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ABSTRACT 

A growing number of artificial intelligence (AI)-based clinical decision support systems are 

showing promising performance in preclinical, in silico, evaluation, but few have yet 

demonstrated real benefit to patient care. Early-stage clinical evaluation is important to 

assess an AI system’s actual clinical performance at small scale, ensure its safety, evaluate the 

human factors surrounding its use, and pave the way to further large-scale trials. However, 

the reporting of these early studies remains inadequate. The present statement provides a 

multistakeholder, consensus-based reporting guideline for the Developmental and 

Exploratory Clinical Investigations of DEcision support systems driven by Artificial Intelligence 

(DECIDE-AI). We conducted a two-round, modified Delphi process to collect and analyse 

expert opinion on the reporting of early clinical evaluation of AI systems. Experts were 

recruited from 20 predefined stakeholder categories. The final composition and wording of 

the guideline was determined at a virtual consensus meeting. The checklist and the 

Explanation & Elaboration (E&E) sections were refined based on feedback from a qualitative 

evaluation process. 123 experts participated in the first round of Delphi, 138 in the second, 

16 in the consensus meeting, and 16 in the qualitative evaluation. The DECIDE-AI reporting 

guideline comprises 17 AI-specific reporting items (made of 28 subitems) and 10 generic 

reporting items, with an E&E paragraph provided for each. Through consultation and 

consensus with a range of stakeholders, we have developed a guideline comprising key items 

that should be reported in early-stage clinical studies of AI-based decision support systems in 

healthcare. By providing an actionable checklist of minimal reporting items, the DECIDE-AI 

guideline will facilitate the appraisal of these studies and replicability of their findings. 
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Main 

The prospect of improved clinical outcomes and more efficient health systems has fuelled a 

rapid rise in the development and evaluation of AI systems over the last decade. Because 

most AI systems within healthcare are complex interventions designed as clinical decision 

support systems, rather than autonomous agents, the interactions between the AI systems, 

their users and the implementation environments are defining components of the AI 

interventions’ overall potential effectiveness. Therefore, bringing AI systems from 

mathematical performance to clinical utility, needs an adapted, stepwise implementation and 

evaluation pathway, addressing the complexity of this collaboration between two 

independent forms of intelligence, beyond measures of effectiveness alone1. Despite 

indications that some AI-based algorithms now match the accuracy of human experts within 

pre-clinical in silico studies2, there is little high-quality evidence for improved clinician 

performance or patient outcomes in clinical studies3,4. Reasons proposed for this so-called AI-

chasm5 are lack of necessary expertise needed for translating a tool into practice, lack of 

funding available for translation, a general underappreciation of clinical research as a 

translation mechanism6 and more specifically a disregard for the potential value of the early 

stages of clinical evaluation and the analysis of human factors7.  

The challenges of early-stage clinical AI evaluation (see Box 1) are similar to those of complex 

interventions, as reported by the Medical Research Council dedicated guidance1, and surgical 

innovation, as described by the IDEAL Framework8,9. For example, in all three cases, the 

evaluation needs to consider the potential for iterative modification of the interventions and 

the characteristics of the operators (or users) performing them. In this regard, the IDEAL 
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framework offers readily implementable and stage-specific recommendations for the 

evaluation of surgical innovations under development. IDEAL stages 2a/2b, for example, are 

described as development and exploratory stages, during which the intervention is refined, 

operators’ learning curves analysed, and the influence of patient and operator variability on 

effectiveness are explored prospectively, prior to large scale efficacy testing.  

Early-stage clinical evaluation of AI systems should also place a strong emphasis on validation 

of performance and safety, in a similar manner to phase I and II pharmaceutical trials, before 

efficacy evaluation at scale in phase III. For example, small changes in the distribution of the 

underlying data between the algorithm training and clinical evaluation populations (so-called 

dataset shift) can lead to significant variation in clinical performance and expose patients to 

potential unexpected harm10,11. 

Human factors (or ergonomics) evaluations are commonly conducted in safety-critical fields 

such as aviation, the military and energy sectors12–14. Their assessments evaluate the impact 

of a device or procedure on their users’ physical and cognitive performance, and vice-versa. 

Human factors, such as usability evaluation, are an integral part of the regulatory process for 

new medical devices15,16 and their application to AI-specific challenges is attracting growing 

attention in the medical literature17–20. However, few clinical AI studies report on the 

evaluation of human factors3, and usability evaluation of related digital health technology is 

often performed with inconstant methodology and reporting21.  

Other areas of suboptimal reporting of clinical AI studies have also recently been 

highlighted3,22, such as implementation environment, user characteristics and selection 

process, training provided, underlying algorithm identification, and disclosure of funding 

sources. Transparent reporting is necessary for informed study appraisal and to facilitate 
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reproducibility of study results. In a relatively new and dynamic field such as clinical AI, 

comprehensive reporting is also key to construct a common and comparable knowledge base 

to build upon.  

