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A B S T R A C T

Inferring causal relationships in observational time series data is an important task when interventions cannot
be performed. Granger causality is a popular framework to infer potential causal mechanisms between different
time series. The original definition of Granger causality is restricted to linear processes and leads to spurious
conclusions in the presence of a latent confounder. To this end, we propose a deep learning model to detect non-
linear Granger causality and directly account for latent confounders. Our approach consists of two components:
1. feed-forward neural networks to infer representations of the confounder from available proxy variables;
2. recurrent neural networks to construct forecasting models for the target time series with and without
additional information. Conditioned on the proxy, if the target time series can be better predicted without
extra information, our model concludes that the confounder alone Granger causes the target, and vice versa.
To assess the proposed approach, we tested the model on both synthetic and real world time series with known
causal relationships; results showed the superiority of our model relative to existing benchmarks.
1. Introduction

Identifying causal relationships from time series data is important
as it helps to facilitate informed decision making. When controlled
experiments are feasible, interventions are often performed to break
the symmetry of association and provide the direction of causal mech-
anisms (Eichler, 2012), e.g. predicting patients’ response to certain
treatments over time (Bica et al., 2020). In reality, causal inference
through interventions is not always feasible as it could be unethical,
costly, or simply impossible to carry out, as in the case of financial
time series (Hiemstra & Jones, 1994) and climate variables (Stips
et al., 2016); in those scenarios we resort to causal inference from
observational data.

Granger causality (Granger, 1969) is a commonly used framework
to infer potential causal relationships. The notion of Granger causality
relies on two fundamental principles: 1. the cause precedes the effect
in time and 2. the cause contains unique information about the effect
not available elsewhere (Eichler, 2012). A time series Granger causes
another if its past helps to predict the future values of the target time
series (Granger, 1969). Traditionally, model-based Granger causality
has been tested mostly on linear dynamics in the form of a vector
autoregressive model (VAR) (Yuan & Shou, 2020), where one regresses
the lagged values of potential causes against the future value of the tar-
get series and assess whether the coefficients are statistically different
from zero.

Since real world temporal dynamics are rarely linear, several adap-
tations to model nonlinear causal relationships have been made using
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for example polynomial autoregression models (Bezruchko et al., 2008)
and kernel-based methods (Marinazzo et al., 2011). Model-free ap-
proaches such as transfer entropy (Vicente et al., 2011) are able to
detect nonlinear dependencies between time series, however they suffer
from high variance and require large amounts of data for reliable esti-
mation (Tank et al., 2021). In this work, we follow a recent trend that
uses neural networks to infer complex nonlinear causal dependencies
in time series data (Bussmann et al., 2020; De Brouwer et al., 2020;
Khanna & Tan, 2020; Marcinkevičs & Vogt, 2021; Moraffah et al., 2021;
Nauta et al., 2019; Rahimi et al., 2020; Tank et al., 2021; Trifunov
et al., 2019).

An important consideration for causal inference from observational
time series is confounding bias. A confounder variable affects both
cause and effect and therefore must be accounted for to avoid spurious
conclusions. Granger causality relies on the causal sufficiency (no latent
confounding) assumption (Spirtes & Zhang, 2016) and is known to be
biased in the presence of confounding (Peters et al., 2017). Consider
the case where the confounder 𝑍 affects the cause variable 𝑋 with
lag 2 and the effect variable 𝑌 with lag 4, assuming causal sufficiency
would lead to the biased conclusion that 𝑋 Granger causes 𝑌 . When all
confounders are observed, the multivariate conditional Granger causal-
ity tests can be applied (Chen et al., 2006), which relies on the fact
that all variables that could have had a possible influence have been
considered in the analysis (Marinazzo et al., 2011). In reality, it is rarely
possible to measure all the confounders, nevertheless, we may have
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Fig. 1. Causal graph showing the relationship between effect variable 𝑌 , cause variable
𝑋, latent confounder 𝑍 and proxy variable 𝑈 .

access to noisy measurements of proxies for the confounders (Louizos
et al., 2017; Pearl, 2010). Since the majority of existing works on
neural network-based approaches to Granger causality assume causal
sufficiency, how best to account for latent confounders is still an open
question. In this work, neural networks are used to infer representations
of the latent confounder from the available proxies, which can be used
in the subsequent Granger causality tests.

