0.023 0.47
9 0.072 [0.026 to 0.118] 0.090 [0.069 to 0.110] 0.017 0.50
10 (Highest) 0.084 [0.038 to 0.129] 0.077 [0.055 to 0.099] -0.006 0.81

Years of schooling

9 or less 0.235 [0.212 to 0.258] 0.190 [0.162 to 0.218] -0.045 0.015
10 0.172 [0.127 to 0.218] 0.137 [0.109 to 0.165] -0.035 0.19
11 0.144 [0.109 to 0.179] 0.109 [0.080 to 0.139] -0.035 0.14
12 0.198 [0.170 to 0.227] 0.124 [0.114 to 0.133] -0.074 <0.0001
13 0.159 [0.101 to 0.218] 0.116 [0.090 to 0.141] -0.043 0.18
14 or more 0.099 [0.079 to 0.119] 0.085 [0.076 to 0.093] -0.015 0.20

Household wealth decile

1 (Lowest) 0.228 [0.201 to 0.255] 0.208 [0.176 to 0.240] -0.020 0.36
2 0.208 [0.179 to 0.237] 0.154 [0.131 to 0.177] -0.054 0.0043
3 0.184 [0.142 to 0.227] 0.120 [0.102 to 0.138] -0.064 0.0063
4 0.142 [0.111 to 0.174] 0.115 [0.098 to 0.132] -0.027 0.13
5 0.159 [0.117 to 0.202] 0.108 [0.092 to 0.124] -0.051 0.027
6 0.120 [0.084 to 0.155] 0.093 [0.080 to 0.107] -0.026 0.18
7 0.156 [0.086 to 0.226] 0.088 [0.072 to 0.103] -0.068 0.063
8 0.197 [0.134 to 0.259] 0.099 [0.081 to 0.116] -0.098 0.0031
9 0.122 [0.065 to 0.178] 0.099 [0.082 to 0.117] -0.022 0.46
10 (Highest) 0.045 [0.018 to 0.073] 0.075 [0.059 to 0.090] 0.029 0.071

Household non-housing wealth decile

1 (Lowest) 0.231 [0.207 to 0.256] 0.197 [0.167 to 0.227] -0.034 0.085
2 0.204 [0.177 to 0.231] 0.177 [0.151 to 0.203] -0.027 0.16
3 0.187 [0.142 to 0.232] 0.135 [0.114 to 0.155] -0.052 0.036
4 0.158 [0.128 to 0.188] 0.123 [0.104 to 0.143] -0.034 0.059
5 0.106 [0.069 to 0.143] 0.102 [0.086 to 0.118] -0.004 0.85
6 0.099 [0.063 to 0.134] 0.098 [0.084 to 0.113] 0.000 0.99
7 0.124 [0.066 to 0.182] 0.083 [0.069 to 0.097] -0.040 0.18
8 0.140 [0.069 to 0.210] 0.088 [0.073 to 0.103] -0.051 0.16
9 0.127 [0.054 to 0.201] 0.092 [0.075 to 0.108] -0.035 0.36
10 (Highest) 0.069 [0.050 to 0.088] 0.084 [0.068 to 0.101] 0.016 0.23
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Chapter 4

Transition Costs and the Optimal U.S.

Social Security System

4.1 Introduction

The role of the U.S. Social Security system is to provide insurance by pooling risk between and within generations.

However, this potentially valuable risk sharing comes at the cost of economic distortions. The balance between

insurance and distortions by means of a partial privatization is a topic of active debate in the literature1. On

the one hand, a partially privatized (mixed) system will increase output, savings, long term wages and ameliorate

labour market distortions. On the other, a partial privatization will entail transition costs that will be paid by

generations alive at or after the reform and households will be exposed to more risk.

Previous research suggests that the long-term optimal U.S. Social Security system is smaller than the current system

(Feldstein, 1985; Imrohoroglu et al., 1995; Krueger and Kubler, 2006; Hong and Rios-Rull, 2007; Bagchi, 2015)2.

However, transitioning from the current unfunded system to the long-term optimum entails transition costs that are

large enough to potentially make the reform welfare decreasing (Nishiyama and Smetters, 2007; Olovsson, 2010).

These costs arise due to the repayment of the unfunded liability and the post-reform capital accumulation that will

reduce consumption and increase hours of work over the transition. These costs also impose political constraints

on the government, as the majority of households alive at the time of the reform may find themselves worse off

(Conesa and Krueger, 1999). Hence, what is the Social Security system that the U.S. should transition to, in light

of these restrictions, remains an open question.

The contribution of this article is to provide a candidate answer to this question using a model that captures

1See Feldstein and Liebman (2002), Shiller (1999), Krueger and Kubler (2006)
2Harenberg and Ludwig (2019) find a larger system than the rest of the literature. Results on the progressiveness of the optimal

system are not as decisive. Although Huggett and Parra (2010); Golosov et al. (2013); Jones and Li (2020) argue that the optimum it
is more progressive than the current system, Nishiyama and Smetters (2008); Ndiaye (2018) argue that is less.
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transition costs and household voting. Using the current U.S. Social Security system as the starting point, we

consider the case where the government announces an unanticipated once-and-for-all reform and enforces a new

optimal two pillar mixed system. While the first pillar is a based on an unfunded Pay-as-You-Go system, the second

is based on an defined contribution investment based program3. As a bi-product of this assessment, we establish

the differences in terms of welfare, life-cycle decision profiles and aggregate statistics between the optimal and the

current Social Security systems.

To quantitatively characterise the reform, we introduce a non-stationary, estimated overlapping generations gen-

eral equilibrium model, where the government, a Pay-as-You-Go Social Security system, a private pension fund,

households of multiple generations and competitive firms coexist and interact. This setup allows us to study both

the short term and the longer term implications of the reform. The model builds on a large structural analysis

literature of retirement behaviour and insurance4. Households make endogenous consumption, savings (both liquid

and illiquid defined contribution pension savings), and labour supply decisions, in the presence of both aggregate

and idiosyncratic uncertainty. As a result, while each generation is subject to a different sequence of aggregate

shocks, within each generation households are ex-post heterogeneous.

The model captures the value of insurance, along with the distortions imposed by the existence and reform of a

realistic Pay-as-You-Go Social Security system. On the insurance side, the existence of a Pay-as-You-Go Social

Security system provides partial insurance against both aggregate and idiosyncratic risk. Aggregate risk is shared

intergenerationally by giving retired households a claim on the labour income of working households5 and idiosyn-

cratic risk is shared intragenerationally by redistributing resources from those with high lifetime income to low

lifetime income, and from those that have shorter lifespans to those with longer. Also, both types of risk interact

in important ways, as the welfare benefit from insurance against the combined aggregate and idiosyncratic risk is

greater than the insurance benefit against the sum of the risks in isolation (See Harenberg and Ludwig 2019).

In terms of distortions, the existence of a Pay-as-You-Go Social Security system can negatively affect efficiency and

welfare in the model economy through four channels. First, Social Security crowds out household savings, reducing

the aggregate capital stock and thus output and wages in the long run. Second, beyond the lower capital stock,

the crowding out of savings also reduces bequest transfers from parents to their dependents6. The model includes

a non-stationary, heterogeneous bequest transfer mechanism that captures these transfers. Third, the internal rate

of return provided by Pay-as-You-Go Social Security system is on average lower than the market returns in the

model economy. Due to the redistributiveness of Social Security, the internal rate of return is lower for those with

above average incomes, causing heterogeneous implicit taxes that distort labour supply7,8. Finally, the transition

3See Feldstein and Liebman (2002) for a discussion on the advantages of mixed systems.
4Some papers include Conesa and Krueger (1999); French (2005); Nishiyama and Smetters (2007); Krueger and Kubler (2006);

Nishiyama and Smetters (2007); Hong and Rios-Rull (2007); Olovsson (2010); Kitao (2014); Harenberg and Ludwig (2019).
5See Shiller (1999) for a discussion on how the imperfect correlation between wages and returns affects intergenerational risk sharing.
6Caliendo et al. (2014) show that under certain conditions, the decline in bequest transfers can offset the benefits of risk sharing,

even when factor prices are exogenous. Hong and Rios-Rull (2007) also assess the importance of bequests.
7The implicit tax arises as for every dollar contributed, benefits increase by less than a dollar in present value. The exact benefit

increase per dollar contributed depends on demographic factors, the benefit function specification and average earnings. See French
(2005) for details on the computation of average earnings and Goda et al. (2011) for a discussion of the implicit taxes induced by the
current U.S. system. On the aggregate level these implicit taxes go to the repayment of the interest on the unfunded pension liability.
See Shiller (1999); Nishiyama and Smetters (2007).

8See Imrohoroglu and Kitao (2009); French and Jones (2012); Bagchi (2015); Blundell et al. (2016) for more on labour supply and
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from the current Pay-as-You-Go, to a new smaller system, entails the repayment of the implicit debt inherited by

previous generations that received more than they contributed, and the unfavourable transition dynamics due to

the post-reform capital accumulation. The model economy features this implicit debt, that needs to be repaid by

households during the transition.

Findings suggest transition costs greatly restrict the U.S. government’s ability to move away from the status quo.