Guidelines already exist, or are under development, for the reporting of preclinical, in silico, 

studies of AI systems, their offline validation, and for their evaluation in large comparative 

studies23–26; but there is an important stage of research between these, namely studies 

focussing on the initial clinical use of AI systems, for which no such guidance currently exists 

(see Figure 1 and Table 1). This early clinical evaluation provides a crucial scoping evaluation 

of clinical utility, safety, and human factors challenges in live clinical settings. By investigating 

the potential obstacles to clinical evaluation at scale and informing protocol design, these 

studies are also important stepping stones toward definitive comparative trials.  

To address this gap, we convened an international, multistakeholder group of experts in a 

Delphi exercise to produce the DECIDE-AI reporting guideline. Focusing on AI systems 

supporting, rather than replacing human intelligence, DECIDE-AI aims to improve the 

reporting of studies describing the evaluation of AI-based decision support systems during 

their early, small-scale implementation in live clinical settings (i.e. the supported decisions 

have an actual impact on patient care). Whereas TRIPOD-AI, STARD-AI, SPIRIT-AI and 

CONSORT-AI are specific to particular study designs, DECIDE-AI is focused on the evaluation 

stage and does not prescribe a fixed study design. 
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METHODS 

The DECIDE-AI guideline was developed through an international expert consensus process 

and in accordance with the EQUATOR Network’s recommendations for guideline 

development27. A Steering Group was convened to oversee the guideline development 

process. Its members were selected to cover a broad range of expertise and ensure a 

seamless integration with other existing guidelines. We conducted a modified Delphi 

process28, with two rounds of feedback from participating experts and one virtual consensus 

meeting. The project was reviewed by the University of Oxford Central University Research 

Ethics Committee (approval number R73712/RE003) and registered with the EQUATOR 

Network. Informed consent was obtained from all participants in the Delphi process and 

consensus meeting. 

Initial item list generation 

An initial list of candidate items was developed based on expert opinion informed by: (i) a 

systematic literature review focusing on the evaluation of AI-based diagnostic decision 

support systems3, (ii) an additional literature search about existing guidance for AI evaluation 

in clinical settings (search strategy available on the Open Science Framework29), (iii) literature 

recommended by Steering Group members19,22,30–34, and (iv) institutional documents35–39. 

Expert recruitment 

Experts were recruited through five different channels: (i) invitation to experts recommended 

by the Steering Group, (ii) invitation to authors of the publications identified through the 

initial literature searches, (iii) call to contribute published in a commentary article in a 
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medical journal7, (iv) consideration of any expert contacting the Steering Group of their own 

initiative, and (v) invitation to experts recommended by the Delphi participants (snowballing). 

Before starting the recruitment process, 20 target stakeholder groups were defined, namely: 

administrators/hospital management, allied health professionals, clinicians, 

engineers/computer scientists, entrepreneurs, epidemiologists, ethicists, funders, human 

factors specialists, implementation scientists, journal editors, methodologists, patient 

representatives, payers/commissioners, policy makers/official institution representatives, 

private sector representatives, psychologists, regulators, statisticians, and trialists. 

138 experts agreed to participate in the first round of Delphi, of whom 123 (89%) completed 

the questionnaire (83 identified from Steering Group recommendation, 12 from their 

publications, 21 contacting the Steering Group from of own initiative, and seven through 

snowballing). 162 experts were invited to take part in the second round of Delphi, of whom 

138 completed the questionnaire (85%). 110 had also completed the first round (continuity 

rate of 89%)40 and 28 were new participants. The participating experts represented 18 

countries and spanned all 20 of the defined stakeholder groups (see Suppl. notes 1 and 

Suppl. tables 1 and 2). 

Delphi process 

The Delphi surveys were designed and distributed via the REDCap web application41,42. The 

first round consisted of four open-ended questions on aspects viewed by the Delphi 

participants as necessary to be reported during early-stage clinical evaluation. The 

participating experts were then asked to rate, on a 1 to 9 scale, the importance of items in 

the initial list proposed by the research team. Ratings of 1 to 3 on the scale were defined as 
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‘not important’, 4 to 6 as ‘important but not critical’ and 7 to 9 as ‘important and critical’. 

Participants were also invited to comment on existing items and to suggest new items. An 

inductive thematic analysis of the narrative answers was performed independently by two 

reviewers (BV and MN) and conflict was resolved by consensus43. The themes identified were 

used to correct any omissions in the initial list and to complement the background 

information about proposed items. Summary statistics of the item scores were produced for 

each stakeholder group, by calculating the median score, interquartile range, and the 

percentage of participants scoring an item 7 or higher, as well as 3 or lower, which were the 

pre-specified inclusion and exclusion cut-offs, respectively). A revised item list was developed 

based on the results of the first round.  

