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Abstract—There has been a dramatic increase in the volume
of videos and their related content uploaded to the internet.
Accordingly, the need for efficient algorithms to analyse this vast
amount of data has attracted significant research interest. This
work aims to recognize activities of daily living using the ST-GCN
model, providing a comparison between four different partition-
ing strategies: spatial configuration partitioning, full distance
split, connection split, and index split. To achieve this aim, we
present the first implementation of the ST-GCN framework upon
the HMDB-51 dataset. Additionally, we show that our proposals
have achieved the highest accuracy performance on the UCF-101
dataset using the ST-GCN framework than the state-of-the-art
approach.

Index Terms—Spatial Temporal Graph Convolution Network,
Skeleton, HMDB-51, UCF-101, Action Recognition, Graph Neu-
ral Network

I. INTRODUCTION

Recently, the amount of videos uploaded to the internet
has increased substantially. According to Statista [1], by May
2019, more than 500 hours of video were uploaded to YouTube
every minute, and the numbers did not slow down. Therefore,
the need for robust algorithms to analyse this enormous
amount of data has increased accordingly.

An action recognition system based upon human body
motions is an efficient way of interpreting videos’ contents.
The skeleton movements approach offers multiple advantages
over the other solutions. The skeleton information is robust
to changes in the illumination of the environment where the
action takes place. Also, it is robust to changes in the back-
ground [2]. For these reasons, we have chosen this approach
to define the premise of our proposed method.

Our study is based upon the proposal presented by Yan et al.
in [3]. Instead of analysing the frames of a video by their pixel
values (i.e., RGB images), the authors first represent the actors
as a set of joint-like keypoints using the OpenPose library
[4]. To achieve the action recognition, the authors proposed
the Spatial-Temporal Graph Convolutional Neural Network
(ST-GCN) model. As the name indicates, this framework can
analyse both the spatial and the temporal relations between the

set of nodes (i.e., the skeleton joints) during the performance
of the action. Subsequently, the model is trained in an end-
to-end manner using a Graph Convolutional Neural Network
(GCN) architecture [5].

Presently, there are multiple datasets available for research
on human action recognition. Among these alternatives, the
UCF-101 [6], and the HMDB-51 [7] datasets are considered
to be reference benchmarks.

The ST-GCN model has been applied upon the UCF-101
dataset in order to recognize human actions in [8]. However,
to the best of our knowledge, there is no previous evidence
of using the ST-GCN model on the HMDB-51 dataset for
action recognition. Therefore, in this study we present the
first ST-GCN model implementation for the HMDB-51 dataset
for action recognition. In what follows, we summarise our
contributions below:

• We present the first results of the ST-GCN model trained
on the HMDB-51 dataset for action recognition. In order
to achieve that aim, we have performed a skeleton infor-
mation extraction of both the UCF-101 and the HMDB-
51 datasets.

• We have implemented our proposed partitioning strate-
gies on the ST-GCN model [9] on the benchmark datasets
(UCF-101 and the HMDB-51 datasets).

• We provide a deep analysis of the impact of different
batch sizes during training upon the accuracy perfor-
mance of the output models using the both benchmark
datasets.

• Additionally, we have provided the open-source skeleton
information of the UCF-101 and HMDB-51 datasets for
the research community1.

The remainder of the paper is structured as follows: in Section
II, we present the state-of-the-art partitioning strategies for the
ST-GCN model applied for action recognition. In Section III
we explain the constraints we have used in our experiments.

1https://github.com/malswadi/skeleton-ucf-hmdb



The experimental results are described in depth in Section IV.
Finally, Section V presents the summary and discussions.

II. ACTION RECOGNITION USING ST-GCN

In order to perform the convolution operation, Yan et al. [3]
first divided the skeleton into subsets of joints (i.e., neighbor-
sets). Each of these sets are composed by a root node and its
adjacent nodes (Fig. 1). On the other hand, each kernel has
a size of K x K. For graphs with no specific order, priority
criteria must be set in each neighbor-set to map each joint to
a label. Hence, the convolution process can be performed, and
network training can be possible.