Consider the causal system in Fig. 1 involving a cause variable
𝑋 ∈ R1×𝑇 , an effect variable 𝑌 ∈ R1×𝑇 , a latent confounder 𝑍 ∈ R1×𝑇

and proxies of the confounder 𝑈 ∈ R𝑛×𝑇 , where 𝑇 is the length of the
time series and 𝑛 is the number of proxies available. Our aim is to infer
the Granger causal relationship between the confounded pair 𝑋 and 𝑌 .

Our proposed architecture is a maximum likelihood based latent
variable model to learn useful information about the confounder 𝑍
from available proxies 𝑈 , and to model the relationship between 𝑍, 𝑋
and 𝑌 . In practice, the proxy variables are often chosen using expert
judgement. Consider a situation where the latent confounder is the
socio-economic status of a patient, one could use the zip code or job
type of the patient as proxy variables (Louizos et al., 2017). More
formally, we follow the assumption in Louizos et al. (2017) that the
joint distribution 𝑃 (𝑌 ,𝑋,𝑍,𝑈 ) can be approximately recovered from
the observations (𝑌 ,𝑋,𝑈), which could turn out to be impossible if the
confounder has no relation to the observed variables. In this work we
focus on the case where: 1. proxy variables are available in abundance
to allow recovery of the joint distribution, 2. expert judgement is in
place to select appropriate proxies, and 3. (𝑌 ,𝑋,𝑈) are potentially
complex but learnable functions of 𝑍 which we approximate with
neural networks. This scenario is termed a ‘‘surrogate-rich setting’’
in Louizos et al. (2017). The main contributions of this work are as
follows:

1. we propose a deep learning-based test for nonlinear Granger
causality with latent confounding. Multilayer perceptrons are
used to infer representations of the confounder 𝑍 from avail-
able proxy variables 𝑈 . Recurrent neural networks are used to
parameterise two forecasting models (predictive distributions)
for 𝑌 , with and without 𝑋. A two-sample t-test is performed
to establish whether the inclusion of 𝑋 results in a statistically
significant reduction in the prediction error of 𝑌 , and hence a
Granger causal relationship 𝑋 → 𝑌 .

2. we propose the novel use of a dual-decoder setup corresponding
to the two predictive distributions mentioned above. This avoids
the need to train two separate neural networks for comparison
of predictive accuracy

3. we demonstrate the effectiveness of the proposed approach on
datasets with known data generating processes, and sensitivity
analyses were conducted to show the robustness of the model
2

2. Related work

The original definition of Granger causality (Granger, 1969) in-
volves linear dynamics studied using a VAR model. For a collection of
𝑘 time series 𝑿 ∈ R𝑘×𝑇 and 𝑿𝑡 ∈ R𝑘 a VAR model is defined:

𝑿𝑡 =
𝐿
∑

𝑙=1
𝑨(𝑙)𝑿𝑡−𝑙 + 𝜖𝑡, (1)

where 𝐿 is the maximum lag considered, 𝑨(𝑙) is a 𝑘 × 𝑘 matrix of
coefficients and 𝜖𝑡 is a noise term with zero mean. In the linear regime,
time series 𝑗 does not Granger-cause series i if for all 𝑙 𝑨(𝑙)

𝑖𝑗 = 0. Tank
et al. (2021) generalise the definition of Granger causality for nonlinear
autoregressive models:

𝑋𝑡𝑖 = 𝑔𝑖(𝑋<𝑡1,… , 𝑋<𝑡𝑘) + 𝜖𝑡𝑖, (2)

where 𝑋<𝑡𝑖 = (..., 𝑋(𝑡−2)𝑖, 𝑋(𝑡−1)𝑖) denotes the history of time series 𝑖,
and 𝑔𝑖 is a nonlinear function mapping the lagged values of other 𝑘
time series to series 𝑖. Granger non-causality is concluded between
time series 𝑖 and 𝑗 if for all (𝑋<𝑡1,… , 𝑋<𝑡𝑘) and all 𝑋′

<𝑡𝑗 ≠ 𝑋<𝑡𝑗 ,
𝑔𝑖(𝑋<𝑡1,… , 𝑋<𝑡𝑗 ,… , 𝑋𝑡𝑘) = 𝑔𝑖(𝑋<𝑡1,… , 𝑋′

<𝑡𝑗 ,… , 𝑋𝑡𝑘), implying that 𝑔𝑖
does not depend on 𝑋<𝑡𝑗 .