In the second round, the participants were shown the results of the first round and invited to 

rate and comment on the items in the revised list. The detailed survey questions of the two 

rounds of Delphi can be found on the Open Science Framework (OSF)29. All analyses of item 

scores and comments were performed independently by two members of the research team 

(BV and MN), using NVivo (QSR International Pty Ltd., v1.0) and Python (Python Software 

Foundation, v.3.8.5). Conflicts were resolved by consensus.  

The initial item list contained 54 items. 120 sets of responses were included in the analysis of 

the first round of Delphi (one set of responses was excluded due to a reasonable suspicion of 

scale inversion, two due to completion after the deadline). The first round yielded 43,986 

words of free text answers to the four initial open-ended questions, 6,419 item scores, 228 

comments, and 64 proposals for new items. The thematic analysis identified 109 themes. In 

the revised list, 9 items remained unchanged, 22 were reworded/completed, 21 reorganised 

(merged/split, becoming 13 items), 2 items dropped, and 9 new items added, for a total of 53 
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items. The two items dropped were related to health economic assessment. They were the 

only two items with a median score below 7 (median: 6, IQR: 2-9 for both) and received 

numerous comments describing them as an entirely separate aspect of evaluation. The 

revised list was reorganised into items and subitems. 136 sets of answers were included in 

the analysis of the second round of Delphi (one set of answers was excluded due to lack of 

consideration for the questions, one due to completion after the deadline). The second 

round yielded 7,101 item scores and 923 comments. The results of the thematic analysis, the 

initial and revised item lists, as well as per item narrative and graphical summaries of the 

feedback received in both rounds can be found on OSF29. 

Consensus meeting 

A virtual consensus meeting was held on three occasions between the 14th and the 16th of 

June 2021, to debate and agree the content and wording of the DECIDE-AI reporting 

guideline. The 16 members of the Consensus Group (see Suppl. notes 1, Suppl. Table 2a and 

2b) were selected to ensure a balanced representation of the key stakeholder groups, as well 

as geographic diversity. All items from the second round of Delphi were discussed and voted 

on during the consensus meeting. For each item, the results of the Delphi process were 

presented to the Consensus Group members and a vote was carried out anonymously using 

the Vevox online application (https://www.vevox.com). A pre-specified cut-off of 80% of the 

Consensus Group members (excluding blank votes and abstentions) was necessary for an 

item to be included. To highlight the new, AI-specific reporting items, the Consensus Group 

divided the guidelines into two item lists: an AI-specific items list, which represents the main 

novelty of the DECIDE-AI guideline, and a second list of generic reporting items, which 

achieved high consensus but are not AI-specific and could apply to most types of study. The 
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Consensus Group selected 17 items (made of 28 subitems in total) for inclusion in the AI-

specific list and 10 items for inclusion in the generic reporting item list. A summary of the 

Consensus Group votes can be found in Suppl. table 3.  

Qualitative evaluation 

The drafts of the guideline and of the Explanation and Elaboration (E&E) sections were sent 

for qualitative evaluation to a group of 16 selected experts with experience in AI system 

implementation or in the peer-reviewing of literature related to AI system evaluation (Suppl. 

notes 1), all of whom were independent of the Consensus Group. These 16 experts were 

asked to comment on the clarity and applicability of each AI-specific item, using a custom 

form (available on OSF29). Item wording amendments and modifications to the E&E sections 

were conducted based on the feedback from the qualitative evaluation, which was 

independently analysed by two reviewers (BV and MN) and with conflicts resolved by 

consensus. A glossary of terms (Box 2) was produced to clarify key concepts used in the 

guideline. The Consensus Group approved the final item lists including any changes made 

during the qualitative evaluation. Suppl. figures 1 and 2 provide graphical representations of 

the two item lists’ (AI-specific and generic) evolution.
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Recommendations 

Reporting item checklist 

The DECIDE-AI guideline should be used for the reporting of studies describing the early-

stage live clinical evaluation of AI-based decision support systems, independently of the study 

design chosen (see Figure 1 and Table 1). Depending on the chosen study design and if 

available, authors may also wish to complete the reporting according to study type specific 

guideline (e.g. STROBE for cohort studies)44. Table 2 presents the DECIDE-AI checklist, 

comprising of the 17 AI-specific reporting items and 10 generic reporting items selected by 

the Consensus Group. Each item comes with an E&E to explain why and how reporting is 

recommended (see Supplementary Appendix 1). A downloadable version of the checklist, 

designed to help researchers and reviewers check compliance when preparing or reviewing a 

manuscript, is available as Supplementary Appendix 2. Reporting guidelines are a set of 

minimum reporting recommendations and not intended to guide research conduct. Although 

familiarity with DECIDE-AI might be useful to inform some aspects of the design and conduct 

of studies within the guideline’s scope45, adherence to the guideline alone should not be 

interpreted as an indication of methodological quality (which is the realm of methodological 

guidelines and risk of bias assessment tools). With increasingly complex AI interventions and 

evaluations, it might become challenging to report all the required information within a 

single primary manuscript, in which case references to the study protocol, open science 

repositories, related publications, and supplementary materials are encouraged.
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DISCUSSION 

The DECIDE-AI guideline is the result of an international consensus process involving a 

diverse group of experts spanning a wide range of professional background and experience. 