However, the U.S. government can implement a new Social Security system that is more progressive and less

costly to operate. The new system imposes fewer distortions in the model economy and increases welfare on both

the transition path and the longer-term. Specifically, a simultaneous reduction in the average level of benefits

combined with a reform of the benefit function can deliver welfare gains, that provide an increase of 0.7% in terms

of consumption equivalent variation. Considering voting at the start of the transition, we find that most reforms

that reduce the level of benefits do not gather a household majority. More progressive systems do gather a majority,

but households have to be compensated by an increase in the level of average benefits. Combining both transition

costs and household voting, we surprisingly find that transitioning to a new Social Security system is no longer

possible, as no reform is simultaneously welfare increasing and politically feasible.

We perform sensitivity analysis and find that the results are robust with respect to changes in the model’s envi-

ronment and the household preferences. We find that alternative population growth rates (”2050 scenario”), the

inclusion of technological progress and higher Frisch elasticities have a small impact on the results. In all cases the

politically feasibility constraint binds before any move to a welfare increasing Social Security system is permitted.

The first strand of literature this article relates to, conducts analysis of old age Social Security systems in non-

stationary environments. This literature focuses on household populations that are not in a deterministic steady

state. This can be caused by a deterministic transition between two steady states Auerbach et al. (1987); Huang et al.

(1997); Conesa and Krueger (1999); Nishiyama and Smetters (2007); Kitao (2014); Nishiyama (2015); Peterman

and Sommer (2019a,b), or the presence of aggregate uncertainty in the model economy Krueger and Kubler (2006);

Olovsson (2010); Harenberg and Ludwig (2019). While the deterministic transition models abstract from aggregate

shocks and hence cannot consider how aggregate risk is spread intergenerationally, models with aggregate uncertainty

are not estimated and abstract from modelling the institutional features of Social Security and the endogeneity of

labour supply.

This article contributes in this literature in two ways. First, we estimate a retirement model in a non-stationary

environment, that generates household lifecycle decision profiles and aggregate equilibrium statistics similar to the

U.S. data. Second, this article combines aggregate shocks with endogenous labour supply and a realistic Pay-as-

You-Go Social Security system. This allows the model to balance the value of insurance with the distortions created

by the existence and reform of an unfunded Social Security system.

The second strand of literature this article relates to, concerns the optimal design of unfunded Social Security

retirement.
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systems9,10. In partial equilibrium environments, Huggett and Parra (2010); Golosov et al. (2013) and Ndiaye

(2018) compute the optimal benefit function, while O’Dea (2018) evaluates the optimal means-tested old age income

floor and argues that an increase would be welfare enhancing. In general equilibrium, Imrohoroglu et al. (1995)

evaluate the optimal replacement ratio, Olovsson (2010) evaluates unfunded Social Security systems that can share

aggregate risk efficiently, Moser and Olea de Souza e Silva (2019) addresses the optimal design of pensions when

agents are presently biased, Hosseini and Shourideh (2019) assess Pareto optimal policy reforms, Jones and Li (2020)

consider multiple parametric reforms, one of which is the optimal shape of the Social Security benefit function and

Ludwig and Grevenbrock (2021) consider the joint optimal design of Social Security and unemployment insurance.

This article adds to the literature in three ways. First, we conduct optimal design analysis in an environment that

features both idiosyncratic and aggregate uncertainty. Previous research restricted its attention to only one type

of risk sharing (either aggregate or idiosyncratic). In this paper, the model’s unfunded Social Security system is

selected to share risk optimally, both intra and inter-generationally. Second, we consider optimal design, allowing

the government to impose a mixed system (illiquid savings accounts combined with an unfunded Social Security

system) and third, we assess questions that concern the optimal design of Social Security in light of the transition

path and the unfunded liability of the current U.S. Social Security system. Thus, this paper takes into account the

transition costs each reform entails, in a heterogeneous agent model.

The third and final strand of literature this article relates to, assesses the implications of household voting in Social

Security reforms. Conesa and Krueger (1999) consider three alternative stylized reforms and conclude that political

support is decreasing in household heterogeneity and that reforms that do not entail smooth transitions (i.e. a

sequence of Social Security systems) gather a larger percent of votes. This article features household voting in

an environment with realistic household heterogeneity due to the interaction of both aggregate and idiosyncratic

uncertainty. In addition, instead of comparing a small number of stylized reforms, we evaluate household votes for

the entire space of potential parametric reforms.

The structure of the article is the following. Section 4.2 presents the model and the equilibrium definition. Section

4.3 presents the estimation process. Section 4.4 describes the data. Section 4.5 shows the calibration and estimation

results. Section 4.6 presents the quantitative analysis. Section 4.7 presents the sensitivity analysis and Section 4.8

concludes.

4.2 The Model

The model features a rich environment where ex-post heterogeneous households of multiple generations, a Defined

Contribution private pension fund, a Pay-as-You-Go Social Security system, a government, and competitive firms

9This strand is part of the more general and broad literature that studies the welfare and economic implications of pension systems.
Hong and Rios-Rull (2007); Krueger and Kubler (2006); Harenberg and Ludwig (2019) consider unfunded systems. Nishiyama (2011);
Imrohoroglu et al. (1998); Kitao (2010) consider funded tax-deferred accounts.

10Some papers use parsimonious models to derive optimal Social Security systems. See Feldstein (1985); Shiller (1999); Ball and
Mankiw (2007).
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coexist and interact. Time is discrete, denoted by t = 0, ...,∞ and one model period corresponds to one calendar

year. The model features both aggregate and idiosyncratic risk. The former is over the exogenous aggregate

shock that hits the model economy in the beginning of every period, and the latter is over mortality, bequests

and idiosyncratic productivity. By assumption, the markets for aggregate and idiosyncratic risk are closed. This

permits the model’s Social Security system to potentially increase welfare by providing partial insurance against

both types of risks.

4.2.1 Demographics

Each household represents a household head that enters the economy at age 21 and can live up to age J . At every

age, j ∈ {21, ..., J}, the conditional probability of surviving to age j + 1 is denoted by sj+1 and sj′|j = 1
sj

∏j′

τ=j sτ

denotes the conditional probability of an age j household surviving to age j′. By assumption, sJ+1 = 0. Every

period, a continuum (new generation) of households enters the model economy. We normalize the initial population

to unity and assume that the size of each successive generation grows at a rate of λν .

4.2.2 Households

Choices & Preferences In every period t, living households that have age j make a consumption (ct,j) / savings

(at+1,j+1) decision, a labour supply (ht,j) decision and eligible households choose their private pension contributions

(bt,j), through salary sacrifice. Households care about consumption, leisure and knowledge that they will leave

behind assets upon their death. They value consumption and leisure by a within period utility function u(ct,j , ht,j)

and value bequests by a bequest function uBeq(at+1,j+1). By assumption preferences take the following inter-

temporally separable form

u(ct,j , ht,j) + Et
{ J+1-j∑

τ=1

βτ−1sj+τ -1|j
[
βsj+τu(ct+τ,j+τ , ht+τ,j+τ ) + (1-sj+τ )uBeq(at+τ,j+τ )

] ∣∣∣∣Xt

}
(4.1)

where β is the subjective discount factor and the expectation Et is taken with respect to the cumulative distribution

of future random events, conditional on all available information (Xt). The role of a household is to maximize

equation (1) by choosing the sequence {ct+τ,j+τ , ht+τ,j+τ , bt+τ,j+τ}J+1-j
τ=0 , subject to the constraints described below.

Preference specification We parametrise the within period utility function as an additive CRRA over consump-

tion and leisure.

u(ct,j , ht,j , j) =
c1−σt,j

1− σ
+ χ

(1− ht,j − θhj I[ht,j > 0])

1− γ

1−γ

uBeq(at+1,j+1) = θBat+1,j+1

(4.2)

where I[ht,j > 0] is an indicator function assuming the value one if the agent is employed, θhj is an age-dependent
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fixed cost of work, σ is the coefficient of relative risk aversion, γ is the utility curvature with respect to leisure and

χ is the weight of leisure relative to consumption. We define the bequest function as a linear function similar to

Kitao (2014) and denote its coefficient by θB .

Earnings Dynamics Households can participate in the labour market and be compensated per hour of work.

Their wage w∗t,j is decomposed as the product of an endogenously determined aggregate component wt (specified

in Section 4.2.3) and an idiosyncratic component w̃t,j . Household pre-tax labour earnings are defined as

ylt,j = w∗t,jht,j = (wtw̃t,j)ht,j (4.3)

where ht,j denotes the household’s annual hours of work. The idiosyncratic component is obtained by log(w̃t,j) =

ẇ(ht,j , j) + ηt,j where ηt,j is idiosyncratic unobservable productivity and ẇ(ht,j , j) is a deterministic function that

takes into account the age and annual hours of work of the household. Idiosyncratic productivity is evolving

stochastically, following a first-order autoregressive process

ηt,j = ρ ηt-1,j-1 + ut,j , ut,j ∼ N (0, σ2
u) (4.4)

where ρ is the correlation coefficient and ut,j is a normally distributed innovation. See Section 4.3.1 and Appendix

C for details on estimation and Appendix B for a technical note on the structural implementation.