In Tank et al. (2021) the function 𝑔𝑖 is parameterised by a multilayer
perceptron (MLP) regularised by group lasso penalties and trained with
proximal gradient descent to shrink the input weights of lagged values
of non-causal time series to zero. Bussmann et al. (2020) propose
a neural additive VAR model with each time series expressed as a
sum of nonlinear functions of the other time series. The nonlinear
functions are parameterised by MLPs and the additive structure allows
the contribution of each time series to be analysed separately.

Nauta et al. (2019) propose an attention based convolutional neural
network with an explicit validation phase. The attention mechanism
learns which time series are attended to during prediction, and inter-
ventions on potential causal time series are performed in the validation
phase. Khanna and Tan (2020) infer Granger causal relations from a
structured sparse estimate of internal parameters of statistical recurrent
units (Oliva et al., 2017) trained for time series prediction.

A popular class of methods involves training two neural network
time series prediction models and comparing their performances. One
model would accept the past values of the target and exogenous vari-
ables as inputs, and the other accepts only the past target values. A
statistically significant reduction in prediction error is a sign of Granger
causality. In existing literature, these prediction models are often differ-
ent variants of RNNs (Abbasvandi & Nasrabadi, 2019; Duggento et al.,
2019; Wang et al., 2018) or MLPs (Orjuela-Canon et al., 2020). Our
proposed approach falls within this class of methods however we argue
that training two separate neural networks is inefficient and spurious
conclusions could be reached due to differences in neural network
hyperparameters. In the proposed architecture, a neural network with
two simultaneously trained decoders is used to alleviate these issues.

With the exception of Nauta et al. (2019), all above-mentioned
literature assumes causal sufficiency. How best to account for an un-
observed confounder in Granger causal analysis is an open question.
In Nauta et al. (2019), the model can only detect a latent confounder if
it affects cause and effect with equal time lags. In this paper we consider
a more challenging scenario involving different lags in the causal
mechanisms. We follow a popular approach involving the use of neural
networks to infer representations of the latent confounder (a substitute
confounder). Louizos et al. (2017) propose a variational autoencoder
to recover the joint distribution of the observed and latent variables
which they use to estimate the average treatment effect (ATE) in a static
setting. Trifunov et al. (2019) adapt the architecture in Louizos et al.
(2017) to a time series setting for the estimation of ATE. Bica et al.
(2020) propose a recurrent neural network architecture to build a factor
model and estimate ATE using the inferred substitute confounders.

Outside of the deep learning domain, different methods can ac-
commodate hidden confounders to different extents. Chu and Glymour
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(2008) propose additive nonlinear time series model (ANLTSM) which
can only deal with hidden confounders that are linear and instan-
taneous. Conditional independence based approaches LPCMCI (Ger-
hardus & Runge, 2020) and SVARFCI (Malinsky & Spirtes, 2018) detect
hidden confounders by inferring a special edge type in the partial
ancestral graph.

3. Methodology

Consider the following nonlinear autoregressive (NAR) model for
time series 𝑖 regressed on the histories of 𝑘 other time series:

𝑋𝑡𝑖 = 𝑔𝑖(𝑋<𝑡1,… , 𝑋<𝑡𝑘) + 𝜖𝑡𝑖, (3)

with nonlinear function 𝑔𝑖 and white noise error term 𝜖𝑡𝑖 ∼  (0, 𝜎2𝑡 ).
Since relationships between real world time series are often nonlinear,
the definition of nonlinear Granger causality presented by Tank et al.
(2021) is adopted in this study (see Section 2). More formally, time
series 𝑗 does not Granger cause series 𝑖 if for all (𝑋<𝑡1,… , 𝑋<𝑡𝑘) and all
𝑋′

<𝑡𝑗 ≠ 𝑋<𝑡𝑗 , 𝑔𝑖(𝑋<𝑡1,… , 𝑋<𝑡𝑗 ,… , 𝑋𝑡𝑘) = 𝑔𝑖(𝑋<𝑡1,… , 𝑋′
<𝑡𝑗 ,… , 𝑋𝑡𝑘). This

implies that the prediction model 𝑔𝑖 does not depend on the history
of 𝑗 (𝑋<𝑡𝑗), since substituting it with a different time series (𝑋′