The level of interest across stakeholder groups and the high response rate amongst the 

invited experts speaks to the perceived need for more guidance in the reporting of studies 

presenting the development and evaluation of clinical AI systems, and to the growing value 

placed on comprehensive clinical evaluation to guide implementation. The emphasis placed 

on the role of human-in-the-loop decision-making was guided by the Steering group’s belief 

that AI will, at least in the foreseeable future, augment rather than replace human 

intelligence in clinical settings. In this context, thorough evaluation of the human-computer 

interaction and the roles played by the human users will be key to realising the full potential 

of AI.  

The DECIDE-AI guideline is the first stage-specific AI reporting guideline to be developed. This 

stage-specific approach echoes recognised development pathways for complex 

interventions1,8,9,46, and aligns conceptually with proposed frameworks for clinical AI6,47–49, 

although no commonly agreed nomenclature or definition has so far been published for the 

stages of evaluation in this field. Given the current state of clinical AI evaluation, and the 

apparent deficit in reporting guidance for the early clinical stage, the DECIDE-AI Steering 

Group considered it important to crystallise current expert opinion into a consensus, to help 

improve reporting of these studies. Beside this primary objective, the DECIDE-AI guideline will 

hopefully also support authors during study design, protocol drafting and study registration, 

by providing them with clear criteria around which to plan their work. As with other reporting 

guidelines, it is important to note that the overall impact on the standard of reporting will 
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need to be assessed in due course, once the wider community has had a chance to use the 

checklist and explanatory documents, which is likely to prompt modification and fine tuning 

of the DECIDE-AI guideline, based on its real-world use. While the outcome of this process 

cannot be pre-judged, there is evidence that the adoption of consensus-based reporting 

guidelines (such as CONSORT) does indeed improve the standard of reporting50. 

The Steering Group paid special attention to the integration of DECIDE-AI within the broader 

scheme of AI guidelines (e.g. TRIPOD-AI, STARD-AI, SPIRIT-AI and CONSORT-AI). It also 

focussed on DECIDE-AI being applicable to all type of decision support modalities (i.e. 

detection, diagnostic, prognostic, and therapeutic). The final checklist should be considered 

as minimum scientific reporting standards and do not preclude reporting additional 

information, nor are they a substitute for other regulatory reporting or approval 

requirements. The overlap between scientific evaluation and regulatory processes was a core 

consideration during the development of the DECIDE-AI guideline. Early-stage scientific 

studies can be used to inform regulatory decisions (e.g. based on the stated intended use 

within the study), and are part of the clinical evidence generation process (e.g. clinical 

investigations). The initial item list was aligned with information commonly required by 

regulatory agencies and regulatory considerations are introduced in the E&E paragraphs. 

However, given the somewhat different focuses of scientific evaluation and regulatory 

assessment51, as well as differences between regulatory jurisdictions, it was decided to make 

no reference to specific regulatory processes in the guideline, nor to define the scope of 

DECIDE-AI within any particular regulatory framework. The primary focus of DECIDE-AI is 

scientific evaluation and reporting, for which regulatory documents often provide little 

guidance. 
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Several topics led to more intense discussion than others, both during the Delphi process and 

Consensus Group discussion. Regardless of whether the corresponding items were included 

or not, these represent important issues that the AI and healthcare communities should 

consider and continue to debate. First, we discussed at length whether users (see glossary of 

terms) should be considered as study participants. The consensus reached was that users are 

a key study population, about whom data will be collected (e.g. reasons for variation from 

the AI system recommendation, user satisfaction, etc.), who might logically be consented as 

study participants, and therefore should be considered as such. Because user characteristics 

(e.g. experience) can affect intervention efficacy, both patient and user variability should be 

considered when evaluating AI systems, and reported adequately. 

Second, the relevance of comparator groups in early-stage clinical evaluation was considered. 

Most studies retrieved in the literature search described a comparator group (commonly the 

same group of clinicians without AI support). Such comparators can provide useful 

information for the design of future large-scale trials (e.g. information on the potential effect 

size). However, comparator groups are often unnecessary at this early stage of clinical 

evaluation, when the focus is on issues other than comparative efficacy. Small-scale clinical 

investigations are also usually underpowered to make statistically significant conclusions 

about efficacy, accounting for both patient and user variability. Moreover, the additional 

information gained from comparator groups can often be inferred from other sources, like 

previous data on unassisted standard of care in the case of the expected effect size. 

Comparison groups are therefore mentioned in item VII but considered optional. 