Budget Constraint The budget constraint of the household is described by the law of motion for non-labour cash

on hand, the asset evolution equation and the liquidity constraint.

mt+1,j+1 = T kt+1(at+1,j+1, beqt+1,j+1, rt+1, Tt+1) + ppbt+1,j+1 + ssbt+1,j+1

at+1,j+1 = mt,j + T lt (y
l
t,j , bt,j , Tt)− ct,j

at+1,j+1 ≥ 0

(4.5)

where 1+rt+1 is next period’s returns, ppbt+1,j+1 is pension benefits, ssbt+1,j+1 is Social Security benefits, beqt+1,j+1

is bequest transfers, Tt is the government’s policy schedule defined in Section 4.2.4. T lt and T kt+1 are functions that

map to after tax labour and capital income. Under this specification, households can accumulate savings in the

form of liquid assets to self-insure, but are not allowed to borrow.

Private Pension Savings In addition to liquid assets, households can self-insure by contributing to an illiquid

defined-contribution private pension savings account. Contributions are paid through a salary sacrifice scheme and

accumulate free of tax over the working life of the household according to

nt+1,j+1 = (1 + rt)nt + ylt,jbt,j − ppbt,j

nt+1,j+1 ≥ 0
(4.6)
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where bt,j is the contribution rate. Once households reach age Jpp they start receiving benefits ppbt,j until either

death or their pension wealth is depleted (nt,j = 0). See appendix A for the computation of pension benefits.

Social Security Benefits In the model, every household is entitled to Social Security benefits ssbt,j once it

reaches the age of Jss. Benefits are calculated using the household’s age and its Average Indexed Monthly Earnings

(AIME)11, where the latter is denoted by sst,j and evolves according to

sst+1,j+1 =

sst,j +min{y
l
t,j(1−bt,j)

35 , y
s

35} if j ≤ Jw

sst,j +max{0, y
l
t,j(1−bt,j)−sst,j

35 } otherwise

(4.7)

where ys corresponds to the Social Security contributions cap and Jw denotes the household’s age 35 years after

entering the model economy. The benefit function that maps sst,j to ssbt,j is specified by the government’s policy

schedule Tt. In the benchmark model specification, the benefit function mimics the actual U.S. formula. Note that

unlike private pensions, Social Security benefit payments will continue until the household’s death. Hence, proving

partial-insurance against longevity.

Bequest Transfers The model includes non-stationary, heterogeneous bequest transfers, that link households of

different generations. In every period t, a percent of the households die with potentially positive assets. These

bequests are allocated to incoming age 21 households that enter the economy in period t + 1. The number of

recipients and the size of bequests for each diseased household are determined by its savings decision and the

model’s population dynamics12.

State variables To make optimal choices, households take into account their current characteristics, the economy’s

aggregate state and the structure of uncertainty. Each household is fully described by its non-labour cash on hand

(m), private pension savings (n), idiosyncratic productivity (η), Average Indexed Monthly Earnings (ss), the age

of the household (j), and the aggregate state of the economy. We denote the vector of household characteristics by

ω = (m,n, η, ss, j) and its support by Ω = M ×N ×H × SS × {1, ..., J}. The economy’s aggregate state in period

t is described by the aggregate shock (zt), the period specific measure of households (µt) over their characteristics

vector, and the policy schedule of the government (Tt) that fully describes the government’s tax and benefit system

from period t onwards. Hence, the state space vector of the households is defined as Xt = (m,n, η, ss, j;µt, zt,Tt) =

(ω;µt, zt,Tt).

Recursive Formulation The household’s problem is solved recursively. In period t, the policy functions of a

11In reality, the Social Security system uses the beneficiaries 35 highest earning years to calculate benefits. In the model after the
first 35 years AIME is updated upwards only if annual earnings exceed the current AIME value.

12An assumption needs to be imposed, as including the state space of parents in the state space of their dependents renders the
problem computationally infeasible. Following Hong and Rios-Rull (2007), we impose that bequests are received in the first period of
life. Under this assumption, the model generates substantial heterogeneity in bequest transfers and the need for bequest forecasts in an
environment with aggregate uncertainty is circumvented.
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household with characteristics ω ∈ Ω are obtained as the solution of

V (ω;µt, zt,Tt) = max
c,a′
h,b

{
u(c, 1-h, j) + E

[
sj+1βV (ω′;µt+1, zt+1,Tt+1) + (1-sj+1)uBeq(a′)

∣∣∣ω;µt, zt,Tt

]}

st.

Equations (2) - (7)

zt+1 = Πz(zt)

µt+1 = Γµ(µt, zt)

b = 0, if j ≥ Jpp

where the prime denotes next period’s variables. Since there is no closed form solution to the problem, it is solved

numerically13. The solution algorithm builds on Krusell and Smith (1998), Carroll (2006), Young (2010), Kopecky

and Suen (2010), Druedahl and Jørgensen (2017) and Clausen and Strub (2020). The details of the solution

algorithm are presented in Appendix B.

4.2.3 Firms

The firms are competitive and produce under a constant returns to scale production function. Output is determined

by

Yt = F (Kt, Lt; zt) = ztK
α
t (ALt)

1−α

where zt is the aggregate shock, A is labour augmenting technological progress, Kt and Lt are the aggregate capital

and labour inputs and α is the capital’s share of output. We define the aggregate capital input as the sum of

beginning of period liquid14 and illiquid assets and the aggregate labour input as the sum of efficient labour units

(ηht,j). The profit maximizing conditions15 are wt = F2(Kt, Lt; zt) and rt = F1(Kt, Lt; zt) − δ, where δ ∈ (0, 1) is

the capital’s depreciation rate.

4.2.4 The Government

The government runs the Pay-as-You-Go Social Security system, makes public purchases of goods Ct and collects

taxes. Taxes are determined by the policy schedule Tt = {τ lt+τ , τst+τ , τkt+τ , ssbt+τ}∞τ=0, where τkt+τ is the capital

gains tax rate, τst+τ the Social Security tax rate (collected up to a cap of ys) and τ lt+τ is the linear labour income

13To access the accuracy of the numerical solution we follow Judd (1992), Santos (2000) and Den Haan (2010). These checks are
required to assess whether the errors involved are sufficiently small, so that they have no effect on the inference of the theoretical model’s
behaviour (Santos, 1999). Also, multiple checks are carried to ensure that the support of the continuous state variables is sufficiently
large. See Appendix B for technical details.

14Note that this is different than m. Specifically, beginning of period liquid assets are equal to the previous period’s savings decision
of the household (j > 21) or bequest transfers (j = 21) and are contained in non-labour cash on hand.

15The conditions imply firms make capital and labour choices after the state of the economy shock zt is realised. See Appendix A for
more details on the model’s timing.
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tax16. The policy schedule is known at the beginning of period t. The budget constraint of the government is

defined as∫
Ω

τkt rt(a(Xt) + beq(Xt)) dµt(ω) +

∫
Ω

τ lty
l(Xt)(1− b(Xt)) dµt(ω) +∫

Ω

τstmin{yl(Xt)(1− b(Xt)), y
s} dµt(ω) = Ct + ∆SSt ∀t

where a is previous period’s savings and beq is bequest transfers, ∆SSt is the Social Security surplus or deficit

and µt(ω) is the measure of households in state ω ∈ Ω. The constraint has to be satisfied every period. Thus, the

government adjusts its labour income tax rate to balance it17. See Section 4.3.1 for the exact specification of the

tax rates and benefits. The variable ∆SSt corresponds to the Security deficit or surplus, defined as

∆SSt =

∫
Ω

ssbt(Xt) dµt(ω)−
∫

Ω

τst min

{
yl(Xt)(1− b(Xt)), y

ss

}
dµt(ω)

where ssb(Xt) is the benefit function.

4.2.5 Equilibrium Definition

Let the tuple (µt, zt,Tt) denote the aggregate state of the economy, where µt is a measure defined over the household

characteristics, zt is the period t aggregate shock and Tt the policy schedule. A series of measures µt, bequest

measures {beqτ}∞τ=t, factor prices {r(µτ , zτ ,Tτ ), w(µτ , zτ ,Tτ )}∞τ=t, the policy schedule Tt, a law of motion Γµ(µt, zt),

the household value functions {v(ω;µτ , zτ ,Tτ )}∞τ=t and the policy functions of the households

{
c(ω;µτ , zτ ,Tτ ), h(ω;µτ , zτ ,Tτ ), a′(ω;µτ , zτ ,Tτ ), b(ω;µτ , zτ ,Tτ )

}∞
τ=t

are in a competitive equilibrium for every period τ = t, ...,∞, if each household solves its utility maximization

problem, the measure Γµ is generated by the policy functions, the firms solve their profit maximization problem,

all the markets clear, bequests are consistent with the policy functions and model’s population dynamics, and the

government balances its budget.

4.3 Estimation

This section describes estimation process. The aim is to estimate the model’s parameters that generate household

lifecycle decision profiles and aggregate equilibrium statistics that mimic the U.S. data. Similar to Gourinchas and

Parker (2002), French (2005) and Blundell et al. (2016) we follow a two step procedure. In the first step, we either

calibrate following the literature or estimate outside of the model a subset of the model’s parameters. In the second,

16Note that the tax rates contained in Tt are different objects than the functions Tk
t and T l

t , that map the capital and labour income
of the households to their post tax and contribution dollar amount.

17Note that we have suppressed the dependence of the labour tax rate on the state of the economy.
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conditional on the first step estimates and calibrations, we estimate the remaining parameters via the Method of

Simulated Moments (MSM). A rigorous presentation of the model’s estimation is located in Appendix C.