<𝑡𝑗)
does not affect the prediction of 𝑋𝑡𝑖. On the other hand, if series 𝑗
does Granger cause series 𝑖, and 𝑗′ does not, then the model with
𝑋<𝑡𝑗 as input would lead to a lower prediction error of 𝑋𝑡𝑖 than if
𝑋′

<𝑡𝑗 was used as input instead: (𝑋𝑡𝑖 − 𝑔𝑖(𝑋<𝑡1,… , 𝑋<𝑡𝑗 ,… , 𝑋𝑡𝑘))2 <
(𝑋𝑡𝑖 − 𝑔𝑖(𝑋<𝑡1,… , 𝑋′

<𝑡𝑗 ,… , 𝑋𝑡𝑘))2.
The nonlinear function 𝑔𝑖 can be modelled using a recurrent neu-

ral network as it can capture long range dependencies and complex
temporal dynamics. The main challenge however is that the definition
of Tank et al. (2021) assumes causal sufficiency (no confounding): all 𝑘
time series are observed. In the presence of confounding, one observes
only a subset of 𝑘: (𝑋<𝑡1, 𝑋<𝑡2...) ⊆ (𝑋<𝑡1,… , 𝑋<𝑡𝑘); the use of traditional
Granger causality tests in this case is known to be biased (Peters et al.,
2017).

With access to proxy variables 𝑈 , one can obtain representations
of the latent confounder by approximating a function such that �̂� =
𝑓 (𝑈 ) ≈ 𝑍; since 𝑓 is likely to be a nonlinear function, neural networks
could be used for this task. Note that �̂� and 𝑈 do not need to have
the same dimensions, since two proxies could result from the same
confounder. Instead, the dimension of �̂� is a hyperparameter that is
tuned during model selection. It is worth mentioning that since Granger
causality only accounts for direct causal links (Eichler, 2013), one
cannot simply use the proxies in a Granger causality test in place of
the latent confounder (Louizos et al., 2017) since we see from Fig. 1
that there is no direct causal link between 𝑈 and 𝑌 . Therefore, one
must work backwards along the causal link 𝑍 → 𝑈 to find a substitute
confounder �̂� that can be used in place of 𝑍.

Probabilistically, the output of the nonlinear autoregressive model
given by (3) can be written as:

𝑋𝑡𝑖 ∼  (𝑔𝑖(𝑋<𝑡1,… , 𝑋<𝑡𝑘), 𝜎2𝑡 ) = 𝑃 (𝑋𝑡𝑖|𝑋<𝑡1,… , 𝑋<𝑡𝑘), (4)

which is referred to as the predictive distribution of series 𝑖 at time 𝑡
conditioned on the histories of itself and other available time series.
In this paper, neural networks are used to output the mean (𝑔𝑖) and
variance (𝜎2𝑡 ).

Our proposed approach involves the use of multiple recurrent neural
networks to parameterise predictive distributions. The full model pre-
dictive distribution is defined as 𝑃 (𝑌𝑡+1|𝑌1∶𝑡, 𝑋1∶𝑡, 𝑍1∶𝑡). The restricted
model distribution is defined as 𝑃 (𝑌𝑡+1|𝑌1∶𝑡, 𝑍1∶𝑡). Parameterising the
two predictive distributions enables comparison of the predictive per-
formances of two time series prediction models and a statistically
significant reduction in prediction error from the restricted model to
the full model is a sign of Granger causality 𝑋 → 𝑌 , or, more formally:

2 2
3

(𝑌𝑡+1 − 𝑔(𝑌1∶𝑡, 𝑋1∶𝑡, 𝑍1∶𝑡)) < (𝑌𝑡+1 − 𝑔(𝑌1∶𝑡, 𝑍1∶𝑡)) .
Fig. 2. Proposed architecture for the restricted model parameterised by multiple
recurrent neural networks. 𝑞𝜙 is the inference distribution of 𝑍 conditioned on the
proxy time series, from which samples of the substitute confounder �̂� can be obtained
and used to parameterise the predictive distribution of 𝑌 .