Fig. 1. Skeleton components and the keypoints indexes of OpenPose layout.

Partitioning strategies

A set of partitioning strategies were presented in [3]. Among
these, the spatial configuration partitioning strategy offered
the best results. We were able to improve this performance
with the use of the ST-GCN model by presenting a novel set
of partitioning strategies in [9]: the full distance, connection
and index splits. All these strategies are going to be explained
in the following sections.

1) Spatial Configuration: In this approach, the kernel size
K = 3 and the center of gravity of the skeleton (average of
the values on each joint axis across all the training set) is
considered. Mathematically, the mapping for this strategy is
defined with the following equation

ti(vtj) =

 0 if rj = ri
1 if rj < ri
2 if rj > ri

, (1)

where lti(vtj) represents the label mapping for the node vtj ,
rj is the average value from the root node to the center of
gravity and ri is the average value from the ith node to the
center of gravity. As can be noticed, two nodes can share a
single label within a neighbor set.

2) Full distance split: In this strategy, we considered the
distance from every joint in the neighbor set to the center of
gravity of the skeleton. Hence, each node in the neighbor set
has an individual label. The nearest the node is to the center
of gravity, the highest priority it is assigned to it [9] (Fig. 2.i)

Fig. 2. Feature vector output of split strategies in [9]. i) Full distance. ii)
Connection. iii) Index.

To describe this strategy mathematically, a set F is defined.
This set contains the Euclidean distances of the i-th adjacent
node uti (of the root node utj) with respect to the center of
gravity of the skeleton, sorted in ascending order. With this
auxiliary set in place, the label mapping can be defined using
the Eq. 2.

ti(utj) =

{
0 if |uti − cg|2 = xr

m if |uti − cg|2 = fm
, (2)

where lti represents the label map for each joint uti in the
neighbor set of the root node utj , xr is the Euclidean distance
from the root node utj to the center of gravity of the skeleton
and fm is the value of F at the m index.

3) Connection split: For this partitioning criteria, the de-
gree of each vertex (i.e., the joints) of the skeleton graph
is considered. The higher degree, the higher priority [9]. If
several nodes share the same degree, their priority is set
randomly (Fig. 2.ii).

To define the label mapping, we proposed a set C as the
degree values of each of the N adjacent nodes of the root
node sorted in descending order. Given the set C defined, the
label mapping can be obtained using Eq. 3.

ti(utj) =

{
0 if d(uti) = dr
m if d(uti) = cm

, (3)

where lti represents the label map for each joint uti in
the neighbor set of the root node utj , dr is the degree
corresponding the root node and cm is the value of C at the
m index.

4) Index split: For this strategy, we considered the Open-
Pose [4] output keypoints shown in Fig. 1. The smallest value
of the keypoint index, the highest priority [9] (Fig. 2.iii). We
defined an auxiliary set P with the key point index values of
the adjacent nodes sorted in ascendant order. Then, the label
mapping is obtained using Eq. 4.

ti(utj) =

{
0 if ind(uti) = inr

m if ind(uti) = pm
, (4)



where lti and ind(uti) represent the label map and the index
keypoint value of the ith joint, respectively; inr is the index
of the keypoint corresponding to the root node utj and pm is
the value of P at the m index.

III. EXPERIMENTAL SETTINGS

Given that the skeleton representation of the actors is not
provided for either the UCF-101 [6] or the HMDB-51 [7], we
first extract that skeleton representation from both datasets.

A. Skeleton Extraction

We followed the experiment guidelines provided in [3].
First, the resolution of each video sample has been resized into
a fixed dimension of 340 × 256 pixels. Due to the variability
of the duration of each clip, a fixed duration of 300 frames has
been proposed. Therefore, if any video clip has less than 300
frames, we repeat the initial frames until we reach the amount
needed. Otherwise, if the video clip exceeds the frame number,
we trim it.

Third, we extracted the skeleton data with the use of the
OpenPose library [4]. This system output the 2D coordinates
of 18 main skeleton joints positions (shown in Fig. 1). Each
skeleton joint information consists of three values as (x, y, c),
where x and y are the cartesian coordinates in the horizontal
and vertical axis, respectively, and c represents the confidence
score of the detected joint. Hence, the Spatio-temporal infor-
mation of the skeleton of each video sample is represented as
a tensor with shape (18, 3, 300). By setting the T value to
300, our output tensor is illustrated in Fig. 3.