4.3.1 First Step

Idiosyncratic earnings process This subsection describes the estimation of the lifecycle profile for the idiosyn-

cratic (and deterministic) component of wages and the parameters that govern the unobservable productivity

process. The goal is to obtain estimates that take into account selection (in the form of a labour market partici-

pation decision), the presence of unobserved individual heterogeneity and the wage penalty of working part-time.

Empirically, we parametrise the deterministic component of idiosyncratic wages as ẇ(ht,j , j) = φ(j) + αhln(ht,j),

where φ(j) is an age polynomial and ah is the part-time wage penalty. We calibrate the coefficient ah (see the next

subsection for the calibration), define the wage net of part-time work penalty, zi,t,j = log(w̃i,t,j)−αhlog(hi,t,j) and

estimate the fixed-effect (FE) regression

zi,t,j = φ0 + φ1j + φ2j
2 + φ3j

3 + fi + εi,t,j

where fi is an unobservable individual specific fixed-effect, {φs}3s=0 are the coefficients of the cubic age polynomial

and εi,t,j is the regression residual. We interpret the sum ηi,t,j = fi + εi,t,j as the idiosyncratic unobservable

productivity of the household and estimate it by standard GMM methods18.

Sample selection bias An issue with the FE regression presented above is that it does not account for non-random

selection in the labour market. To address the sample selection bias in a model consistent way, we extend19 the

iterative method introduced by French (2005) to correct the effect that non-random sample selection has on the

life-cycle profile of wages and the unobservable idiosyncratic productivity. At the end of this iterative process,

the life-cycle profile of wages is equal between the FE estimates and the model simulated data (conditionally on

being employed in the model world) and the parameters that govern idiosyncratic productivity are estimated using

selection-corrected regression residuals.

The procedure proceeds as follows. i) The life-cycle model is estimated using the biased FE life-cycle wage profile

and idiosyncratic productivity process. ii) Using the model simulated data where both workers and non-workers are

observed, the wage profiles are iteratively adjusted20 until the simulated wage profile (conditional on being employed

in the model world) is equal to the estimated FE profile. iii) Using the updated wage profiles, the residuals are

adjusted for every individual in the PSID and the idiosyncratic productivity process is estimated using the adjusted

18We specify the theoretical model as ηi,t,j = AR(1) + MA(1), where we interpret the AR(1) part as the ”true” process and the
MA(1) part as measurement error. The GMM estimation is performed by minimizing the (weighted) distance between the theoretical
and empirical variance-covariance matrices. We find that the AR(1) estimates are very robust with respect to alternative measurement
error specifications and weighting matrix choices. Appendix C describes the GMM estimation procedure in detail.

19Rigorously, although the object of interest is E[log(w̃i,t,j) − αhlog(hi,t,j)|j], the FE regression (that uses observations only for
those employed) identifies E[log(w̃i,t,j)− αhlog(hi,t,j)|j, hi,t,j > 0]. As a consequence, the life-cycle profiles, the FE residuals and thus
the coefficients that govern idiosyncratic productivity will be affected by the sample selection bias. See Appendix C for an extensive
discussion on selection correction.

20The iterative procedure of French (2005) has a unique fixed-point in convex models and as French (2005) and O’Dea (2018) discuss,
simulations suggest that there is a unique fixed-point in non-convex models as well.
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residuals. iv) The model is estimated using the updated wage profile and idiosyncratic productivity process. Steps

ii) to iv) are repeated until convergence.

4.3.2 Second Step

Method of simulated moments In the second step, conditional on the first step’s estimates and calibrations,

we estimate the coefficients (β, γ, χ, θB) that enter the household’s utility function via the MSM (McFadden, 1989;

Pakes and Pollard, 1989). We match the life-cycle profiles of non-pension wealth, pension wealth, hours of work

conditionally on being employed and participation rates. Before describing the estimation process, it is worth noting

the identification strategy.

Identification The level of liquid and illiquid pension wealth at every age assist in the the identification of the

subjective discount factor (β), as more patient households will tend to hold greater wealth at any age. The decline of

wealth post-retirement assists in the identification of the bequest motive (θB), as households with a higher bequest

motive (conditional on risk aversion) will hold more assets to bequeath to their descendants. The participation rate

profiles assist in the identification of leisure’s weight relative to consumption (χ), as households that have a lower

preference for leisure relative to consumption will remain at work for more years. The annual hours of work life-cycle

profile and its slope near retirement assists in the identification of the utility function’s curvature with respect to

leisure (γ), as households with higher values of leisure curvature will respond more to the work disincentives induced

by Social Security.

Estimation process To obtain the simulated moments, we solve the model and simulate the lifecycle decision

profiles for T = 10, 000 overlapping generations. The initial conditions of each incoming generation are determined

by the bequeathed savings of households that died in the previous period, the model’s population dynamics and

the idiosyncratic productivity process. We stack the simulated moments in a vector Msim(θ), the equivalent data

moments in a vector Mdata and define the estimated21 coefficient vector θ̂ by

θ̂ = argmin
θ∈Θ

{
K∑
k=1

(Msim
k (θ)−Mdata

k )2/V ar(Mdata
k )

}

where Mk corresponds to the kth element of vector M . In terms of the weighting matrix, although the optimal

weighting matrix is asymptotically efficient, Altonji and Segal (1996) argue that it may be severely biased in small

samples, a problem that tends to exacerbate as the tails of the empirical distribution get fatter. For this reason we

weight each squared conditional moment with the inverse of its empirical variance. To correct for simulation noise

when computing the asymptotic standard errors we follow Gourieroux et al. (1993).

21As the model includes discrete choices and fixed-cost of work, the expected value function features potentially a large number of
downward kinks and is not globally concave (See Clausen and Strub (2020) and Fella (2014) for discussions on downward kinks). As a
consequence the GMM objective function might i) not be smooth and ii) have many local minima. To address both issues, we commence
the iterative derivative-free Bound Optimization BY Quadratic Approximation (BOBYQUA) algorithm of Powell (2009) from multiple

starting values of θ ∈ Θ and select the estimate θ̂ that generates the smallest GMM criterion (as the global minimum).
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4.4 Data

We use the Panel Study of Income Dynamics (PSID), a biennial longitudinal survey that contains a representative

sample of the U.S. household population and focus on the years 1999-2019. We deflate prices to 2014 dollars using

the Consumer Price Index (cpi) and for each household we keep track of the household head. The initial sample

consists of 17,489 unique households and we impose the following 5 restrictions.

We keep the Survey Research Center (SRC) sample (7,165 households dropped), keep only singles (8,028 households

dropped), drop individuals that were not the household’s head for one or more periods (751 households dropped),

drop individuals that were not 18 at the first wave of the sample (163 households dropped), and drop individuals

that answer the survey for one wave only and then drop out (170 households dropped). The final sample consists

of 1,212 unique households and 13,332 person-year observations.

The hourly wage is computed as the annual labour earnings divided by total hours of work. We set the wage to

missing if it is less than 9 dollars or higher than 500 dollars. When a household head has less than 300 total hours of

work in a given year, he is considered as a non-participant in the labour market. We set hours of work to missing if

a household reports more than 5500 hours (that correspond to more than twice the full time employment hours) or

less than 300 hours. The PSID asset measure includes real estate, the value of a farm or business, vehicles, stocks,

mutual funds, IRAs, Keoghs, liquid assets, bonds, other assets, and investment trusts less mortgages and other

debts. It does not include pension or Social Security wealth. Pension wealth is defined as the sum of the Defined

Contribution and Defined Benefit pension wealth. As we do not want results to be affected by wealthy individuals,

we set the wealth variables to missing for households with assets over $2,000,000 and pension wealth over $500,000.

4.5 Calibration and Estimation Results

This Section presents the parameter calibration, the estimation results and the model’s fit of the data. At the end

of this Section, Table 4.3 is showing all the model parameters,n description and values.

4.5.1 Calibration

Demographics The model’s population growth rate is set equal to 1.1%, a value close to the U.S. long-term average

and assess the effect of a lower growth rates in Section 4.7. Households enter the economy at age 21 and we set

the maximum household age J to 101, after which households die with probability one. We set the Social Security

and private pension eligibility ages to 66 and 62 years old respectively. As the PSID has poor data on mortality,

instead of directly estimating the conditional survival probabilities, we use the estimates of Bell and Miller (2005).

Preferences The relative risk aversion parameter for the baseline model is set to σ = 2. This value generates an

inter-temporal elasticity of substitution (IES) of 1/σ = 0.5, a value in line with the literature. The model features
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a fixed cost of work that is increasing with age. This allows the model to generate Frisch elasticities that are

higher for households closer to retirement, conditional on annual hours of work. This cost is denoted22 by θhj and

conditionally on age, it is determined by three parameters {ki}3i=1 that are calibrated such that the fixed cost of

work in terms of weekly hours is 6 at age 40 and 9 at age 66.

Earnings Following Aaronson and French (2004) we set the part-time wage penalty equal to 0.415, this implies

that part-time workers earn approximately 25% less than the full time employed. The parameters that determine

the idiosyncratic productivity process are estimated in the first step and corrected for non-random sample selection

in the second.

The Government Social Security tax τs is set to 10.6%, with a cap of 105, 000$. Labour taxes τ lt , are linear and

adjust endogenously every period t to balance the government’s budget constraint. The capital tax is equal to 18%.

We calibrate government consumption and set it equal to 23% of the unconditional deterministic steady state GDP.