To parameterise the full-model and restricted-model distributions,
recurrent neural networks are used. The proposed model uses gated re-
current units (GRU) (Cho et al., 2014). The architecture of the restricted
model is given in Fig. 2. Each GRU is characterised by a sequence of
hidden states 𝒉(𝑖)𝑡 which contains information of time series 𝑖 up to time
𝑡. These hidden states are used as inputs to MLPs, which output the
distribution parameters of the predictive and inference distributions.
We propose to learn representations of the latent confounder 𝑍 using
the available proxies 𝑈 by parameterising the filtering distribution:

𝑞𝜙(𝑍𝑡|𝑈1∶𝑡) = 𝑞𝜙(𝑍𝑡|𝒉
(𝑈 )
𝑡 ). (5)

The inferred representation �̂�𝑡 of 𝑍𝑡 follows an isotropic Gaussian
distribution:

�̂�𝑡 ∼ 𝑞𝜙(𝑍𝑡|𝒉
(𝑈 )
𝑡 ) =  (𝝁(𝒉(𝑈 )

𝑡 ),𝝈2(𝒉(𝑈 )
𝑡 )𝑰), (6)

where the covariance matrix is diagonal. The dimension of �̂�𝑡 is a
tunable hyperparameter. The parameters of the filtering distribution
are given by

(𝝁,𝝈) = 𝑓1(𝒉
(𝑈 )
𝑡 ), (7)

where 𝑓1 is a mapping function approximated by an MLP. Let the
hidden state 𝒉(𝑈 )

𝑡 ∈ R𝑁ℎ𝑈 and 𝑍𝑡 ∈ R𝑁𝑍 , the MLP takes as input a
vector of size 𝑁ℎ𝑈 and outputs a vector of size 𝑁𝑍 × 2 (mean and
variance). To ensure positivity of the standard deviation a softplus
activation function is applied on the MLP output.

To avoid the need to train two separate time series prediction mod-
els, we propose the use of a dual-decoder setup. The restricted-model
distribution is normal and given as

𝑃 (𝑌𝑡+1|𝑌1∶𝑡, 𝑍1∶𝑡) = 𝑓2(𝒉
(𝑌 )
𝑡 ,𝒉(𝑍)

𝑡 ). (8)

The full-model distribution is also normal and expressed as

𝑃 (𝑌𝑡+1|𝑌1∶𝑡, 𝑋1∶𝑡, 𝑍1∶𝑡) = 𝑓3(𝑌 𝑟𝑒𝑠
𝑡+1 ,𝒉

(𝑋)
𝑡 ), (9)

where 𝑌 𝑟𝑒𝑠
𝑡+1 ∼ 𝑃 (𝑌𝑡+1|𝑌1∶𝑡, 𝑍1∶𝑡) is the predicted value of 𝑌𝑡 from the

restricted model and 𝑓2 and 𝑓3 are two MLP models which output the
means and variances of the predictive distributions. The proposed dual-
decoder setup is shown in Fig. 3 and 𝑌 𝑓𝑢𝑙𝑙

𝑡+1 ∼ 𝑃 (𝑌𝑡+1|𝑌1∶𝑡, 𝑋1∶𝑡, 𝑍1∶𝑡).
A combination of Figs. 2 and 3 represents the full architecture of the
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Fig. 3. Proposed dual-decoder setup where 𝑌 𝑟𝑒𝑠
𝑡+1 is a prediction sample drawn from the

restricted-model distribution 𝑃 (𝑌𝑡+1|𝑌1∶𝑡 , 𝑍1∶𝑡) shown in Fig. 2.

model where the output of the restricted-model serves as one of the
inputs of the full-model.

For model optimisation the following objective function is max-
imised:

𝐿 =
𝑇
∑

𝑡=1
E�̂�∼𝑞𝜙

[𝑙𝑜𝑔𝑃𝜃1 (𝑌𝑡|𝑌1∶𝑡−1, 𝑋1∶𝑡−1, 𝑍1∶𝑡−1) + 𝑙𝑜𝑔𝑃𝜃2 (𝑌𝑡|𝑌1∶𝑡−1, 𝑍1∶𝑡−1)],

(10)

where the first and second terms correspond to the full and restricted
model distributions respectively, and 𝜃1 and 𝜃2 are the model parame-
ters to be optimised.