Third, output interpretability is often described as important to increase user and patient 

trust in the AI system, to contextualise the system’s outputs within the broader clinical 
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information environment19, and potentially for regulatory purpose52. However, some experts 

argued that an output’s clinical value may be independent of its interpretability, and that the 

practical relevance of evaluating interpretability is still debatable53,54. Furthermore, there is 

currently no generally accepted way of quantifying or evaluating interpretability. For this 

reason, the Consensus Group decided not to include an item on interpretability at the 

current time. 

Fourth, the notion of users’ trust in the AI system, and its evolution with time, were 

discussed. As users accumulate experience with, and receive feedback from, the real-world 

use of AI systems, they will adapt their level of trust in its recommendations. Whether 

appropriate or not, this level of trust will influence, as recently demonstrated by McIntosh et 

al55, how much impact the systems have on the final decision-making and therefore influence 

the overall clinical performance of the AI system. Understanding how trust evolves is 

essential for planning user training and determining the optimal timepoints at which to start 

data collection in comparative trials. However, as for interpretability, there is currently no 

commonly accepted way to measure trust in the context of clinical AI. For this reason, the 

item about user trust in the AI system was not included in the final guideline. The fact that 

interpretability and trust were not included highlights the tendency of consensus-based 

guidelines development towards conservatism, because only widely agreed upon concepts 

reach the level of consensus needed for inclusion. However, changes of focus in the field as 

well as new methodological development can be integrated into subsequent guideline 

iterations. From this perspective, the issues of interpretability and trust are far from 

irrelevant to future AI evaluations and their exclusion from the current guideline reflects less 
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a lack of interest than a need for further research into how we can best operationalise these 

metrics for the purposes of evaluation in AI systems. 

Fifth, the notion of modifying the AI system (the intervention) during the evaluation received 

mixed opinions. During comparative trials, changes made to the intervention during data 

collection are questionable unless the changes are part of the study protocol; some authors 

even consider them as impermissible, on the basis that they would make valid interpretation 

of study results difficult or impossible. However, the objectives of early clinical evaluation are 

often not to make definitive conclusions on effectiveness. Iterative design-evaluation cycles, 

if performed safely and reported transparently, offer opportunities to tailor an intervention 

to its users and beneficiaries, and augment chances of adoption of an optimised, fixed 

version during later summative evaluation8,9,56,57. 

Sixth, several experts noted the benefit of conducting human factors evaluation prior to 

clinical implementation and considered that therefore human factors should be reported 

separately. However, even robust preclinical human factors evaluation will not reliably 

characterise all the potential human factors issues which might arise during the use of an AI 

system in a live clinical environment, warranting a continued human factors evaluation at the 

early stage of clinical implementation. The Consensus Group agreed that human factors play 

a fundamental role in AI system adoption in clinical settings at scale and that the full appraisal 

of an AI system’s clinical utility can only happen in the context of its clinical human factors 

evaluation. 

Finally, several experts raised concerns that the DECIDE-AI guideline prescribes an evaluation 

too exhaustive to be reported within a single manuscript. The Consensus Group 

acknowledged the breadth of topics covered and the practical implications. However, 
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reporting guidelines aim to promote transparent reporting of studies, rather than mandating 

that every aspect covered by an item must have been evaluated within the studies. For 

example, if a learning curves evaluation has not been performed, then fulfilment of item 14b 

would be to simply state that this was not done, with an accompanying rationale. The 

Consensus Group agreed that appropriate AI evaluation is a complex endeavour necessitating 

the interpretation of a wide range of data, which should be presented together as far as 

possible. It was also felt that thorough evaluation of AI systems should not be limited by a 

word count and that publications reporting on such systems might benefit from special 

formatting requirements in the future. The information required by several items might 

already be reported in previous studies or in the study protocol, which could be cited, rather 

than described in full again. The use of references, online supplementary materials, and 

open-access repositories (e.g. OSF) is recommended to allow the sharing and connecting of 

all required information within one main published evaluation report. 

There are several limitations to our work which should be considered. First, the issue of 

potential biases, which apply to any consensus process: these include anchoring or 

participant selection biases58. The research team tried to mitigate bias through the survey 

design, using open-ended questions analysed through a thematic analysis, and via the expert 

recruitment process, but it is unlikely that it was eliminated entirely. Despite an aim for 

geographical diversity and several actions taken to foster it, representation was skewed 

towards Europe and more specifically the United Kingdom. This could be explained in part by 

the following factors: a likely selection bias in the Steering Group’s expert recommendations, 

a higher interest in our open invitation to contribute amongst European/UK scientists (25 out 

of 30 experts approaching us, 83%), and a lack of control over the response rate and self-
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reported geographical location of participating experts. Considerable attention was also paid 

to diversity and balance between stakeholder groups, even though clinicians and engineers 

were the most represented, partly due to the profile of researchers who contacted us 

spontaneously after the public announcement of the project. Stakeholder group analyses 

were performed to identify any marked disagreements from underrepresented groups. 