Firms The capital share of output is set equal to 32% and the capital depreciation rate is set equal to 8.1%,

in line with the literature. The parameter A is a normalization. The transition matrix for TFP is described by

the parameters {πzi }2i=1 that are set equal to {0.941, 0.059} following Harenberg and Ludwig (2019), that calibrate

the autocorrelation of TFP using the national income and products accounts (NIPA) data. Their target is an

autocorrelation of 0.88 on an annual basis. The Total factor productivity (TFP) shock is set to 2.7%. This value

generates fluctuations in the real side of the model economy that mimic the the U.S. aggregate data.

4.5.2 First Step Estimates

The first step estimates the life-cycle profile for idiosyncratic wages and the unobservable idiosyncratic productivity

process. Table 4.1 shows the estimates for the coefficients that govern the idiosyncratic productivity process and

their standard errors.

GMM Estimates
coefficient value s.e.

ρ 0.981 (0.0057)
σ2
η 0.014 (0.0044)

Table 4.1: Ffirst step GMM estimates
Notes: The table presents the first step GMM estimates for the unobservable idiosyncratic productivity process
and their asymptotic standard errors (in parenthesis), after non-random selection in the labour market has been

accounted for.

22The age-dependent fixed cost of work is modelled as θh({ki}3i=1, j) = θhj = k1 + k2(j/Jw)k3 . We set this specification following

Kitao (2014).

86



In Appendix B we discuss the creation of idiosyncratic productivity grids and the Markov transition matrices using

these estimates. Figure 4.1 displays the raw life-cycle profile for idiosyncratic wages minus the part-time wage

penalty of the PSID data and the smooth FE life-cycle profile.
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1.0

1.5

2.0

2.5

Household age

Life-cycle Wage Profile

PSID data
FE estimate

Figure 4.1: Wage life-cycle profile
Notes: Life-cycle profile for the logarithm of idiosyncratic wages minus the part-time wage penalty

(E[log(w̃i,t,j)− αhlog(hi,t,j)|j]), raw PSID data and the smoothed fixed effects estimate.

4.5.3 Second Step Estimates

The estimated coefficients and their standard errors are presented in Table 4.2. The estimates imply that the Frisch

labour supply elasticity23 for a 40 year old household is 0.38, which is significantly less than one as suggested by

MaCurdy (1981); Altonji (1986); Blundell and Macurdy (1999). As the Frisch elasticity in this model depends on

age, through the age dependent fixed-cost of work and annual work hours, older households have a higher elasticities.

coefficient value s.e.
χ̂ 0.54 (—)
γ̂ 2.75 (—)

β̂ 0.97 (—)

θ̂B 0.45 (—)

Table 4.2: Second Step MSM estimates
Notes: The table presents the second step MSM estimated preference coefficients along with their asymptotic

standard errors (in parenthesis).

The simulated life-cycle profiles for liquid wealth, pension wealth, hours of work and the participation rates, along

with the PSID counterparts are displayed in Figure 4.2. The top left right panel of Figure 4.2 shows the data and

model simulated liquid wealth profiles. In the data assets gradually increase until the early 70s where they reach a

peak at around $250,000 and then they start to decline. In the model households save to self-insure against both

aggregate and idiosyncratic risk and to leave bequests. The model is able to replicate this general pattern, slightly

undershooting in the 40s and overemphasising the de-cumulation in the late 70s.

23The Frisch elasticity in this model is obtained by εf = (1− h− θhj I[h > 0])/(hγ).
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The top right right panel of Figure 4.2 shows the data and model simulated private pension wealth profiles. In

the data private pension wealth increases gradually until the mid 70s where it reaches a peak at around $150,000

and then it starts to decline. Households save for the same reason as liquid wealth, however they cannot use their

private pension wealth to smooth consumption before their mid 60s. The model is able to closely replicate this

pattern slightly undershooting in the 30s and overshooting in the 60s.
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Figure 4.2: Data and model simulated life-cycle profiles
Notes: Data and model simulated life-cycle profiles for liquid wealth, pension wealth, annual hours and

participation rates. The blue dashed curves correspond to the conditional moments obtained using household
head data from the PSID and the red curve to the conditional moments generated by the simulated model.

The bottom left right panel of Figure 4.2 shows the data and model simulated annual hours of work profiles,

conditionally on being employed. In the data hours of work are lower than full-time employment in the early 20s

and then they become fairly flat at around the full-time employment level until the mid-50s. Then they gradually

decline, until the age of 70 where they become fairly flat again. Although the model does not capture the lower

hours of work in the early 20s, it does a good job after the mid 20s. It captures the flat profile up to the 50s, the

gradual decline up to the 70s and the flat level in the post-retirement hours of work.

The bottom right panel of Figure 4.2 shows the data and model simulated participation rate profiles. In the data

rates are fairly flat and close to 90% until the mid-40s. The rates start to decline gradually up to the early 60s and

then the drop gets steeper until almost everyone is retired by the age of 80. The model’s overall pattern is consistent

with the data, although it overshoots for the pre-retirement years and it undershoots in the post-retirement years.

In both the data and the model households spend on average approximately 43 years in the labour market.
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In addition to the household life-cycle profiles, the model makes predictions about multiple untargeted aggregate

statistics. The model endogenously generates a correlation between returns of wages of 0.43, that is close to the

annual correlation of the NIPA data at 0.5 (Harenberg and Ludwig, 2019). The Social Security system is running

a surplus of 0.41% of GDP, a value which close to the actual Social Security system (Kitao, 2014). The Social

Security benefits amount to 5.4% of GDP. The labour taxes are adjusted every period to bind the government’s

budget constraint, on average they equal to 23.6%, excluding social security contributions.

The capital to output ratio (K/Y ) is on average 2.71, which implies average returns that are equal to 5.1%. The

model does a good job at replicating business cycle statistics observed in the U.S. data. The standard deviation of

output is 3.7% on an annual basis. Consumption is pro-cyclical and less volatile than output with approximately 0.55

times its standard deviation. Aggregate capital is pro-cyclical and more volatile than output, its standard deviation

relative to output is roughly 3.9 times larger. The model generated standard deviation for annual aggregate hours

of work is roughly 0.45 times that of output. The standard deviation is lower than the output’s, as the estimated

Frisch labour supply elasticity is lower than what is used in the business cycle literature. In Section 4.7, we assess

the impact that higher Frisch elasticities have on results.
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Model Coefficients
Parameter Description Value (S.E.)
Demographics
λν Population growth 1.1%
J Maximum age 101
Jw Age after 35 years in the economy 56
Jss Social Security eligibility 66
Jpp Private pension eligibility 62
{sj}Jj=21 Conditional survival probabilities Bell and Miller (2005)

Preferences
σ Relative risk aversion 2.0
β Subjective discount factor 0.98 (—)
γ Utility curvature of leisure 2.60 (—)
χ Weight of leisure relative to consumption 0.48 (—)
θB Bequest motive parameter 0.45 (—)
{ki}3i=1 Fixed cost of work {0.053, 0.04, 2.98}

Earnings
αh Part-time wage penalty 0.25
ρ Productivity persistence 0.981 (0.0057)
σ2
η Productivity variance 0.014 (0.0044)

Government
τk Capital tax 18%
τs Social Security tax 10.5%
τ l Labour tax endogenous
ys Social Security cap 105, 000$
C Government consumption 23% of GDP

Production
α Capital share of output 32%
δ Capital depreciation rate 8.1%
A Normalization 0.98
zt TFP shock +/− 2.7%
{πzi }2i=1 TFP shock transition coefficients {0.941, 0.059}

Table 4.3: The model’s parameters
Notes: The table presents the model’s parameters, their description, values and standard errors if they are

estimated. The first column shows the parameter notation, the second its description and the third its value.
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4.6 The Quantitative analysis

In this Section we describe the government’s problem. Then, we evaluate the optimal Social Security system,

compare it with the status quo and discuss the differences in terms of aggregate statistics, life-cycle profiles and

welfare.

4.6.1 The Government’s Problem

The aim of the government is to improve the welfare of the households in the model economy, by altering aspects

of its policy schedule Tt0 and mandating a new partially privatized Social Security system T
′

t0 .

Government’s policy To ensure the computational feasibility of the problem, the government’s degrees of freedom

are restricted to i) the choice of a flexible two parameter Social Security benefit function, ii) the minimum mandatory

private pension contribution level, bmin and iii) the level of the linear labour taxes, that adjust every period to bind

the government’s budget constraint. If ss denotes the household’s average income monthly earnings, the flexible

two parameter family is of the form

ssb(j, ss) = I[j ≥ Jss] · φ0(ss)φ1

where φ0 controls the level and φ1 controls how progressive (or regressive) the old age Social Security benefits are

with respect to the AIME24. Lower values for φ0 correspond to lower average benefits, and lower values for φ1

correspond to more progressive systems (where lower AIME have higher replacement rates relative to high AIME

households). This flexible specification approximates well the current U.S. Social Security system and allows the

government to consider a wide range of alternative progressive, regressive and flat benefit functions. Figure 4.3

shows the U.S. Social Security benefit function and the best fix approximation of the flexible two parameter function.

Social welfare function In addition to the benefit function, one more object that needs to be specified is the

social welfare function25. We follow Fehr and Kindermann (2015) and use a subcase of their general social welfare

function that applies a utilitarian perspective to living households and an ex-ante perspective to future households.