To infer the Granger causal relationship between 𝑋 and 𝑌 in the
presence of a latent confounder, we wish to check whether the inclusion
of 𝑋 in the full-model results in a statistically significant reduction
in prediction error compared to the restricted model. With substitute
confounders �̂�1∶𝑡 a two-sample t-test is performed to establish whether
𝑌𝑡+1�⟂⟂𝑋1∶𝑡|�̂�1∶𝑡, 𝑌1∶𝑡 (where ⟂⟂ denotes independence); in such cases the
conclusion 𝑋 Granger-causes 𝑌 can be drawn, and vice versa. The
mean-squared-error 1

𝑛
∑𝑛

𝑖=1(𝑌𝑖 − 𝑌𝑖)2 was chosen as the error metric.

4. Experiments

We first demonstrate the model performance on two arbitrary syn-
thetic datasets with known data generating processes. The nonlinear
functions and noise levels have been set arbitrarily. The data generating
processes for the two datasets are given by (11) and (12) respectively.
In total, 1000 samples were generated, of which 800 were used for
training, 100 for validation and 100 for testing.

4.1. Dataset 1

𝑍𝑡 = 𝑡𝑎𝑛ℎ(𝑍𝑡−1) +𝑁(0, 0.012)

𝑈𝑡 = 𝑍2
𝑡 +𝑁(0, 0.052)

𝑋𝑡 = 𝜎(𝑍𝑡−2) +𝑁(0, 0.012)

𝑁𝑜 𝐺𝑟𝑎𝑛𝑔𝑒𝑟 ∶ 𝑌𝑡 = 𝜎(𝑍𝑡−4) +𝑁(0, 0.012)

𝐺𝑟𝑎𝑛𝑔𝑒𝑟 ∶ 𝑌𝑡 = 𝜎(𝑍𝑡−4) + 𝜎(𝑋𝑡−2) +𝑁(0, 0.012)

(11)

where the hyperbolic tangent 𝑡𝑎𝑛ℎ and sigmoid 𝜎 functions are used to
introduce non-linearity into the system. The noise term is Gaussian of
the form 𝑁(𝜇, 𝑠𝑡𝑑2).
4

4.2. Dataset 2

The data generating processes for 𝑍, 𝑈 and 𝑋 remain the same as
in (11). The target series 𝑌 was generated using:

𝑁𝑜 𝐺𝑟𝑎𝑛𝑔𝑒𝑟 ∶ 𝑌𝑡 = 𝑍𝑡−3𝑍𝑡−4 +𝑁(0, 0.52)

𝐺𝑟𝑎𝑛𝑔𝑒𝑟 ∶ 𝑌𝑡 = 𝑍𝑡−3𝑍𝑡−4 +𝑋𝑡−1𝑋𝑡−2 +𝑁(0, 0.52)
(12)

4.3. River discharge dataset

To investigate the model performance on real-world time series,
we use the river discharge dataset provided in Gerhardus and Runge
(2020). This dataset describes the average daily discharges of rivers in
the upper Danube basin. We consider measurements from the Iller at
Kempten as 𝑋, the Danube at Dillingen as 𝑌 , and the Isar at Lenggries
as the proxy variable. All three variables are potentially confounded by
rainfall or other weather conditions (Gerhardus & Runge, 2020). The
Iller discharges into the Danube within a day, implying an instanta-
neous causal link 𝑋 → 𝑌 . For the scope of Granger causality considered
in this paper, the cause is required to precede the effect in time (Eichler,
2012) so we do not take into account instantaneous causal relation-
ships. We therefore expect no Granger-causal relationship between 𝑋
and 𝑌 . The dataset contains roughly 1000 entries, of which 80% were
used for training, 10% for validation and 10% for testing.

4.4. Neural network parameters

The GRU hidden states 𝒉(𝑋)
𝑡 , 𝒉(𝑌 )𝑡 and 𝒉(𝑍)

𝑡 have a dimension of
5, �̂�𝑡 has a dimension of 1 for the synthetic datasets and 2 for the
river discharge dataset, the MLPs 𝑓1, 𝑓2 and 𝑓3 given in (7), (8),
(9) respectively contain 1 hidden layer with 5 units for the synthetic
datasets and 10 units for river discharge, a dropout rate of 0.3 and ReLU
activation functions are chosen. The ADAM optimiser is used with a
learning rate of 0.001. The neural networks were trained for 50 epochs.
The sequence length used for model training is 20 with a batch size of
10. These parameters were selected using the validation set through
random search.