Finally, as also noted by the authors of the SPIRIT-AI and CONSORT-AI guidelines25,26, few 

examples of studies reporting on the early-stage clinical evaluation of AI tools were available 

at the time we started developing the DECIDE-AI guideline. This might have impacted the 

exhaustiveness of the initial item list created from literature review. However, the wide range 

of stakeholders involved and design of the first round of Delphi allowed identification of 

several additional candidate items which were added in the second iteration of the item list. 

The introduction of AI into healthcare needs to be supported by sound, robust and 

comprehensive evidence generation and reporting. This is essential both to ensure the safety 

and efficacy of AI systems, and to gain the trust of patients, practitioners, and purchasers, so 

that this technology can realise its full potential to improve patient care. The DECIDE-AI 

guideline aims to improve the reporting of early-stage live clinical evaluation of AI systems, 

which lay the foundations for both larger clinical studies and later widespread adoption. 
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STATEMENTS AND AUTHOR INFORMATION 

Data availability 

All data generated during this study (pseudonymised where necessary) are available upon 

justified request to the research team and for a duration of three years after publication of 

this manuscript. Translation of this guideline into different languages is welcomed and 

encouraged, as long as the authors of the original publication are included in the process and 

resulting publication. 

Code availability 

All codes produced for data analysis during this study are available upon justified request to 

the research team and for a duration of three years after publication of this manuscript.  
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FIGURES 

 

 

Figure 1: Comparison of development pathways for drug therapies, AI in healthcare and 

surgical innovation. The coloured lines represent reporting guidelines, some of which are 

study design specific (TRIPOD-AI, STARD-AI, SPIRIT/CONSORT, SPIRIT/CONSORT-AI), others 

stage-specific (DECIDE-AI, IDEAL). Depending on the context, more than one study design can 

be appropriate for each stage. § only apply to AI in healthcare. 
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TABLES 

 

AI reporting guidelines 

Name Stage Study design Comment 

TRIPOD-AI Preclinical 

development 

Prediction model 

evaluation 

Extension of TRIPOD. Used to report 

prediction models (diagnostic or 

prognostic) development, validation and 

updates. Focuses on model performance. 

STARD-AI Preclinical 

development, 

offline 

validation 

Diagnostic accuracy 

studies 

Extension of STARD. Used to report 

diagnostic accuracy studies, either at 

development stage or as an offline 

validation in clinical settings. Focuses on 

diagnostic accuracy. 

DECIDE-AI Early live 

clinical 

evaluation 

Various (prospective 

cohort studies, non-

randomised controlled 

trials, …)* with 

additional features 

such as modification of 

intervention, analysis 

of prespecified 

subgroups, or learning 

curve analysis. 

Stand-alone guideline. Used to report the 

early evaluation of AI systems as an 

intervention in live clinical settings (small-

scale, formative evaluation), 

independently of the study design and AI 

system modality (diagnostic, prognostic, 

therapeutic). Focuses on clinical utility, 

safety, and human factors. 

SPIRIT-AI Comparative 

prospective 

evaluation 

Randomised controlled 

trials (protocol) 

Extension of SPIRIT. Used to report the 

protocols of randomised controlled trials 

evaluating AI systems as interventions. 

CONSORT-AI Comparative 

prospective 

evaluation 

Randomised controlled 

trials 

Extension of CONSORT. Used to report 

randomised controlled trials evaluating AI 

systems as interventions (large-scale, 

summative evaluation), independently of 

the AI system modality (diagnostic, 

prognostic, therapeutic). Focuses on 

effectiveness and safety. 

Table 1. Overview of existing and upcoming AI reporting guidelines. The bold font indicates 

the primary target of the guidelines, either a specific stage or a specific study design. 
*Although existing reporting guidelines exist for some of these study designs (e.g. STROBE for 

cohort studies), none of them cover all the core aspects of AI-system early-stage evaluation 

and none would fit all possible study designs; DECIDE-AI was therefore developed as a new 

stand-alone reporting guideline for these studies.  
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Item 
n⁰ 

Theme Recommendation 

1 - 17 AI-specific reporting items 

1 - X Generic reporting items 

Title and abstract 

1 Title 
Identify the study as early clinical evaluation of a decision support system based 
on artificial intelligence or machine learning, specifying the problem addressed. 

I Abstract 

Provide a structured summary of the study.  
Consider including: intended use of the AI system, type of underlying algorithm, 
study setting, number of patients and users included, primary and secondary 
outcomes, key safety endpoints, human factors evaluated, main results, 
conclusions.  

Introduction 

2 Intended use 

a) Describe the targeted medical condition(s) and problem(s), including the 
current standard practice, and the intended patient population(s).  

b) Describe the intended users of the AI system, its planned integration in the 
care pathway, and the potential impact, including patient outcomes, 
it is intended to have.  

II Objectives State the study objectives.  

Methods 

III 
Research 
governance 

Provide a reference to any study protocol, study registration number, and ethics 
approval.   