The social welfare function for each potential tuple (φ0, φ1) is defined as

W = E

generations alive at t0︷ ︸︸ ︷[
V (ω;µt0 , zt0 ,T

′

t0)
∣∣∣ω;µt0 , zt0 ,T

′

t0

]
+

∞∑
τ=t0+1

ψ(τ)E

future generations︷ ︸︸ ︷[
V (ω;µτ , zτ ,T

′

τ )
∣∣∣ j = 21;µt0 , zt0 ,T

′

t0

]
24Note that under this specification labour taxes adjust every period to bind the government’s constraint and the benefit function

remains constant over time. Krueger and Kubler (2006) discuss how adjusting the benefits vs taxes affects their results and conclude
that it is of secondary importance.

25Note that the reform is implemented in period t0 where the state of the economy is (µt0 , zt0 ,Tt0 ) and hence transition results will
be anchored by the initial state. This issue is discussed in Fehr and Kindermann (2015). We commence the transition from a large
number of different periods, all at least 10 years apart and then evaluate the average welfare. This strategy is also employed by Olovsson
(2010).
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where ψ(τ) is the discount factor for the welfare of future generations, V (ω;µt0 , zt0 ,T
′

t0) is the remaining lifetime

utility of a household with age j in period t0 and V (ω;µτ , zτ ,T
′

τ ) is the ex-ante lifetime utility of a household

that will enter the model economy in some period τ ≥ t0 + 1. Under this assumption, the government takes into

consideration the remaining lifetime utility of households alive during the reform and the ex-ante lifetime utility of

future households.

We assume that the discount factor takes the form ψ(τ) = βτ−t0 . This specification has two advantages. First, it lies

between the two extremes of either considering only living households or considering the long-term stochastic steady

state. Second, it does not depend on market outcomes or a specific reform, as it only depends on an estimated

preference parameter.
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Figure 4.3: The Social Security benefit functions
Notes: This figure presents the current piecewise linear U.S old age Social Security benefit function that features
three bend-points in blue and the flexible two parameter ”best fit” benefit function, generated using the values

φ0 = 0.41 and φ1 = 0.54.

Household voting Living households vote in the beginning of period t0, after every shock apart from mortality

has realized. We measure the percent of positive votes in favour of each potential reform by

Positive Votes =

∫
Ω

I
[
V (ω;µt0 , zt0 ,T

′

t0) ≥ V (ω;µt0 , zt0 ,Tt0)
]
dµt0(ω)

where the indicator function assumes the value of one when the condition is satisfied. This voting procedure implies

that households compare their expected remaining lifetime utility in the status quo with the counterfactual scenario

where the reform takes place.

4.6.2 The transition optimum

We consider once-and-for-all unanticipated Social Security reforms for every tuple (φ0, φ1) and pension contribution

floor. The Social Security benefits and pension contribution floor are adjusted according to the reform and labour

taxes adjust every period to bind the government’s constraint.
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Figure 4.4 shows how welfare changes as the U.S. moves away from the status quo. It is evident that the U.S.

government’s ability to move away from the current system is restricted by transition costs26. However, a substantial

move is permitted and the new Social Security system increases welfare in both the transition and longer-term.
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0.2

0.3
0.4

0.5

φ0 (level of benefits) φ1 (progressivity)

W

The Transition Optimum

W(φ0, φ1) Transition Optimum U.S. system

Figure 4.4: The transition welfare function
This figure presents the transition welfare function conditional on a zero private pension contribution floor. The

green sphere is the transition optimum (φ0 = 0.40, φ1 = 0.40) and the red sphere is the current U.S. system
(φ0 = 0.41, φ1 = 0.54). Adjustments to the private pension contribution floor have a negligible impact to the

results.

The new system imposes fewer distortions in the model economy and is less costly to operate. The private pension

contribution floor has a negligible impact on the results, with welfare gradually decreasing as the contribution floor

rises. Table 4.4 shows the difference in terms of aggregate statistics between the current U.S. system and the new

system. Output increases by 1.4%, labour supply by 1.1% and wages by 1%. Labour taxes are reduced by 3.6%.

In terms of Consumption Equivalent Variation (CEV)27, there is an increase of +0.7% between the two systems.

26In the longer-term, using an ex-ante perspective that is consistent with our social welfare function, we find that welfare is mono-
tonically decreasing with the level and insensitive with the progressiveness of benefits.

27To obtain the CEV, we simulated the model for 30,000 periods. This statistic requires a very large simulation horizon to converge.
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Aggregate differences
Statistic % Difference

Change in Output +1.4%
Change in Capital +2.2%
Change in Consumption +1.2%
Change in Labour supply +1.1%
Change in Wages +1.0%
Change in Labour Taxes −3.6%
Change in Bequests +2.3%
Change in CEV +0.7%

Table 4.4: Difference in aggregate statistics
Notes: The table presents the difference in aggregate statistics between the new and the current U.S. Social

Security systems.

To understand the importance of labor supply responses, we follow Conesa et al. (2009) and decompose CEV to

the component coming from changes in consumption and a component coming from changes in hours of work and

bequests28. Households work more hours and receive higher bequests, with the former affecting welfare negatively

and the latter positively. Also, labour responses are large enough to fully erase the gain stemming from the higher

bequest transfers and reduce the component coming from consumption by roughly a third.

CEV Decomposition
Statistic % Difference
Change in CEV +0.7%
Change in CEVC +1.1%
Change in CEVL,B −0.4%

Table 4.5: CEV decomposition
Notes: The table presents the decomposition of CEV in the components coming from the change in consumption

and the change in leisure/bequest.

28As equation (1) shows, households draw utility from consumption, labour supply and bequests. Denoting by (c0, h0, beq0) their
benchmark allocation and by (c1, h1, beq1) their allocation post reform, we obtain CEVC and CEVL,B as the solutions of

V(c1, h0, beq0) = V(c0(1 + CEVC), h0, beq0)

V(c1, h1, beq1) = V(c1(1 + CEVL,B), h0, beq0)
(4.8)

where V is the social welfare function. It can be shown that the sum of the two components add to the total, CEV = CEVC +CEVL,B .
In practise we obtain the values for CEVC and CEVL,B numerically.
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Figure 4.5: Life-cycle profiles for the status quo and the transition optimum
Notes: Comparison of the life-cycle profiles for the current and transition optimal Social Security systems. The

top left sub-figure is showing non-pension wealth, the top right sub-figure pension wealth, the bottom left
sub-figure annual hours of work and the bottom right sub-figure participation rates.

Figure 4.5 shows how the life-cycle profiles of the new system compare to the current U.S. system. Although the

profiles for hours of work, participation rates and private pension wealth remain largely unchanged, households

alter their savings decisions, by holding more capital close to their retirement and less once they are old. Note that

Figure 4.5 shows the longer-term profiles, after the economy converges to the new stochastic steady state. For the

transitional generations labor supply profiles differ significantly, with households working more hours and staying

in the labor market longer to accumulate savings.

4.6.3 Political Support

From the previous analysis of the social welfare function, it is unclear for which reforms the government can gather

political support. In this Section we consider the votes of households alive in period t0 and evaluate the percent

of positive votes for each potential tuple (φ0, φ1), and pension contribution floor. Figure 4.6 shows the percent of

households that vote in favour of each reform. As emphasized by Conesa and Krueger (1999), there is a very strong

status quo bias in favour of the current U.S. system.
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Figure 4.6: Household voting
Notes: This figure shows the percent of households voting in favour of a transition to a system characterised by

the tuple (φ0, φ1). In this figure, we omit the transition to the status quo tuple (φ0 = 0.41, φ1 = 0.54).

While households are unwilling to vote for reforms that reduce the level of benefits in the model economy, they are

willing to vote for reforms that increase it. This is caused by i) the capital stock being partially consumed over

the transition, ii) households enjoying higher Social Security benefits, but not living long enough to suffer the full

consequences of the crowding out of savings and higher labour market distortions. Also, households are unwilling

to vote for reforms that increase the Social Security benefits progressiveness, unless they are compensated by an

increase in the level. However the drop in votes is not as steep as in the level decrease, as only households with

high average index monthly earnings are affected by these reforms.

Note that every tuple receives a positive amount of votes. This highlights the competing interests of households

with different ages. However, as the economy takes over 100 periods to converge to the new stochastic steady state,

even young households close to the age of 40 are willing to vote against reforms that reduce the level of benefits.

4.6.4 Welfare increasing and politically feasible reforms

While political support take into account only households alive in period t0, the social welfare function takes into

account households alive in period t0 and future generations. Hence, it is of interest to find the optimal Social

Security system subject to both transition costs and politically feasibility constraints. Figure 4.7 shows which

reforms are welfare increasing and which are politically feasible.

The blue shaded region shows reforms that the majority votes in favour of and the red shaded region shows reforms

that are welfare increasing. The red shaded region with the black line pattern shows reforms that are welfare
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increasing in both the transition and the longer-term
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Figure 4.7: Welfare increasing and politically feasible reforms
The figure shows which reforms are welfare increasing and for which the government can gather political support.
The blue shaded region denotes reforms that the majority of households vote in favour of. The red shaded region
denotes reforms that increase welfare taking the transition into account. The black line pattern denotes reforms

that increase welfare on both the transition and the longer-term.