4.5. Statistical testing

By comparing the sample prediction errors of the full and restricted
models, we are able to infer whether a Granger causal relationship
between 𝑋 and 𝑌 exists. A two-sample t-test could be used as an
additional verification step. For dataset 1&2 (Granger) consider the
following null and alternative hypothesis:

𝐻0 ∶ 𝜖𝑓𝑢𝑙𝑙 = 𝜖𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑
𝐻1 ∶ 𝜖𝑓𝑢𝑙𝑙 < 𝜖𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 ,

(13)

where 𝜖𝑓𝑢𝑙𝑙 and 𝜖𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 are the mean prediction errors generated
by the full and restricted models respectively. For dataset 1&2 (no
Granger) consider the following alternative hypothesis:

𝐻1 ∶ 𝜖𝑓𝑢𝑙𝑙 > 𝜖𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 . (14)

The alternative hypothesis is chosen by comparing the sample mean
prediction errors computed by the full and restricted models, I.e. the
alternative hypothesis in (13) is chosen if the mean sample error of the
full model is less than that of the restricted model, and vice versa. In
cases where the mean sample errors of the two models differ signifi-
cantly from one another, the statistical test is perhaps redundant. To
perform the two-sample t-test, we generate 𝑛 = 50 prediction samples
from the restricted and full models and choose a significance level of
𝛼 = 0.05.



Expert Systems With Applications 207 (2022) 118036Z. Yin and P. Barucca

d
t
m

Table 1
Table showing the prediction errors of the full and restricted models, p values of two-sample t-tests and the inferred Granger causal relationship given by our model, LPCMCI and
SVAR-FCI. The symbol × denotes that the model finds a Granger non-causal relationship between 𝑋 and 𝑌 .

Dataset Restricted-model error Full-model error p value Ours LPCMCI SVAR-FCI

Dataset 1 (Granger) 4.99 × 10−2 ± 6.00 × 10−4 1.76 × 10−2 ± 5.71 × 10−5 <0.001 � � �
Dataset 1 (no Granger) 2.03 × 10−2 ± 4.00 × 10−4 3.54 ± 2.00 × 10−4 <0.001 × � �
Dataset 2 (Granger) 2.07 × 10−1 ± 7.00 × 10−4 2.03 × 10−1 ± 9.75 × 10−5 <0.001 � × ×
Dataset 2 (no Granger) 1.56 × 10−1 ± 1.85 × 10−4 1.60 × 10−1 ± 5.73 × 10−6 <0.001 × × ×
River discharge 4.85 × 10−2 ± 1.50 × 10−3 6.10 × 10−2 ± 1.12 × 10−3 <0.001 × × ×
Table 2
Sensitivity analysis of model performance with varying signal-to-noise ratio 𝛾.
Dataset 1 (Granger) 𝛾 𝑝 𝑣𝑎𝑙𝑢𝑒 Dataset 2 (Granger) 𝛾 𝑝 𝑣𝑎𝑙𝑢𝑒

10.00 1.00 10.00 1.00
55.00 9.99 × 10−1 21.25 9.99 × 10−1

57.81 9.41 × 10−1 26.88 5.44 × 10−2

58.51 4.10 × 10−1 27.58 4.73 × 10−3

59.22 1.93 × 10−2 28.28 <1.00 × 10−3

60.63 <1.00 × 10−3 29.69 <1.00 × 10−3

66.25 <1.00 × 10−3 32.50 <1.00 × 10−3

77.50 <1.00 × 10−3 55.00 <1.00 × 10−3

100 <1.00 × 10−3 100 <1.00 × 10−3
d
t
v
e
t
e
n
o
t
a
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t
–
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5. Results & discussion

In Table 1 we provide the prediction errors of the full and re-
stricted models, the p values of the two-sample t-tests and the Granger
causal relationship between 𝑋 and 𝑌 inferred by our model, as well
as those inferred by LPCMCI (Gerhardus & Runge, 2020) with 𝛼 =
0.05, maximum lag 𝐿 = 5 and 4 preliminary iterations, and SVAR-
FCI (Malinsky & Spirtes, 2018) with 𝛼 = 0.05 and 𝐿 = 5. These are
conditional independence based methods for inferring potential causal
relationships and are capable of handling latent confounders.