3 Participants 

a) Describe how patients were recruited, stating the inclusion and exclusion 
criteria at both patient and data level, and how the number of recruited patients 
was decided.  

b) Describe how users were recruited, stating the inclusion and exclusion 
criteria, and how the intended number of recruited users was decided.  

c) Describe steps taken to familiarise the users with the AI system, including any 
training received prior to the study.  

4 Al system 

a) Briefly describe the AI system, specifying its version and type of underlying 
algorithm used. Describe, or provide a direct reference to, the characteristics of 
the patient population on which the algorithm was trained and its performance 
in preclinical development/validation studies. 

b) Identify the data used as inputs. Describe how the data were acquired, the 
process needed to enter the input data, the pre-processing applied and how 
missing/low-quality data were handled. 

c) Describe the AI system outputs and how they were presented to the users (an 
image may be useful). 

5 Implementation 

a) Describe the settings in which the AI system was evaluated. 

b) Describe the clinical workflow/care pathway in which the AI system was 
evaluated, the timing of its use, how the final supported decision was reached 
and by whom. 

IV Outcomes Specify the primary and secondary outcomes measured.  

6 Safety and errors 

a) Provide a description of how significant errors/malfunctions were defined and 
identified. 

b) Describe how any risks to patient safety or instances of harm were identified, 
analysed, and minimised. 

7 Human factors 
Describe the human factors tools, methods or frameworks used, the use cases 
considered, and the users involved. 
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V Analysis 
Describe the statistical methods by which the primary and secondary outcomes 
were analysed, as well as any prespecified additional analyses, including 
subgroup analyses and their rationale.  

8 Ethics 
Describe whether specific methodologies were utilised to fulfil an ethics-related 
goal (such as algorithmic fairness) and their rationale. 

VI 
Patient 

Involvement 
State how patients were involved in any aspect of: the development of the 
research question, the study design, and the conduct of the study.  

Results 

9 Participants 

a) Describe the baseline characteristics of the patients included in the study, and 
report on input data missingness. 

b) Describe the baseline characteristics of the users included in the study. 

10 Implementation 

a) Report on the user exposure to the AI system, on the number of instances the 
AI system was used, and on the users’ adherence to the intended 
implementation. 

b) Report any significant changes to the clinical workflow or care pathway 
caused by the AI system. 

VII Main results 
Report on the prespecified outcomes, including outcomes for any comparison 
group if applicable.  

VIII 
Subgroups 

analysis 
Report on the differences in the main outcomes according to the prespecified 
subgroups.   

11 Modifications 
Report any changes made to the AI system or its hardware platform during the 
study. Report the timing of these modifications, the rationale for each, and any 
changes in outcomes observed after each of them. 

12 
Human-computer 

agreement 

Report on the user agreement with the AI system. Describe any instances of and 
reasons for user variation from the AI system’s recommendations and, if 
applicable, users changing their mind based on the AI system’s 
recommendations. 

13 Safety and errors 

a) List any significant errors/malfunctions related to: AI system 
recommendations, supporting software/hardware, or users. Include details of: 
(i) rate of occurrence, (ii) apparent causes, (iii) whether they could be corrected, 
and (iv) any significant potential impacts on patient care. 

b) Report on any risks to patient safety or observed instances of harm (including 
indirect harm) identified during the study. 

14 Human factors 

a) Report on the usability evaluation, according to recognised standards or 
frameworks. 

b) Report on the user learning curves evaluation. 

Discussion 

15 
Support for 

intended use 
Discuss whether the results obtained support the intended use of the AI system 
in clinical settings. 

16 Safety and errors 
Discuss what the results indicate about the safety profile of the AI system. 
Discuss any observed errors/malfunctions and instances of harm, their 
implications for patient care and whether/how they can be mitigated. 

IX 
Strengths and 

limitations 
Discuss the strengths and limitations of the study.   

Statements 

17 Data availability Disclose if and how data and relevant code are available. 

X 
Conflicts of 

interest 

Disclose any relevant conflicts of interest, including the source of funding for the 
study, the role of funders, any other roles played by commercial companies, and 
personal conflicts of interest for each author.  

Table 2. DECIDE-AI checklist. AI-specific items are numbered in Arab numerals, generic items 

in Roman numerals; AI = artificial intelligence.
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BOXES 

 

 

 

The clinical evaluation of AI-based decision support systems presents several methodological 

challenges, all of which will likely be encountered at early-stage. These are the needs to: 

• account for the complex intervention nature of these systems and evaluate their 

integration within existing ecosystems.  

• account for user variability and the added biases occurring as a result. 

• consider two collaborating forms of intelligence (human and AI system) and therefore 

integrate human factors considerations as a core component. 

• consider both physical patients and their data representations. 

• account for the changing nature of the intervention (either due to early prototyping, 

version updates, or continuous learning design) and to analyse related performance 

changes. 