Figure 4.7 shows that the intersection of the politically feasible and welfare increasing reform sets is equal to the

empty set. As discussed in the previous subsections, although the U.S. can reduce the size of the Social Security

system and increase welfare, the political feasibility constraint binds before such a move is possible. This results is

mostly driven by large amount of risk in the model economy (Conesa and Krueger, 1999). Households are exposed

to more aggregate and idiosyncratic risk once a reform takes place, but they don’t live long enough to see the

benefits.

4.7 Sensitivity Analysis

In this Section we present robustness checks to see if the model’s results will alter with changes in the preference

specification, technological growth rate and population growth rate.

Including technological progress In the benchmark specification, we use preferences that are inconsistent with

a balanced growth path. To assess the impact of labour augmenting technological growth, we use the specification

defined by

Et
{ J-j∑
τ=0

βτsj+τ |j

[c1−σt+τ,j+τ

1− σ
+ ξ1−σ

t+τ

χ

1− γ
l1−γt+τ,j+τ

] ∣∣∣∣Xt

}
(4.9)

where β is the subjective discount factor, σ is the coefficient of relative risk aversion, γ is the utility curvature with
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respect to leisure, χ is the weight of leisure relative to consumption and the expectation Et is taken with respect

to the cumulative distribution of future random events, conditional on all available information (Xt). Leisure lt,j

is defined as lt,j = 1 − ht,j − θhj I[ht,j > 0], which is the total time endowment minus work hours ht,j and an age

dependent fixed cost of work θhj . The term ξt grows at an exogenous constant rate and multiplying the disutility

of work by ξ1−σ
t allows for a balanced growth path. Bequests in this specification are accidental. The production

function is defined by

Yt = F (Kt, ξtLt; zt) = ztK
α
t (ξtLt)

1−α

where ξt is the level of labour augmenting technology (King et al., 1988). We set the technological growth rate λξ

to 1.8%. We adjust the model’s variables to account for technological growth and re-estimate the model subject

to the constraint β̃ = βλ1−σ
ξ < 1. We find that there are small changes in the transition optimum. However, the

political feasibility constraint again binds before any movements away from the current Social Security system are

permitted.

Higher Frisch elasticity The estimates of Section 4.3 suggest that the Frisch elasticity of a 40 year old household

is 0.38 which is in line with the micro literature. To generate realistic volatility in aggregate annual hours of work

however, a larger Frisch elasticity is required. To address this, we adjust the coefficient that controls the utility

function’s curvature with respect to leisure (γ) and set it to set γ=6, so that the model generates an aggregate

annual hours of work volatility that is approximately equal to the volatility of output, as the stylized business cycle

facts suggest. Using the new value, the life-cycle profiles for hours of work and participation rates are affected, but

results for welfare and voting have similar implications29.

Lower population growth rate The model has a population growth rate of 1.1%, the U.S. population growth

however is projected to decrease to 0.5% by 2050. Reducing the population growth rates, while keeping everything

else constant does not affect the results or their interpretation significantly. Similar results are reported in Jones

and Li (2020).

4.8 Conclusions

In this article we assess the optimal structure of the U.S. Social Security system, taking into account the current

system’s unfunded liabilities, transition dynamics and political feasibility constraints. To perform this assessment,

we introduce an estimated overlapping generations general equilibrium model that features both aggregate and

idiosyncratic risks. The model reflects the value of insurance, along with the distortions imposed by the existence

and reform of a realistic Social Security system.

Results suggest that transition costs restrict the government’s ability to move away from the current system.

However, the government can implement a new Social Security system that generates welfare gains in both the

29See Imrohoroglu and Kitao (2009) and Bagchi (2015) for further analysis on the effects of labour supply elasticity and Social Security.
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transition and the longer-term. The new system is smaller and more progressive than the current U.S. Social

Security system. Finally, given the model’s results, we create the sets of welfare increasing and politically feasible

Social Security reforms. We find that the intersection between the two sets is equal to the empty set, a result that

could explain the hesitance of multiple countries to implement Social Security reforms.

Although the model in this paper features a rich environment, it follows a macroscopic approach that comes at the

cost of omitting factors on the household level and the government’s degrees of freedom. On the household level,

interesting avenues to extend this work include modeling i) myopia as in Moser and Olea de Souza e Silva (2019)

ii) household joint decisions as in Nishiyama (2019), ii) mortality’s dependence on household characteristics as in

Jones and Li (2020) and iv) in addition to endogenous labour supply, the inclusion of safe and risky assets as much

of the previous literature has done Krueger and Kubler (2006); Olovsson (2010); Harenberg and Ludwig (2019). In

terms of the government’s degrees of freedom, this work could be extended to include the role of government debt

and smooth reform transitions, although Conesa and Krueger (1999) find that these reforms gather fewer votes as

compared to once-and-for-all reforms, and could greatly increase the solution’s computational cost.
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4.9 Appendix A - Model details

4.9.1 Model Timing

The timing of the model is the following

t

begins
Period t

zt, η shocks realize,
bequest transfers

Choices made

F (Kt, Lt)

Takes place
Production

Income, benefits collected
taxes are paid

take place
consumption

Mortality shocks
realize

t+1

begins
Period t+1

Time

Once period t begins, the shock zt, η are realised and households receive bequests. Given the state of the economy

and their characteristics vector, households make choices and supply labour and their capital to the firms. After

production, they receive income, benefits and pay taxes. Then consumption / savings take place. Finally, households

die stochastically before the end of the period.

4.9.2 Private Pension Payments

The private pension benefits of a household are calculated based on its remaining pension wealth and age. Denote

by 1 + r the returns in the unconditional steady state of the economy. The benefits of a household with age T − s

and pension wealth nT−s can be derived as the solution to the system of equations

nT−s(1 + r)− k = nT−s+1

...

nT−2(1 + r)− k = nT−1

nT−1(1 + r)− k = nT

nT (1 + r) = k

The solution of (4.9.2) is a flat annuity payment that will exhaust pension wealth at age T , taking into account

that after each payment, the remaining amount will compound in future periods. The value of the payment as a

function of the household’s current pension wealth and age is

k =
nT−s∑s+1

j=1(1 + r)−j
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As the economy is subject to aggregate shocks and returns fluctuate, the pension fund performs the computation

(4.9.2) for each household, at the start of every period t and benefits are adjusted to reflect changes in pension

wealth due to these fluctuations.

4.9.3 Social Security Payments

After the eligibility age, Social Security annual benefits (ssbt) are calculated as a piece-wise linear function of

Average Indexed Monthly Earnings (η).

ssbt =


0.9η, if η ≤ 9, 132$

9, 132 + 0.35(η − 9, 132), if η > 9, 132$ & η ≤ 55, 032$

55, 032 + 0.15(η − 55, 032), if η > 55, 032$

In Section 4.6, we approximate this piece-wise linear function using a flexible two-parameter function.

4.10 Appendix B - Computational details

Below we present the technical details of the computational problem. A general version of the code that allows for

additional aggregate shocks and alternative solution methods is available online.

4.10.1 Household problem

Household problem solution algorithm: As the problem we consider is non-convex, we use the G2EGM,

where the solution algorithm of Carroll (2006) is supplemented with the upper envelope of Druedahl and Jørgensen

(2017). The idea that non-convex models can be solved using first-order condition methods stems from early results

of Clausen and Strub (2020).

Discretization: Due to the high persistence of the idiosyncratic productivity process, the corresponding state

variable and its law of motion are discretized following Rouwenhorst (1995). See Kopecky and Suen (2010) for

performance comparisons with alternative discretization methods.

Interpolation method: Throughout the solution and simulation of the model, multidimensional linear interpola-

tion is used. To reduce interpolation errors, the marginal utility of consumption is transformed using f(x) = 1/x.

Grid definition: The baseline grid sizes (discrete variables included) for the steady state model are #m×#n×

#η×#ss×#J = 70× 12× 8× 12× 81 and for the aggregate uncertainty model they are #m×#n×#η×#K1×

#K2 ×#z ×#ss×#J = 70× 12× 8× 10× 10× 2× 12× 81.
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Machine: The algorithm was written and executed using JuliaPro-1.5.4-1.

Parallelism: We use Julia’s multi-threading. We solve the household’s problem in parallel conditional on age (j)

and simulate households in parallel conditional on year (t).

Simulation: Households are simulated following the non-stochastic method of Young (2010).

4.10.2 Algorithm accuracy checks

Aggregate law of motion accuracy: Following Den Haan (2010) instead of using R2 that looks at the one period

ahead forecast, we condition on an initial value and generate the entire 10,000 period history30 of i) aggregate capital

(the 1st moment), ii) aggregate average index monthly earnings (the 2nd moment), iii) aggregate labour supply

and iv) labour taxes, using their forecast laws of motion. We compare the forecasts with the history generated

by the model’s non-stochastic simulation. Below we provide three statistics on their difference and a graph of the

comparison. The statistics are the maximum absolute error, the mean absolute error and the root mean squared

error.

max abs-K1 error mean abs-K1 error rmse-K1 error
0.60% 0.08% 0.49%

max abs-K2 error mean abs-K2 error rmse-K2 error
0.81% 0.17% 0.23%

max abs-L error mean abs-L error rmse-L error
0.64% 0.08% 0.51%

max abs-τ l error mean abs-τ l error rmse-τ l error
0.90% 0.23% 0.34%

Table 4.6: The table shows three statistics on the household forecast errors.