It is evident from Table 1 that the 𝑝 𝑣𝑎𝑙𝑢𝑒 < 0.05 for all the statistical
tests. For dataset 1&2 (no Granger) and the river discharge dataset,
we reject the null hypothesis that the mean prediction errors of the
restricted and full models are equal and conclude that the inclusion of
𝑋 to predict future values of 𝑌 results in a higher prediction error and
therefore 𝑋 does not Granger-cause 𝑌 . For dataset 1&2 (Granger) we
reject the null hypothesis and conclude that the inclusion of 𝑋 reduces
the prediction errors of 𝑌 and therefore 𝑋 Granger-causes 𝑌 . The
proposed model correctly identifies the correct Granger-causal relation-
ship in all scenarios, whereas LPCMCI and SVAR-FCI identify spurious
relationships for dataset 1 (no Granger) and dataset 2 (Granger).

Real-world time series can be highly nonlinear and have different
noise levels. The above analysis shows the proposed model is able to
identify the Granger-causal relationship for various nonlinear functions
and arbitrary noise levels. We investigate the robustness of our model
by varying the signal-to-noise ratio defined as:

𝛾 =
1
𝑇
∑𝑇

𝑡=1 |𝑠𝑡|

𝜎
, (15)

where |𝑠𝑡| denotes the magnitude of the signal (𝑌𝑡 without the noise
term) at 𝑡 and 𝜎 is the standard deviation of the noise term in the
ata generating process. For dataset 1&2 (Granger) we wish to find
he critical 𝛾 below which the noise term becomes dominant and the
odel fails to identify the Granger-causal link between 𝑋 and 𝑌 ; to

do this we vary the standard deviation 𝜎 of the noise term in (11) and
(12). Starting with a rough range of 𝛾 = 10 to 𝛾 = 100, a bisection
search strategy to find the critical value 𝛾∗. A 𝑝 𝑣𝑎𝑙𝑢𝑒 < 0.05 denotes
Granger causality inferred by the proposed model. Results are shown
in Table 2. For dataset 1 (Granger) we see that the critical value 𝛾∗

is approximately 59.22 (highlighted in bold), i.e. the Granger-causal
link between 𝑋 and 𝑌 for this set of stochastic time series can only be
identified if 𝛾 ≥ 59.22; for dataset 2(Granger) 𝛾∗ ≈ 27.58.

Lastly, we tested the sensitivity of the model output to the sequence
length 𝜏 ∈ {4, 6, 8, 10, 12, 14, 16} used in training for dataset 1&2
(Granger). We noted that all 𝑝 𝑣𝑎𝑙𝑢𝑒 < 0.001, which suggests that our
5

a

model is able to consistently identify the Granger-causal link given
short and long 𝜏 used in training. This is desirable as it indicates that
model results are not very sensitive to the choice of hyperparameters.

6. Conclusion

In this paper we have presented a deep-learning based approach to
model nonlinear Granger-causality with in the presence of a latent con-
founder. Our model involves the use of multiple recurrent neural net-
works to parameterise a restricted-model distribution 𝑃 (𝑌𝑡+1|𝑌1∶𝑡, 𝑍1∶𝑡)
and a full-model distribution 𝑃 (𝑌𝑡+1|𝑌1∶𝑡, 𝑋1∶𝑡, 𝑍1∶𝑡). We generate pre-
iction samples from the two distributions and we use a two-sample
-test to establish whether the inclusion of 𝑋 helps to predict future
alues of 𝑌 given a learned representation of the confounder. To enable
fficient comparison, we propose a dual-decoder setup, which avoids
he need to train two separate models (as presented in many existing lit-
rature), and we believe this helps to reduce bias resulting from neural
etwork hyperparameter tuning. We demonstrate the effectiveness of
ur model on both synthetic and real-world datasets, and we recognise
hat a high enough signal-to-noise ratio is required to correctly identify
Granger-causal link.
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