• minimise the potential of this technology to embed and reproduce existing health 

inequality and systemic biases. 

• estimate the generalisability of findings across sites and populations. 

• enable reproducibility of the findings in the context of a dynamic innovation field and 

intellectual property protection.  

 

Box 1. Methodological challenges of the AI-based decision support system evaluation 
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AI system 
 

Decision support system incorporating AI and consisting of: (i) the artificial 
intelligence or machine learning algorithm; (ii) the supporting software 
platform; and (iii) the supporting hardware platform. 

AI system version 
 

Unique reference for the form of the AI system and the state of its 
components at a single point in time. Allows for tracking changes to the AI 
system over time and comparing between different versions. 

Algorithm 
 

Mathematical model responsible for learning from data and producing an 
output. 

Artificial 
intelligence (AI) 

“Science of developing computer systems which can perform tasks normally 
requiring human intelligence”26. 

Bias "Systematic difference in treatment of certain objects, people, or groups in 
comparison to others.”59 

Care pathway 
 

Series of interactions, investigations, decision-making and treatments 
experienced by patients in the course of their contact with a healthcare 
system for a defined reason. 

Clinical 
 

Relating to the observation and treatment of actual patients rather than in 
silico or scenario-based simulations. 

Clinical evaluation 
 

Set of ongoing activities, analysing clinical data and using scientific methods, 
to evaluate the clinical performance, effectiveness and/or safety of an AI 
system, when used as intended35.  

Clinical 
investigation 
 

Study performed on one or more human subjects to evaluate the clinical 
performance, effectiveness and/or safety of an AI system60. This can be 
performed in any setting (e.g. community, primary care, hospital). 

Clinical workflow 
 

Series of tasks performed by healthcare professionals in the exercise of their 
clinical duties.  

Decision support 
system 
 

System designed to support human decision-making by providing person- and 
situation-specific information or recommendations, to improve care or 
enhance health. 

Exposure 
 

State of being in contact with, and having used, an AI system or similar digital 
technology. 

Human-computer 
interaction 

Bidirectional influence between human users and digital systems through a 
physical and conceptual interface. 

Human factors 
 

Also called ergonomics. “The scientific discipline concerned with the 
understanding of interactions among humans and other elements of a system, 
and the profession that applies theory, principles, data and methods to design 
in order to optimise human well-being and overall system performance.” 
(International Ergonomics Association) 

Indication for use 
 

Situation and reason (medical condition, problem and patient group) where 
the AI system should be used. 

In silico 
evaluation 

Evaluation performed via computer simulation outside the clinical settings. 

Intended use 
 

Use for which an AI system is intended, as stated by its developers, and which 
serves as the basis for its regulatory classification. The intended use includes 
aspects of: the targeted medical condition, patient population, user 
population, use environment, mode of action.  

Learning curves 
 

Graphical plotting of user performance against experience61. By extension, 
analysis of the evolution of user performance with a task as exposure to the 
task increases. The measure of performance often uses other context-specific 
metrics as a proxy. 
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Live evaluation 
 

Evaluation under actual clinical conditions, in which the decisions made have a 
direct impact on patient care. As opposed to “offline” or “shadow mode” 
evaluation where the decisions do not have a direct impact on patient care. 

Machine learning 
 

“Field of computer science concerned with the development of 
models/algorithms that can solve specific tasks by learning patterns from data, 
rather than by following explicit rules. It is seen as an approach within the field 
of AI”26. 

Participant  
 

Subject of a research study, on which data will be collected and from whom 
consent is obtained (or waived). The DECIDE-AI guideline considers that both 
patients and users can be participants. 

Patient 
 

Person (or the digital representation of this person) receiving healthcare 
attention or using health services, and who is the subject of the decision made 
with the support of the AI system. NB: DECIDE-AI uses the term “patient” 
pragmatically to simplify the reading of the guideline. Strictly speaking, a 
person with no health conditions who is the subject of a decision made about 
them by an AI-based decision support tool to improve their health and 
wellbeing or for a preventative purpose is not necessarily a “patient” per se. 

Patient 
Involvement in 
research 

Research carried out ‘with’ or ‘by’ patients or members of the public rather 
than ‘to’, ‘about’ or ‘for’ them. (Adapted from the INVOLVE definition of 
“Public Involvement”)  

Standard practice 
 

Usual care currently received by the intended patient population for the 
targeted medical condition and problem. This may not necessarily be 
synonymous with the state-of-the-art practice. 

Usability 
 

“Extent to which a product can be used by specified users to achieve specified 
goals with effectiveness, efficiency, and satisfaction in a specified context of 
use"62. 

User 
 

Person interacting with the AI system to inform their decision making. This 
person could be a healthcare professional or a patient. 

Box 2. Glossary of terms. The definitions given pertain to the specific context of DECIDE-AI 

and the use of the terms in the guideline. They are not necessarily generally accepted 

definitions and might not always be fully applicable to other areas of research.  
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