Relative Euler-residuals: To measure accuracy, following Judd (1992) and Santos (2000) we consider the com-

mon logarithm of the relative absolute Euler-errors (E). As the Euler-Equation does not have to be true on the

constrained region, a lower bound on savings, a = 0.002 is imposed.

E =

∑N
i=1

∑T
1 I[ai,t+1 > a]errori,t∑N

i=1

∑T
1 I[ai,t+1 > a]

errori,t = log10

(∣∣∣ci,t − (β(1 + r)E[c−σi,t+1]
)− 1

σ
∣∣∣ / cit

)

We find that throughout the estimation and optimal design the errors are in the range of E ∈ (−5,−3).

30Note that in life-cycle models weaker versions of the three displayed statistics can be used. The households have finite lives and
only need to forecast prices for the remaining of their lives. Accumulation of errors beyond their remaining years does not affect their
behaviour.
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Comparisons to VFI: The G2EGM solution (given the estimated coefficients) is compared to the solution

obtained by standard Value Function Iteration (V FI). As V FI is inherently less accurate, the grid sizes used were

#m×#n×#η×#Ky×#K2×#z×#ss×#J = 400×30×10×10×10×2×20×81 and #a′×h×b = 4000×3×3.

The two solutions are nearly identical, with the VFI producing larger relative Euler errors.

Increasing the Grid size: The problem was re-solved (given the estimated coefficients) using G2EGM and

larger grid sizes. Increasing the size by a factor of two does not significantly affect the relative Euler errors or the

equilibrium statistics.

Longer simulation horizon: For the model’s estimation we simulate 10,000 overlapping generations. Increasing

the number of generations does not affect the conditional means (lifecycle profiles). For the welfare analysis we

simulate 25,000 overlapping generations. Increasing the number of generations does not affect results.

Alternative minimization algorithm: We verified the estimation results obtained using the BOBYQUA algo-

rithm of Powell (2009) with the Simplex algorithm of Nelder and Mead (1965). The difference in the estimated

coefficients (and their standard errors) is small.

Deterministic Steady State algorithm

In most cases the deterministic steady state algorithm requires 50 to 90 iterations to converge. The algorithm

proceeds as follows.

Step 1. We start with an initial guess for factor prices and the bequest vector

Step 2. We solve the household problem taking the factor prices and bequest vector as given. Then we simulate the

model

Step 3. Given the model’s simulation we evaluate the new factor prices and bequest vector

Step 4. We take a convex combination of the old and new prices and go back to Step 2. This is repeated until the

factor prices and bequest vector converge

Aggergate Uncertainty algorithm

Step 1. We start with an initial guess for the law of motion coefficients. We obtain these guesses from the deterministic

steady state algorithm

Step 2. We solve the household problem taking the laws of motion as given. Then we simulate the model for a large

number of periods. The distribution of households and bequests in the initial simulation period are equal to
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the deterministic steady state distributions. We discard the first 300 periods.

Step 3. Given the model’s simulation we evaluate the new law of motion coefficients. First we use OLS on the

simulated data and then take a convex combination between the old and new coefficients. For every simulation

we evaluate every relevant accuracy tests.

Step 4. We back to Step 2. This is repeated until the law of motion coefficients converge

Transition path algorithm

Step 1. We solve the benchmark economy with the current U.S. Social Security system in place and store the distri-

bution of households over their characteristics state vector. We do this for a large number of periods all 10

years apart from each other.

Step 2. We solve for the new Social Security system described by (φ0, φ1) and a value for the minimum pension

contribution floor. Then we store the new law of motion coefficients.

Step 3. We commence a simulation for every distribution stored in Step 1 and the new law of motion coefficients

obtained in Step 2. We simulate forward for a large number of periods. For every simulation we evaluate

every relevant accuracy tests.

Step 4. We evaluate the social welfare function for each of the simulations and then evaluate the average.

4.11 Appendix C - Estimation details

4.11.1 First step

Idiosyncratic Productivity GMM estimation This subsection presents the GMM estimation procedure for the

parameters that govern idiosyncratic productivity. Empirically, we specify the model as

ηi,t = αi,t +mi,t

αi,t = ραi,t−1, + ζi,t, ζi,t ∼ N (0, σ2
ζ )

mi,t = µi,t + φµi,t−1 , µi,t ∼ N (0, σ2
µ)

where by assumption the errors µi,t and ζi,t are serially uncorrelated and mutually orthogonal. We interpret

αi,t as the ”true” process that evolves according to an AR(1) and mi,t as a MA(1) measurement error. We

estimate the four-element parameter vector θ = (ρ, φ, σ2
ζ , σ

2
µ) by minimizing the weighted distance between the

theoretical and empirical variance-covariance matrices of the random variable31 ηi,t. As the dataset contains T =

#{1999, 2001, ..., 2019} = 11 waves, the variance-covariance matrices have T (T + 1)/2 = 66 unique elements. Each

31To be precise it is a random vector (ηi,1999, ηi,2001, ...ηi,2019)′.
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difference between these unique element will be used to form a moment condition. As the panel is unbalanced,

we follow French and Jones (2004) and denote by n the total number of observations present in any wave and

by nt,t+s =
∑n
i=1 I[ηi,t, ηi,t+s 6= missing] the number of observations present in both waves t and t + s. Using

σ2
α = σ2

ζ/(1− ρ2), the sample moment conditions are defined as

m(θ)t,t =
nt,t
n

[
1

nt,t

∑
i:ηi,t 6=missing

(
η2
i,t − 1

1− ρ2
σ2
ζ + σ2

µ + φ2σ2
µ

)]
I[ηi,t 6= missing]

m(θ)t,t+1 =
nt,t+1

n

[
1

nt,t+1

∑
i: ηi,t,
ηi,t+1

6=missing

(
ηi,tηi,t+1 −

ρ

1− ρ2
σ2
ζ + φσ2

µ

)]
I[ηi,t, ηi,t+1 6= missing]

m(θ)t,t+κ =
nt,t+κ
n

[
1

nt,t+κ

∑
i: ηi,t,
ηi,t+κ

6=missing

(
ηi,tηi,t+κ −

ρκ

1− ρ2
σ2
ζ

) ]
I[ηi,t, ηi,t+κ 6= missing]

where κ > 1. The GMM estimate θ̂ is defined as

θ̂ = argmin
θ∈Θ

{
n g(wi, θ)

′ W g(wi, θ)
}

where g(wi, θ) is a T × 1 vector of the stacked sample moment conditions and W is a weighting matrix. Using

the optimal weighting matrix W = E[g(wi, θ)
′g(wi, θ)]

−1 the estimator is asymptotically normal with the limiting

distribution
√
n(θ̂ − θ0)

d→ N ( 0, (G′WG)−1 )

where G = Oθ E[g(wi, θ)] denotes the Jacobian matrix of the sample moment condition vector. In practise, we

perform the estimation using the two-step feasible GMM procedure and locate the global minimum with the Nelder-

Mead (Simplex) implementation of the NLopt package. As a robustness check, we re-estimate the model using the

diagonal weighting matrix suggested by Pischke (1995), the identity matrix and a bootstrapped empirical diagonal

weighting matrix, where each moment is weighted by the inverse of its variance (resampling from the panel’s cross-

section dimension as suggested by Kapetanios (2008)). We find that the choice of the weighting matrix does not

have a significant effect on the transition probabilities or the grid-vector for η, once the process is discretized.

In addition, measurement error’s specification does not seem to have a significant effect on the transition probabilities

or the grid-vector for η. For example, although heteroscedastic measurement error (σ2
µ,t ∀t) improves the model’s

fit and has a lower Sargan-Hansen J-statistic, it leaves the AR(1) parameters unchanged.

4.11.2 Second step

Selection correction For this subsection, define Wi,t = log(wi,t) − αhlog(hi,t). The objects of interest in the

second part of Section 4.3.1 are E[Wi,t|j] and the residuals ηi,t = Wi,t − E[Wi,t|j]. The FE estimator however,

instead of E[Wi,t|j], identifies E[Wi,t|j, hi,t > 0] = E[Wi,t|j] + E[ηi,t|j, hi,t > 0] and the FE residuals are ηFEi,t =
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Wi,t − E[Wi,t|j, hi,t > 0] = ηi,t − E[ηi,t|j, hi,t > 0] and thus ηFEi,t 6= ηi,t. According to this inequality, in the general

case, in addition to the life-cycle wage profile, the persistence and variance parameters that govern idiosyncratic

productivity will be affected by the selection bias as well. In this article we extend the wage profile selection-

correction method of French (2005), so that it corrects the persistence and variance parameters as well. The

modified algorithm is the following

1. Estimate the model using the biased FE estimates.

2. Using the model simulated data where both. workers and non-workers are observed, the wage profiles are

iteratively adjusted until the simulated wage profile, conditional on being employed in the model world, is

equal to the estimated FE profile.

3. Once the fixed point of 2. is reached, use the new wage profiles and the PSID data to obtain new residuals

and estimate the AR(1)+MA(1) model.

4. Estimate the model using the fixed-point wage profile of 2. and the AR(1)+MA(1) estimates of 3.

5. Repeat steps 2. to 4. until the life-cycle wage profile and AR(1)+MA(1) estimates converge.

At the end of this iterative process, the life-cycle profile of wages is equal between the FE estimates and the model

simulated data, conditionally on being employed in the model world and the parameters that govern idiosyncratic

productivity are estimated using selection-corrected regression residuals.
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