Fig. 3. Skeleton spatial-temporal data represented as a tensor.

Finally, we have iterated through the video clips of the
datasets and saved the skeleton information as JSON files.
These files are publicly available for the research community
in 1 .

B. Datasets

The experiments were performed on 2 of the top 5 most
popular datasets for action recognition [10]: the UCF-101 [6]
and HMDB-51 [7] datasets.

1) UCF-101: The UCF-101 is the most commonly used
benchmark human action dataset. Every video sample from
this dataset is sourced from YouTube. The clip’s duration
varies from 1.06 sec to 71.04 sec and has a fixed frame rate
of 25 fps and a fixed resolution of 320×240 pixels. This
dataset provides a total of 13,320 clips classified into 101
action classes. These classes can be broadly divided into five
major subsets: Human-Object Interaction, Body-Motion Only,
Human-Human Interaction, Playing Musical Instruments and
Sports [6].

2) HMDB-51: Aside from YouTube, the HMDB-51 dataset
was collected from a wider range of sources (i.e., movies,
Google videos, etc.). Due to the variability of resolution, the
height of all the samples was scaled to 240 pixels, and the
width has was scaled to maintain the original video ratio.
Furthermore, the frame rate was modified to have a fixed
value of 30 fps. It provides a total of 6,766 video clips of 51
different classes. These classes can be broadly classified into 5
categories: General facial actions, Facial actions with object
manipulation, General body movements, Body movements with
object interaction and Body movements for human interaction
[7].

C. ST-GCN additional layer: the M-Mask

Not all the joints provide the same quality and quantity
of information regarding the movement performed. In the
ST-GCN framework, the authors added a mask M (or M-
mask) to each layer of the GCN to express the importance
of each joint [3]. According to their results, the proposed M-
mask considerably improves their architecture’s performance.
Therefore, the authors constantly apply it to the ST-GCN
network in their experiments.

D. Training Details

We performed the experiments of the implementation of
the ST-GCN model using the spatial configuration partitioning
[3] and the enhanced split strategies proposed in [9] to find
the partitioning approach that offered the best performance
in terms of accuracy. We also included experiments with and
without the M-mask layer implementation to provide a valid
comparison.

Every model has been trained for 80 epochs using the
stochastic gradient descent with learning rate decay as op-
timization algorithm. The learning rate decays by a factor of
0.1 every 10th epoch, starting from the epoch number 20.

Another experiment setting criteria was to find the optimal
batch size. This hyperparameter allows the model to adjust its
parameters during optimization with respect to a small subset
of training samples called mini batches [11]. Therefore, we
proposed this hyper-parameter to be one of the experiment’s
definition criteria. We vary the batch size from 8, 16, 32, 64,
and 128.

IV. RESULTS

The results correspond to the models with the best perfor-
mance in terms of accuracy. In Table I are shown the results of



these experiments. The accuracy values shown were obtained
using top-1 criteria. The ”Y” (”Yes”) and ”N” (”No”) values
in the ”M-mask” column represent whether the M-mask layer
was implemented or not in that experiment, respectively. We
have evaluated the model for each of the five epochs.

TABLE I
EXPERIMENTS PERFORMANCE

(TOP-1 ACCURACY)

Method Batch size M-mask UCF-101 HMDB-51
Spatial C.P. 8 Y 46.42% 37.34%

N 65.36% 40.77%
16 Y 68.71% 44.39%

N 65.89% 41.08%
32 Y 68.96% 43.89%

N 68.55% 45.45%
64 Y 70.47% 45.64%

N 68.18% 46.82%
128 N 70.72% 44.64%

Full Distance Split 8 Y 48.51% 41.77%
N 58.73% 33.23%

16 Y 61.02% 38.97%
N 67.89% 42.08%

32 Y 69.16% 33.23%
N 66.30% 45.51%

64 Y 70.43% 42.02%
N 68.59% 45.82%

128 N 66.91% 45.26%
Connection Split 8 Y 63.03% 23.63%

N 63.48% 39.34%
16 Y 64.46% 43.27%

N 62.99% 40.84%
32 Y 70.88% 40.52%

N 69.41% 41.52%
64 Y 70.96% 32.29%

N 68.18% 47.19%
128 N 70.35% 48.88%

Index Split 8 Y 56.61% 38.97%
N 58.24% 34.91%

16 Y 69.33% 35.47%
N 62.70% 46.57%

32 Y 68.34% 43.20%
N 68.34% 45.51%

64 Y 72.31% 47.69%
N 72.19% 43.39%

128 N 73.25% 46.51%

By analysing the output values of the experiments shown in
Table I, it can be noticed that, in most experiments, the output
model tends to be more robust as the batch size increases.

A. UCF-101

To provide a valid comparison, we have also included the
outcome of the previous ST-GCN implementation performed
by Zheng et al. [8] in Table II.

The model with M-mask implementation that achieved the
best accuracy performance was trained using a 64 batch size
and utilized the index split partitioning strategy. It has achieved
1.84% of accuracy improvement with respect to the spatial
configuration partitioning approach proposed by Yan et al. in
[3]. Moreover, this model enhances the previous state-of-the-
art results in [8] by 21.78%.

On the other hand, the index split partitioning strategy
allowed the ST-GCN model to achieve the best accuracy

TABLE II
UCF-101 PERFORMANCE USING M-MASK

Method Accuracy
ST-GCN Spatial Configuration

Partitioning
70.47%

Zheng et al. [8] Spatial Configuration
Partitioning

50.53%

Alsawadi and Rio [9] Full Distance Split 70.43%
Alsawadi and Rio [9] Connection Split 70.96%
Alsawadi and Rio [9] Index Split 72.31%

performance with no use of the M-mask implementation. This
solution enhanced the spatial configuration partitioning model
approach proposed by Yan et al. in [3] by 2.53%.

In Figure 4 are shown 2 different examples of the action
prediction achieved taken from the UCF-101 dataset. As it
can be seen in the column (c), the ST-GCN model can output
more than one label for a sample frame.

B. HMDB-51

There is no previous application of the ST-GCN model upon
the HMDB-51 dataset to the author’s knowledge. Hence, the
table only contains the results of the present study using the
different partitioning strategies.

The highest value with M-mask implementation was
achieved with the use of the index split partition strategy. This
model was trained by choosing a training batch size of 64. It
has reached more than 2% accuracy improvement with respect
to the spatial configuration partitioning proposed by Yan et al.
in [3].

In Figure 5 are shown 2 different examples of the action
prediction achieved taken from the HMDB-51 dataset. As it
can be noticed in the bottom example, the model is able to
recognize the action of both of the actors accurately.

V. CONCLUSION

In this paper, we have proposed novel action recogni-
tion method using ST-GCN model by exploiting partitioning
strategies: spatial configuration paritioning, full distance split,
connection split and index split. We have presented the first
implementation of the ST-GCN framework on the HMDB-
51 [7] dataset achieving 48.88% top-1 accuracy by using the
connection split partitioning approach. Our proposal outper-
forms the state-of-the-art using the ST-GCN framework on the
UCF-101. Our results further show performance superiority
over the most recent related work proposed in [9] with much
lower training and computational inference costs and structural
simplicity. However, the difference in the amount of training
data impacted considerably in the final performance.

As future work, we propose increasing the size of nodes in
the neighbor sets to capture the relationships between joints
that are distant from each other, in order to increase the overall
accuracy.
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Fig. 4. UCF-101 Action prediction examples. (a) Original frame. (b) ST-GCN input (OpenPose estimation). (c) ST-GCN output attention and action prediction.
(d) Original frame overlayed with ST-GCN output.

Fig. 5. HMDB-51 Action prediction examples. (a) Original frame. (b) ST-GCN input (OpenPose estimation). (c) ST-GCN output attention and action prediction.
(d) Original frame overlayed with ST-GCN output.
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